当前位置:文档之家› Banach延拓定理及其应用(精)

Banach延拓定理及其应用(精)

Banach延拓定理及其应用(精)
Banach延拓定理及其应用(精)

Hahn - Banach延拓定理及其应用

[论文摘要]本文首先概述Hahn - Banach延拓定理发展的历史、其对泛函分析及微分方程乃至物理学的重要意思,然后介绍了Hahn - Banach延拓定理包括它的推论和推广,最后以例题的形式给出了Hahn - Banach延拓定理的一些应用。

[关键字]Hahn - Banach定理Zorn引理延拓

[Abstract]In this passage,we introduce the history of Hahn-Banach theorem.Then we introduce the Hahn-Banach theorem and the deduction.At the end,we introduce some application of the Hahn-Banach theorem.

[Key Word]Hahn-Banach theorem Zorn lemma application

目录

摘要 1目录 2 1 引言 3

1.1 选题背景 3

1.2 本文的主要内容 3

2 Hahn—Banach定理 5

2.1 Hahn—Banach定理的定义 5

2.2 Hahn—Banach定理的推论 6

3 Hahn—Banach定理的推广 13

4 Hahn—Banach定理的应用 43参考文献45

1引言

1.1 选题背景

Banach空间理论是由波兰数学家S.Banach在192O年创立的,数学分析及泛函分析中许多常用的空间都是巴拿赫空间及其推广,它们有许多重要的应用。以Banach空间为基础的Hahn - Banach定理跟共鸣定理及闭图象定理是

泛函分析的三大基本定理。其应用十分广泛, 而且越来越深入地渗透于现代数学的各个领域乃至物理等其它学科。其中Hahn - Banach延拓定理,在泛函分析中扮演着重要的角色。该定理保证了赋范线性空间上具有“足够多”的连续线性泛函,并且还刻划了连续线性泛函的值可以事先被指定的程度,这就使得建立共轭空间具有实质性的意义。而这些理论也是赋范空间一般理论的根本部分。从这个意义上来说,Hahn-Banach定理是关于有界线性算子最重要的定理之一。

Hahn - Banach定理是1923年S.Banach在研究不变测度时,首先提出来的。在1929年S.Banach又得出了定理的一般形式。而Hahn在1927年及Ascoli在1932年也相互独立的得出了一般定理。随后H.F.Bahnenblust与Sobczyk(1938)将其推广到复向量空间上。从几何上看该定理表现成凸集的分离性质,而这个分离性质是研究与凸集有关的Banach空间几何学的基本出发点。由Hahn—Banach定理可以导出一些很有用的结果,如短量定理、最佳逼近的对偶关系和凸集分离定理等等,这些结果在泛函分析理论、远近论、控制论和数学规划中均有重要作用。而且Hahn - Banach延拓定理在偏微分方程及概率论等方面有着广泛的应用,而在确信一般的局部凸线性拓扑空间中非平凡连续线性泛函的存在时也要用到它。

1.2 本文的主要内容

本文拟对Hahn - Banach定理进行一点探讨, 分为三大部分。第一部分首先给出Hahn - Banach延拓定理,然后以推论的形式给出本定理的若干特殊形式。第二部分给出本定理的推广。第三部分则以例题的形式给出Hahn - Banach定理的一些应用。值得注意的是, Hahn-Banach 定理的推广实际上也是Hahn - Banach定理的重要应用。

2 Hahn - Banach 延拓定理

2.1 Hahn —Banach 定理的定义

一般的说,延拓问题就是研究定义在给定集X 的一个子集Z 上的数学对象(例如:映射)能否延拓到整个集X 上,并且要求原对象的某些性质在延拓后能否继续保留的问题。

Hahn —Banach 定理中,被延拓的对象是定义在线性空间X 的子空间Z 上的线性泛函f ,要求这个泛函具有—定的有界性质,而这个有界性质是用次线性泛函来描述的。所谓次线性泛函,是定义在线性空间X 上的一个实值泛函P ,P 是是次可加,所谓次可加即指存在常数K>0,有

p(x+y) £ K[p(x)+p(y)] y x X "?、

而且P 还是正齐次的,所谓正其次即指0a "?,均有

p(ax)=a p(x)

(注:赋范空间上的范数就是这样的一个泛函。)

我们假定,要延拓的泛函f 在Z 上用定义在X 上的这样一个泛函P 来强制,并且在将f 从Z 延拓到X 上后,仍保留其线性的性质及被强制的条件,所以延拓到X 上的泛函f 仍然是线性的和仍为P 所强制。这也是定理的难点。 下面给出Hahn —Banach 定理:

设 X 是实线性空间, P 是定义在X 上的次线性泛函, S 是X 的实线性子空间, 0X 是X 的实线性子空间,0f 是0X 上的实线性泛函并满足

()0f x ()P x £()0x X "?。那么X 上必有一个实线性泛函f ,满足:

(1)f ()()x P x £ ()x X "? (受P 控制条件)

(2)()f x =()0f x ()0x X "?(延拓条件)

具体证明可参考泛函分析讲义,在这里就不给出了。在这里所要分析的是加拿大的欧文·克雷斯齐格所提出的一个问题,即不用Zorn 引理能够证明这个定理吗?这个问题很有意思,特别是引理没有结出一个构造性的方法。因此只有在某

些特殊情况下才可以做到,当然,对一些特殊的空间整个情形可能要变得简单些。希尔伯特空间就是这种类型,因为为该空间上的线性泛函有黎斯表示。有兴趣的可以查看欧文·克雷斯齐格的《泛函分析导论及应用》。

2.2 Hahn —Banach 定理的推论

下面我们给出Hahn - Banach 定理的若干特殊形式,而在实践中应用比较广泛的就是这些特殊形式。

推论 1 设 Y 是实数域 F 上的线性空间 X 的子空间, 如果 x ∈X ,

inf

y Y ?‖x - y ‖=d > 0,

那么, 存在**x X ?, 使得‖x*‖= 1,

*x (x ) =d , 而且*,(y)y Y x "?=0。

推论 2 设 X 是线性赋范空间, X ≠{0},那么x X "?

, 存在**x X ?, 使得‖x*‖ = 1, *x (x )=‖x ‖。

特别地, 如果 x ≠y , 则存在 *x ∈x*,

使得*x (x ) -*x (y ) =‖x -y ‖≠0。

上述推论 2 是Hahn - Banach 定理的一个重要结果, 这一断言有着许多有趣的应用。其中之一就是定义在 R 上的有界子集类上的有限可加的测度问题, 它是一个平移不变量, 而且是Leesgue 测度的推广。

推论 3 设X 是赋范空间,00

,0x X x 喂,则在X 上存在有界线性泛函f 满足下列条件:

(1) 00()f x x =.

(2) 1f =

由此推论可知,每一个赋范空间X {}(0)X 1的对偶空间*X 中都含有充分多的非零元素。这一结论保证了建立在X 的对偶空间*X 上的研究是有意义的。这是Hahn —Banach 定理在对偶空间理论的一个基本问题上的应用。

推论 4 设E 是赋范线性空间。那么,00,0x E x "喂,必有*f E ?,满足

00()f x x =及1f =。

这个推论说明,在每个赋范线性空间{}0E 1上必有“足够多”的非零连续线性泛函。这里所谓“足够多”,是指多到足以用来分辨E 中不同的点的程度。这样,就保证了共轭空间*E 有实质性的内容。

3 Hahn – Banach 定理的推广

对于Hahn - Banach 延拓定理,杨福林与李东进在《Hahn - Banach 延拓定理》中,作了如下推广并给出了相关证明,见下面叙述。 为了行文方便起见,现将有关概念简述如下:

定义1 线性空间X 上的泛函试p(x)称为对称的,是指R a "?,均有 p(ax)== a ·p(x)

对称的拟度规泛函称为拟半范数。

定义2 集合E 称为有序集合,是指对E 中某些元素之间定义了一个序关系人,

且关系人满足下面三个条件:

(1) 传递性,若x

(2) 自反性,若x E ?,那么x x <;

(3) 反对称性,若x

定义3 集合E 称为是全序集合,是指它是一个有序集合,并且y x E "?、,有

x y y x

引理1 (Zorn}) 如果E 是非空的有序集合,且E 内每一个全序子集都有上界,

则E 至少有一个极大元。

引理2 设p(x)是定义在实线性空间X 上的拟度规泛函(拟次加正齐性泛函称为

拟度规泛函.),i f 是定义在线性集i E X ì上的实线性泛函,且i x E "?,均有()()i f x p x £。设á是所有的对(,i i E f )组成的集合.且若i j E E ì时,

j i f f 是在i E 上的延拓,即i x E "?,x x j i f f ()=(

)则集á至少存在一个极

大元。

证明:显然á非空.若

i j E E ì,定义序关系为i i j j (E f )(E f ),由定义4,显

然á是一有序集合,设0á是á的任一全序子集.令

00{(,)}i

i i E E E f =瘟 则0E 是线性集。

事实上,012,,x x E "?由0E 定义可知对应有集合12,E E ,使得1122,x E X E 挝,且11220()().E f E f 瘟由0á是全序集,不妨设1122()()E f E f <,于是12E E ì,从而122,,,x x E R a b ??,有

0122

x x E E a b +翁

故0E 是线性集。 0x E "?,必存在某个E 集,使得x E ?,且0()E f 瘟,令0()()f x f x =,

可见0x E "?,0()f x 皆有定义且是0E 上的实线性泛函。有000(,)E f 瘟,并且

00(,)E f 是0á的上界。故á中任一全序子集都存在上界。由引理1知á必至少存

在一个极大元max max (,)E f 瘟,证毕。

Hahn – Banach 定理的推广:

设()p x 是定义在实线性空间X 上的拟度规泛函,1f 是定义在线性集1E X ì上的

实线性泛函,且满足:

1()()f x p x £ 1x E "?

那么必存在定义在X 上的实线性泛函1()f x ,满足

(1) 11,()

()x E f x f x "? (2) ,()()x X f x K p x "危

应用以上的两个引理,可以证明该定理是正确的,详细证明从略,有兴趣的查看杨福林与李东进写的《Hahn - Banach 延拓定理》,其中有详细的证

明过程。

由上可见,只要在Hahn – Banach 定理的推广中令K 为1即为Hahn - Banach 延拓定理。

4 Hahn – Banach 定理的应用

试分析说明R 上的连续凸函数能否延拓成2R 上的连续凸函数? 证明:首先考虑线性的连续凸函数的情况。

不妨设()f x kx =为R 上的线性连续凸泛函,则1212(,)F x x kx kx $=+ 可以考虑1sup ()x F f x £=

则有121212()(,)()()F x F x x kx kx k x x kx f x =

=+=+==

且1sup x f kx k

£==

,11sup ()sup x x F f x kx k #===

故有F f =

从而可以延拓。

再考虑R f 为上的连续非线性凸函数的情况。

不妨设2()f x x =,则有2212()F x x x =

+,显然x R "? 都有

()()f x F x =。 考虑(,)1()sup (,)x y F x F x y £= 则有211

()sup ()sup 1x x f x f x x #=== 2

2(,)1(,)1()sup (,)sup 1x y x y F x F x y x y #==+=

故有F f =

从而可以说明可以延拓。

参考文献:

[1] Banach, S: Surle Probleme de la mesure, Fund math. 1923; 4

[2] Banach, S: Surles fonctionelles lineaires 11. Studia Math. 1929; 223-240

[3] Hahn, H: uber linearegleichangs systeme in linearen Raumen, J.far Math (crelle)1927; 157:214-229

[4] Ascoli, G: Sugli spozi linecari metriciece loro varieta lineari, Ann, metpura appl, 1932; 10; 33-81, 203-232.

[5] 范达,应用泛函分析,1993

[6] 欧文·克雷斯齐格,泛函分析导论及应用,1987

[7] 刘树琪,徐红梅,泛函分析入门及题解,1988

[8] 定光柱,Banach空间引论,科学出版社,1984

[9] 张恭庆,林源渠,泛函分析讲义,北京大学出版社,2005

[10] 张志斌,Hahn- Banach延拓定理及其应用,2004

[12] 杨福林,李东进在,Hahn - Banach延拓定理,松辽学刊,1988

不动点定理及其应用

不动点定理及其应用 一、不动点定理 不动点定理fixed-point theorem :如果f 是1n +维实心球1{,11}n B x R n x +=∈+≤ 到自身的连续映射(1,2,3)n =???,则f 存在一个不动点1n x B +∈(即满足(0)0f x x =)。 (一)、压缩算子: 1、定义: 设(1)X 距离空间; (2)算子:T X X →的映射。 若(01),..,s t x y X θθ?≤

(2)定理的条件是结论成立的充分非必要条件。 (3)迭代的收敛性和极限点与初始点无关。但T 的选取及初始点0x 的选取对迭代速度有影响。初始点离极限点越近,其收敛速度越快,而不影响精确度。 (4)误差估计 ①事前(或先验)误差:根据预先给出的精确度,确定计算步数。此方法有时理论上分析困难。 设迭代到第n 步,将* n x x ≈,则误差估计式为 * 0010(,)(,)(,)11n n n x x Tx x x x θθρρρθθ ≤=-- ②事后(或后验)误差:计算到第n 步后,估计相邻两次迭代结果的偏差1(,)n n x x ρ-,若该值小于预定的精度要求,则取* n x x ≈。此方法简单,但有时无法估计计算步数。 设迭代到第n 步,将*n x x ≈,则误差估计式为 *1(,)(,)1n n n x x x x θ ρρθ -≤ - 或 *11 (,)(,)1n n n x x x x ρρθ +≤ - 3、求解不动点的具体步骤: Step1 提供迭代初始点0x ; Step2 计算迭代点10x Tx =; Step3 控制步数,检查10(,)x x ρ,若10(,)x x ρε>。则以1x 替换0x 转到第二步,继续迭代,当10(,)x x ρε≤时终止,取1x 为所求结果。误差不超过 1θ εθ -。 对于不动点理论,为了便于应用,下面给出两种不同情况下所适合的方法。 推论1 设(1)X ----完备的距离空间; (2):T X X →的算子。

博士生入学考试泛函分析考试大纲

博士生入学考试《泛函分析》考试大纲 第一章度量空间 §1 压缩映象原理 §2 完备化 §3 列紧集 §4 线性赋范空间 4.1 线性空间 4.2 线性空间上的距离 4.3 范数与Banach空间 4.4 线性赋范空间上的模等价 4.5 应用(最佳逼近问题) 4.6 有穷维* B空间的刻划 §5 凸集与不动点 5.1 定义与基本性质 5.2 Brouwer与Schauder不动点原理* 5.3 应用* §6 内积空间 6.1 定义与基本性质 6.2 正交与正交基 6.3 正交化与Hilbert空间的同构 6.4 再论最佳逼近问题 第二章线性算子与线性泛函 §1 线性算子的概念 1.1 线性算子和线性泛函的定义 1.2线性算子的连续性和有界性 §2 Riesz定理及其应用 Laplace方程f ? -狄氏边值问题的弱解 u= 变分不等到式 §3 纲与开映象定理 3.1 纲与纲推理 3.2 开映象定理 3.3 闭图象定理 3.4 共鸣定理 3.5应用 Lax-Milgram定理 Lax等价定理 §4 Hahn-Banach定理

4.1线性泛函的延拓定理 4.2几何形式----凸集分离定理 §5 共轭空间·弱收敛·自反空间 5.1 共轭空间的表示及应用(Runge) 5.2 共轭算子 5.3弱收敛及*弱收敛 5.4弱列紧性与*弱列紧性 §6 线性算子的谱 6.1 定义与例 6.2 Γелbφaнд定理 第三章紧算子与Fredholm算子 §1 紧算子的定义和基本性质 §2 Riesz-Fredholm 理论 §3 Riesz-Schauder理论 §4 Hilbert-Schmidt定理 §5 对椭圆方程的应用 §6 Fredholm算子 参考文献 1.张恭庆林源渠,“泛函分析讲义”,北京大学出版社,1987。 2.黄振友杨建新华踏红刘景麟《泛函分析》,科学出版社, 2003。

角谷静夫不动点定理

一、不动点算法 又称固定点算法。所谓不动点,是指将一个给定的区域A,经某种变换?(x),映射到A时,使得x=?(x)成立的那种点。最早出现的不动点理论是布劳威尔定理(1912):设A为R n中的一紧致凸集, ?为将A映射到A的一连续函数,则在A中至少存在一点x,使得x=?(x)。其后,角谷静夫于1941年将此定理推广到点到集映射上去。设对每一x∈A,?(x)为A的一子集。若?(x)具有性质:对A上的任一收敛序列x i→x0,若y i∈?(x i)且y i→y0,则有y0∈?(x0),如此的?(x)称为在A上半连续,角谷静夫定理:设A为R n中的一紧致凸集,对于任何x∈A,若?(x)为A的一非空凸集,且?(x)在A上为上半连续,则必存在x∈A,使x∈?(x)。J.P.绍德尔和J.勒雷又将布劳威尔定理推广到巴拿赫空间。 不动点定理在代数方程、微分方程、积分方程、数理经济学等学科中皆有广泛的应用。例如,关于代数方程的基本定理,要证明?(x)=0必有一根,只须证明在适当大的圆│x│≤R内函数?(x)+x有一不动点即可;在运筹学中,不动点定理的用途至少有二:一为对策论中用来证明非合作对策的平衡点的存在和求出平衡点;一为数学规划中用来寻求数学规划的最优解。对于一个给定的凸规划问题:min{?(x)│g i(x)≤0,i=1,2,…,m},在此,?和g1,g2,…,g m皆为R n中的凸函数。通过适当定义一个函数φ,可以证明:若上述问题的可行区域非空,则φ的不动点即为该问题的解。 在1964年以前,所有不动点定理的证明都是存在性的证明,即只证明有此种点存在。1964年,C.E.莱姆基和J.T.Jr.豪森对双矩阵对策的平衡点提出了一个构造性证明。1967年,H.斯卡夫将此证法应用到数学规划中去。其后,不动点定理的构造性证明有了大的发展和改进。 H.斯卡夫的证明是基于一种所谓本原集,后来的各种发展皆基于某种意义下的三角剖分。现以n维单纯形S n为例来说明这一概念,在此, 。对每一i, 将区间0≤x i≤1依次分为m1,m2…等分,m10}。由著名的施佩纳引理,在G i中必存在一三角形σi,它的n+1个顶点y i(k)的标号分别为k(k=1,2,…,n+1)于是可得一列正数 i j(j→),使得(k)→y k,k=1,2,…,n+1。根据σi的作法,当i j→时,收敛成一个点x。

第三章 一微分方程的解的存在定理

第三章 一阶微分方程的解的存在定理 教学目的 讨论一阶微分方程的解的存在与唯一性定理,解的延拓定理,解对初值的连续性与可微性定理,解对参数的连续性定理 教学要求 掌握存在与唯一性定理及其证明,会用皮卡逼近法求近似解,理解解对初值的连续性与可 微性定理,解对参数的连续性定理,了解奇解及其求法。 教学重点 几个主要定理的条件及其证明 教学难点 逐次逼近法的应用及其思想;应用存在与唯一性定理及解的延拓定理来研究方程的解;奇解及其求法 教学方法 讲练结合教学法、提问式与启发式相结合教学法。 教学手段 传统板书与多媒体课件辅助教学相结合。 课题导入 在上一章我们讨论了一阶方程的解的初等积分法。解决了几个特殊的方程。但是,对许多微分方程,为22'y x y +=,不可能通过初等积分法求解,这就产生了一个问题,一个不能用初等积分法求解的微分方程是否意味着没有解呢?或者说,一个微分方程的初值问题在何种条件下一定有解呢?当有解时,农的解是否是唯一的呢?毫无疑问,这是一个很基本的问题,不解决这个问题对微分方程的进一步研究,就无从谈起,本章将重点讨论一阶微分方程的解存在问题的唯一定理, §3.1解的存在唯一性定理与逐步逼近法 教学目的 讨论Picard 逼近法及一阶微分方程的解的存在与唯一性定理,解的延拓定理,解对初值的连续性与可微性定理。 教学要求 熟练掌握Picard 逼近法,并用它证明一阶微分方程初值问题解的存在与唯一性定理及其证明,会用Picard 逼近法求近似解, 教学重点 Picard 存在唯一性定理及其证明

教学难点 逐次逼近分析法的应用及其思想. 教学方法 讲练结合教学法、提问式与启发式相结合教学法。 教学手段 传统板书与多媒体课件辅助教学相结合。 一. 存在唯一性定理 1.定理1,考虑初值问题 ),(y x f dx dy = (3.1) 00)(y x y = 其中f(x,y)在矩形区域 R : b y y a x x ≤-≤-||,||00 (3.2) 上连续,并且对y 满足Lipsthits 条件:即存在常数L>0,使对所有 R y x y x ∈),(),,(21常存成立, |||),(),(|2121y y L y x f y x f -≤- 则初值问题(cauchy 问题)(3.1)在区间h x x ≤-||0上解存在唯一,这里 |),(|max ),, min(),(y x f M M b a h R y x ∈== 证明思路:1.初值问题(3.1)的解存在等价一动积分方程?+=x x dy y x f y y 0 ),(0(3.5)的连续解。 2.构造( 3.5)所得解函数序列{)(x n ?} 任取一连续函数)(0x ?,b y x ≤-|)(|00?代入(3.5)左端的y ,得 ?+=x x dx x x f y x 0 ))(,()(01??)(x n ?)(x n ? Λ2,1,))(,()(0 01=+=?+n dx x x f y x x x n n ?? 3.函数序列{)(x n ?}在|,|00h x h x +-上一致收敛到)(x ?。这里为3 ?∞→∞ →+x x n n n dx x x f y x 0 ))(,(lim )(lim 0?

不动点原理及其应用

题目:不动点原理及其应用 摘要 本文主要讨论了压缩映射原理,Schauder不动点定理以及不动点的应用三个方面。在解决微分方程,积分方程,以及其他方程的解的存在唯一性时,将问题转换为求某一映射的不动点,利用不动点原理进行解决。 关键词:压缩映射原理;Schauder不动点定理;不动点原理应用

Abstract In this paper ,we talked about contraction mapping principle,Schauder’s fixed point theorem and the application of the fixed point theorem.As we deal with the solutions about differential equation, integral equation and other kinds of equations, it is a useful way to transform the problem into fixed point theorem.We can use it to solve plenty of practice problems too. Keywords: contraction mapping principle; Schauder’s fixed point theorem;the application of fixed point theorem.

目录 引言 (1) 1.压缩映射原理 (1)

1.1压缩映射原理(距离空间) (1) 1.2压缩映射原理(巴拿赫空间) (7) 2.Schauder不动点定理 (9) 3不动点定理的应用 (11) 总结 (12) 参考文献 (14)

(完整版)泛函分析复习与总结,推荐文档

《泛函分析》复习与总结 (2014年6月26日星期四 10:20--- 11:50) 第一部分 空间及其性质 泛函分析的主要内容分为空间和算子两大部分. 空间包括泛函 分析所学过的各种抽象空间, 函数空间, 向量空间等, 也包括空间的 性质, 例如完备性, 紧性, 线性性质, 空间中集合的各种性质等等。 以下几点是对第一部分内容的归纳和总结。 一.空间 (1)距离空间 (集合+距离)!验证距离的三个条件:称为是距离空间,如果对于 (,)X ρ,,x y z X ∈(i) 【非负性】,并且当且仅当 (,)0x y ρ≥(,)0x y ρ=【正定性】; x y =(ii) 【对称性】; (,)(,)x y y x ρρ=(iii) 【三角不等式】。 (,)(,)(,)x y x y y z ρρρ≤+距离空间的典型代表:空间、空间、所有的赋范线性空间、 s S 所有的内积空间。 (2)赋范线性空间 (线性空间 + 范数) !验证范数的三个条件:称为是赋范线性空间,如果 (,||||)X ?是数域(或)上的线性空间,对于和 X K =?K =£a K ∈,成立 ,x y X ∈(i) 【非负性】,并且当且仅当【正定性】 ||||0x ≥||||0x =0x =; (ii) 【齐次性】; ||||||||||ax a x =?

(iii) 【三角不等式】。 ||||||||||||x y x y +≤+赋范线性空间的典型代表:空间()、空间(n ?1,2,3,n =L n £) 、空间()、空间(1,2,3,n =L p l 1p ≤≤∞([,])p L a b )、空间、空间、Banach 空间、所有的1p ≤≤∞[,]C a b [,]k C a b 内积空间(范数是由内积导出的范数)。 (3)内积空间 (线性空间 + 内积) !验证内积的四个条件:称为是内积空间,如果 (,(,))X ??是数域(或)上的线性空间,对于和 X K =?K =£a K ∈,成立 ,,x y z X ∈(i) 【非负性】,并且当且仅当【正 (,)0x x ≥(,)0x x =0x =定性】; (ii) 【第一变元可加性】; (,)(,)(,)x y z x z x z +=+(iii) 【第一变元齐次性】; (,)(,)ax z a x z =(iv) 【共轭对称性】。 (,)(,)x z z x =内积空间的典型代表:空间()、空间(n ?1,2,3,n =L n £) 、空间、空间。1,2,3,n =L 2l 2([,])L a b 注. 1) 从概念的外延来理解, 有如下的关系: {内积空间}{赋范线性空间}{距离空间}. ??2) 内积可导出范数, 范数可导出距离, 反之未必. 例如在赋范 线性空间中, 如果范数满足平行四边形公式, 则由范数可以定义内 积. 3) 在距离空间中,,当 0k x x ρ??→?0(,)0k x x ρ→; k →∞赋范线性空间中,,当;|||| 0k x x ???→?0||||0k x x -→k →∞

解对初值的连续性和可微性定理

§3.3 解对初值的连续性和可微性定理 在初值问题?????==) (),(00x y y y x f dx dy 中我们都是把初值),(00y x 看成是固定的数值,然后再去讨论方程 ),(y x f dx dy =经过点),(00y x 的解.但是假如00(,)x y 变动,则相应初值问题的解也随之变动,也就是说初值问题的解不仅依赖于自变量,还依赖于初值00(,)x y .例如:y y x f =),(时,方程y y ='的解是x ce y =,将初始条件00)(y x y =带入,可得00x x e y y -=.很显然它是自变量和初始条件00(,)x y 的函 数.因此将对初值问题?????==) (),(00x y y y x f dx dy 的解记为),,(00y x x y ?=,它满足0000(,,)y x x y ?=. 当初值发生变化时,对应的解是如何变化的?当初始值微小变动时,方程解的变化是否也很小呢?为此就要讨论解对初值的一些性质. 1、解关于初值的对称性 设方程(3.1)满足初始条件00()y x y =的解是唯一的,记为),,(00y x x y ?=,则在此关系式中,(,)x y 与00(,)x y 可以调换其相对位置.即在解的存在范围内成立关系式 00(,,)y x x y ?= 证明在方程(3.1)满足初始条件00()y x y =的解的存在区间内任取一点,显然1100(,,)y x x y ?=,则由解的唯一性知,过点11(,)x y 的解与过点00(,)x y 的解是同一条积分曲线,即此解也可写为 11(,,)y x x y ?= 并且,有0011(,,)y x x y ?=.又由11(,)x y 是积分曲线上的任一点,因此关系式00(,,)y x x y ?=对该积分曲线上的任意点均成立. 2、 解对初值的连续依赖性 由于实际问题中初始条件一般是由实验 测量得到的,肯定存在误差. 有的时候误差比较大,有的时候误差比较小,在实际应用中我们当然希望误差较小,也就是说当00(,)x y 变动很小的时候,相应的方程的解也只有微小的变动,这就是解对初值的连续依赖性所要研究的问题:在讨论这个问题之前,我们先来看一个引理: 引理:如果函数(,)f x y 于某域内连续,且关于满足Lipschtiz 条件(Lipschtiz 常数为),则对方程(3.1)的任意两个解()x ?及()x ψ,在它们公共存在的区间内成立着不等式 0||00|()()||()()|L x x x x x x e ?ψ?ψ--≤- (3.17)

不动点定理研究

前言 不动点理论的研究兴起于20世纪初,荷兰数学家布劳维在1909年创立了不动点理论[1].在此基础上,不动点定理有了进一步的发展,并产生了用迭代法求不动点的迭代思想.美国数学家莱布尼茨在1923年发现了更为深刻的不动点理论,称为莱布尼茨不动点理论[2].1927年,丹麦数学家尼尔森研究不动点个数问题,并提出了尼尔森数的概念[3]. 我国数学家江泽涵、姜伯驹、石根华等人则大大推广了可计算尼森数的情形,并得出了莱布尼茨不动点理论的逆定理[4].最后给出结果的是波兰数学家巴拿赫(Bananch)[6],他于1922年提出的压缩映像(俗称收缩映射)原理发展了迭代思想,并给出了Banach不动点定理[6].这一定理有着及其广泛的应用,像代数方程、微分方程、 许多着名的数学家为不动点理论的证明及应用作出了贡献.例如,荷兰数学家布劳威尔在1910年发表的《关于流形的映射》[2]一文中就证明了经典的不动点定理的一维形式.即,设连续函数()fx()fx把单位闭区间[0,1]映到[0,1][0,1]中,则有0[0,1]x,使00()fxx.波利亚曾经说过:“在问题解决中,如果你不能解答所提的问题,那么就去考虑一个适当的与之相关联的辅助问题”.“不动点”就是一个有效的可供选择的辅助问题。 作为Brouwer不动点定理从有限维到无穷维空间的推广,1927年Schauder 证明了下面不动点定理,我们称其为Sehauder不动点定理I:定理2设E是Banach 空间,X为E中非空紧凸集,XXf:是连续自映射,则f在X中必有不动点.Sehauder 不动点定理的另一表述形式是将映射的条件加强为紧映射(即对任意Xx,xf是紧

泛函分析中不动点理论及其应用

泛函分析与微分方程有着密切的联系,泛函分析的算子半群理论、巴拿赫代数、拓扑线性空间理论,不动点原理等在常微分方程中都有重要的应用。 首先,算子半群最简单的原型在线性常微分方程的初值问题,且由 H i l l e Yo s i d a -定理表明:当稠定闭算子A 满足定理条件时,是下列方程的解, 且解是唯一的。 设A 是一个n n ?实矩阵,方程组 () ()()00n dx t Ax t dt x x R ?=? ? ?=∈? 在空间中解存在唯一。设0t ≥,考察映射 ()()0:.T t x x t → 则(){}0T t t ≥是强连续算子半群。在常微分方程中把算子半群(){} 0T t t ≥通过矩阵写出来: ()0 !n n tA N t A T t e n ∞ ===∑. 且不动点在常微分方程中有很多应用。例如,应用不动点定理证明微分方程解的存在性定理 微分方程解的存在性与唯一性定理 若常微分方程 ()0 0,,x dy F x y y y dx ==满足以下条件: (1)(),F x y 在整个平面上连续; (2)()()11,,F x y F x y K y y -≤-,其中K >0; 那么存在唯一的连续函数()y x j =满足 () (),d x F x y dx ?=且()00x y ?=。 证明:用()() 0,X C U x d =表示所有定义在()0,U x d 上取值于R 的连续函数全 体,其中d 满足1K d <。,f g X "?,用()( ) ()()0,,m a x xUx f g f x g x a r ? =-表示,f g 间 的距离,同样由泛函分析的知识知X 为完备度量空间。上述常微分方程等价于

泛函分析复习提要

泛函分析复习提要 一、填空 1. 设X 是度量空间,E 和M 是X 中两个子集,如果 ,则称集M 在集E 中 稠密。如果X 有一个可数的稠密子集,则称X 是 空间。 2. 设X 是度量空间, M 是X 中子集,若 ,则称M 是第一纲集。 3. 设T 为复Hilbert 空间X 上的有界线性算子,若对任何x X ∈,有*Tx T x =, 则T 为 算子。 ( Hilbert 空间H 上的有界线性算子T 是正常算子的充要条件是 。) 4. 若复Hilbert 空间X 上有界线性算子T 满足对一切x X ∈,,Tx x <>是实数,则 T 为 算子。 ( Hilbert 空间H 上的有界线性算子T 是自伴算子的充要条件是 。) 5.设X 是赋范线性空间,X '是X 的共轭空间,泛函列(1,2,)n f X n '∈= ,如果 存在f X '∈,使得对任意的x X ∈,都有 ,则称{}n f 弱*收敛于f 。 6. 设,X Y 是赋范线性空间,(,)n T B X Y ∈,1,2,n = ,若存在(,)T B X Y ∈使得对任意的x X ∈,有 ,则称{}n T 强收敛于T 。 7. 完备的赋范线性空间称为 空间,完备的内积空间称为 空间 8. 赋范线性空间X 到赋范线性空间Y 上的有界线性算子T 的范数T = 9. 设X 是内积空间,则称 是由内积导出的范数。 10.设X 是赋范空间,X 的范数是由内积引出的充要条件是 。 11. 设Y 是Hilbert 空间的闭子空间,则Y 与Y ⊥⊥满足 。 12.设X 是赋范空间,:()T D T X X ?→的线性算子,当T 满足 时, 则T 是闭算子。 二、叙述下列定义及定理 1. 里斯(Riesz )定理; 2. 实空间上的汉恩-巴拿赫泛函延拓定理;

不动点定理及其应用(高考)

摘要 本文首先介绍Banach空间中的不动点定理、在其他线性拓扑空间中不动点定理的一维推广形式、在一般完备度量空间上的推广形式.其次,通过分析近几年全国各地高考数学卷中一些试题特点,总结了利用不动点定理求解有关数列的问题.其中包括数列通项、数列的有界性问题.最后介绍了不动点定理中的吸引不动点和排斥不动点在讨论数列的单调性及收敛性方面的应用. 关键词:Banach不动点定理,数列通项,有界性,单调性,收敛性. Abstract This article firstly introduced the Fixpoint Theorem in Banach space, the one-dimensional extended form of the Fixpoint Theorem in other linear topological space and the extended form in general complete metric space. Then, we summarized the problem on sequence of number using Fixpoint Theorem, analyzing the characteristics of tests emerged on math papers of all parts of our country recent years, including the problem of general term and boundedness of a sequence of number. At last, attractive fix point and rejection fix point in Fixpoint Theorem v/ere introduced v/hich can solve the problem about the monotonicity and astringency of sequence of number. Keywords:Banach fixed point theorem, Sequence, Boundedness, Monotonicity Convergence. 第1章绪论 (1) 1.1导论 (1) 1.1.1选题背景 (1)

泛函分析——武大精品课2-4

1 第12讲 Hahn -Banach 延拓定理 教学目的 掌握线性泛函延拓定理的证明思想及其推论。 授课要点 1、 实空间线性泛函的控制延拓定理。 2、 复空间线性泛函的控制延拓定理。 3、 保范延拓定理。 4、 延拓定理的推论及其意义。 对于一个线性赋范空间来说,对它上面的线性泛函知道得越多,对这个空间本身就了解得越多(参见第9讲思考题1). 有时候为了某种目的,要求有满足一定条件的线性泛函存在,Hahn -Banach 定理为这样的线性泛函的存在提供了保证. 定义1 设()D T 与()1D T 分别是算子T 与1T 的定义域,若 ()()1D T D T ?,并且1,T x Tx =()x D T ?∈,则称算子1T 是T 的延拓. 定义2 线性空间X 上的实泛函()p x 称为是次可加的,若 ()()()p x y p x p y +≤+,,x y X ?∈ 称为是正齐性的,若 ()()p x p x αα=,x X ?∈,0α≥. 显然线性空间上的每个半范数都是次可加正齐性泛函. 定理1(Hahn -Banach ) 设X 是实线性空间,:p X R →是X 上的正齐性次可加泛函,M X ?是线性子空间,则 (1)对于M 上定义的每个线性泛函0f ,存在0f 从M 到X 的延

2 拓f :X R →, ()()0f x f x =,x M ?∈ (2)若()()0f x p x ≤,x M ?∈,可选取f 满足 ()()f x p x ≤,x X ?∈ ()1 证 明 1 设M X ≠,取0\x X M ∈,记'M =span {}0,x M ,则 x M ′′?∈,0x x tx ′=+,其中x M ∈,t R ∈. 此分解式是唯一的,否 则另有110x x t x ′=+,1x M ∈,则()110x x t t x ?=??,若1t t ≠,则 1 01 x x x t t ?= ?M ∈,与0x 的取法矛盾,于是1t t =,并且1x x =. 对于任何常数c ,令 ()()0f x f x tc ′=+,0x x tx ′?=+. 则容易验证f 是M ′上的线性泛函. 实际上f 是0f 从M 到M ′的延拓,因为当x M ′∈时,0t =,从而()()0f x f x ′=. 2 我们将证明当x M ?∈,()()0f x p x ≤时,适当选择c ,可使 ()()f x p x ′′≤,x M ′′?∈. 实际上,x y M ?∈,由于 ()()()()000f x f y f x y p x y +=+≤+ ()()00p x x p x y ≤?++, 即 ()()()()0000f x p x x p x y f y ??≤+?, 故存在c 满足 ()()00sup x M f x p x x c ∈??≤ ()()00inf y M p x y f y ∈≤+? , ()2

Banach不动点理论及其应用

不动点定理及其应用综述 摘要本文主要研究Banach 空间的不动点问题。[1]介绍了压缩映射原理证明隐函数存在定理和常微分方程解得存在唯一性定理上的应用;[2][3]介绍了应用压缩映射原理需要注意的问题;[4]介绍了不动点定理在证明Fredholm 积分方程和V olterra 积分方程解的存在唯一性以及在求解线性代数方程组中的应用;[5]讨论了不动点定理在区间套定理的证明中的应用。 一、压缩映射原理 压缩映射原理的几何意义表示:度量空间中的点x 和y 在经过映射后,它们在像空间中的距离缩短为不超过d(x,y)的α倍(1α<)。它的数学定义为: 定义1.1设X 是度量空间,T 是X 到X 的映射,若存在α,1α<,使得对所有 ,x y X ∈,有下式成立 (,)(,)d Tx Ty d x y α≤(1.1) 则称T 是压缩映射。 定理1.1(不动点定理):设X 是完备的度量空间,T 是X 上的压缩映射,那么T 有且只有唯一的不动点,即方程Tx=x 有且只有唯一解。 证明:设0x 是X 种任意一点,构造点列{}n x ,使得 21021010,,,n n n x Tx x Tx T x x Tx T x -===== (1.2) 则{}n x 为柯西点列。实际上, 111(,)(,)(,)m m m m m m d x x d Tx Tx d x x α+--=≤ 21212(,)(,)m m m m d Tx Tx d x x αα----=≤ 10(,)m d x x α≤≤ (1.3) 根据三点不等式,当n m >时, 1121(,)(,)(,)(,)m n m m m m n n d x x d x x d x x d x x +++-≤+++ 1101()(,)m m n d x x ααα+-≤++ 011(,)1n m m d x x ααα --=- (1.4) 由于1α<,故11n m α--<,得到 01(,)(,)()1m m n d x x d x x n m αα ≤>-(1.5) 所以当,m n →∞→∞时,(,)0m n d x x →,即{}n x 为柯西列。由于X 完备, x X ?∈,

泛函分析中的概念和命题

泛函分析中的概念和命题 赋范空间,算子,泛函 定理:赋范线性空间是有限维的当且仅当它的单位球是列紧的;有限维赋范线性空间上的任两个 范数是等价的;有限维赋范线性空间是Banach 空间. 定理:M 是赋范线性空间()||||,?X 的一个真闭线性子空间,则,1||||,,0=∈?>?y X y ε使得: M x x y ∈?->-,1||||ε 定理:设X 是赋范线性空间,f 是X 上的线性泛函,则 1.* X f ∈()()的闭线性子空间是X x f X x f N }0|{=∈=? 2.()()中稠密在是不连续的非零线性泛函X f N x f ? 定理:()空间是空间是则是赋范空间,Banach ,Banach },{,Y X B Y X Y X ?≠θ ()()()||||||||||||,,,,,,,,B A AB Z X B AB Z Y B Y X B A Z Y X ≤∈∈∈且则是赋范空间, 可分B 空间:()()[]可分b a C c c p l L p P ,,,,1,1,00∞<≤ ()∞∞l L ,10, 不可分 Hahn-Banach 泛函延拓定理 设X 为线性空间,上的实值函数是定义在X p ,若: (1)()()()()为次可加泛函则称p X y x y p x p y x p ,,,∈?+≤+ (2)()()() 为正齐性泛函,则称p X x x p x p ∈?≥?=,0,ααα (3) ()()() 为对称泛函,则称p X x x p x p ∈?∈?=,K ,||ααα 实Hahn-Banach 泛函定理: 设X 是实线性空间,()x p 是定义在X 上的次可加正齐性泛函,0X 是X 的线性子空间,0f 是定义在0X 上的实线性泛函且满足()()()00X x x p x f ∈?≤,则必存在一个定义在X 上的实线性泛函f ,且满足: 1.()()()X x x p x f ∈?≤0

第二章 基本定理 第二讲 解的延拓

第二讲 解的延拓(3学时) 教学目的:讨论解的延拓定理。 教学要求:理解解的延拓定理,并用解的延拓定理研究方程的解 教学重点:解的延拓定理条件及其证明 教学难点:应用解的延拓定理讨论解的存在区间。 教学方法:讲练结合教学法、启发式相结合教学法。 教学手段:传统板书与多媒体课件辅助教学相结合。 教学过程: 解的存在唯一性定理的优点是:在相当广泛的条件下,给定方程:),(y x f dx dy =有满足初值条件00)(y x y =的唯一解存在,但也有缺点,即它是局部的,它只能肯定这种解在0x x =附近的一个区间), min(,||0m b a h h x x =≤-上存在,有时所得的区间很小,因而相应的微分曲线也只是很短的一段,如初值问题 22(3.1)(0)0dy x y dx y ?=+???=? 当定义域为R:11≤≤-x 时,解存在的唯一区间.21}21 ,1min{||= =≤h x 当定义域为R:21≤≤-x 时,解的顾在唯一区间.4 1}41 ,1min{||==≤h x 这样随着),(y x f 的定义域的增大,解存在的唯一区间反而缩小,这显然是我们不想看到的,而且实际要求解存在下载向尽量大,这就促使我们引进解的延拓概念.扩大解存在不在此区间. 1. 局部利普希茨(Lipschitz )条件. 若函数),(y x f 在区域G 内连续且对G 内的每一点P,有以P 为中心完全含于G 内的闭矩形Rp 存在,在Rp 上),(y x f 在G 内关于y 满足Lipschitz 条件,(对不同的点,域Rp 的大小和常数L 尽可能不同),则称 ),(y x f 在G 内对y 满足局部Lipschitz 条件. 2. 解的延拓定理. 如果方程( 3.1)在奇函数),(y x f 在有界区域G 中连续,且在G 内关于y 满足局部Lipschitz 条件,那么方程(3.1)的通解过G 内任何一点(00,y x )的解)(x e y =可以延拓.直到点))(,,(x x ?任意接近G 的边界.以向X 增大的一方延拓来说,如果)(x y ?=它的延拓到区间m x x ≤≤0时.则当m x →时,))`(,(x x ?趋于区间G 的边界.

不动点定理及其应用

不动点定理及其应用 摘要不动点定理是研究方程解的存在性与唯一性理论的重要工具之一.本文给出了线性泛函分析中不动点定理的几个应用,并通过实例进行了说明.同时,介绍了非线性泛函分析中的不动点定理——Brouwer不动点定理和Leray-Schauder不动点定理. 关键词不动点;不动点定理;Banach空间 Fixed Point Theorems and Its Applications Abstract The fixed point theorem is one of important tools in studying the existence and uniqueness of solution to functional equation .In this paper,the fixed theorem in linear functional analysis and its applications are introduced and the corresponding examples are given.Meanwhile,the Brouwer and Leray-Schauder fixed point theorems are also involved. Key Words Fixed point , Fixed point theorem, Banach Space

不动点定理及其应用 0 引言 在线性泛函中,不动点定理是研究方程解的存在性与解的唯一性理论 [1-3] .而在非线性泛函中是 研究方程解的存在性与解的个数问题[4],它是许多存在唯一性定理(例如微分方程,积分方程,代数方程等)的证明中的一个有力工具. 下面给出不动点的定义. 定义 0.1设映射X X T →:,若X x ∈满足x Tx =,则称x 是T 的不动点.即在函数取值的过程中,有一点X x ∈使得x Tx =. 对此定义,有以下理解. 1)代数意义:若方程x Tx =有实数根0x ,则x Tx =有不动点0x . 2)几何意义:若函数()x f y =与x y =有交点()00,y x 则0x 就是()x f y =的不动点. 在微分方程、积分方程、代数方程等各类方程中,讨论解的存在性,唯一性以及近似解的收敛性始终是一个极其重要的内容. 对于许多方程的求解问题,往往转化为求映射的不动点问题,同时简化了运算. 本文将对不动点定理及其变换形式在线性分析和非线性分析中的应用加以探索归纳. 1 Banach 不动点定理及其应用 1.1相关概念 首先介绍本文用的一些概念. 定义1.1.1[3] 设X 为距离空间,{}n x 是X 中的点列,若对任给的0>ε,存在 0>N ,使得当N n m >,时,()ερ

泛函中三大定理的认识

泛函中三大定理及其应用 泛函分析科学体系的建立得益于20世纪初关于巴拿赫空间的三大基本定理,即Hahn-Banach 定理,共鸣定理和开映射、逆算子及闭图像定理。其中:一致有界定理,该定理描述一族有界算子的性质;谱定理包括一系列结果,其中最常用的结果给出了希尔伯特空间上正规算子的一个积分表达,该结果在量子力学数学描述中起核心作用;罕-巴拿赫定理(Hahn-Banach Theorem )研究了如何保范地将某算子从某子空间延拓到整个空间。另一个相关结果则是描述对偶空间非平凡性的;开映射定理和闭图像定理。 1、Hahn-Banach 延拓定理 定理:设G 为线性赋范空间X 的线性子空间,f 是G 上的任一线性有界泛函,则存在X 上的线性有界泛函F ,满足: (1) 当x G ∈时,()()F x f x =; (2) X G F f =; 其中X F 表示F 作为X 上的线性泛函时的范数;G f 表示G 上的线性泛函的范数. 延拓定理被应用于Riesz 定理、Liouville 定理的证明及二次共轭空间等的研究中. 2、逆算子定理 在微积分课程中介绍过反函数的概念,并且知道“单调函数必存在反函数”,将此概念和结论推广到更一般的空间. 定义1逆算子(广义上):设X 和Y 是同一数域K 上的线性赋范空间,G X ?,算子T :G Y →,T 的定义域为()D T G =;值域为()R T .用1T -表示从()()R T D T →的逆映射(蕴含T 是单射),则称1T -为T 的逆算子(invertiable operator). 定义2正则算子:设X 和Y 是同一数域K 上的线性赋范空间,若算子T : ()G X Y ?→满足 (1)T 是可逆算子; (2) T 是满射,即()R T Y =; (3) 1T -是线性有界算子, 则称T 为正则算子(normal operator). 注: ①若T 是线性算子,1T -是线性算子吗?②若T 是线性有界算子,1T -是线性有界算子吗? 性质1 若T :()G X Y ?→是线性算子,则1T -是线性算子. 证明 :12,y y Y ∈,,αβ∈K ,由T 线性性知: 1111212(())T T y y T y T y αβαβ---+--1111212()TT y y TT y TT y αβαβ---=+-- 1212()y y y y αβαβ=+--0= 由于T 可逆,即T 不是零算子,于是1111212()T y y T y T y αβαβ---+=+,故1T -是线性算子.□ 定理2逆算子定理:设T 是Banach 空间X 到Banach 空间Y 上的双射(既单又满)、线性有界算子,则1T -是线性有界算子.

Brouwer不动点定理的几种证明

Brouwer不动点定理的几种证明 学院名称: 专业名称: 学生姓名: 指导教师: 二○一一年五月

摘要 Brouwer不动点定理是很著名的定理.其中,关于它的证明很多有:代数拓扑的证明、组合拓扑的证明、微分拓扑的证明等.都涉及拓扑学上许多复杂的概念和结果. 关于该定理,也可以用图论的方法证明,用离散离散理论解决连续系统中问题.本文试图在总结其他证明方法的基础上,对图论的方法证明Brouwer不动点定理进行详细的介绍来体现这一思想. 关键词:Brouwer;不动点.

ABSTRACT Brouwer fixed point theorem is very famous theorem . Among them , about its proof many : algebra topologies, proof of the proof, differential combined topology etc. The proof of topological Involves many complex on the concept of limited and results. About this theorem, also can use graph method to prove, in a discrete discrete theory in solving continuous system. This article tries to summarize the other proof method based on the method of graph theory prove Brouwer fixed point theorem for detailed introduction to reflect this thought. Keywords: Brouwer; Fixed point.

相关主题
文本预览
相关文档 最新文档