当前位置:文档之家› 用N9020A测试放大器和变频器的噪声系数

用N9020A测试放大器和变频器的噪声系数

用N9020A测试放大器和变频器的噪声系数
用N9020A测试放大器和变频器的噪声系数

用N9020A测试放大器和变频器的噪声系数

一、噪声系数相关介绍

1)噪声系数的定义

噪声系数:网络输入信噪比与其输出信噪比的比值。即信噪比变坏的程度。

用下式表示:F=S I N i S o N o

2) Y系数法测量原理

a)Y系数:连接噪声源到DUT,测量噪声源在两种状态下(on和off),DUT

的输出功率,两种功率(N

1和N

2

)之比称为Y系数。也可表示为dB数。

Y=N2N1

上图中,T c为冷态温度,T h为热态温度。直线的斜率为被测件的增益,N a 为被测件产生的噪声。我们一般认为噪声是平稳分布的,噪声功率与所占用带宽成正比,即N=K*T*B。

其中Y=N2

N1

=kGB(T e+T h)

kGB(T e+T c)

b)超噪比ENR定义为:

ENR=T h?T c

T o ENR dB=10log?(T h?T c

T o

)

根据T e=F?1?T o

从而得NF=ENR?10log(Y?1)

Y系数法可以测量很宽范围的噪声系数。

二、N9020(MXA)简介

i.前面板简介

ii.后面板简介

三、放大器噪声系数测试

被测件为:Preamplifier, Agilent technologies 87405C, 0.1-18GHz

测试仪器:MXA, Noise Figure Personality N9069A, 346B

测试步骤如下:

[*]表示硬按件,{*}表示软按件。

1 打开噪声系数选件,具体步骤如下:

[Mode] > {Noise Figure}

2 打开参数设置界面,设置相关测试参数如下图所示。

[Mode Setup] > {DUT Setup}

其中设置被测件DUT为放大器,频率模式(Freq Mode)为扫频,设置RF 频率开始为1GHz,截止频率为9GHz。

3输入与噪声源相对应的频率和超噪比参数,步骤如下:

[Meas Setup] > {ENR} > {Use Meas Table Data for Cal}将其打开。

[Meas Setup] > {ENR} > { Meas Table} > {Edit} > 输入频率和超噪比参数。

4 设置扫描点数和平均次数,具体步骤如下:

[FREQ Channel] > {Points} > [11]> [Enter]

[Meas Setup] > {Average Num On Off}为On > [5]

5 校准,连接方式如下图,连接完之后,进行校准,步骤如下:[Meas Setup] > {Calibrate Now} > [Enter]

其中校准后显示如下图:

5 连接被测件进行测量。本实验的被测件为有源放大器,链接方式如下图

其中噪声源的输入接仪表背后的+28V(Pulsed)噪声源驱动,测试结果如下:

6测试结果显示

1) 显示成数据表的形式,操作过程如下:

[View/Display] > {Layout} > {Table}

2) 显示成图的形式,操作过程如下,图形显示测量结果如下图:[View/Display] > {Layout} > {Graph}

四、混频器噪声系数测试

被测件:Mixer,Mini-Circuits ZFM-4212+,2000-4200MHz

测试仪表:MXA,Noise Figure Personality N9069A, 346B

测试步骤如下:

1 打开测量噪声系数选件,具体步骤如下:

[Mode] > {Noise Figure}

3 打开参数设置界面,设置相关测试参数如下图所示。

[Mode Setup] > {DUT Setup}

设置DUT为Downconv,Sideband为DSB,Freq Mode为Swept,Freq Context 为IF,IF的Start为100MHz,Stop为200 MHz。

3输入与噪声源相对应的频率和超噪比参数,步骤如下:

[Meas Setup] > {ENR} > {Use Meas Table Data for Cal}将其打开

[Meas Setup] > {ENR} > { Meas Table} > {Edit} > 输入频率和超噪比参数。

4 设置扫描点数和平均次数,具体步骤如下:

[FREQ Channel] > {Points} > [11]> [Enter]

[Meas Setup] > {Average Num On Off}为On > [5]

5 校准,连接方式如下图,连接完之后,进行校准,步骤如下:[Meas Setup] > {Calibrate Now} > [Enter]

其中校准后显示如下图:

6 连接被测件进行测量。本实验的被测件为混频器,链接方式如下图

其中噪声源的输入接仪表背后的+28V(Pulsed)噪声源驱动。本振为3GHz,7dBm,由信号源提供。测试结果如下图:

7测试结果显示

1) 显示成数据表的形式,操作过程如下:

[View/Display] > {Layout} > {Table}

2) 显示成图的形式,操作过程如下,图形显示测量结果如下图:[View/Display] > {Layout} > {Graph}

混频器特性分析

微波混频器技术指标与特性分析 一、噪声系数和等效噪声温度比 噪声系数的基本定义已在第四章低噪声放大器中有过介绍。但是混频器中存在多个频率,是多频率多端口网络。为适应多频多端口网络噪声分析,噪声系数定义改为式(9-1),其理论基础仍是式(6-1)的原始定义,但此处的表示方式不仅适用于单频线性网络,也可适用于多频响应的外差电路系统,即 (9-1) 式中 Pno ——-当系统输入端噪声温度在所有频率上都是标准温度T0 = 290K 时,系统传输到输出端的总噪声资用功率; Pns ——仅由有用信号输入所产生的那一部分输出的噪声资用功率。 根据混频器具体用途不同,噪声系数有两种。 一、噪声系数和等效噪声温度比 1、单边带噪声系数 在混频器输出端的中频噪声功率主要包括三部分: (1)信号频率f s 端口的信源热噪声是kT 0f ,它 经过混频器变换成中频噪声由中频端口输出。这部分 输出噪声功率是 m f kT α?0 式中 f ——中频放大器频带宽度;m ——混频器变频损耗;T 0——环境温度,T 0 = 293K 。 (2)由于热噪声是均匀白色频谱,因此在镜频f i 附近f 内的热噪声与本振频率f p 之 差为中频,也将变换成中频噪声输出,如图9-1所示。这部分噪声功率也是kT 0f /m 。 (3)混频器内部损耗电阻热噪声以及混频器电流的散弹噪声,还有本机振荡器所携带 相位噪声都将变换成输出噪声。这部分噪声可用P nd 表示。 这三部分噪声功率在混频器输出端相互叠加构成混频器输出端总噪声功率P no nd m m no P f kT f kT P +?+?=αα//00 把P no 等效为混频器输出电阻在温度为T m 时产生的热噪声功率,即P no = kT m f ,T m 称混 频器等效噪声温度。kT m f 和理想电阻热噪声功率之比定义为混频器噪声温度比,即 0T T f kT P t m no m =?=

混频器原理分析

郑州轻工业学院 课程设计任务书 题目三极管混频器工作原理分析 专业、班级学号姓名 主要内容、基本要求、主要参考资料等: 一、主要内容 分析三极管混频器工作原理。 二、基本要求 1:混频器工作原理,组成框图,工作波形,变频前后频谱图。 2:晶体管混频器的电路组态及优缺点。 3:自激式变频器电路工作原理分析。 4:完成课程设计说明书,说明书应含有课程设计任务书,设计原理说明,设计原理图,要求字迹工整,叙述清楚,图纸齐备。 5:设计时间为一周。 三、主要参考资料 1、李银华电子线路设计指导北京航天航空大学出版社2005.6 2、谢自美电子线路设计·实验·测试华中科技大学出版社2003.10 3、张肃文高频电子线路高等教育出版社 2004.11 完成期限:2010.6.24-2010.6.27 指导教师签名: 课程负责人签名: 2010年6月20日

目录 第一章混频器工作原理------------------------------------------4 第一节混频器概述------------------------------------------------4 第二节晶体三极管混频器的工作原理及组成框图---------5 第三节三极管混频器的工作波形及变频前后频谱图------8 第二章晶体管混频器的电路组态及优缺点------10 第一节三极管混频器的电路组态及优缺点------- 第二节三极管混频器的技术指标------ 第三章自激式变频器电路工作原理分析--------------------12 第一节自激式变频器工作原理分析---------------------12 第二节自激式变频器与他激式变频器的比较------------------------13 第四章心得体会---------------------------------------14 第五章参考文献---------------------------------------15

低噪声放大器

C题——低噪声放大器2011年苏州地区高校“AMD”杯电子设计竞赛 小组编号:11044

摘要 本系统使用TI公司的OPA842运算放大器,TH3091功率放大器为主要控制器,辅以电源、MSP430系列单片机,LCD显示等电路。实现了低噪声放大的目标。OPA842提供了单片运算放大器无法实现的速度和动态范围水平的要求。主机采用LCD显示,用户界面友好。在系统设计上,尽可能的降低功耗,低噪声。整个系统结构清晰,经测试,该系统较好的实现了题目所要求的基本和发挥功能。 0引言 放大器的应用在工业技术领域中得到了广泛的认可,在许多场合下需要将传感器得到的微弱电信号放大来驱动相应的执行机构。比如电子秤,压力传感器转化

得到的电信号十分微弱,不足以驱动相应的显示功能和准确的被辨识,所以需要放大器将此微弱的电信号进行放大。本文设计实现了一个宽带增益放大器,采用220V 交流电供电,核心部分采用TI 公司的高速运算放大器OPA842进行前级放大,中间采用射级电压跟随器,采用电流反馈型功率放大器THS3091作为末级放大部分,驱动50Ω阻性负载。最终输出增益达到43.5dB ,最大不失真输出电压峰峰值达到15V 。输出信号采用AD637进行峰值检测,经过A/D 转换接入MSP430F149型16位单片机微控制器LCD 显示出峰峰值大小,并且能够用普通220V 交流电进行供电。带宽为20HZ —3M ,在达到3MHZ 后以40dB 的速率衰减。 1 方案设计与论证 1.1 系统总体方案 经过仔细的分析和论证,此宽带放大器将分为五个模块:前级放大电路,中级电压跟随电路,后级功率放大电路,峰值检测电路和单片机显示模块。前级放大器OPA842和电压跟随器OPA692需±5V 直流供电,后级功率放大器THS3091需±15V 直流供电,故考虑采用电源模块专门进行电源的输出。输入电压经过两级OPA842放大后,增益能够达到20倍以上,满足带宽后输出信号进入功率放大,输出电压峰峰值达到15V 。峰值检测出电压值经过AD 转换后可实时显示在LCD 上。 系统的总体方案图: 图

低噪声放大器的设计制作与调试

微波电路 CAD 射频实验报告 姓名 班级 学号

实验一低噪声放大器的设计制作与调试 一、实验目的 (一)了解低噪声放大器的工作原理及设计方法。 (二)学习使用ADS软件进行微波有源电路的设计,优化,仿真。 (三)掌握低噪声放大器的制作及调试方法。 二、实验内容 (一)了解微波低噪声放大器的工作原理。 (二)使用ADS软件设计一个低噪声放大器,并对其参数进行优化、仿真。 (三)根据软件设计的结果绘制电路版图,并加工成电路板。 (四)对加工好的电路进行调试,使其满足设计要求。 三、实验步骤及实验结果 (一)晶体管直流工作点扫描 1、启动软件后建立新的工程文件并打开原理图设计窗口。 2、选择File——New Design…进入下面的对话框; 3、在下面选择BJT_curve_tracer,在上面给新建的Design命名,这里命名为BJT Curve; 4、在新的Design中,会有系统预先设置好的组件和控件; 5、如何在Design中加入晶体管;点击,打开元件库; 6、选择需要的晶体管,可以点击查询; 7、对41511的查询结果如下,可以看到里面有这种晶体管的不同的模型; 8、以sp为开头的是S参数模型,这种模型不能用来做直流工作点的扫描; 9、选择pb开头的模型,切换到Design窗口,放入晶体管,按Esc键终止当前操作。 10对41511的查询结果如下,可以看到里面有这种晶体管的不同的模型 11、以sp为开头的是S参数模型,这种模型不能用来做直流工作点的扫描 12、选择pb开头的模型,切换到Design窗口,放入晶体管,按Esc键终止当前操作。

13、按Simulate键,开始仿真,这时会弹出一个窗口,该窗口会现实仿真或者优化的过程信息。如果出现错误,里面会给出出错信息,应该注意查看。 14、仿真结束,弹出结果窗口,如下页图。注意关闭的时候要保存为适宜的名字。另外图中的Marker是可以用鼠标拖动的。由于采用的是ADS的设计模板,所以这里的数据显示都已经设置好了。一般情况下,数据的显示需要人为自行设置。 图2 典型仿真结果图 (二)晶体管S参数扫描 1、选定晶体管的直流工作点后,可以进行晶体管的S参数扫描,本节中选用的是S参数模型sp_hp_AT-41511_2_19950125,这一模型对应的工作点为Vce=2.7V、Ic=5mA; 2、选择File New Design…进入下面的对话框,在下面选择S-Params,在上面命名,为SP_of_spmod; 3、然后新的Design文件生成,窗口如下:

低噪声放大器

低噪声放大器(Low Noise Amplifier,LNA)广泛应用于射电天文、卫星接收、雷达通信等收信机灵敏度要求较高的领域,主要作用是放大所接收的微弱信号、降低噪声、使系统解调出所需的信息数据。而噪声系数(Noise Figure,NF)作为其一项重要的技术指标直接反映整个系统的灵敏度,所以LNA设计对整个系统的性能至关重要。 1 GPS接收机低噪声放大器的设计 设计的LNA主要指标为:工作频率为1 520~1 600 MHz;噪声系数NF16.0 dB;输入驻波比<2;输出驻波比<1.5。 1.1 器件选择 选择合适的器件,考虑到噪声系数较低、增益较高,所以选择PHEMT GaAsFET低噪声晶体管。在设计低噪声放大器前,首先要建立晶体管的小信号模型,一般公司都会提供具有现成模型的放大器件。这里选择Agilent公司的生产的ATF-54143。1.52~1.60 GHz频带内,设计反τ型匹配网络,该匹配网络由集总元件电感、电容构成。选择电感时,要选择高Q 电感。为了在模拟仿真中能够与实际情况相符合,选用Murata公司的电感和电容模型。这里选用贴片电感型号为LQWl8,贴片电容型号为GRMl8,电感LQWl8在1.6 GHz典型Q值为80。 1.2 直流偏置 在设计低噪声放大器中,设计直流偏置的目标是选择合适的静态工作点,静态点的好坏直接影响电路的噪声、增益和线性度。由电阻组成的简单偏置网络可以为ATF-54143提供合适的静态工作点,但温度性较差。可用有源偏置网络弥补温度性差的缺点,但有源偏置网络会使电路尺寸增加,加大了电路板排版的难度以及增加了功率消耗。在设计实际电路中,要根据具体情况选择有源偏置网络,或是电阻偏置网络。就文中的LNA而言,考虑到结构和成本,这里选择电阻无源偏置网络。采用Agilenl的ATF54143,根据该公司给出的datasheet 指标,设计Vds=3.8 V、Ids=ll mA偏置工作点。因为在电流为llmA时ATF-54143性能较好。电阻R3为100 Ω;R2为680 Ω;R1为60 Ω,如图1所示。

RF噪声系数的计算方法

噪声系数的计算及测量方法 噪声系数(NF)是RF系统设计师常用的一个参数,它用于表征RF放大器、混频器等器件的噪声,并且被广泛用作无线电接收机设计的一个工具。许多优秀的通信和接收机设计教材都对噪声系数进行了详细的说明. 现在,RF应用中会用到许多宽带运算放大器和ADC,这些器件的噪声系数因而变得重要起来。讨论了确定运算放大器噪声系数的适用方法。我们不仅必须知道运算放大器的电压和电流噪声,而且应当知道确切的电路条件:闭环增益、增益设置电阻值、源电阻、带宽等。计算ADC的噪声系数则更具挑战性,大家很快就会明白此言不虚。 公式表示为:噪声系数NF=输入端信噪比/输出端信噪比,单位常用“dB”。 该系数并不是越大越好,它的值越大,说明在传输过程中掺入的噪声也就越大,反应了器件或者信道特性的不理想。 在放大器的噪声系数比较低的情况下,通常放大器的噪声系数用噪声温度(T)来表示。 噪声系数与噪声温度的关系为:T=(NF-1)T0 或NF=T/T0+1 其中:T0-绝对温度(290K) 噪声系数计算方法 研究噪声的目的在于如何减少它对信号的影响。因此,离开信号谈噪声是无意义的。 从噪声对信号影响的效果看,不在于噪声电平绝对值的大小,而在于信号功率与噪声功率的相对值,即信噪比,记为S/N(信号功率与噪声功率比)。即便噪声电平绝对值很高,但只要信噪比达到一定要求,噪声影响就可以忽略。否则即便噪声绝对电平低,由于信号电平更低,即信噪比低于1,则信号仍然会淹没在噪声中而无法辨别。因此信噪比是描述信号抗噪声质量的一个物理量。 1 噪声系数的定义 要描述放大系统的固有噪声的大小,就要用噪声系数,其定义为

噪声系数测试

噪声系数测试 1 增益法 前面提到,除了直接使用噪声系数测试仪外还可以采用其他方法测量噪声系数。这些方法需要更多测量和计算,但是在某种条件下,这些方法更加方便和准确。其中一个常用的方法叫做“增益法”,它是基于前面给出的噪声因数的定义: 在这个定义中,噪声由两个因素产生。一个是到达射频系统输入的干扰,与需要的有用信号不同。第二个是由于射频系统载波的随机扰动(LNA ,混频器和接收机等)。第二种情况是布朗运动的结果,应用于任何电子器件中的热平衡,器件的可利用的噪声功率为: P NA = kTΔF, 这里的k = 波尔兹曼常量(1.38 * 10-23焦耳/ΔK), T = 温度,单位为开尔文 ΔF = 噪声带宽(Hz) 在室温(290ΔK)时,噪声功率谱密度P NAD = -174dBm/Hz 。 因而我们有以下的公式: NF = P NOUT - (-174dBm/Hz + 10 * log 10(BW) + 增益) //20*log10(BW) 在公式中,P NOUT 是已测的总共输出噪声功率,-174dBm/Hz 是290°K 时环境噪声的功率谱密度。BW 是感兴趣的频率带宽。增益是系统的增益。NF 是DUT 的噪声系数。公式中的每个变量均为对数。为简化公式,我们可以直接测量输出噪声功率谱密度(dBm/Hz),这时公式变为: NF = P NOUTD + 174dBm/Hz - 增益 为了使用增益法测量噪声系数,DUT 的增益需要预先确定的。DUT 的输入需要端接特性阻抗(射频应用为50Ω,视频/电缆应用为75Ω)。输出噪声功率谱密度可使用频谱分析仪测量。 增益法测量的装置见图2。

低噪声放大器指标

第1节低噪声放大器指标 低噪声放大器 低噪声放大器(LNA)是射频接收机前端的主要部分。 它主要有四个特点。 1)它位于接收机的最前端,这就要求它的噪声越小越好。为了抑制后面各级噪声对系统的影响,这要求有一定的增益,但为了不使后面的混频器过载,产生非线性失真,它的增益又不能过大。放大器在工作频段内应该是稳定的。 2)它所接收的信号是很微弱的,所以低噪声放大器必定是个小信号放大器。而且由于受传输路径的影响,信号的强弱又是变化的,在接收信号的同时又可能伴随着很多强信号的干扰,因此要求放大器有足够大的线性范围,而且增益最好是可以调节的。 3)低噪声放大器一般通过传输线直接和天线或者天线的滤波器相连,放大器的输入端必须和它们很好的匹配,以达到功率最大传输或者最小的噪声系数,并能保证滤波器的性能。 4)低噪声放大器应该具有一定的选频功能,抑制带外和镜像频率干扰,因此它一般是频带放大器。 低噪声放大器的所有指标都是互相牵连的,甚至是相互矛盾的。这些指标不仅取决于电路的结构,对集成电路来说,还取决于工艺技术。在设计中如何采用折衷的原则,兼顾各项指标,是很重要的。 1)低功耗 LNA是小信号放大器,必须给它设置一个静态偏置。而降低功耗的根本办法是采用低电源电压、低偏置电流,但伴随的结果是晶体管的跨导减小,从而引起晶体管及放大器的一系列指标的变化。 2)工作频率 放大器所能允许的工作频率和晶体管的特征频率Ft有关。减小偏置电流的结果会使晶体管的特征频率降低。在集成电路中,增大晶体管的面积会使极间电容增加,这也降低了特征频率。 3)噪声系数 任何一个线性网络的噪声系数可以表示为: (4.1)

混频仿真

通信电子线路实验 实验名称:混频器仿真 混频器的作用是在保持已调信号的调制规律不变的前提下,使信号的载波频率升高(上变频)或下降(下变频)到另一个频率。 一、晶体管混频器电路仿真 本实验电路为AM调幅收音机的晶体管混频电路,它由晶体管、输入信号源V1、本振信号源V2、输出回路和馈电电路等组成,中频输出465KHz的AM波。 电路特点:(1)输入回路工作在输入信号的载波频率上,而输出回路则工作在中频频率(即LC选频回路的固有谐振频率fi)。(2)输入信号幅度很小,在在输入信号的动态范围内,晶体管近似为线性工作。(3)本振信号与基极偏压Eb共同构成时变工作点。由于晶体管工作在线性时变状态,存在随U L周期变化的时变跨导g m(t)。 工作原理:输入信号与时变跨导的乘积中包含有本振与输入载波的差频项,用带通滤波器取出该项,即获得混频输出。 在混频器中,变频跨导的大小与晶体管的静态工作点、本振信号的幅度有关,通常为了使混频器的变频跨导最大(进而使变频增益最大),总是将晶体管的工作点确定在:U L=50~200mV,I EQ=0.3~1mA,而且,此时对应混频器噪声系数最小。 1、直流工作点分析 使用仿真软件中的“直流工作点分析”,测试放大器的静态直流工作点。 注:“直流工作点分析”仿真时,要将V1去掉,否则得不到正确结果。因为V1与晶体管基极之间无隔直流回路,晶体管的基极工作点受V1影响。若在V1与Q1之间有隔直流电容,则仿真时可不考虑V1的存在。 2、混频器输出信号“傅里叶分析”

选取电路节点8作为输出端,对输出信号进行“傅里叶分析”,参数设置为: 基频5KHz,谐波数为120,采用终止时间为0.001S,线性纵坐标请对测试结果进行分析。在图中指出465KHz中频信号频谱点及其它谐波成分。 注:傅里叶分析参数选取原则:频谱横坐标有效范围=基频×谐波数,所以这里须进行简单估算,确定各参数取值。 分析:图中最高频谱点在465KHZ的中频信号成分,同时电路中还有较弱的其他谐波成分。 二、模拟乘法器混频电路 模拟乘法器能够实现两个信号相乘,在其输出中会出现混频所要求的差频(ωL-ωC),然后利用滤波器取出该频率分量,即完成混频。 与晶体管混频器相比,模拟乘法器混频的优点是:输出电流频谱较纯,可以减少接收系统的干扰;允许动态范围较大的信号输入,有利于减少交调、互调干扰。 1、混频输入输出波形测试 在仿真软件中构建如下模拟乘法器混频电路,启动仿真,观察示波器显示波形,分析实验结果。

噪声系数相关

噪声系数的基本定义:F = total output noise power/output noise power due to input source,其中F称为Noise Factor,如果用dB表示,称为Noise Figure或NF。 输出噪声功率包含两部分:噪声源输入噪声引起的噪声功率输出和系统本身产生的噪声功率输出。 设噪声源输入噪声为KTB,则系统本身产生的噪声功率NA=(F-1)* KTBG,其中G为系统对输入噪声的增益。 F = (SNR IN )/(SNR OUT ),表征系统输入信噪比和输出信噪比的比值。当系统的信号 功率增益和噪声增益相等时该式成立,即系统为线性的。 美国联邦标准1037C的噪声因子定义如下: 噪声系数:标准噪声温度(通常为290 K)时,装置的输出噪声功率与其中由输入端点中热噪声引起的部分之比。注:如果装置本身不产生噪声,噪声系数则为实际输出噪声与残余噪声之比。在外差式系统中,输出噪声功率包括镜像频率变换引起的杂散噪声,但是标准噪声温度下输入端点中热噪声的部分仅包括通过系统的主频率变换出现在输出中的噪声,不包括通过镜像频率变换出现的噪声。 当信号链路中存在混频器时,需要区分双边带噪声系数F DSB ,单边带噪声系数 F SSB ,单边带有效噪声系数F SSBe 。 其中F SSB = 2*F DSB ; F SSBe = F SSB -1 = 2*F DSB -1 传统的单边带噪声系数F SSB ,假设允许来自于两个边带的噪声折叠至输出信号,但只有一个边带对表示预期信号有用。如果两处响应的转换增益相等,这就自然造成噪声系统增大3dB。相反,双边带噪声系数假设混频器的两处响应包含有预

低噪声放大器的设计

低噪声放大器的设计 参数: 低噪声放大器的中心频率选为2.4GHz,通带为8MHz 通带内增益达到11.5dB,波纹小于0.7dB 通带内的噪声系数小于3 通带内绝对稳定 通带内输入驻波比小于1.5 通带内的输出驻波比小于2 系统特性阻抗为50欧姆 微带线基板的厚度为0.8mm,基板的相对介电常数为4.3 步骤: 1.打开工程,命名为dzsamplifier。 2.新建设计,命名为dzsamplifier。设置框如下: 点击OK后,如下图。

模板为BJT_curve_traver,带有这个模板的原理图可以自动完成晶体管工作点扫描工作。 3.在ADS元件库中选取晶体管。单击原理图工具栏中的, 打开元件库,然后单击,在 搜索“32011”。其中sp开头的原件是S参数模型,可以用来作S参数仿真,但这种模型不能用来做直流工作点扫描。以pb开头的原件是封装原件,可以做直流工作点扫描,此处选择pb开头的。 4.按照下图进行连接

5.将参数扫描控制器中的 【Start】项修改为Start=0. 6.点击进行仿真,仿真结束后,数据显示窗自动弹出。 如下图: 7.晶体管S参数扫描。 (1)重新新建一个新的原理图S_Params,进行S参数扫描。如下图:

点击OK后,出现: (2)在ADS元件库中选取晶体管。单击原理图工具栏中 的,打开元件库,然后单击,在 搜索“32011”。此处选择sp 开头的。 (3)以如图的形式连接。 (4)双击S参数仿真空间SP,将仿真控件修改如下。

(5)点击仿真按钮,进行仿真。数据如下图所示: (6)双击S参数的仿真控件,选中其中的【Calculate Noise】,如图 执行后:

噪声系数的原理和测试方法

噪声系数测试方法 针对手机等接收机整机噪声系数测试问题,该文章提出两种简单实用的方法,并分别讨论其优缺点,一种方法是用单独频谱仪进行测试,精度较低;另一种方法是借助噪声测试仪的噪声源来测试,利用冷热负载测试噪声系数的原理,能够得到比较精确的测量结果。 图1是MAXIM公司TD-SCDMA手机射频单元参考设计的接收电路,该通道电压增益大于100dB,与基带单元接口为模拟I/Q信号,我们需要测量该通道的噪声系数。采用现有的噪声测试仪表是HP8970B,该仪表所能测量的最低频率为10MHz,而TD-SCDMA基带I/Q信号最高有用频率成份为640KHz,显然该仪表不能满足我们的测量需求。下面我们将介绍两种测试方案,并讨论其测试精度,最后给出实际测试数据以做对比。 图1:MAXIM公司TD-SCDMA手机射频接收电路。 利用频谱仪直接测试 利用频谱仪直接测量噪声系数的仪器连接如图2所示,其中点频信号源用于整个通道增益的校准,衰减器有两个作用,一是起到改善前端匹配的作用;二是做通道增益校准使用,因接收机增益往往很高,大于 100dB,而一些信号源不能输出非常弱的信号,配合该衰减器即能完成该功能。 测量步骤一:先利用信号源产生一个点频信号(一般我们感兴趣的是接收机小信号时的噪声系数,故此时点频信号电平应接近灵敏度电平),频点与本振信号错开一点,这样在基带I/Q端口可以得到一个点频信号,调节接收机通道增益使I/Q端点频信号幅度适中,测量接收机输入与输出端的点频信号大小可以求得这时的通道增益,记为G。

测量步骤二:接步骤一,关闭信号源,保持接收机所有设置不变,用频谱仪测量I/Q端口在刚才点频频点处的噪声功率谱密度,I端口记为Pncdensity(dBm/Hz), Q端口记为Pnsdensity(dBm/Hz),则接收通道噪声系数有下式给出: 上式中kb表示波尔兹曼常数,F是噪声系数真值,我们用NF表示噪声系数的对数值,NF=10lg(F), G表示整个通道增益,T1为当前热力学温度,T0等于290K。假定T1=T0,容易求得NF的显式表达式如下: 或者: 关于方程2与方程3的正确性,我们可以做如下简单推导。先考虑点频情况,设接收机输入端点频信号为: 接收机I/Q端口点频信号分别为:

低噪声放大器

湖南理工学院 射频电路设计与仿真课程设计关于射频低噪声放大器的ADS设计 姓名:唐苗妙 班级:07电信二班 学院:信息与通信学院 指导老师:栗向军

目录 1. 低噪声放大器特点及指标 (3) 1.1. 工作频率与带宽 (3) 1.2. 噪声系数 (3) 1.3. 放大增益 (4) 1.4. 放大器的稳定性 (4) 1.5. 输入阻抗匹配 (5) 1.6. 端口驻波比和反射损耗 (5) 2.低噪声放大器设计仿真及优化 (5) 2.1 设计目标 (5) 2.2 仿真设计 (6) 2.3 电路容差分析 (13) 3. 结论 (15)

1. 低噪声放大器特点及指标 随着通信技术的飞速发展,人们对各种无线工具的要求越来越高,功率辐射小、作用距离小、覆盖范围大已成为各运营商乃至无线通信设备制造商的普遍要求,这对系统的灵敏度要求越来越高,系统接收灵敏度有下式给出: S=-174+NF+10log(BW)+S/N 式中NF为噪声系数,BW为系统带宽,S/N为输入信号信噪比。因此,在各种特定的无线通信系统中,能有效提高灵敏度的关键因素就是降低接收机的噪声系数NF,而决定接收机的噪声系数的关键部件就是处于接收机最前端的低噪声放大器。低噪声放大器的主要作用是放大天线从空中接收到的微弱信号,降低噪声干扰,所以低噪声放大器的设计对整个接收机来说是至关重要。 低噪声放大器的主要指标包括:工作频率与带宽、噪声系数、放大增益、输入阻抗匹配、端口驻波比和反射损耗动态范围等等。 1.1.工作频率与带宽 放大器所能允许的工作频率与晶体管的特征频率fT 有关,由晶体管小信号模型可知,减小偏置电流的结果是晶体管的特征频率降低。在集成电路中,增大晶体管的面积使极间电容增加也降低了特性频率。 LNA 的带宽不仅是指功率增益满足平坦度要求的频带范围,而且还要求全频带内噪声要满足要求,并给出各频点的噪声系数。 动态范围的上限是受非线性指标限制,有时候要求更加严格些,则定义为放大器非线性特性达到指定三阶交调系数时的输入功率值。 1.2.噪声系数 在电路某一特定点上的信号功率与噪声功率之比,称为信号噪声比,简称信噪比,用符号NF(或S/N)表示。放大器噪声系数是指放大器输入端信号噪声功率比SNRin 与输出端信号噪声功率比SNRout 得比值。即 NF=SNRin/SNRout 噪声系数的含义是:信号通过放大器之后,由于放大器产生噪声,使信噪比变坏;信噪比下降的倍数就是噪声系数。放大器的噪声系数和信号源的阻抗有关,而与负载阻抗无关。当一个晶体管的源端所接的信号源的阻抗等于它所要求的最佳信号源阻抗时,由该晶体管构成的放大器的噪声系数最小。实际应用中放大器的噪声系数可以表示为

低噪声放大器实验指导书

低噪声放大器(LNA) 一、实验目的 (1)深入理解低噪声放大器(LNA)的工作原理、功能、作用 和性能指标。 (2)学习使用频谱分析仪的工作原理和使用方法。 (3)掌握低噪声放大器性能指标的的测试方法。 二、实验仪器 1、数字示波器 TDS210 0~60MHz 1台 2、频谱分析仪 GSP-827 0~2.7GHz 1台 3、直流稳压电源 SS3323 0~30V 1台 4、实验电路板自制 1块 三、实验电路 低噪声放大器放大器电路和印制板图如图所示,电路板上包含两个放大器:一个单级低噪声放大器和一个两级低噪声放大器。 1.匹配电路 输入匹配电路的类型可以分为共轭匹配和噪声匹配两种。共轭匹配是将源的反射系数通过阻抗匹配网络变换成放大器S11的共轭。由放大器单向化功率增益的计算式可知,在这种匹配下,放大器可以达到最大的单向化功率增益。而噪声匹配是将源反射系数通过阻抗变换网络变换成一个能使晶体管 Γ。由于微波晶体管的噪声匹配和共轭匹配达到最佳噪声性能的反射系数 opt 点相差较远,不能同时达到,因此需要在两者之间做合理的折衷。在输入匹配点的选择上可以侧重于噪声匹配,并调整匹配网络(主要是输入匹配网络)的元件参数,使噪声系数尽量小。 随着频率的升高,微波晶体管的增益会逐渐降低直至失去放大能力,因此晶体管的低频稳定性相对于高频显得很重要,故有必要限制放大器低频的增益以提高低频稳定性。基于以上的原因,放大器的输入匹配电路应当采用高通阻抗匹配网络,通过高通匹配网络限制放大器在较低频段的增益。以两级放大器为例,输入端高通阻抗匹配网络由一个串联电容C21和两个并联电感L21、L22组成。另外,C21还起到隔直流电容的作用,两级放大器的静态工作点互不影响。L22另一个作用是对场效应管的栅极加偏置电压。这里使用电感的作用是使得直流偏置电压几乎无损失的通过给管子提供偏置电压,

噪声系数测量方法

噪声系数测量的三种方法 摘要:本文介绍了测量噪声系数的三种方法:增益法、Y系数法和噪声系数测试仪法。这三种方法的比较以表格的形式给出。 前言 在无线通信系统中,噪声系数(NF)或者相对应的噪声因数(F)定义了噪声性能和对接收机灵敏度的贡献。本篇应用笔记详细阐述这个重要的参数及其不同的测量方法。 噪声指数和噪声系数 噪声系数(NF)有时也指噪声因数(F)。两者简单的关系为: NF = 10 * log10 (F) 定义 噪声系数(噪声因数)包含了射频系统噪声性能的重要信息,标准的定义为: 式1 从这个定义可以推导出很多常用的噪声系数(噪声因数)公式。 下表为典型的射频系统噪声系数:

* HG = 高增益模式,LG = 低增益模式 噪声系数的测量方法随应用的不同而不同。从上表可看出,一些应用具有高增益和低噪声系数(低噪声放大器(LNA)在高增益模式下),一些则具有低增益和高噪声系数(混频器和LNA 在低增益模式下),一些则具有非常高的增益和宽围的噪声系数(接收机系统)。因此测量方法必须仔细选择。本文中将讨论噪声系数测试仪法和其他两个方法:增益法和Y系数法。 使用噪声系数测试仪 噪声系数测试/分析仪在图1种给出。

图1. 噪声系数测试仪,如Agilent的N8973A噪声系数分析仪,产生28VDC脉冲信号驱动噪声源(HP346A/B),该噪声源产生噪声驱动待测器件(DUT)。使用噪声系数分析仪测量待测器件的输出。由于分析仪已知噪声源的输入噪声和信噪比,DUT的噪声系数可以在部计算和在屏幕上显示。对于某些应用(混频器和接收机),可能需要本振(LO)信号,如图1所示。当然,测量之前必须在噪声系数测试仪中设置某些参数,如频率围、应用(放大器/混频器)等。 使用噪声系数测试仪是测量噪声系数的最直接方法。在大多数情况下也是最准确地。工程师可在特定的频率围测量噪声系数,分析仪能够同时显示增益和噪声系数帮助测量。分析仪具有频率限制。例如,Agilent N8973A可工作频率为10MHz至3GHz。当测量很高的噪声系数时,例如噪声系数超过10dB,测量结果非常不准确。这种方法需要非常昂贵的设备。

常用射频指标测试大纲

常用射频指标 测试大纲 通信对抗 2015/10/30 Ver. 1.0

目录 目录1 1.1dB压缩点(P1dB) (1) 1.1基本概念 (1) 1.2测量方法 (1) 2.三阶交调(IP3) (2) 2.1基本概念 (2) 2.2测量方法 (3) 3.三阶互调(IM3) (4) 3.1基本概念 (4) 3.2测量方法 (5) 3.2.1直接测量 (5) 3.2.2间接法 (5) 4.噪声系数(NF) (5) 4.1基本概念 (5) 4.2测量方法 (6) 4.2.1使用噪声系数测试仪 (6) 4.2.2增益法 (6) 4.2.3Y因数法 (8) 4.2.4测量方法小结 (10) 5.灵敏度 (10) 5.1基本概念 (10) 5.2测量方法 (11) 5.2.1间接法-噪声系数法测量 (11) 5.2.2直接法-临界灵敏度测量 (11) 6.镜频抑制 (11) 6.1基本概念 (11) 6.2测量方法 (12) 7.相位噪声 (13) 7.1基本概念 (13) 7.2测量方法 (13)

7.2.1基于频谱仪的相位噪声测试方法 (13)

1.1dB压缩点(P1dB) 1.1基本概念 射频电路(系统)有一个线性动态范围,在这个范围内,射频电路(系统)的输出功率随输入功率线性增加,即输出功率P out– P in = G,输出信号的功率步进等于输入信号的功率步进ΔP out = ΔP in,这种射频电路(系统)称之为线性射频电路(系统),这两个功率之比就是功率增益G。 随着输入功率的继续增大,射频电路(系统)进入非线性区,其输出功率不再随输入功率的增加而线性增加,也就是说,其输出功率低于小信号增益所预计的值。当输出功率满足P out– P in = G – 1时,对应的P out即为输出1dB压缩点,对应的P in即为输入1dB压缩点。 通常把增益下降到比线性增益低1dB 时的输出功率值定义为输出功率的1dB 压缩点,用P1dB表示(图1)。典型情况下,当功率超过P1dB时,增益将迅速下降并达到一个最大的或完全饱和的输出功率,其值比P1dB大3dB~4dB。 1dB压缩点愈大,说明射频电路(系统)线性动态范围愈大。 图 1 输出功率随输入功率的变化曲线 1.2测量方法 频谱仪直接测量。 1,DUT的输入端连接信号源,输出端连接频谱仪; 2,将输入信号的功率由小至大缓慢增加,并记录输入功率、输出功率极其

用N9020A测试放大器和变频器的噪声系数

用N9020A测试放大器和变频器的噪声系数 一、噪声系数相关介绍 1)噪声系数的定义 噪声系数:网络输入信噪比与其输出信噪比的比值。即信噪比变坏的程度。 用下式表示:F=S I N i S o N o 2) Y系数法测量原理 a)Y系数:连接噪声源到DUT,测量噪声源在两种状态下(on和off),DUT 的输出功率,两种功率(N 1和N 2 )之比称为Y系数。也可表示为dB数。 Y=N2N1 上图中,T c为冷态温度,T h为热态温度。直线的斜率为被测件的增益,N a 为被测件产生的噪声。我们一般认为噪声是平稳分布的,噪声功率与所占用带宽成正比,即N=K*T*B。 其中Y=N2 N1 =kGB(T e+T h) kGB(T e+T c) b)超噪比ENR定义为: ENR=T h?T c T o ENR dB=10log?(T h?T c T o ) 根据T e=F?1?T o 从而得NF=ENR?10log(Y?1) Y系数法可以测量很宽范围的噪声系数。

二、N9020(MXA)简介 i.前面板简介 ii.后面板简介

三、放大器噪声系数测试 被测件为:Preamplifier, Agilent technologies 87405C, 0.1-18GHz 测试仪器:MXA, Noise Figure Personality N9069A, 346B 测试步骤如下: [*]表示硬按件,{*}表示软按件。 1 打开噪声系数选件,具体步骤如下: [Mode] > {Noise Figure} 2 打开参数设置界面,设置相关测试参数如下图所示。 [Mode Setup] > {DUT Setup} 其中设置被测件DUT为放大器,频率模式(Freq Mode)为扫频,设置RF 频率开始为1GHz,截止频率为9GHz。 3输入与噪声源相对应的频率和超噪比参数,步骤如下: [Meas Setup] > {ENR} > {Use Meas Table Data for Cal}将其打开。 [Meas Setup] > {ENR} > { Meas Table} > {Edit} > 输入频率和超噪比参数。

混频器仿真实验报告

混频器仿真实验报告 一.实验目的 (1)加深对混频理论方面的理解,提高用程序实现相关信号处理的能力; (2)掌握multisim实现混频器混频的方法和步骤; (3)掌握用muitisim实现混频的设计方法和过程,为以后的设计打下良好的基础。 二.实验原理以及实验电路原理图 (一).晶体管混频器电路仿真 本实验电路为AM调幅收音机的晶体管混频电路,它由晶体管、输入信号源V1、本振信号源V2、输出回路和馈电电路等组成,中频输出465KHz的AM波。 电路特点:(1)输入回路工作在输入信号的载波频率上,而输出回路则工作在中频频率(即LC选频回路的固有谐振频率fi)。(2)输入信号幅度很小,在在输入信号的动态范围内,晶体管近似为线性工作。(3)本振信号与基极偏压Eb共同构成时变工作点。由于晶体管工作在线性时变状态,存在随U L周期变化的时变跨导g m(t)。 工作原理:输入信号与时变跨导的乘积中包含有本振与输入载波的差频项,用带通滤波器取出该项,即获得混频输出。 在混频器中,变频跨导的大小与晶体管的静态工作点、本振信号的幅度有关,通常为了使混频器的变频跨导最大(进而使变频增益最大),总是将晶体管的工作点确定在:U L=50~200mV,I EQ=0.3~1mA,而且,此时对应混频器噪声系数最小。 (二).模拟乘法器混频电路 模拟乘法器能够实现两个信号相乘,在其输出中会出现混频所要求的差频(ωL-ωC),然后利用滤波器取出该频率分量,即完成混频。

与晶体管混频器相比,模拟乘法器混频的优点是:输出电流频谱较纯,可以减少接收系统的干扰;允许动态范围较大的信号输入,有利于减少交调、互调干扰。 三.实验内容及记录 (一).晶体管混频器电路仿真 1、直流工作点分析 使用仿真软件中的“直流工作点分析”,测试放大器的静态直流工作点。 注:“直流工作点分析”仿真时,要将V1去掉,否则得不到正确结果。因为V1与晶体管基极之间无隔直流回路,晶体管的基极工作点受V1影响。若在V1与Q1之间有隔直流电容,则仿真时可不考虑V1的存在。 2、混频器输出信号“傅里叶分析” 选取电路节点8作为输出端,对输出信号进行“傅里叶分析”,参数设置为: 基频5KHz,谐波数为120,采用终止时间为0.001S,线性纵坐标请对测试结果进行分析。在图中指出465KHz中频信号频谱点及其它谐波成分。 注:傅里叶分析参数选取原则:频谱横坐标有效范围=基频×谐波数,所以这里须进行简单估算,确定各参数取值。

射频实验报告:低噪声放大器

课程实验报告 《集成电路设计实验》 2010- 2011学年第 1 学期 班级: 低噪声放大器 实验名称: 指导教师: 姓名学号: 实验时间:2011年5月22日 一、实验目的: 1、了解基本射频电路的原理。 2、理解基本低噪声放大器的工作原理并设计参数。 3、掌握Cadence的运用,仿真。 二、实验内容: 1、画出低噪声放大器的原理图。

2、仿真电路:仿真出低噪放大器的的输出增益,噪声增益,史密斯图等。 Gain=22dB,NF=1.8dB,S11<-15dB,Kf>1,B1f<1,IP1dB=-14dBm。 三、实验结果 1、放大器原理图为: 2、输入匹配网络参数 根据晶体管S11参数和要求的输入S11及增益,设置如下,L2=20n,L3=7n,C6=1.2p 3、仿真结果 (1)输出增益及噪声增益(sp仿真,看NF,GT)

(2)S11结果(sp仿真,看sp中的s11) (3)史密斯圆 (4)静态电流和静态电压

仿真DC,得到沟道电流Id=4.28mA,栅源电压Vgs=1.036V, (5)稳定因子K ?<,LNA不产生振荡仿真SP,得到频带内稳定因子K=4.4~5.2,1 (6)LNA的增益

LNA的在-60dBm~-35dBm内有稳定的增益,电压增益约为28dB (7)输入输出VSWR 输入电压驻波比在带内最大为1.3 最小为1.03 输出电压驻波比在带内最大2.7,最小1.5 (8)LNA的S参数

(1)仿真SP控件,得到LNA的S21为17dBm~18.3dBm (2)查看输入反射情况,得到在1.3GHz中心频点处S11=-34dB,带内最大-18dB, (9)功率增益

噪声系数的计算及测量方法

噪声系数的计算及测量方法(一) 时间:2012-10-25 14:32:49 来源:作者: 噪声系数(NF)是RF系统设计师常用的一个参数,它用于表征RF放大器、混频器等器件的噪声,并且被广泛用作无线电接收机设计的一个工具。许多优秀的通信和接收机设计教材都对噪声系数进行了详细的说明. 现在,RF应用中会用到许多宽带运算放大器和ADC,这些器件的噪声系数因而变得重要起来。讨论了确定运算放大器噪声系数的适用方法。我们不仅必须知道运算放大器的电压和电流噪声,而且应当知道确切的电路条件:闭环增益、增益设置电阻值、源电阻、带宽等。计算ADC的噪声系数则更具挑战性,大家很快就会明白此言不虚。 公式表示为:噪声系数NF=输入端信噪比/输出端信噪比,单位常用“dB”。 该系数并不是越大越好,它的值越大,说明在传输过程中掺入的噪声也就越大,反应了器件或者信道特性的不理想。 在放大器的噪声系数比较低的情况下,通常放大器的噪声系数用噪声温度(T)来表示。 噪声系数与噪声温度的关系为:T=(NF-1)T0 或NF=T/T0+1 其中:T0-绝对温度(290K) 噪声系数计算方法 研究噪声的目的在于如何减少它对信号的影响。因此,离开信号谈噪声是无意义的。 从噪声对信号影响的效果看,不在于噪声电平绝对值的大小,而在于信号功率与噪声功率的相对值,即信噪比,记为S/N(信号功率与噪声功率比)。即便噪声电平绝对值很高,但只要信噪比达到一定要求,噪声影响就可以忽略。否则即便噪声绝对电平低,由于信号电平更低,即信噪比低于1,则信号仍然会淹没在噪声中而无法辨别。因此信噪比是描述信号抗噪声质量的一个物理量。 1 噪声系数的定义 要描述放大系统的固有噪声的大小,就要用噪声系数,其定义为 设Pi为信号源的输入信号功率,Pni为信号源内阻RS产生的噪声功率,Po和Pno 分别为信号和信号源内阻在负载上所产生的输出功率和输出噪声功率,Pna表示线性电路内部附加噪声功率在输出端的输出。

混频器特性分析

一、噪声系数和等效噪声温度比 噪声系数的基本定义已在第四章低噪声放大器中有过介绍。但是混频器中存在多个频率,是多频率多端口网络。为适应多频多端口网络噪声分析,噪声系数定义改为式(9-1),其理论基础仍是式(6-1)的原始定义,但此处的表示方式不仅适用于单频线性网络,也可适用于多频响应的外差电路系统,即 (9-1) 式中 Pno ——-当系统输入端噪声温度在所有频率上都是标准温度T0 = 290K 时,系统传输到输出端的总噪声资用功率; Pns ——仅由有用信号输入所产生的那一部分输出的噪声资用功率。 根据混频器具体用途不同,噪声系数有两种。 一、噪声系数和等效噪声温度比 1、单边带噪声系数 在混频器输出端的中频噪声功率主要包括三部分: (1)信号频率f s 端口的信源热噪声是kT 0f ,它 经过混频器变换成中频噪声由中频端口输出。这部分 输出噪声功率是 m f kT α?0 式中 f ——中频放大器频带宽度;m ——混频器变频损耗;T 0——环境温度,T 0 = 293K 。 (2)由于热噪声是均匀白色频谱,因此在镜频f i 附近f 内的热噪声与本振频率f p 之差为中频,也将变换成中频噪声输出,如图9-1所示。这部分噪声功率也是kT 0f /m 。 (3)混频器内部损耗电阻热噪声以及混频器电流的散弹噪声,还有本机振荡器所携带相位噪声都将变换成输出噪声。这部分噪声可用P nd 表示。 这三部分噪声功率在混频器输出端相互叠加构成混频器输出端总噪声功率P no nd m m no P f kT f kT P +?+?=αα//00 把P no 等效为混频器输出电阻在温度为T m 时产生的热噪声功率,即P no = kT m f ,T m 称混频器等效噪声温度。kT m f 和理想电阻热噪声功率之比定义为混频器噪声温度比,即 0 0T T f kT P t m no m =?= 按照定义公式(9-1)规定,可得混频器单边带工作时的噪声系数为 ns m ns no SSB P f kT P P F ?== 在混频器技术手册中常用F SSB 表示单边带噪声系数,其中SSB 是Singal Side Band 的缩写。P ns 是信号边带热噪声(随信号一起进入混频器)传到输出端的噪声功率,它等于kT 0f /m 。因此可得单边带噪声系数是 m m m m SSB t L f kT f kT F α=??=0 2、双边带噪声系数 在遥感探测、射电天文等领域,接收信号是均匀谱辐射信号,存在于两个边带,这种应用时的噪声系数称为双边带噪声系数。 此时上下两个边带都有噪声输入,因此P ns = kT 0f /m 。按定义可写出双边带噪声系

相关主题
文本预览
相关文档 最新文档