当前位置:文档之家› 高考数学专题复习 专题8 立体几何与空间向量 第49练 空间点线面的位置关系练习 理

高考数学专题复习 专题8 立体几何与空间向量 第49练 空间点线面的位置关系练习 理

高考数学专题复习 专题8 立体几何与空间向量 第49练 空间点线面的位置关系练习 理
高考数学专题复习 专题8 立体几何与空间向量 第49练 空间点线面的位置关系练习 理

(江苏专用)2018版高考数学专题复习专题8 立体几何与空间向量第49练空间点、线、面的位置关系练习理

1.(2016·南通模拟)给出下列四个命题:

①一条直线和一个点可以确定一个平面;

②三个平面两两相交得到三条交线,这三条交线最多只能交于一个点;

③两个平面有无数个公共点,那么这两个平面一定重合;

④三条两两相交但不交于同一点的直线在同一平面内.

其中所有正确命题的序号是________.

2.(2016·宿迁模拟)已知直线l、m、n及平面α,下列命题:

①若l∥m,m∥n,则l∥n;②若l⊥α,n∥α,则l⊥n;

③若l∥α,n∥α,则l∥n;④若l⊥m,m∥n,则l⊥n.

其中所有正确命题的序号为________.

3.(2016·蚌埠质检)已知l1,l2,l3是空间三条不同的直线,则下列命题正确的是________.(填序号)

①若l1⊥l2,l1⊥l3,则l2∥l3;

②若l1⊥l2,l2∥l3,则l1⊥l3;

③若l1∥l2,l2∥l3,则l1,l2,l3共面;

④若l1,l2,l3共点,则l1,l2,l3共面.

4.(2016·广元二诊)已知α、β、γ是三个不同平面,则下列命题正确的是________.(填序号)

①α⊥β,β⊥γ?α∥γ;②α⊥β,β∥γ?α⊥γ;

③α、β、γ共点?α、β、γ共线;④α⊥β,β⊥γ,γ⊥α?α、β、γ共线.5.(2016·江门模拟)如图,四棱柱ABCD-A1B1C1D1中,E,F分别是AB1,BC1的中点.下列结论中,正确的是________.(填序号)

①EF ⊥BB 1;

②EF ∥平面ACC 1A 1;

③EF ⊥BD ;

④EF ⊥平面BCC 1B 1.

6.(2016·青岛平度三校上学期期末)如图,正方体ABCD -A 1B 1C 1D 1的棱长为1,线段B 1D 1上

有两个动点E ,F ,且EF =12

,则下列结论中正确的是________.(填序号)

①AC ⊥BE ;②EF ∥平面ABCD ;

③三棱锥A -BEF 的体积为定值;④△AEF 的面积与△BEF 的面积相等.

7.(2016·南京模拟)给出下列命题:

①若线段AB 在平面α内,则直线AB 上的点都在平面α内;

②若直线a 在平面α外,则直线a 与平面α没有公共点;

③两个平面平行的充分条件是其中一个平面内有无数条直线平行于另一个平面; ④设a ,b ,c 是三条不同的直线,若a ⊥b ,a ⊥c ,则b ∥c .

其中假命题的序号是________.

8.(2016·潍坊调研)有下列命题:

①若直线l 平行于平面α内的无数条直线,则直线l ∥α;

②若直线a 在平面α外,则a ∥α;

③若直线a ∥b ,b ∥α,则a ∥α;

④若直线a ∥b ,b ∥α,则a 平行于平面α内的无数条直线.

其中真命题的个数是________.

9.设四面体的六条棱的长分别为1,1,1,1,2和a ,且长为a 的棱与长为2的棱异面,则a 的取值范围是________.

10.(2016·安徽江南十校大联考)如图,在三棱锥A -BCD 中,AB =AC =BD =CD =3,AD =BC =2,点M ,N 分别是AD ,BC 的中点,则异面直线AN ,CM 所成角的余弦值是________.

11.设a ,b ,c 是空间中的三条直线,给出以下几个命题:

①设a ⊥b ,b ⊥c ,则a ∥c ;

②若a ,b 是异面直线,b ,c 是异面直线,则a ,c 也是异面直线;

③若a 和b 相交,b 和c 相交,则a 和c 也相交.

其中真命题的个数是________.

12.(2016·金华十校联考)平面α外有两条直线m 和n ,如果m 和n 在平面α内的射影分别是m 1和n 1,给出下列四个命题:

①m 1⊥n 1?m ⊥n ;②m ⊥n ?m 1⊥n 1;③m 1与n 1相交?m 与n 相交或重合;④m 1与n 1平行?m 与n 平行或重合.其中不正确的命题个数是________.

13.(2016·上饶一模)如图,正三棱柱ABC -A 1B 1C 1的各棱长都等于2,D 在AC 1上,F 为BB 1的中点,且FD ⊥AC 1,有下述结论:

①AC 1⊥BC ;

②AD DC 1

=1; ③平面FAC 1⊥平面ACC 1A 1;

④三棱锥D -ACF 的体积为33

. 其中正确结论的个数为________.

14.已知棱长为1的正方体ABCD -A 1B 1C 1D 1中,E ,F ,M 分别是线段AB 、AD 、AA 1的中点,又P 、Q 分别在线段A 1B 1、A 1D 1上,且A 1P =A 1Q =x (0<x <1).设平面MEF ∩平面MPQ =l ,现有下列结论:

①l∥平面ABCD;

②l⊥AC;

③直线l与平面BCC1B1不垂直;

④当x变化时,l不是定直线.

其中不成立的结论是________.(写出所有不成立结论的序号)

答案精析

1.②④ 2.①②④ 3.② 4.②

5.②

解析

如图所示,取BB 1的中点M ,连结ME ,MF ,延长ME 交AA 1于P ,

延长MF 交CC 1于Q ,

∵E ,F 分别是AB 1,BC 1的中点,

∴P 是AA 1的中点,Q 是CC 1的中点,

从而可得E 是MP 的中点,F 是MQ 的中点,

∴EF ∥PQ .

又PQ ?平面ACC 1A 1,EF ?平面ACC 1A 1,

∴EF ∥平面ACC 1A 1.故②正确.

6.①②③

解析 因为AC ⊥平面BDD 1B 1,BE ?平面BDD 1B 1,

所以AC ⊥BE ,故①正确;

根据线面平行的判定定理,故②正确;

因为三棱锥的底面△BEF 的面积是定值,

且点A 到平面BDD 1B 1的距离是定值

22

, 所以其体积为定值,故③正确;

很显然,点A 和点B 到EF 的距离不一定是相等的,故④错误.

7.②③④

8.1

解析 命题①直线l 可以在平面α内,不正确;命题②直线a 与平面α可以是相交关系,不正确;命题③直线a 可以在平面α内,不正确;命题④正确.

9.(0,2)

解析 构造四面体ABCD ,使AB =a ,CD =2, AD =AC =BC =BD =1,取CD 的中点E ,

则AE =BE =22,

∴22+22

>a,0<a < 2. 10.78

解析 连结ND ,取ND 的中点E ,连结ME ,则ME ∥AN ,异面直线AN ,CM 所成的角就是∠EMC .

∵AN =22,∴ME =2=EN ,MC =2 2.

又∵EN ⊥NC ,∴EC =EN 2+NC 2

=3, ∴cos∠EMC =EM 2+MC 2-EC 22EM ·MC =2+8-32×2×22=78

.

11.0

解析 因为a ⊥b ,b ⊥c ,所以a 与c 可以相交,平行,异面,故①错. 因为a ,b 异面,b ,c 异面,则a ,c 可能异面,相交,平行,故②错. 由a ,b 相交,b ,c 相交,则a ,c 可以异面,相交,平行,故③错. 12.4

解析

如图,在正方体ABCD -A 1B 1C 1D 1中,AD 1,AB 1,B 1C ,A 1B 在底面A 1B 1C 1D 1上的射影分别是A 1D 1,A 1B 1,B 1C 1,A 1B 1.因为A 1D 1⊥A 1B 1,而AD 1不垂直于AB 1,故①不正确;因为AD 1⊥B 1C ,而A 1D 1∥B 1C 1,故②不正确;因为A 1D 1与A 1B 1相交,而AD 1与A 1B 异面,故③不正确;因为A 1D 1∥B 1C 1,而AD 1与B 1C 异面,故④不正确. 13.3

解析

BC ⊥CC 1,但BC 不垂直于AC ,故BC 不垂直于平面ACC 1A 1,

又CC 1与AC 1相交,

所以AC 1与BC 不垂直,故①错误; 连结AF ,C 1F ,可得AF =C 1F = 5.

因为FD ⊥AC 1,

所以可得D 为线段AC 1的中点,故②正确;

取AC 的中点为H ,连结BH ,DH ,

因为该三棱柱是正三棱柱,

所以CC 1⊥底面ABC ,

因为BH ?底面ABC ,所以CC 1⊥BH ,

因为底面ABC 为正三角形,

可得BH ⊥AC ,

又AC ∩CC 1=C ,

所以BH ⊥侧面ACC 1A 1.

因为D 和H 分别为AC 1,AC 的中点,

所以DH ∥CC 1∥BF ,DH =BF =12CC 1,

可得四边形BFDH 为平行四边形,所以FD ∥BH ,

所以可得FD ⊥平面ACC 1A 1,

因为FD ?平面FAC 1,

所以平面FAC 1⊥平面ACC 1A 1,故③正确;

V D -ACF =V F -ADC =13·FD ·S △ACD

=13×3×(12×1×2)=3

3,故④正确.

14.④

解析 连结BD ,B 1D 1,∵A 1P =A 1Q =x ,

∴PQ ∥B 1D 1∥BD ∥EF ,易证PQ ∥平面MEF ,

又平面MEF ∩平面MPQ =l ,

∴PQ ∥l ,l ∥EF ,

∴l ∥平面ABCD ,故①成立;

又EF ⊥AC ,

∴l ⊥AC ,故②成立;

∵l ∥EF ∥BD ,

∴易知直线l 与平面BCC 1B 1不垂直,故③成立;

当x 变化时,l 是过点M 且与直线EF 平行的定直线,故④不成立.

高考数学平面向量专题卷(附答案)

高考数学平面向量专题卷(附答案) 一、单选题(共10题;共20分) 1.已知向量,则=() A. B. C. 4 D. 5 2.若向量,,若,则 A. B. 12 C. D. 3 3.已知平面向量,,且,则=() A. B. C. D. 4.已知平面向量、,满足,若,则向量、的夹角为() A. B. C. D. 5.在中,的中点为,的中点为,则() A. B. C. D. 6.已知平面向量不共线,且,,记与的夹角是,则最大时, () A. B. C. D. 7.在中,,AD是BC边上的高,则等于() A. 0 B. C. 2 D. 1 8.已知,则的取值范围是() A. [0,1] B. C. [1,2] D. [0,2] 9.已知向量,的夹角为,且,则的最小值为() A. B. C. 5 D. 10.已知椭圆:上的三点,,,斜率为负数的直线与轴交于,若原点是的重心,且与的面积之比为,则直线的斜率为()

A. B. C. D. 二、填空题(共8题;共8分) 11.在平面直角坐标系xOy中,已知A(0,﹣1),B(﹣3,﹣4)两点,若点C在∠AOB的平分线上,且 ,则点C的坐标是________. 12.已知单位圆上两点满足,点是单位圆上的动点,且,则 的取值范围为________. 13.已知正方形的边长为1,,,,则________. 14.在平面直角坐标系中,设是函数()的图象上任意一点,过点向直线 和轴作垂线,垂足分别是,,则________. 15.已知为锐角三角形,满足,外接圆的圆心为,半径为1,则的取值范围是________. 16.设是边长为的正六边形的边上的任意一点,长度为的线段是该正六边形外接圆的一条动弦,则的取值范围为________. 17.设的外接圆的圆心为,半径为2,且满足,则 的最小值为________. 18.如图,在中,,点,分别为的中点,若,,则 ________. 三、解答题(共6题;共60分) 19.的内角,,所对的边分别为,,.向量与平行.(Ⅰ)求; (Ⅱ)若,求的面积. 20.在平面直角坐标系中,曲线的参数方程为(为参数),已知点,点是曲线上任意一点,点为的中点,以坐标原点为极点,轴正半轴为极轴建立极坐标系.

空间向量和立体几何练习题及答案.

1.如图,在四棱锥P﹣ABCD中,底面ABCD为正方形,平面PAD⊥平面ABCD,点M在线段PB上,PD∥平面MAC,PA=PD=,AB=4. (1)求证:M为PB的中点; (2)求二面角B﹣PD﹣A的大小; (3)求直线MC与平面BDP所成角的正弦值. 【分析】(1)设AC∩BD=O,则O为BD的中点,连接OM,利用线面平行的性质证明OM∥PD,再由平行线截线段成比例可得M为PB的中点; (2)取AD中点G,可得PG⊥AD,再由面面垂直的性质可得PG⊥平面ABCD,则PG⊥AD,连接OG,则PG⊥OG,再证明OG⊥AD.以G为坐标原点,分别以GD、GO、GP所在直线为x、y、z轴距离空间直角坐标系,求出平面PBD与平面PAD的一个法向量,由两法向量所成角的大小可得二面角B﹣PD﹣A的大小;(3)求出的坐标,由与平面PBD的法向量所成角的余弦值的绝对值可得直线MC与平面BDP所成角的正弦值. 【解答】(1)证明:如图,设AC∩BD=O, ∵ABCD为正方形,∴O为BD的中点,连接OM, ∵PD∥平面MAC,PD?平面PBD,平面PBD∩平面AMC=OM, ∴PD∥OM,则,即M为PB的中点; (2)解:取AD中点G, ∵PA=PD,∴PG⊥AD, ∵平面PAD⊥平面ABCD,且平面PAD∩平面ABCD=AD, ∴PG⊥平面ABCD,则PG⊥AD,连接OG,则PG⊥OG, 由G是AD的中点,O是AC的中点,可得OG∥DC,则OG⊥AD. 以G为坐标原点,分别以GD、GO、GP所在直线为x、y、z轴距离空间直角坐标系, 由PA=PD=,AB=4,得D(2,0,0),A(﹣2,0,0),P(0,0,),C(2,

高三数学精准培优专题练习8:平面向量

培优点八 平面向量 1.代数法 例1:已知向量a ,b 满足=3a ,b 且()⊥+a a b ,则b 在a 方向上的投影为( ) A .3 B .3- C . D 【答案】C 【解析】考虑b 在a 上的投影为 ?a b b ,所以只需求出a ,b 即可. 由()⊥+a a b 可得:()2 0?+=+?=a a b a a b , 所以9?=-a b .进而?==a b b .故选C . 2.几何法 例2:设a ,b 是两个非零向量,且2==+=a b a b ,则=-a b _______. 【答案】【解析】可知a ,b ,+a b 为平行四边形的一组邻边和一条对角线, 由2==+=a b a b 可知满足条件的只能是底角为60o ,边长2a =的菱形, =. 3.建立直角坐标系 例3:在边长为1的正三角形ABC 中,设2BC BD =uu u v uu u v ,3CA CE =uu v uu u v ,则AD BE ?=u u u v u u u v __________. 【答案】14 AD BE ?=-uuu v uu u v 【解析】上周是用合适的基底表示所求向量,从而解决问题,本周仍以此题为例,从另一个角度解题,

观察到本题图形为等边三角形,所以考虑利用建系解决数量积问题, 如图建系: 3 0, A ?? ? ? ?? , 1 ,0 2 B ?? - ? ?? , 1 ,0 2 C ?? ? ?? , 下面求E坐标:令() , E x y,∴ 1 , 2 CE x y ?? =- ? ?? uu u v , 13 2 CA ? =- ?? uu v , 由3 CA CE = uu v uu u v 可得: 111 3 223 3 3 3 x x y y ???? -=-= ? ?? ?? ?? ? ?? ??= = ??? ? 13 3 E ? ?? , ∴ 3 0, AD ? = ?? uuu v , 53 6 BE ? = ?? uu u v ,∴ 1 4 AD BE ?=- uuu v uu u v . 一、单选题 1.已知向量a,b满足1 = a,2 = b,且向量a,b的夹角为 4 π ,若λ - a b与b垂直,则实数λ的值为() A. 1 2 -B. 1 2 C. 2 D 2 【答案】D 【解析】因为12cos2 4 π ?? ?= a b()2 240 λλλ -?=?=?= a b b,故选D.2.已知向量a,b满足1 = a,2 = b,7 += a b?= a b() A.1 B2C3D.2 【答案】A 对点增分集训

空间向量与立体几何知识总结

已知两异面直线 b a,,,,, A B a C D b ∈∈,则异面直线所成的角θ为:cos AB CD AB CD θ? = u u u r u u u r u u u r u u u r 例题 【空间向量基本定理】 例1.已知矩形ABCD,P为平面ABCD外一点,且PA⊥平面ABCD,M、N分别为PC、PD上的点,且M分成定比2,N分PD成定比1,求满足的实数x、y、z的值。 分析;结合图形,从向量出发,利用向量运算法则不断进行分解,直到全部向量都用、、表示出来,即可求出x、y、z的值。 如图所示,取PC的中点E,连接NE,则。 点评:选定空间不共面的三个向量作基向量,并用它们表示出指定的向量,是用向量解决立体几何问题的一项基本功,要结合已知和所求,观察图形,联想相关的运算法则和公式等,就近表示所需向量。再对照目标,将不符合目标要求的向量当作新的所需向量,如此继续下去,直到所有向量都符合目标要求为止,这就是向量的分解。有分解才有组合,组合是分解的表现形式。空间向量基本定理恰好说明,用空间三个不共面的向量组可以表示出空间任意一个向量,而且a,b,c的系数是惟一的。 【利用空间向量证明平行、垂直问题】 例2.如图,在四棱锥P—ABCD中,底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC,E是PC的中点,作EF⊥PB于点F。 (1)证明:PA方形ABCD—中,E、F分别是,的中点,求:(1)异面直线AE与CF所成角的余弦值; (2)二面角C—AE—F的余弦值的大小。

点评:(1)两条异面直线所成的角可以借助这两条直线的方向向量的夹角求得,即。 (2)直线与平面所成的角主要可以通过直线的方向向量与平面的法向量的夹角求得,即 或 (3)二面角的大小可以通过该二面角的两个面的法向量的夹角求得,它等于两法向量的夹角或其补角。 【用空间向量求距离】 例4.长方体ABCD —中,AB=4,AD=6,,M 是A 1C 1的中点,P 在线段BC 上,且|CP|=2,Q 是DD 1的中点, 求: (1)异面直线AM 与PQ 所成角的余弦值; (2)M 到直线PQ 的距离; (3)M 到平面AB 1P 的距离。 本题用纯几何方法求解有一定难度,因此考虑建立空间直角坐标系,运用向量坐标法来解决。利用向量的模和夹角求空间的线段长和两直线的夹角,在新高考试题中已多次出现,但是利用向量的数量积来求空间的线与线之间的夹角和距离,线与面、面与面之间所成的角和距离还涉及不深,随着新教材的推广使用,这一系列问题必将成为高考命题的一个新的热点。现列出几类问题的解决方法。 (1)平面的法向量的求法:设,利用n 与平面内的两个向量a ,b 垂直,其数量积为零,列出两个三元 一次方程,联立后取其一组解。 (2)线面角的求法:设n 是平面的一个法向量,AB 是平面 的斜线l 的一个方向向量,则直线与平面 所成 角为n AB n AB ??= θθsin 则 (3)二面角的求法:①AB,CD 分别是二面角 的两个面内与棱l 垂直的异面直线,则二面角的大小为

高考数学压轴专题(易错题)备战高考《平面向量》全集汇编附解析

新数学《平面向量》试卷含答案 一、选择题 1.如图,圆O 是等边三角形ABC 的外接圆,点D 为劣弧AC 的中点,则OD =u u u r ( ) A .2133BA AC +u u u r u u u r B .2133BA A C -u u u r u u u r C .1233BA AC +u u u r u u u r D .4233BA AC +u u u r u u u r 【答案】A 【解析】 【分析】 连接BO ,易知B ,O ,D 三点共线,设OD 与AC 的交点为E ,列出相应式子得出结论. 【详解】 解:连接BO ,易知B ,O ,D 三点共线,设OD 与AC 的交点为E , 则()() 221121332333 OD BO BE BA BC BA BA AC BA AC ===?+= ++=+u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r . 故选:A. 【点睛】 本题考查向量的表示方法,结合几何特点,考查分析能力,属于中档题. 2.已知正ABC ?的边长为4,点D 为边BC 的中点,点E 满足AE ED u u u r u u u r =,那么EB EC ?u u u r u u u r 的值为( ) A .8 3 - B .1- C .1 D .3 【答案】B 【解析】 【分析】 由二倍角公式得求得tan ∠BED ,即可求得cos ∠BEC ,由平面向量数量积的性质及其运算得直接求得结果即可. 【详解】

由已知可得:7 , 又23 tan BED 3 BD ED ∠= == 所以22 1tan 1 cos 1tan 7 BED BEC BED -∠∠==-+∠ 所以1||cos 7717EB EC EB EC BEC ?? ?=∠=-=- ??? u u u r u u u r u u u r u u u r ‖ 故选B . 【点睛】 本题考查了平面向量数量积的性质及其运算及二倍角公式,属中档题. 3.若向量a b r r ,的夹角为3 π ,|2|||a b a b -=+r r r r ,若()a ta b ⊥+r r r ,则实数t =( ) A .1 2 - B . 12 C 3 D .3 【答案】A 【解析】 【分析】 由|2|||a b a b -=+r r r r 两边平方得22b a b =?r r r ,结合条件可得b a =r r ,又由()a ta b ⊥+r r r ,可得20t a a b ?+?=r r r ,即可得出答案. 【详解】 由|2|||a b a b -=+r r r r 两边平方得2222442a a b b a a b b -?+=+?+r r r r r r r r . 即22b a b =?r r r ,也即22cos 3 b a b π =r r r ,所以b a =r r . 又由()a ta b ⊥+r r r ,得()0a ta b ?+=r r r ,即20t a a b ?+?=r r r . 所以222 1122b a b t a b ?=-=-=-r r r r r 故选:A

(完整版)空间向量与立体几何题型归纳

空间向量与立体几何 1, 如图,在四棱锥V-ABCD中,底面ABCD是正方形,侧面VAD是正三角形,平面VADL底面ABC (1)证明AB丄平面VAD (2)求面VAD与面VDB所成的二面角的大小 2, 如图所示,在四棱锥P—ABCD中,底面ABCD为矩形,侧棱PA丄底面ABCD AB骑, BC=1 , PA=2, E为PD的中点. (1)求直线AC与PB所成角的余弦值; (2)在侧面PAB内找一点N使NE!平面PAC并求出N点到AB和AP的距 离.(易错点,建系后,关于N点的坐标的设法,也是自己的弱项)

3. 如图,在长方体 ABCD-ABCD 中,AD=AA=1, AB=2,点E 在棱 AB 上移动. 证明:DE 丄AD; 当E 为AB 的中点时,求点 A 到面ECD 的距离; 7T AE 等于何值时,二面角 D — EC- D 的大小为-(易错点:在找平面DEC 的法向量的时候,本 来法向量就己经存在了 ,就不必要再去找,但是我认为去找应该没有错吧 ,但法向量找出来了 , 和 那个己经存在的法向量有很大的差别 ,而且,计算结果很得杂,到底问题出在哪里?) 4. 如图,直四棱柱 ABCD — A I B I C I D I 中,底面ABCD 是等腰梯形,AB // CD , AB = 2DC =2, E 为BD i 的中点,F 为AB 的中点,/ DAB = 60° (1)求证:EF //平面 ADD 1A 1; ⑵若BB 1 ~2-,求A 1F 与平面DEF 所成角的正弦值. N : 5 题到 11 题都是运用基底思想解题 5. 空间四边形 ABCD 中, AB=BC=CD AB 丄BC, BC 丄CD , AB 与CD 成60度角,求AD 与BC 所 成角的大小。 (1) (2) (3) A B

53.高考数学专题26 平面向量(知识梳理)(理)(原卷版)

专题26 平面向量(知识梳理) 一、向量的概念及表示 1、向量的概念:具有大小和方向的量称为向量。 (1)数量与向量的区别:数量只有大小,是一个代数量,可以进行代数运算、比较大小; 向量有方向,大小,双重性,不能比较大小。 (2)向量的表示方法: ①具有方向的线段,叫做有向线段,以A 为始点,B 为终点的有向线段记作AB ,AB 的长度记作||AB 。用有向线段AB 表示向量,读作向量AB ; ②用小写字母表示:a 、。 (3)向量与有向线段的区别和联系: ①向量只有大小和方向两个要素,与起点无关,只要大小和方向相同,则这两个向量就是相同的向量; ②有向线段有起点、大小和方向三个要素,起点不同,尽管大小和方向相同,也是不同的有向线段; ③向量可以用有向线段表示,但向量不是有向线段。向量是规定了大小和方向的量,有向线段是规定了起点和终点的线段。 2、向量的模:向量AB 的大小――长度称为向量的模,记作||。 3、零向量:长度等于零、方向是任意的向量,记作。 4、单位向量:长度为一个单位长度的向量。与非零向量共线的单位向量0a =。 5、平行向量:(1)若非零向量a 、的方向相同或相反,则b a //,又叫共线向量; (2)规定与任一向量平行。 6、共线向量与平行向量关系:平行向量就是共线向量,这是因为任一组平行向量都可移到同一直线上(与有向线段的起点无关)。 7、相等向量:若非零向量a 、方向相同且模相等,则向量a 、是相等向量。 (1)相等向量:=?模相等,方向相同; (2)相反向量:b a -=?模相等,方向相反。 二、向量的加法 1、三角形法则

图示 2、平行四边形法则 原理 已知两个不共线向量a 、b ,作a AB =,b BC =,则A 、B 、D 三点不共线,以AB 、AD 为邻边 作平行四边形,则对角线上的向量b a AC +=,这个法则叫做两个向量求和的平行四边形法则。 图示 3、多边形法则 原理 已知n 个向量,依次把这n 个向量首尾相连,以第一个向量的始点为始点,第n 个向量的终点为终点 的向量叫做这n 个向量的和向量,这个法则叫做向量求和的多边形法则。 图示 运算律 交换律 a b b a +=+ 结合律 )()(c b a c b a ++=++ 1、相反向量:与a 长度相等、方向相反的向量,叫做a 的相反向量,记作a -。 (1)规定:零向量的相反向量仍是零向量; (2)a a =--)(; (3)0)()(=+-=-+a a a a ; (4)若a 与b 互为相反向量,则b a -=,a b -=,0=+b a 。 2、向量的减法:已知向量a 与b (如图),作a OA =,b OB =,则a BA b =+,向量BA 叫做向量a 与b 的差,并记作b a -,即OB OA b a BA -=-=,由定义可知: (1)如果把两个向量的始点放在一起,则这两个向量的差是以减向量的终点为始点,被减向量的终点为终点的向量; (2)一个向量BA 等于它的终点相对于点O 的位置向量OA 减去它的始点相对于点O 的位置向量OB ,或简记为“终点向量减始点向量”;

空间向量与立体几何教案(强烈推荐)

空间向量与立体几何 一、知识网络: 二.考纲要求: (1)空间向量及其运算 ① 经历向量及其运算由平面向空间推广的过程; ② 了解空间向量的概念,了解空间向量的基本定理及其意义,掌握空间向量的正交分解及其坐标表示; ③ 掌握空间向量的线性运算及其坐标表示; ④ 掌握空间向量的数量积及其坐标表示,能运用向量的数量积判断向量的共线与垂直。 (2)空间向量的应用 ① 理解直线的方向向量与平面的法向量; ② 能用向量语言表述线线、线面、面面的垂直、平行关系; ③ 能用向量方法证明有关线、面位置关系的一些定理(包括三垂线定理); ④ 能用向量方法解决线线、线面、面面的夹角的计算问题,体会向量方法在研究几何问题中的作用。 三、命题走向 本章内容主要涉及空间向量的坐标及运算、空间向量的应用。本章是立体几何的核心内容,高考对本章的考查形式为:以客观题形式考查空间向量的概念和运算,结合主观题借助空间向量求夹角和距离。 预测10年高考对本章内容的考查将侧重于向量的应用,尤其是求夹角、求距离,教材上淡化了利用空间关系找角、找距离这方面的讲解,加大了向量的应用,因此作为立体几何解答题,用向量法处

理角和距离将是主要方法,在复习时应加大这方面的训练力度。 第一课时 空间向量及其运算 一、复习目标:1.理解空间向量的概念;掌握空间向量的加法、减法和数乘; 2.了解空间向量的基本定理; 3.掌握空间向量的数量积的定义及其性质;理解空间向量的夹角的概念;掌握空间向量的数量积的概念、性质和运算律;了解空间向量的数量积的几何意义;能用向量的数量积判断向量的共线与垂直。 二、重难点:理解空间向量的概念;掌握空间向量的运算方法 三、教学方法:探析类比归纳,讲练结合 四、教学过程 (一)、谈最新考纲要求及新课标高考命题考查情况,促使积极参与。 学生阅读复资P128页,教师点评,增强目标和参与意识。 (二)、知识梳理,方法定位。(学生完成复资P128页填空题,教师准对问题讲评)。 1.空间向量的概念 向量:在空间,我们把具有大小和方向的量叫做向量。如位移、速度、力等。 相等向量:长度相等且方向相同的向量叫做相等向量。 表示方法:用有向线段表示,并且同向且等长的有向线段表示同一向量或相等的向量。 说明:①由相等向量的概念可知,一个向量在空间平移到任何位置,仍与原来的向量相等,用同向且等长的有向线段表示;②平面向量仅限于研究同一平面内的平移,而空间向量研究的是空间的平移。 2.向量运算和运算率 说明:①引导学生利用右图验证加法交换率,然后推广到首尾相接的若干向量之和;②向量加法的平行四边形法则在空间仍成立。 3.平行向量(共线向量):如果表示空间向量的有向线段所在的直线互相平行或重合,则这些向量 叫做共线向量或平行向量。a 平行于b 记作a ∥b 。 注意:当我们说a 、b 共线时,对应的有向线段所在直线可能是同一直线,也可能是平行直线;当 我们说a 、b 平行时,也具有同样的意义。 共线向量定理:对空间任意两个向量a (a ≠)、b ,a ∥b 的充要条件是存在实数λ使b =λa (1)对于确定的λ和a ,b =λa 表示空间与a 平行或共线,长度为 |λa |,当λ>0时与a 同向, 当λ<0时与a 反向的所有向量。 (3)若直线l ∥a ,l A ∈,P 为l 上任一点,O 为空间任一点,下面根据上述定理来推导的表达式。

立体几何空间向量练习

立体几何空间向量练习 1.在边长是2的正方体ABCD﹣A1B1C1D1中,E,F分别为AB,A1C的中点.应用空间向量方法求解下列问题. (1)求EF的长 (2)证明:EF∥平面AA1D1D; (3)证明:EF⊥平面A1CD. 2.如图,在直三棱柱A1B1C1﹣ABC中,AB⊥AC,AB=AC=2,AA1=4,点D是BC的中点.(1)求异面直线A 1B与C1D所成角的余弦值; (2)求平面ADC1与平面A1BA所成的锐二面角(是指不超过90°的 角)的余弦值.

3.如图所示,在四棱锥P﹣ABCD中,底面ABCD为矩形,P A⊥平面ABCD,点E在线段PC上,PC⊥平面BDE,设P A=1,AD=2. (1)求平面BPC的法向量; (2)求二面角B﹣PC﹣A的正切值. 4.如图,在长方体ABCD﹣A1B1C1D1中,M为BB1上一点,已知 BM=2,CD=3,AD=4,AA1=5. (1)求直线A1C和平面ABCD的夹角; (2)求点A到平面A1MC的距离.

5.如图,在四棱锥P﹣ABCD中,PC⊥底面ABCD,底面ABCD是直角梯形,AB⊥AD,AB ∥CD,AB=2,AD=CD=1,E是PB的中点. (1)求证:平面EAC⊥平面PBC; (2)若二面角P﹣AC﹣E的余弦值为, 求直线P A与平面EAC所成角的正弦值. 6.如图,在正三棱柱ABC﹣A1B1C1中,D为AC的中点. (1)证明:AB1∥平面BC1D; (2)证明:BD⊥平面AA1C1C; (3)若AA1=AB,求直线BC1与平面AA1C1C所成角的正弦值.

7.如图,四棱锥P﹣ABCD的底面为正方形,PD⊥底面ABCD.设平面P AD与平面PBC的交线为l. (1)证明:l⊥平面PDC; (2)已知PD=AD=1,Q为l上的点,QB=, 求PB与平面QCD所成角的正弦值. 8.如图,在正方体ABCD﹣A1B1C1D1中,E为BB1的中点. (Ⅰ)求证:BC1∥平面AD1E; (Ⅱ)求直线AA1与平面AD1E所成角的正弦值.

空间向量与立体几何知识点归纳总结

空间向量与立体几何知识点归纳总结 一.知识要点。 1. 空间向量的概念:在空间,我们把具有大小和方向的量叫做向量。 注:(1)向量一般用有向线段表示同向等长的有向线段表示同一或相等 的向量。 (2)向量具有平移不变性 2. 空间向量的运算。 定义:与平面向量运算一样,空间向量的加法、减法与数乘运算如下(如图)。 OB OA AB a b =+=+u u u r u u u r u u u r v r ;BA OA OB a b =-=-u u u r u u u r u u u r r r ;()OP a R λλ=∈u u u r r 运算律:⑴加法交换律:a b b a ? ??ρ+=+ ⑵加法结合律:)()(c b a c b a ? ???ρ?++=++ ⑶数乘分配律:b a b a ? ???λλλ+=+)( 运算法则:三角形法则、平行四边形法则、平行六面体法则 3. 共线向量。 (1)如果表示空间向量的有向线段所在的直线平行或重合,那么这些向 量也叫做共线向量或平行向量,a ρ 平行于b ρ,记作b a ρ?//。 (2)共线向量定理:空间任意两个向量a ρ、b ρ (b ρ≠0ρ), a ρ b ρa ρb ρλ=)1(=++=y x y x 其中 a ± 共面向量 (1)定义:一般地,能平移到同一平面内的向量叫做共面向量。 说明:空间任意的两向量都是共面的。

(2)共面向量定理:如果两个向量,a b r r 不共线,p r 与向量,a b r r 共面的条件 是存在实数,x y 使p xa yb =+r r r 。 (3)四点共面:若A 、B 、C 、P 四点共面<=>y x AP += <=>)1(=++++=z y x OC z OB y OA x OP 其中 5. 空间向量基本定理:如果三个向量,,a b c r r r 不共面,那么对空间任一向量 p r ,存在一个唯一的有序实数组,,x y z ,使p xa yb zc =++r r r r 。 若三向量,,a b c r r r 不共面,我们把{,,}a b c r r r 叫做空间的一个基底,,,a b c r r r 叫 做基向量,空间任意三个不共面的向量都可以构成空间的一个基底。 推论:设,,,O A B C 是不共面的四点,则对空间任一点P ,都存在唯一的三 个有序实数,,x y z ,使OP xOA yOB zOC =++u u u r u u u r u u u r u u u r 。 6. 空间向量的直角坐标系: (1)空间直角坐标系中的坐标: 在空间直角坐标系O xyz -中,对空间任一点A ,存在唯一的有序实数组 (,,)x y z ,使++=,有序实数组(,,)x y z 叫作向量A 在空间直角坐 标系O xyz -中的坐标,记作(,,)A x y z ,x 叫横坐标,y 叫纵坐标,z 叫竖坐标。 注:①点A (x,y,z )关于x 轴的的对称点为(x,-y,-z),关于xoy 平面的对称点为(x,y,-z).即点关于什么轴/平面对称,什么坐标不变,其余的分坐标均相反。②在y 轴上的点设为(0,y,0),在平面yOz 中的点设为(0,y,z) (2)若空间的一个基底的三个基向量互相垂直,且长为1,这个基底叫单位 正交基底,用{,,}i j k r r r 表示。空间中任一向量k z j y i x a ++==(x,y,z ) (3)空间向量的直角坐标运算律: ①若123(,,)a a a a =r ,123(,,)b b b b =r ,则112233(,,)a b a b a b a b +=+++r r ,

高考数学-平面向量专题复习

平面向量 【考点例题解析】 考点1.共线定理应用 例一:平面向量→ →b a ,共线的充要条件是( ) A.→ →b a ,方向相同 B. → →b a ,两向量中至少有一个为零向量 C.存在,R ∈λ→ → =a b λ D.存在不全为零的实数0,,2121=+→ → b a λλλλ 变式一:对于非零向量→ →b a ,,“→→ →=+0b a ”是“→ →b a //”的( ) A.充分不必要条件 B.必要不充分条件 C.充分必要条件 D.既不充分也不必要条件 变式二:设→ →b a ,是两个非零向量( ) A.若→ → → → =+b a b a _则→→ ⊥b a B. 若→→⊥b a ,则→→→→=+b a b a _ C. 若→ →→→=+b a b a _,则存在实数λ,使得 → → =a b λ D 若存在实数λ,使得→ → =a b λ,则→ → → → =+b a b a _ 例二:设两个非零向量→ → 21e e 与,不共线, (1)如果三点共线;求证:D C A e e CD e e BC e e AB ,,,28,23,212121--=+=-= (2)如果三点共线, 且D C A e k e CD e e BC e e AB ,,,2,32,212121-=-=+=求实数k 的值。

变式一:设→ →21e e 与两个不共线向量,,2,3,2212121e e e e e k e -=+=+=若三点A,B,D 共线,求实数 k 的值。 变式二:已知向量→ →b a ,,且,27,25,2+=+-=+=则一定共线的三点是( ) A.A,B,D B.A,B,C C.B,C,D D.A,C,D 考点2.线段定比分点的向量形式在向量线性表示中的应用 例一:设P 是三角形ABC 所在平面内的一点,,2BA BC BP += 则( ) A. PB PA +=0 B. PA PC +=0 C. PC PB +=0 D. PB PA PC ++=0 变式一:已知O 是三角形ABC 所在平面内一点,D 为BC 边的中点,且OC OB OA ++=20,那么( )A. OD A =0 B. OD A 20= C. OD A 30= D. OD A =02 变式二:在平行四边形ABCD 中a AB =,b AD =,NC AN 3=,M 为BC 的中点,则=MN ( 用b a ,表示) 例二:在三角形ABC 中,c AB =,b AC =,若点D 满足DC BD 2=,则=AD ( ) A. ,3132+ B. ,3235- C. ,3132- D. ,3 2 31+

高中高考数学专题复习平面向量含试题与详细解答

高中高考数学专题复习平面向量含试题与详细解答 1.平面上有一个△ABC 和一点O ,设OA a =,OB b =,OC c =,又OA 、BC 的中点分别为D 、E ,则向量DE 等于( ) A. () 12a b c ++ B. () 1 2a b c -++ C. ( ) 12a b c -+ D. () 1 2 a b c +- 2.在平行四边形ABCD 中,E 、F 分别是CD 和BC 的中点,若AF AE AC μλ+=,其中R ∈μλ,,则μλ+的值是 A . 34 B .1 C . 32 D. 3 1 3.若四边形ABCD 是正方形,E 是CD 的中点,且AB a =,AD b =,则BE = A.12b a + B.12a b + C.12b a - D.1 2 a b - 4.在平面内,已知31==,0=?OB OA , 30=∠AOC ,设 n m +=, (,R m n ∈),则n m 等于 A . B .3± C .1 3± D .3 ± 5.在等腰Rt ABC △中,90A ∠=,(1,2),(,)(0)AB AC m n n ==>,则BC = ( ) A .(-3,-1) B .(-3,1) C .(3,1)- D .(3,1) 6.已知,,A B C 三点共线,且(3,6)A -,(5,2)B -,若C 点横坐标为6,则C 点 的纵坐标为( ). A .13- B .9 C .9- D .13 7.设a 、b 、c 是非零向量,则下列说法中正确..是 A .()()a b c c b a ??=?? B. a b a b -≤+ C .若a b a c ?=?,则b c = D .若//,//a b a c ,则//b c 8.设四边形ABCD 中,有DC =2 1 ,且||=|BC |,则这个四边形是 A.平行四边形 B.等腰梯形 C. 矩形 D.菱形 9.已知()()0,1,2,3-=-=,向量+λ与2-垂直,则实数λ的值为( ). A.17- B.17 C.1 6 - D.16

空间向量与立体几何知识点汇总

立体几何空间向量知识点总结 知识网络: 知识点拨: 1、空间向量的概念及其运算与平面向量类似,向量加、减法的平行四边形法则,三角形法则以及相关的运算律仍然成立.空间向量的数量积运算、共线向量定理、共面向量定理都是平面向量在空间中的推广,空间向量基本定理则是向量由二维到三维的推广. 2、当a 、b 为非零向量时.0a b a b ?=?⊥是数形结合的纽带之一,这是运用空间向量研究线线、线面、面面垂直的关键,通常可以与向量的运算法则、有关运算律联系来解决垂直的论证问题. 3、公式cos ,a b a b a b ?<>= ?是应用空间向量求空间中各种角的基础,用这个公式可以求两异面直线所成的角(但要注意两异面直线所成角与两向量的夹角在取值围上的区别),再结合平面的法向量,可以求直线与平面所成的角和二面角等. 4、直线的方向向量与平面的法向量是用来描述空间中直线和平面的相对位置的重要概念,通过研究方向向量与法向量之间的关系,可以确定直线与直线、直线与平面、平面与平面等的位置关系以及有关的计算问题. 5、用空间向量判断空间中的位置关系的常用方法 (1)线线平行 证明两条直线平行,只需证明两条直线的方向向量是共线向量. (2)线线垂直 证明两条直线垂直,只需证明两条直线的方向向量垂直,即0a b a b ?=?⊥.

(3)线面平行 用向量证明线面平行的方法主要有: ①证明直线的方向向量与平面的法向量垂直; ②证明可在平面找到一个向量与直线方向向量是共线向量; ③利用共面向量定理,即证明可在平面找到两不共线向量来线性表示直线的方向向量.(4)线面垂直 用向量证明线面垂直的方法主要有: ①证明直线方向向量与平面法向量平行; ②利用线面垂直的判定定理转化为线线垂直问题. (5)面面平行 ①证明两个平面的法向量平行(即是共线向量); ②转化为线面平行、线线平行问题. (6)面面垂直 ①证明两个平面的法向量互相垂直; ②转化为线面垂直、线线垂直问题. 6、运用空间向量求空间角 (1)求两异面直线所成角 利用公式cos, a b a b a b ? <>= ? , 但务必注意两异面直线所成角θ的围是 0, 2 π ?? ???, 故实质上应有:cos cos,a b θ=<> . (2)求线面角 求直线与平面所成角时,一种方法是先求出直线及射影直线的方向向量,通过数量积求出直线与平面所成角;另一种方法是借助平面的法向量,先求出直线方向向量与平面法向量的夹角φ,即可求出直线与平面所成的角θ,其关系是sinθ=| cosφ|.(3)求二面角 用向量法求二面角也有两种方法:一种方法是利用平面角的定义,在两个面先求出与棱垂直的两条直线对应的方向向量,然后求出这两个方向向量的夹角,由此可求出二面角的大小;另一种方法是转化为求二面角的两个面的法向量的夹角,它与二面角的大小相等或互补.7、运用空间向量求空间距离 空间中的各种距离一般都可以转化为求点与点、点与线、点与面的距离. (1)点与点的距离 点与点之间的距离就是这两点间线段的长度,因此也就是这两点对应向量的模. (2)点与面的距离 点面距离的求解步骤是: ①求出该平面的一个法向量; ②求出从该点出发的平面的任一条斜线段对应的向量; ③求出法向量与斜线段向量的数量积的绝对值再除以法向量的模,即得要求的点面距离. 备考建议:

空间向量与立体几何知识点学生

用空间向量判断空间中的位置关系的常用方法 (1)线线平行 证明两条直线平行,只需证明两条直线的方向向量是共线向量. (2)线线垂直 证明两条直线垂直,只需证明两条直线的方向向量垂直,即0a b a b ?=?⊥. (3)线面平行 用向量证明线面平行的方法主要有: ①证明直线的方向向量与平面的法向量垂直; ②证明可在平面内找到一个向量与直线方向向量是共线向量; ③利用共面向量定理,即证明可在平面内找到两不共线向量来线性表示直线的方向向量. (4)线面垂直 用向量证明线面垂直的方法主要有: ①证明直线方向向量与平面法向量平行; ②利用线面垂直的判定定理转化为线线垂直问题. (5)面面平行 ①证明两个平面的法向量平行(即是共线向量); ②转化为线面平行、线线平行问题. (6)面面垂直 ①证明两个平面的法向量互相垂直; ②转化为线面垂直、线线垂直问题. 6、运用空间向量求空间角 (1)求两异面直线所成角 利用公式cos ,a b a b a b ?<>= ?, 但务必注意两异面直线所成角θ的范围是0,2π?? ? ??, 故实质上应有:cos cos ,a b θ=<> . (2)求线面角 求直线与平面所成角时,一种方法是先求出直线及射影直线的方向向量,通过数量积求出直线与平面所成角;另一种方法是借助平面的法向量,先求出直线方向向量与平面法向量的夹角φ,即可求出直线与平面所成的角θ,其关系是sin θ=| cos φ|. (3)求二面角 用向量法求二面角也有两种方法:一种方法是利用平面角的定义,在两个面内先求出与棱垂直的两条直线对应的方向向量,然后求出这两个方向向量的夹角,由此可求出二面角的大小;另一种方法是转化为求二面角的两个面的法向量的夹角,它与二面角的大小相等或互补. 7、运用空间向量求空间距离 空间中的各种距离一般都可以转化为求点与点、点与线、点与面的距离. (1)点与点的距离 点与点之间的距离就是这两点间线段的长度,因此也就是这两点对应向量的模. (2)点与面的距离 点面距离的求解步骤是: ①求出该平面的一个法向量;

空间向量与立体几何典型例题

空间向量与立体几何典型例题 一、选择题: 1.(2008全国Ⅰ卷理)已知三棱柱111ABC A B C -的侧棱与底面边长都相等,1A 在底面ABC 内的射影为ABC △的中心,则1AB 与底面ABC 所成角的正弦值等于( C ) A. 13 D.2 3 1、解:C.由题意知三棱锥1A ABC -为正四面体,设棱长为a , 则1AB =, 棱柱的高 1 3AO a ===(即点1B 到底面ABC 的距离),故1AB 与底面ABC 所成角的正弦值为113 AO AB =、 另解:设1,,AB AC AA u u u r u u u r u u u r 为空间向量的一组基底,1,,AB AC AA u u u r u u u r u u u r 的两两间的夹角为0 60 长度均为a ,平面ABC 的法向量为111133 OA AA AB AC =--u u u r u u u r u u u r u u u r ,11AB AB AA =+u u u r u u u r u u u r 211112,,33 OA AB a OA AB ?===u u u r u u u r u u u r u u u r 则1AB 与底面ABC 所成角的正弦值为11 1 1OA AB AO AB ?=u u u u r u u u r u u u r u u u r 、 二、填空题: 1.(2008全国Ⅰ卷理)等边三角形ABC 与正方形ABDE 有一公共边AB ,二面角C AB D -- M N ,分别就是AC BC ,的中点,则EM AN ,所成角的余弦值等于 6 1 . 1、答案: 1 6 、设2AB =,作CO ABDE ⊥面, OH AB ⊥,则CH AB ⊥,CHO ∠为二面角C AB D -- cos 1CH OH CH CHO ==?∠=,结合等边三角形ABC 与正方形ABDE 可知此四棱锥为正四棱锥,则AN EM ==11(),22AN AC AB EM AC AE =+=-u u u r u u u r u u u r u u u u r u u u r u u u r , 11()()22AN EM AB AC AC AE ?=+?-=u u u r u u u u r u u u r u u u r u u u r 12 故EM AN ,所成角的余弦值1 6 AN EM AN EM ?=u u u r u u u u r u u u r u u u u r 另解:以O 为坐标原点,建立如图所示的直角坐标系, 则点(1,1,0),(1,1,0),(1,1,0),A B E C ----, 1111(,,(,,)222222 M N ---,

立体几何与空间向量

第30练 空间角的突破方略 题型一 异面直线所成的角 例1 在棱长为a 的正方体ABCD -A 1B 1C 1D 1中,求异面直线BA 1与AC 所成的角. 破题切入点 利用BA 1→·AC →=|BA 1→|·|AC →|×cos 〈BA 1→,AC →〉,求出向量BA 1→与AC →的夹角〈BA 1→,AC →〉, 再根据异面直线BA 1,AC 所成角的范围确定异面直线所成角.还可用几何法或坐标法. 解 方法一 因为BA 1→=BA →+BB 1→,AC →=AB →+BC →, 所以BA 1→·AC →=(BA →+BB 1→)·(AB →+BC →) =BA →·AB →+BA →·BC →+BB 1→·AB →+BB 1→·BC →. 因为AB ⊥BC ,BB 1⊥AB ,BB 1⊥BC , 所以BA →·BC →=0,BB 1→·AB →=0, BB 1→·BC →=0,BA →·AB →=-a 2. 所以BA 1→·AC →=-a 2. 又BA 1→·AC →=|BA 1→|·|AC →|·cos 〈BA 1→,AC →〉, cos 〈BA 1→,AC →〉=-a 2 2a ×2a =-12. 所以〈BA 1→,AC →〉=120°. 所以异面直线BA 1与AC 所成的角为60°. 方法二 连接A 1C 1,BC 1,则由条件可知A 1C 1∥AC , 从而BA 1与AC 所成的角亦为BA 1与A 1C 1所成的角, 由于该几何体为边长为a 的正方体, 于是△A 1BC 1为正三角形,∠BA 1C 1=60°, 从而所求异面直线BA 1与AC 所成的角为60°. 方法三 由于该几何体为正方体,

高三数学平面向量专题复习

高三数学平面向量专题复习 一、选择题: 1.若|a -b|=41-|a|=4,|b|=5,则a与b 的数量积为 ( ) A .103 B .-103 C .102 D .10 2.若点P 分所成的比为43 ,则A 分所成的比是( ) A.73 B. 37 C.- 37 D.-73 3.若将向量a =(2,1)围绕原点按逆时针方向旋转π 4得到向量b ,则向量b 的坐标为( ) A .)22 3,22 (-- B .)223,22( C .)22 ,223(- D .)22 ,22 3(- 4.在矩形ABCD 中,设1 1 AE =AB,BF =BC, AB =(a,0),AD =(0,b)22,当EF ⊥DE 时, |a| |b|的值为 ( ) A .2 B .3 C .2 D .3 5.已知A (5,7),B (2,3),将AB a 按=(4,1)平移后的坐标为 ( ) A .(-3,-4) B .(-4,-3) C .(1,-3) D .(-3,1) 6.将函数)(x f y =图象上的点P (1,0)平移至P ′(2,0),则经过这种平移后得到的新 函数的解析式为 ( ) A .y =f(x -1) B .y =f(x)-1 C .y =f(x +1) D .y =f(x)+1 7.设点P 分有向线段21P P 的比是λ,且点P 在有向线段21P P 的延长线上,则λ的取值范围是( ) A.(-∞,-1) B.(-1,0) C.(-∞,0) D.(-∞,-21 ) 8.已知02=+?,则△ABC 一定是 ( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .等腰直角三角形 9.若非零向量a,b 互相垂直,则下列各式中一定成立的是 ( ) A .a +b =a -b B .|a +b|=|a -b| C .(a +b)(a -b)=0 D .2(a -b)=0 10.设四边形ABCD 中,有=21 AB ,且|AD |=||,则这个四边形是( ) A.平行四边形 B.矩形 C.等腰梯形 D.菱形 11.已知平行四边形的3个顶点为A(a,b),B(-b,a),C(0,0),则它的第4个顶点D 的坐标是 A.(2a,b) B.(a-b,a+b) C.(a+b,b-a) D.(a-b,b-a) 12.将椭圆0716********=---+y x y x 按向量a 平移,使中心与原点重合,则a 的坐标为 ( ) A .(2,1) B .(-1,-2) C .(-1,2) D .(1,-2) 二、填空题: 13.在菱形ABCD 中,(AB +AD )·(AB -AD )= 。 14.已知为单位向量,||a =4,与的夹角为π32 ,则在方向上的投影为 . 15.已知b a b a ,,3||,4||==的夹角为120°,且2+=,k +=2,当⊥时,

相关主题
文本预览
相关文档 最新文档