当前位置:文档之家› 自动检测过程中的干扰及其抑制方法

自动检测过程中的干扰及其抑制方法

自动检测过程中的干扰及其抑制方法
自动检测过程中的干扰及其抑制方法

自动检测过程中的干扰及其抑制方法

在检测过程中,由于各种原因的影响,常会有一些与被测信号无关的电压、电流存在,这样就影响了测量结果,产生测量误差。这些信号就是干扰,它可分内部干扰和外部干扰。

内部干扰是测量系统内部各部件间的互相干扰。这种干扰可通过测量装置的正确设计及零部件的合理布局或采取隔离措施,加以消除或减弱。如仪表中放大器的输入线与输出线、交流电源线,分开走线,不要平行走线,且输入走线尽可能短;又如触发可控硅的脉冲变压器用磁屏蔽,即利用高导磁率材料做成磁屏蔽罩。

外部干扰是测量系统外部的因素对仪器、仪表或系统产生的干扰。在这里就自动化仪表检测工作中常会遇到的一些干扰及抑制方法归纳如下。

1 机械干扰

机械干扰最为严重,也很广泛。由于振动,会使导线在磁场中运动,产生感应电动势。抑制这类干扰用减振措施即可,如采用减振弹簧或减振橡胶等。在有振动的环境中,仪器、仪表信号导线常因松动而影响测量,应定期加以紧固。在此种环境中,少用动圈仪表。

2 温度干扰

由于温度过高,波动且不均匀,在检测中常导致电子元件参数变化或产生热电势,从而对测量结果造成严重干扰。在工程上,一般采用热屏蔽方法抑制热干扰,而把敏感元件装入恒温箱中。在电子测量装置中,常采用温度补偿措施,以补偿温度变化时对检测结果的影响。如:在实际现场使用热电偶时,自由端离热源很近,并随环境温度变化而变化。所以必须对自由端温度加以补偿。无论是采用补偿导线还是补偿电桥等,都是为了抑制此种干扰。又如:本人在修理天津仪表七厂生产的电动执行器位置反馈板时发现,不同的环境温度反应出不同的信号值。采取的办法是:把反馈回路原有的电阻用普通电阻串联或并联一只热敏电阻代换,在实际应用中,效果相当不错。再如,热电阻三线制接法,其中两根导线在不同的桥臂上,另一根接电源端,使环境温度变化引起导线阻值的变化。在不同的桥臂上同时增加或减小,而相互抵消。四线制接法既可消除连接导线电阻的影响,又可消除线路中寄生电势引起的测量误差。特别值得注意的是,温度过低也会造成仪表误差或失灵。北方冬季寒冷,自动化仪表的光电耦合器件及红外探测元件常会因环境温度太低而无法正常工作。如我厂采用台湾产的工业电视系统摄像器件CCD、美国产的筒体扫描仪器、德国西门子的比色高温计等,冬天都曾出现过不能正常使用的现象,加装了相应的伴热装置后,工作恢复正常。

3 电气干扰

由于厂矿中发电机、电动机及气体放电器件等杂散电磁场的存在,电场或磁场的变化,会使电或磁的干扰进入电子测量装置中,引起干扰信号。

(1)电磁感应

电磁感应通过磁耦合的方式在测量电路中形成干扰。如信号源与仪表之间的连接导线,仪表内部的配线通过磁耦合在电路中形成干扰。当两条平行导线有电流通过时,它们彼此之间会通过磁交链产生电磁耦合干扰。再如:各种开关设备在产生弧光火花放电的过程中,会向周围幅射出低频到高频的电磁波,这种无线电干扰信号以电磁场辐射的形式进入到测量仪器、仪表中,造成瞬时干扰信号。这种干扰信号直接影响微机检测系统的正常工作,有时甚至会冲乱程序。

为了降低电磁感应所产生的干扰,将导线远离那些强电设备及动力网,调整走线方向,减小导线回路面积以及采用绞线或屏蔽导线,强电电源线不与弱电信号线平行布线,不使用同一根电缆,分开布线且距离要尽量远些。对微机检测系统而言,其扩展接口片与主机之间连接导

线要短。为防止强电的感应干扰,对较长的弱电信号控制线采用金属管屏蔽。

(2)静电感应

静电感应是一种电耦合现象,干扰源是通过电容性耦合在测量回路中形成干扰。在相对的两个物体之间,由于存在着寄生电容,使其一的电场影响到另一个电场。如果其一的电位发生变化,则另一物体的电位也发生变化。如当把两根信号线与电源线平行敷设时,由于电源线到两信号线的距离不相等,分布电容也不相等,从而在两根信号导线上可以产生较大的电位差,这两根导线上的感应电势差就成了干扰电压信号。

为了减少由于静电耦合带来的干扰,敷设两根信号线时,把信号线绞合扭在一起,或采用屏蔽导线,会使电场在两信号线上产生的电位差大为减小。

(3)不同地电位引入的干扰

在大地中,各不同点之间往往存在有电位差,尤其在大功率的用电设备附近。当这些设备的绝缘性能较差时,此电位差更大。而在仪表的使用中,往往又会有意或无意地使输入回路存在两个以上的接地点,这样就必须正确接地,即获得一个等电位点或面,但并不一定为大地电位而应是电路或系统的基准电位。出于安全防护的目的,仪表和信号源的外壳通常都接大地,以保持零电位。然而,接地的方式处理不好,不同地点的电位差将形成回路。

为了提高仪表的可靠性及抗干扰能力,通常使信号源或者测量仪表与地绝缘,即“浮地”,以切断干扰电压进入测量系统的通路。如我厂有一台DBZ—1型智能称重仪,与工业控制计算机相连。称重时,此表数码管显示的重量值和端子4~20mA输出值都很正常,但工控机无显示值,而工控机通道也正常。经查找发现,4~20mA输出对地为10V左右的负电压,把荷重传感器的仪表浮地后,工控机显示值正常。

为了减小外界电场的影响,往往需要把屏蔽和接地正确地结合起来使用,以更加有效地解决干扰问题。如:我厂有一台工业电视机的电源线与其它强电设备同在一个电缆桥架上敷设,电视屏幕常出现横的“白纹”和“黑纹”的干扰,把此电源线换成屏蔽电缆,并把屏蔽接地后,工业电视显示正常。

当采用仪表浮地法来减小干扰时,即使信号源接的不是大地,信号导线的屏蔽层也应该接到信号源的公共端。但是,当信号浮地而仪表放大器接地时,信号导线的屏蔽层应接至放大器的公共端。由于两个电路回路共有阻抗,会使一个电路的电流在另一个电路上产生干扰电压,所以必须抑制此种干扰,消除两个或几个电路之间的共阻抗。例如:在微机及智能化仪表检测系统中,可以采用专用电源对计算机供电。在计算机与外部电路接口的地方,可采用光电耦合器等隔离措施。

此外,对电气干扰滤波也是重要手段。利用RC型、LC型、双T型等形式的滤波器及网络接到仪表输入端或放大器输入端,可阻止干扰信号进入放大器,使干扰信号被衰减。如我厂一台西安仪表厂产的直流毫伏转换器,安装在5号窑主电机直流整流柜内,总是工作不正常。经查发现,仪表24VDC工作电源中含有很大的交流成分和杂波,加装滤波电路(如图)后,仪表工作正常。

仪表前加装滤波电路

总之,为了抑制干扰信号对测量过程的影响,减小由于干扰所引起的测量误差,可采用多种手段。抑制干扰的基本出发点应是:切断或隔离开干扰信号进入测量回路和仪器、仪表的通道,而人为的为干扰信号制造一个切实可行的通道,使其不致进入仪器、仪表或线路的关键部件或部分;降低放大器对干扰的响应和灵敏度;使干扰信号产生的方向相反,相互抵消;采取补偿措施,使干扰引起的误差得以补偿等等。事实上,对一些略复杂的仪器仪表,用一种方法难以抑制到允许误差范围内,所以最好把几种不同的抑制方法组合起来使用,从而达到满意的效果。

电磁干扰及其抑制方法的研究

弱电工程中电磁干扰及其抑制方法的研究 (葛洲坝通信工程有限公司方宏坤 151120) 【摘要】在弱电工程应用领域,强电与弱电交叉耦合,电磁干扰(EMI)错综复杂,严重影响弱电系统的稳定性和安全性。本文详细介绍了 EMI 产生的原因、分析EMI/RFI的特性,及其传输途径和危害,利用电磁理论和工程实践,分析并提出了一些在弱电工程领域行之有效的 EMI 抑制方法。 【关键词】弱电电磁干扰(EMI)射频干扰(RFI)干扰抑制 随着计算机技术,特别是网络技术的飞速发展,IT技术在弱电工程领域的广泛应用,IT设备日益精密、复杂,使得电子干扰问题日趋严峻。它可使系统的稳定性、可靠性降低,功能失效,甚至导致系统完瘫痪和设备损坏。特别是EMI/RFI(电磁干扰/射频干扰)问题,已成为近几年弱电工程领域的焦点。 1、电磁干扰分类和特性 生活中电磁干扰无处不在,其干好错综复杂。通常我们把电磁干扰主要划分为电磁干扰(EMI)、射频干扰(RFI)和电磁脉冲(EMP)三种,根据其来源可分为外界和内部两种,严格的说所有电子运行的元件均可看作干扰源。本文中所提EMI是对周围电磁环境有较强影响的干扰;RFI则从属于EMI;EMP 是一种瞬态现象,它可由系统内部原因(电压冲击、电源中断、电感负载转换等)或外部原因(闪电等)引起,能耦合到任何导线上,如电源线和通信电缆等,而与这些导线相连的电子系统可能受到瞬时严重干扰或使系统内的电子电路永久性损坏。图 1 给出了常见 EMI/RFI 的干扰源及其频率范围。

1.1 EMI特性分析 在电子系统设计中,应从三个方面来考虑电磁干扰问题:首先是电子系统产生和发射干扰的程度;其次是电子系统在强度为 1~10 V/m、距离为 3 米的电磁场中的抗扰特性;第三是电子系统内部的干扰问题。利用干扰三要素分析与EMI相关的问题需要把握EMI的五个关键因素,这五个关键因素是频率、幅度、时间、阻抗和距离。 在EMI分析中的另一个重要参数是电缆的尺寸、导线及护套,这是因为,当EMI成为关键因素时,电缆相当于天线或干扰的传输器,必须考虑其物理长度与屏蔽问题。 1.2 RFI特性分析 无线电发射源无处不在,如无线电台、移动通信、发电机、电动机、电锤等等。所有这些电子活动都会影响电子系统的性能。无论RFI的强度和位置如何,电子系统对RFI必须有一个最低的抗扰度。在通信、无线电工程中,抗扰度定义为设备承受每单位RFI功率强度的敏感度。从“干扰源—耦合途径—接收器”的观点出发,电场强度E 是发射功率、天线增益和距离的函数,即 E=5.5· P·G d 式中P为发送功率(mW/cm2),G为天线增益,d为电路或系统距干扰源的距离(m)。 由于模拟电路一般在高增益下运行,对RF场比数字电路更为敏感,因此,必须解决μV级和mV级信号的问题;对于数字电路,由于它具有较大的信号摆动和噪声容限,所以对RF场的抑制力更强。 1.3 干扰途径 任何干扰问题可分解为干扰源、干扰接收器和干扰的耦合途径三个方面,即所谓的干扰三要素。如表 2 所示。 表2 干扰源耦合途径干扰类型接收器 共地阻抗传导干扰 辐射场到互连电缆(共模)辐射干扰 微控制器辐射场到互连电缆(差模)辐射干扰 有源器件电缆间串扰(电容效应)感应干扰微控制器 静电放电电缆间串扰(电感效应)感应干扰通信接收器 通信发射机电缆间串扰(漏电导)传导干扰有源器件 电源电缆间串扰(场耦合)辐射干扰其他电子系统扰动电源线到机箱传导干扰 雷电辐射场到机箱辐射干扰

轻轨杂散电流干扰对管道腐蚀影响的检测与判定

龙源期刊网 https://www.doczj.com/doc/4214438998.html, 轻轨杂散电流干扰对管道腐蚀影响的检测与判定 作者:孙政李振悦陈健 来源:《中国石油和化工标准与质量》2013年第08期 【摘要】分析了轨道交通动态杂散电流产生的机理,以广珠轻轨附近的天然气管道为研究对象,介绍了广珠轻轨杂散电流的检测情况,根据有关标准对杂散电流干扰情况进行判定,提出了解决杂散电流干扰的建议。 【关键词】广珠轻轨杂散电流管地电位检测交流电流密度 1 概述 杂散电流又称迷流,是指在设计或规定的回路以外流动的电流。杂散电流一旦流入埋地金属管道,再从埋地金属管道的另一端流出,进入大地或水中,则在电流流出部位发生激烈的腐蚀,电流流出部位则成为电化学腐蚀的阳极,通常把这种腐蚀称为杂散电流干扰腐蚀,将流入或流出埋地金属导体的杂散电流称为干扰电流。根据来源,杂散电流主要有直流杂散电流、交流杂散电流、地球磁场感应杂散电流等;根据电流幅值和流经路径是否随时间变化,可分为静态杂散电流和动态杂散电流。对城市埋地天然气管道而言,影响最普遍、最严重的是城市轨道交通产生的动态直流杂散电流干扰。 广珠城际轨道交通(以下简称广珠轻轨),由北面的广州,途径佛山市顺德区、中山市、到达南面的珠海市,全长约140公里,2011年1月正式通车。在中山市区,大约10公里的广珠轻轨与高压天然气管道并排铺设,两者之间最近的水平净距不足10米。广珠轻轨产生的杂散电流对埋地天然气管道的影响不容忽视,必须对杂散电流干扰腐蚀的问题引起关注。本文对轨道交通杂散电流产生机理及其动态特性进行讨论,介绍与天然气管道平行铺设的轻轨杂散电流的检测情况,根据有关标准对杂散电流干扰情况进行判定,并提出解决杂散电流干扰的建议。 2 轨道交通杂散电流 2.1 轨道交通杂散电流产生的机理 直流牵引轨道交通供电回路与杂散电流的产生原理见图1。变电站将交流电转换为直流电,经接触网向电力机车输送,电流由铁轨及相关导线返回变电站。由于铁轨具有一定的电阻,电流在铁轨中产生电位差,同时铁轨对大地也存在一定的电位差,使铁轨中部分电流泄漏进入大地形成杂散电流。泄漏到大地的杂散电流流入埋地天然气管道,经埋地天然气管道传输至变电站附近通过土壤重新流入铁轨,在电流流出的部分,金属发生腐蚀。

电磁干扰(EMI)抑制技术

电磁干扰(EMI)抑制技术 时间:2012-08-14 11:38:34 来源:作者: 1 电磁干扰基本概念 在复杂的电磁环境中,任何电子及电气产品除了本身能够承受一定的外来电磁干扰(Electromagnetic Interference,EMI)而保持正常工作外,还不会对其他电子及电气设备产生不可承受的电磁干扰,该产品即具有电磁兼容性(Electromagnetic Compatibility,EMC)[1]。 21世纪将是信息爆炸的时代,信息的产生、传递、接收、处理和储存等都需要依赖电磁波作为载体。广义地说,声波、无线电波、光波均可作为信息载体,因此,广义的电磁兼容性概念也应拓展到声、光、电的广阔领域。 电子及电气产品的电磁干扰发射或受到电磁干扰的侵害都是通过产品的外壳、交/直流电源端口、信号线、控制线及地线而形成的。按照EMI的传播方式,可将其分为电磁辐射干扰和电磁传导干扰两大类。通常,辐射干扰出现在产品周围的媒体中,传导干扰则出现在各种导体中。一般来说,通过外壳发射的电磁干扰,或通过外壳侵入的干扰都是辐射干扰,而通过其它导体发射和入侵的干扰属于传导干扰。 2 人类必须关注电磁兼容问题 2.1 电磁环境不断恶化 20世纪中叶以来,电子技术的迅猛发展,使人类社会的进步和文明上了一个新的台阶,但是也给人们带来了一系列社会问题和环境问题。家用电器、通信、计算机及信息设备、电动工具、航空、航天等工业、科技、医学等各个领域的自动控制、测量仪器以及电力电子系统等的广泛普及、应用,深入千家万户之中,使得电磁污染问题日益突出,而电子设备的高频化、数字化,干扰信号的能量密度增大,使有限空间内的电磁环境更为恶化。 1996年3月,日本SAPIO杂志公布了日本家用电器电磁辐射的检测结果(表1)。瑞典等北欧三国于1993年所作的联合调查指出:人类长期受到2mG(毫高斯)以上的电磁辐射影响,患白血病的机会是正常人的2.1倍,患脑肿瘤的机会是正常人的1.5倍,其他疾病的发病概率也明显增加。 表1 家用电器电磁辐射检测结果(单位:mG)[2] 2.2 电磁污染危害不浅 电磁干扰和污染看不见、摸不着、听不到,因其无色、无味也无形,但它确实无处不在、危害不浅,威胁人体健康。德国专家指出,电磁污染能影响对人体生物钟起作用的激素和传达神经信息的激素,还能破坏细胞膜;美国科学家的研究表明,电磁污染可直接杀伤人

输油管道受杂散电流干扰的检测与排除

输油管道受杂散电流干扰的检测与排除 河南邦信防腐材料有限公司 2017年3月

杂散电流分为直流和交流,例如采用四通道快速数据采集存储器和计算机数据处理技术,对紧靠上海地铁一号线沪闵路段的埋地输油管道受杂散电流干扰的情况进行了现场检测.测试结果充分说明干扰来源于地铁列车的运行,其特点是双向动态干扰,没有固定的阴极区和阳极区.从实际条件出发,利用原来保护该输油管道所埋设的镁阳极作接地床,采用极性接地排流方式来抑制杂散电流干扰,各处的排流效果介于60%~100%. 直流杂散电流检测 直流杂散电流可以分为静态杂散电流和动态杂散电流。使用SCM(杂散电流检测仪)软件可以对静态杂散电流进行实时检测和数据分析。而对动态杂散电流检测时,可以设置最长达48小时的自动监测和数据存贮。 当在管道任意点上的管地电位较自然电位正向偏移20mV或管道附近土壤中的电位梯度大于0.5mV/m时,确定为有直流电干扰;当在管道任意点上管地电位较自然电位正向偏移100mV或管道附近土壤中的电位梯度大于2.5mV/m时,管道应采取直流排流保护或其它防护措施。 直流电干扰的测试,排流保护效果评定及管理应按SY/T0017—96《埋地钢质管道直流排流保护技术标准》中的规定执行。 交流杂散电流检测 交流杂散电流干扰采用参比法测量,从而确定杂散电流干扰的程度。当管道任意点上管地电位持续1V以上时,确定为存在交流干扰;当中性土壤中的管道任意点上管地交流电位持续高于8V、碱性土壤中高于10V或酸性土壤中高于6V时,管道应采取交流排流保护或相应的其它保护措施。 交流电干扰测试按SY/T0032—2000《埋地钢质管道交流排流保护技术标准》执

开关电源中电磁干扰的产生及其抑制

开关电源中电磁干扰的产生及其抑制 摘要:电磁干扰对开关电源的效率和安全性及使用的影响日益成为人们关注的热点。本文分析了开关电源中电磁干扰产生的原因和传播的路径,并提出了抑制干扰的有效措施。 关键词:开关电源、电磁干扰、耦合通道、电磁屏蔽 1 引言 电磁兼容EMC是英文electro magnetic compatibility 的缩写。它包括两层含义,一是设备在工作中产生的电磁辐射必须限制在一定水平内,二是设备本身要有一定的抗干扰能力,它必须具备三个要素:干扰源、耦合通道、敏感体。给电子线路供电的开关电源对干扰的抑制对保证电子系统的正常稳定运行具有重要意义。本文通过分析开关电源中的干扰源和耦合通道,提出了抑制干扰的有效措施。并提出了开关电源中开关变压器的设计和制作方法。 2 开关电源中的干扰源和耦合通道 开关电源首先将工频交流电整流为直流电,然后经过开关管的控制变为高频,最后经过整流滤波电路输出,得到稳定的直流电压,因此,自身含有大量的谐波干扰。同时,由于变压器的漏感和输出二极管的反向恢复电流造成的尖峰,都会产生不同程度的电磁干扰。开关电源中的干扰源主要集中在电压、电流变化大(即dV/dt或dI/dt很大)的元器件上,尤其是开关管、输出二极管和高频变压器等。同时,杂散电容会将电网的噪声传导到电子系统的电源而对电子线路的工作产生干扰。 这里我们来分析一下几种干扰产生的原因及其耦合的路径。 2.1输入整流滤波电路产生的谐波干扰 开关电源输入端普遍采用桥式整流,电容滤波电路。由于整流二极管的非线性和滤波电容的储能作用,使得输入电流i成为一个时间很短、峰值很高的周期性尖峰电流,如图1所示。这种畸变的输入电流,它除了基波外,还含有丰富的高次谐波分量。

电磁干扰及抑制技术

电磁干扰及常用的抑制技术 摘要:各种干扰是机电一体化系统和装置出现瞬时故障的主要原因。电磁兼容性设计是目前电子设备及机电一体化系统设计时考虑的一个重要原则,它的核心是抑制电磁干扰。电磁干扰的抑制要从干扰源、传播途径、接收器三个方面着手,切断干扰耦合的途径,干扰的影响也将被消除。常用的方法有滤波、降低或消除公共阻抗、屏蔽、隔离等。 关键词:电磁干扰干扰抑制屏蔽接地 1.电磁干扰 电磁干扰(electro magnetic interference,EMI)是指系统在工作过程中出现的一些与有用信号无关的、并且对系统性能或信号传输有害的电气变化现象。构成电磁干扰必须具备三个基本条件:①存在干扰源;②有相应的传输介质;③有敏感的接收元件。只要除去其中一个条件,电磁干扰就可消除,这就是电磁抑制技术的基本出发点。 1.1 电磁干扰的分类 常见的各种电磁干扰根据干扰的现象和信号特征不同有以下分类方法。 1、按其来源分类 (1) 自然干扰。 自然干扰是指由于大自然现象所造成的各种电磁噪声。 (2) 人为干扰。

由于电子设备和其他人工装置产生的电磁干扰。 2、按干扰功能分类 (1) 有意干扰。 有意干扰是指人为了达到某种目的而有意识制造的电磁干扰信号。这是当前电子战的重要手段。 (2) 无意干扰。 无意干扰是指人在无意之中所造成的干扰,如工业用电、高频及微波设备等引起的干扰等。 3、按干扰出现的规律分类 (1) 固定干扰。 多为邻近电气设备固定运行时发出的干扰。 (2) 半固定干扰。 偶尔使用的设备(如行车、电钻等)引起的干扰。 (3) 随机干扰。 无法预计的偶发性干扰。 4、按耦合方式分类 (1) 传导耦合干扰。 传导耦合是指电磁噪声的能量在电路中以电压或电流的形式,通过金属导线或其他元件(如电容器、电感器、变压器等)耦合到被干扰设备(电路)。 (2) 辐射耦合干扰。 电磁辐射耦合是指电磁噪声的能量以电磁场能量的形式,通过空

传感器的噪声及其抑制方法

传感器的噪声及其抑制方法 1 引言 传感器作为自控系统的前沿哨兵,犹如电子眼一般将被测信息接收并转换为有效的电信号,但同时,一些无用信号也搀杂在其中。这些无用信号我们统称为噪声。 应该说,噪声存在于任何电路之中,但它对传感器电路的影响却尤为突出。这是因为,传感器的输出阻抗一般都很高,使其输出信号衰减厉害,同时,传感器自容易被噪声信号淹没。因此,噪声的存在必定影响传感器的精度和分辨率,而传感器又是检测自控系统的首要环节,于是势必影响整个自控系统的性能。 由此,噪声的研究是传感器电路设计中必须考虑的重要环节,只有有效地抑制、减少噪声的影响才能有效利用传感器,才能提高系统的分辨率和精度。 但噪声的种类多,成因复杂,对传感器的干扰能力也有很大差异,于是抑制噪声的方法也不同。下面就传感器的噪声问题进行较全面的研究。 2 传感器的噪声分析及对策 传感器噪声的产生根源按噪声源分为内部噪声和外部噪声。 2.1 内部噪声——来自传感器件和电路元件的噪声 2.1.1 热噪声 热噪声的发生机理是,电阻中自由电子做不规则的热运动时产生电位差的起伏,它由温度引发且与之呈正比,由下面的奈奎斯特公式表示: 其中,Vn:噪声电压有效值;K:波耳兹曼常数(1.38×10-23J〃K-1);T:绝对温度(K);B:系统的频带宽度(Hz);R:噪声源阻值(Ω)。 噪声源包括传感器自身内阻,电路电阻元件等。 由公式(1)可见,热噪声由于来自器件自身,从而无法根本消除,宜尽可能选择阻值较小的

电阻。 同时,热噪声与频率大小无关,但与频带宽成正比,即,对应不同的频率有均匀功率分布,故,也称白噪声。因此,选择窄频带的放大器和相敏检出器可有效降低噪声。 2.1.2 放大器的噪声 2.1.3 散粒噪声 散粒噪声的噪声源为晶体管,其机理是由到达电极的带电粒子的波动引起电流的波动形成的。噪声电流In与到达电极的电流Ic及频带宽度B成正比,可表示为: 由此可见,使用双极型晶体管的前置放大器来放大传感器的输出信号的场合,选Ic取值尽可能小。同时,也可选择窄频带的放大器降低散粒噪声电流。 2.1.4 1/f噪声 1/f噪声和热噪声是传感器内部的主要噪声源,但其产生机理目前还有争议,一般认为它是一种体噪声,而不是表面效应,源于晶格散射引起。在晶体管的P-N附近是电子-空穴再复合的不规则性产生的噪声,该噪声的功率分布与频率成反比,并由此而得名。其噪声电压表示为: Hooge还在1969年提出了一个解释1/f噪声的经验公式: 式中,SRH和SVH为相应于电阻起伏和电压起伏的功率噪声密度,V为加在R上的偏压,N 为总的自由载流子数,α叫Hooge因子,是一个与器件尺寸无关的常数,它是一个判断材料性能的重要参数。 对于矩形电阻,总的自由载流子数N=PLWH,其中,P为载流子浓度,L、W、H为电阻的长、宽、厚。

电磁干扰的屏蔽方法知识

电磁干扰的屏蔽方法 EMC问题常常是制约中国电子产品出口的一个原因,本文主要论述EMI的来源及一些非常具体的抑制方法。 电磁兼容性(EMC)是指“一种器件、设备或系统的性能,它可以使其在自身环境下正常工作并且同时不会对此环境中任何其他设备产生强烈电磁干扰(IEEEC63.12-1987)。”对于无线收发设备来说,采用非连续频谱可部分实现EMC 性能,但是很多有关的例子也表明EMC并不总是能够做到。例如在笔记本电脑和测试设备之间、打印机和台式电脑之间以及蜂窝电话和医疗仪器之间等都具有高频干扰,我们把这种干扰称为电磁干扰(EMI)。 EMC问题来源 所有电器和电子设备工作时都会有间歇或连续性电压电流变化,有时变化速率还相当快,这样会导致在不同频率内或一个频带间产生电磁能量,而相应的电路则会将这种能量发射到周围的环境中。 EMI有两条途径离开或进入一个电路:辐射和传导。信号辐射是通过外壳的缝、槽、开孔或其他缺口泄漏出去;而信号传导则通过耦合到电源、信号和控制线上离开外壳,在开放的空间中自由辐射,从而产生干扰。 很多EMI抑制都采用外壳屏蔽和缝隙屏蔽结合的方式来实现,大多数时候下面这些简单原则可以有助于实现EMI屏蔽:从源头处降低干扰;通过屏蔽、过滤或接地将干扰产生电路隔离以及增强敏感电路的抗干扰能力等。EMI抑制性、隔离性和低敏感性应该作为所有电路设计人员的目标,这些性能在设计阶段的早期就应完成。 对设计工程师而言,采用屏蔽材料是一种有效降低EMI的方法。如今已有多种外壳屏蔽材料得到广泛使用,从金属罐、薄金属片和箔带到在导电织物或卷带上喷射涂层及镀层(如导电漆及锌线喷涂等)。无论是金属还是涂有导电层的塑料,一旦设计人员确定作为外壳材料之后,就可着手开始选择衬垫。 金属屏蔽效率

交直流杂散电流综合干扰时的排流措施

交直流杂散电流综合干扰时的排流措施 技 术 说 明 书 河南汇龙合金材料有限公司 2019年正版

考虑到排流地床接地体既要保证将杂散电流排走,又要保证阴极保护电流不被排走,当管道所受的直流干扰为正电流干扰的情况下,通常接地体一般选择牺牲阳极接地体如镁阳极或者锌接地体,牺牲阳极既可以作为接地将杂散电流排入地下,还可以提供足够的阴极保护电流来抵消直流杂散电流的干扰; 当管道所受的直流干扰为负电流干扰的情况下,接地体一般可选择铜接地体,因为锌接地体等牺牲阳极自身开路电位较高,加上钳位式排流器0.5V的电压差,无法将多余电流排走。该工程正是受直流杂散电流负干扰较为严重的情况,不能选择牺牲阳极作为接地体或者牺牲阳极阴极保护系统,容易产生过保护。 高压输电线路与地下金属管道平行分布且相互距离较近时,由于磁性耦合的作用,管道上会产生交流电压,在测量上表现为管地交流电位,即由输电线路引起的交流干扰。 新大管道沿线高压输电线路较多,有些管段与高压线近距离平行,易受交流干扰。为此,对管道交流电位进行了24 h连续测试,实测结果表明,新大管道存在强直流和弱交流干扰,需要采取排流保护措施。管道上施加的强制电流阴极保护对直流干扰有明显的抑制作用。 与轻轨平行的新大管道管段应采用排流保护,以降低杂散电流对该管段的干扰;在管道两端利用阴极保护对杂散电流的抑制作用来降

低对管道的干扰,并使该管段得到有效的阴极保护,具体设计方案如下。 (1)在管道末端增设1座阴极保护站,以减轻轻轨穿越点处至七厂段管道直流的干扰,解决该管段的阴极保护电位不足的问题。 (2)在管道与轻轨平行段预设6~8处排流设施,既可消除该管段的直流干扰,又可同时减弱其交流干扰。 (3)排流装置采用接地式排流方式,该方式位置选择灵活,对其它设施干扰小。对于轻轨铁路引起的干扰,由于管道电位波动较大,且存在正负交变现象,为防止杂散电流倒流人管道,排流器需增设防逆流装置,即极性排流器。排流接地极材料选用镁合金阳极,不仅可以提高排流驱动电压,而且还可为管道提供阴极保护。 (4)考虑到管道与轻轨平行段附近多数地域较狭窄,排流接地极采用了灵活的排布方式,接地地床方向可与管道平行、垂直或倾斜,接地极可采用立式或水平埋设。

继电器电磁干扰的分析及抑制

摘要:本文主要介绍了对电气设备中继电器及其开关触点干扰抑制的机理,提出了抑制干扰的有效措施。 关键词:继电器电磁干扰分析抑制 1前言 随着科学技术的飞速发展,电子、电力电子、电气设备应用越来越广泛,它们在运行过程中会产生较强的电磁干扰和谐波干扰。其中,电磁干扰具有很宽的频率范围(从几百Hz 到MHz),又有一定的幅度,经过传导和辐射会污染电磁环境,对电子设备造成干扰,有时甚至危及操作人员的安全。特别是大功率中、短波广播发射中心,其周围电磁环境尤为复杂,要想保证设备安全稳定运行,电子设备及电源必须具有更高的电磁兼容性。 2电磁干扰的抑制 电磁干扰EMI(Electromagnetic Interference)是指由无用信号或电磁骚扰(噪声)对有用电磁信号的接收或传输所造成的损害。一个系统或系统内,某一线路受到电磁干扰的程度可以表示为如下关系式: N=G×C/I 其中:G为噪声源强度; I为受干扰电路的敏感程度;

C为噪声通过某种途径传导受干扰处的耦合因素。 从上式可以看出,电磁干扰抑制的技术就是围绕这三个要素所采取的各种措施,归纳起来就是: (1)抑制电磁干扰源; (2)切断电磁干扰耦合途径; (3)降低电磁敏感装置的敏感性。 2.1抑制电磁干扰源 首先必须确定干扰源在何处,越靠近干扰源的地方采取措施抑制效果越好,一般来说,电流电压瞬变的地方(即di/dt或du/dt)即是干扰源,如:继电器开合、电容充放电、电机运转、集成电路开关工作等都可能成为干扰源。另外,市电并非理想的50Hz正弦波,其中充满各种频率噪声,也是不可忽视的干扰源。 抑制干扰源就是尽可能的减小di/dt或du/dt,这是抗干扰设计时最优先和最重要的原则。减小di/dt的干扰源,主要是在干扰回路串联电感或电阻以及增加续流二极管来实现;减小du/dt的干扰源,则是通过在干扰源两端并联电容来实现。 抑制方法通常采用低噪声电路、瞬态抑制电路、稳压电路等,所选用的器件应尽可能采用低噪声、高频特性好、稳定性高的电子元件,特别要注意,抑制电路中不适当的器件选择可能会产生新的干扰源。

电磁干扰和抑制方法的研究

弱电工程中电磁干扰及其抑制方法的研究 (洲坝通信工程方宏坤 151120) 【摘要】在弱电工程应用领域,强电与弱电交叉耦合,电磁干扰(EMI)错综复杂,严重影响弱电系统的稳定性和安全性。本文详细介绍了 EMI 产生的原因、分析EMI/RFI的特性,及其传输途径和危害,利用电磁理论和工程实践,分析并提出了一些在弱电工程领域行之有效的 EMI 抑制方法。 【关键词】弱电电磁干扰(EMI)射频干扰(RFI)干扰抑制 随着计算机技术,特别是网络技术的飞速发展,IT技术在弱电工程领域的广泛应用,IT设备日益精密、复杂,使得电子干扰问题日趋严峻。它可使系统的稳定性、可靠性降低,功能失效,甚至导致系统完瘫痪和设备损坏。特别是EMI/RFI(电磁干扰/射频干扰)问题,已成为近几年弱电工程领域的焦点。 1、电磁干扰分类和特性 生活中电磁干扰无处不在,其干好错综复杂。通常我们把电磁干扰主要划分为电磁干扰(EMI)、射频干扰(RFI)和电磁脉冲(EMP)三种,根据其来源可分为外界和部两种,严格的说所有电子运行的元件均可看作干扰源。本文中所提EMI是对周围电磁环境有较强影响的干扰;RFI则从属于EMI;EMP 是一种瞬态现象,它可由系统部原因(电压冲击、电源中断、电感负载转换等)或外部原因(闪电等)引起,能耦合到任何导线上,如电源线和通信电缆等,而与这些导线相连的电子系统可能受到瞬时严重干扰或使系统的电子电路永久性损坏。图 1 给出了常见 EMI/RFI 的干扰源及其频率围。 1.1 EMI特性分析

在电子系统设计中,应从三个方面来考虑电磁干扰问题:首先是电子系统产生和发射干扰的程度;其次是电子系统在强度为 1~10 V/m、距离为 3 米的电磁场中的抗扰特性;第三是电子系统部的干扰问题。利用干扰三要素分析与EMI相关的问题需要把握EMI的五个关键因素,这五个关键因素是频率、幅度、时间、阻抗和距离。 在EMI分析中的另一个重要参数是电缆的尺寸、导线及护套,这是因为,当EMI成为关键因素时,电缆相当于天线或干扰的传输器,必须考虑其物理长度与屏蔽问题。 1.2 RFI特性分析 无线电发射源无处不在,如无线电台、移动通信、发电机、电动机、电锤等等。所有这些电子活动都会影响电子系统的性能。无论RFI的强度和位置如何,电子系统对RFI必须有一个最低的抗扰度。在通信、无线电工程中,抗扰度定义为设备承受每单位RFI功率强度的敏感度。从“干扰源—耦合途径—接收器”的观点出发,电场强度E 是发射功率、天线增益和距离的函数,即 E=5.5·√P·G d 式中P为发送功率(mW/cm2),G为天线增益,d为电路或系统距干扰源的距离(m)。 由于模拟电路一般在高增益下运行,对RF场比数字电路更为敏感,因此,必须解决μV级和mV级信号的问题;对于数字电路,由于它具有较大的信号摆动和噪声容限,所以对RF场的抑制力更强。 1.3 干扰途径 任何干扰问题可分解为干扰源、干扰接收器和干扰的耦合途径三个方面,即所谓的干扰三要素。如表 2 所示。 表2 干扰源耦合途径干扰类型接收器 共地阻抗传导干扰 辐射场到互连电缆(共模)辐射干扰 微控制器辐射场到互连电缆(差模)辐射干扰 有源器件电缆间串扰(电容效应)感应干扰微控制器 静电放电电缆间串扰(电感效应)感应干扰通信接收器 通信发射机电缆间串扰(漏电导)传导干扰有源器件 电源电缆间串扰(场耦合)辐射干扰其他电子系统扰动电源线到机箱传导干扰 雷电辐射场到机箱辐射干扰 设备到设备辐射辐射干扰

交流干扰对管道的影响

交流杂散电流对管道的影响研究 (滕延平1、王维斌1、陈洪源1、韩兴平2、陈新华1、赵晋云1、蔡培培1)(1.中国石油管道研究中心 2.西南油田输气管理处) 摘要: 随着公共设施如电气化牵引系统、高压输电线路等的日益建设,管道受到的交流干扰将愈加严重。目前国内许多管道都受到较强的交流干扰。本文介绍了国内外关于交流干扰的危害,分别从人身安全、对仪器设备、管道防腐层以及交流腐蚀的角度进行了分析。同时,主要对国外研究的交流腐蚀的一些重要结论进行了总结。文章重点介绍了国外的交流腐蚀评价指标,同时参照国外的交流电流密度评价指标对西气东输管道与港枣线,分别采用理论计算方法与电阻探头的方法对管道的交流电流密度进行了计算与测量,并对其进行了分析与评价。最后对国内外的交流减缓措施进行了分析比较,提出了国内应用该措施的局限性与不足之处。希望借此文章,能推动国内在油气管道交流干扰规律研究与标准制定方面的工作进展。 关键词:管道;交流干扰;腐蚀;交流密度;减缓 1、前言 . 为了有效利用土地资源,通常在一条公共走廊里同时安装高压电线和管道,管道有时还与铁路平行或交叉,受许多外部因素制约,加上现代高绝缘涂层的使用更加重了电危害。其主要影响有:与管道接触的人员电伤害、管道涂层与钢质损坏、烧毁CP装置和遥测系统等。 我国在交流干扰评价控制方面技术相对较弱,石油行业标准 SY/T0032交流干扰标准,对应弱碱性、中性、和酸性土壤环境给出了10V/8V/6V的交流电压排流指标。但该标准仅仅适应于石油沥青涂层,在高绝缘涂层如 3PE条件下已存在问题。国外油气管道交流干扰的研究发展快速,颁布了较多减缓交流电的标准。 2、交流干扰的危害 交流输电线路对输油输气管道的电磁影响主要涉及对人身安全的影响、对输油输气管道及其阴极保护设备安全的影响以及对输油输气管道的交流腐蚀等问题。

485通信中干扰抑制方法

485通信中干扰抑制方法 RS-485匹配电阻 RS-485就是差分电平通信,在距离较长或速率较高时,线路存在回波干扰,此时要在通信线路首末两端并联120Ω匹配电阻。推荐在通信速率大于19、2Kbps或线路长度大于500米时,才考虑加接匹配电阻。 RS-485接地 RS-485通信双方的地电位差要求小于1V,所以建议将两边RS-485接口的信号地相连,注意信号地不要接大地。 还有,就就是采用隔离措施 变频器应用中的干扰抑制措施 在进线侧加装电抗器,可以抑制变频器产生的谐波对电网的干扰。 输出侧不能加吸收电容,因为会导致变频器过电流时延迟过电流保护动作,只能加电抗器,以改善功率因数。 避免变频器的动力线与信号线平行布线与集束布线,应分散布线。检测器的连接线、控制用信号线要使用双绞屏蔽线。变频器、电机的接地线应接到同一点上。在大量产生噪声的机器上装设浪涌抑制器,加数据线滤波器到信号线上。将检测器的连接线、控制用信号线的屏蔽层用电缆金属夹钳接地。 信号线与动力线使用屏蔽线并分别套入金属管后,效果更好。 容易受干扰的其它设备的信号线,应远离变频器与她的输入输出线。 如何解决中频炉的谐波干扰

中频炉在使用中产生大量的谐波,导致电网中的谐波污染非常严重。谐波使电能传输与利用的效率降低,使电气设备过热,产生振动与噪声,并使其绝缘老化,使用寿命降低,甚至发生故障或烧毁;谐波会引起电力系统局部并联谐振或串联谐振,使谐波含量放大,造成电容补偿设备等设备烧毁。谐波还会引起继电器保护与自动装置误动作,使电能计量出现混乱。对于电力系统外部,谐波会对通信设备与电子设备产生严重干扰,因而,改善中频炉电力品质成为应对的主要着力点。 滤除中频炉系统谐波的传统方法就是LC滤波器,LC滤波器就是传统的无源谐波抑制装置,由滤波电容器、电抗器与电阻器适当组合而成,与谐波源并联,除起滤波作用外,还兼顾无功补偿的需要。这种滤波器出现最早,成本比较低,但同时存在一些较难克服的缺点,比如只能针对单次谐波,容易产生谐波共振,导致设备损毁,随着时间谐振点会漂移,导致谐波滤除效果越来越差。同时,这一方式无法应对瞬变、浪涌与高次谐波,存在节能的漏洞。 谐波抑制的另一个比较新的方法就是采用有源电力滤波器(Active Power Filter--APF)。它就是一种电力电子装置,其基本原理就是从补偿对象中检测出谐波电流,由补偿装置产生一个与该谐波电流大小相等而极性相反的补偿电流,从而使电网电流只含基波分量。这种滤波器能对频率与幅值都变化的谐波进行跟踪补偿,且补偿特性不受电网阻抗的影响,因而受到广泛的重视,并且已在日本等国获得广泛应用。但有源电力滤波器成本高昂,价格昂贵,投资回报期长,大多数企业难以承受。 MF-Saver吸收融合了LC技术与APF技术的优点,同时引入TOPSPARK G5的核心技术,扬长避短,创造性地解决了上述技术的不足,以独特的方式为中频炉环保节能提供了更有效的解决方案。

管道受直流杂散电流干扰情况下的排流系统

随着国民经济的持续发展,我国各个城市为了缓和日趋严重的城市交通压力,纷纷加快了城市轨道交通的建设。同时为了保持城市美观,供水、燃气管道以及供电和通信电缆大多采用地下埋设或隐蔽敷设,城轨杂散电流对这些管道和电缆的腐蚀危害以及对应的防治方法则 成为一个倍受关注的问题。加强对杂散电流腐蚀危害及防治方法的研究,对保证城轨基础结构及周边的管线及建筑设施的安全运行,延长它们的使用寿命具有重要的现实意义。 1直流电气化铁路杂散电流电化学腐蚀的危害 城市轨道交通中的杂散电流会引起城轨、城轨附近的钢筋混凝土结构物以及埋地管线发生腐蚀,阴极保护系统失效,造成严重后果。主要表现在以下一些方面。 1.1钢轨及其附件 城轨中多采用道钉把钢轨固定于枕木上,在与道钉相接触的部位常发生钢轨的楔状腐蚀。若采用垫板和压片固定钢轨,则这种腐蚀有所减少,但会导致在垫板以外的部位发生钢轨的底部腐蚀。这种腐蚀从上面难以发现,因而危害性更大。此外在与路基石子相接触的钢轨底部有时也发生类似的杂散电流腐蚀。钢轨的杂散电流腐蚀在隧道内及道岔等部位尤为显著,在有些地方2—3年就要更换钢轨。道钉也有杂散电流腐蚀,而且多发生在钉入部位,从地上难以发现。 1.2钢筋混凝土结构物 杂散电流通过混凝土时对混凝土本身并不产生影响,但如果有钢筋存在,则钢筋起汇集电流的作用并把电流引导到排流点处。在杂散

电流由混凝土进入钢筋之处,钢筋呈阴极。如果阴极产生氢气且氢气不能从混凝土逸出,就会形成等静压力使钢筋与混凝土脱开。如有钠或钾的化合物存在,则电流的通过会在钢筋与混凝土的界面处产生可溶的碱式硅酸盐或铝酸盐,使结合强度显著降低。在电流离开钢筋返回混凝土的部位,钢筋呈阳极并发生腐蚀。腐蚀产物在阳极处的堆积产生机械张力而使混凝土结构物基础及检件和环境下修坑便会在较短时间内发生腐蚀。如果结构物中的钢筋与钢轨有电接触,则更容易受到杂散电流腐蚀。 1.3埋地管线 对于埋地管线的影响是城轨杂散电流腐蚀的另一个重要方面,在设计和建造城轨时不考虑此问题会产生极严重的后果。 埋地管有铸铁管和钢管之分。铸铁管表面一般涂沥青等,在管接头处多采取相互绝缘的连接方式,因此杂散电流不会传到远方,加之管壁厚,故比较耐杂散电流腐蚀。钢管纵向电导性良好,容易积聚来自远方的电流,加之管壁较薄,故易受杂散电流腐蚀,有必要采取适当的防治措施。城轨系统内的埋地管线主要有自来水管、石油管线、通风管线、蒸汽管线等。在系统外则可能有煤气管线、石油管线、自来水管等公用事业管线以及各种电缆管等。 2杂散电流电化学腐蚀基本原理 在杂散电流流出走行轨到重新返回走行轨的过程中,城轨杂散电流对走行轨及其附件、混凝土腐蚀属于局部腐蚀。直流杂散电流将从

电磁干扰及常用的抑制技术

电磁干扰及常用的抑制技术 刘宇媛 哈尔滨工程大学 摘要:各种干扰是机电一体化系统和装置出现瞬时故障的主要原因。电磁兼容性设计是目前电子设备及机电 一体化系统设计时考虑的一个重要原则,它的核心是抑制电磁干扰。电磁干扰的抑制要从干扰源、传播途径、接收器三个方面着手,切断干扰耦合的途径,干扰的影响也将被消除。常用的方法有滤波、降低或消除公共阻抗、屏蔽、隔离等。 关键词:电磁干扰干扰抑制屏蔽接地 1.电磁干扰 电磁干扰(electro magnetic interference,EMI)是指系统在工作过程中出现的一些与有用信号无关的、并且对系统性能或信号传输有害的电气变化现象。构成电磁干扰必须具备三个基本条件:①存在干扰源;②有相应的传输介质;③有敏感的接收元件。只要除去其中一个条件,电磁干扰就可消除,这就是电磁抑制技术的基本出发点。 1.1 电磁干扰的分类 常见的各种电磁干扰根据干扰的现象和信号特征不同有以下分类方法。 1、按其来源分类(1) 自然干扰。自然干扰是指由于大自然现象所造成的各种电磁噪声。 (2) 人为干扰。由于电子设备和其他人工装置产生的电磁干扰。 2、按干扰功能分类 (1) 有意干扰。有意干扰是指人为了达到某种目的而有意识制造的电磁干扰信号。这是当前电子战的重要手段。 (2) 无意干扰。无意干扰是指人在无意之中所造成的干扰,如工业用电、高频及微波设备等引起的干扰等。 3、按干扰出现的规律分类 (1) 固定干扰。多为邻近电气设备固定运行时发出的干扰。 (2) 半固定干扰。偶尔使用的设备(如行车、电钻等)引起的干扰。 (3) 随机干扰。无法预计的偶发性干扰。 4、按耦合方式分类 (1) 传导耦合干扰。传导耦合是指电磁噪声的能量在电路中以电压或电流的形式,通过金属导线或其他元件(如电容器、电感器、变压器等)耦合到被干扰设备(电路)。 (2) 辐射耦合干扰。电磁辐射耦合是指电磁噪声的能量以电磁场能量的形式,通过空间辐射传播,耦合到被干扰设备(或电路)。 1.2 电磁噪声耦合途径 干扰源对电子设备的干扰是通过一定耦合形式进行的,无论是内部干扰或外部干扰,都是通过“路”(传输线路或电路)或“场”(静电场或交变电磁场)耦合到被干扰设备中的。 1、电磁噪声传导耦合 (1)直接传导耦合。电导性直接传导耦合最简单、最常见,但它也是最易被人们忽视的一种耦合方式。在考虑电磁兼容性问题时,必须考虑导线不但有电阻足,而且有电感L,漏电阻R,以及杂散电容C。在实际使用中尤其是频率比较高时,这些分布参数对信号的传输有着十分重要的影响。如何考虑分布参数的影响与传输线的长度密切相关。根据传输线的长度与传输信号频率的关系可把传输线分为长线和短线,对短信号线不必进行阻抗匹配,而对长信号线应在终端进行阻抗匹配。 (2)公共阻抗耦合。当干扰源的输出回路与被干扰电路存在一个公共阻抗时,两者之间就会产生公共阻抗耦合。干扰源的电磁噪声将会通过公共阻抗耦合到被干扰电路而产生干扰。所谓“公共阻抗”通常不是人们故意接人的阻抗,而是由公共地线和公共电源线的引线电感所

输油管道受杂散电流干扰的检测与排除

输油管道受杂散电流干扰的检测与排除 河南汇龙合金材料有限公司 2018年8月

杂散电流分为直流和交流,例如采用四通道快速数据采集存储器和计算机数据处理技术,对紧靠上海地铁一号线沪闵路段的埋地输油管道受杂散电流干扰的情况进行了现场检测.测试结果充分说明干扰来源于地铁列车的运行,其特点是双向动态干扰,没有固定的阴极区和阳极区.从实际条件出发,利用原来保护该输油管道所埋设的镁阳极作接地床,采用极性接地排流方式来抑制杂散电流干扰,各处的排流效果介于60%~100%. 直流杂散电流检测 直流杂散电流可以分为静态杂散电流和动态杂散电流。使用SCM(杂散电流检测仪)软件可以对静态杂散电流进行实时检测和数据分析。而对动态杂散电流检测时,可以设置最长达48小时的自动监测和数据存贮。 当在管道任意点上的管地电位较自然电位正向偏移20mV或管道附近土壤中的电位梯度大于0.5mV/m时,确定为有直流电干扰;当在管道任意点上管地电位较自然电位正向偏移100mV或管道附近土壤中的电位梯度大于2.5mV/m时,管道应采取直流排流保护或其它防护措施。 直流电干扰的测试,排流保护效果评定及管理应按SY/T0017—96《埋地钢质管道直流排流保护技术标准》中的规定执行。 交流杂散电流检测 交流杂散电流干扰采用参比法测量,从而确定杂散电流干扰的程度。当管道任意点上管地电位持续1V以上时,确定为存在交流干扰;当中性土壤中的管道任意点上管地交流电位持续高于8V、碱性土壤中高于10V或酸性土壤中高于6V时,管道应采取交流排流保护或相应的其它保护措施。

交流电干扰测试按SY/T0032—2000《埋地钢质管道交流排流保护技术标准》执行,具休的方法是: (1)测知管道上产生交流电干扰时,应及时向上级主管部门申报,由上级部门做进一步核查,请专业部门提出防护设计,并组织实施。 (2)交流电干扰防护措施,应优先选避让措施,当避让困难时,可选择以钳位式交流排流保护为主的综合防护措施。 (3)管道部门每年应对所辖下管道进行一次交流管地电位检测,特别对输电线路平行间距小、平行段较长、距输电线路杆(塔)避雷接地体、变电所接地网较近干扰可能性大的管段重监测,当发现有干扰时,应按规定进行详测。并上报主管部门。

磁环抑制电磁干扰的三要素

磁环抑制电磁干扰的三要素是什么? 磁环抑制电磁干扰的三要素: 形成电磁干扰的三要素是骚扰源、传播途径和受扰设备,因而,抑制电磁干扰也应该从这三方面入手,采取适当措施,首先应该抑制骚扰源,直接消除干扰原因; 其次是消除骚扰源和受扰设备之间的耦合和辐射,切断电磁干扰的传播途径;第三是提高受扰设备的抗扰能力,减低其对噪声的敏感度,目前抑制干扰的几种措施基本上都是用切断电磁骚扰源和受扰设备之间的耦合通道。 (1)磁环采用屏蔽技术可以有效地抑制开关电源的电磁辐射干扰,即用电导率良好的材料对电场进行屏蔽,用磁导率高的材料对磁场进行屏蔽,屏蔽有两个目的,一是限制内部辐射的电磁能量泄漏出,二是防止外来的辐射干扰进入该内部区域,其原理是利用屏蔽体对电磁能量的反射、吸收和引导作用。 (2)接地就是在两点间建立传导通路,以便将电子设备或元器件连接到某些叫作“地”的参考点上,接地是开关电源设备抑制电磁干扰的重要方法,电源某些部分与大地相连可以起到抑制干扰的作用,在电路系统设计中应遵循“一点接地”的原则,如果形成多点接地,会出现闭合的接地环路,当磁力线穿过该环路时将产生磁感应噪声。 (3)滤波是抑制传导干扰的有效方法,磁环在设备或系统的电磁兼容设计中具有极其重要的作用,EMI滤波器作为抑制电源线传导干扰的重要单元,可以抑制来自电网的干扰对电源本身的侵害,也可以抑制由开关电源产生并向电网反馈的干扰。 磁环的主要使用方法有几点? 磁环专用于电源线、信号线等多股线缆上的EMI干扰抑制,包括电源线上的噪声和尖峰干扰,同时具有吸EMI吸收磁环收静电脉冲能力,使电子设备达到电磁兼容(EMI/EMC 和静电放电的相应国际规范,使用时可将一根多芯电缆或一束多股线缆穿于其中。多穿一次可加强其效果,通常用25MHz和100MHz频率点的阻抗值来衡量磁环磁珠的吸收特性。 镍锌抗干扰磁环的吸收干扰能力是用其阻抗特性来表征的低频段呈现非常低的感性阻抗值,磁环不影响数据线或信号线上有用信号的传输,高频段,约为10MHz左右开始,阻抗增大,其感抗成分保持很小,电阻性份量却迅速增加,将高频段EMI干扰能量以热能形式吸收耗散,通常用两个关键点频率25MHz和100MHz处电阻值来标定EMI吸收磁环/磁珠的吸收特性。 磁环的使用方法

铁氧体磁珠在抑制电磁干扰中的应用

RH类磁环(镍锌磁环)产品主要应用于电脑周边线、电源线、打印机线、显示器、数码相机、通讯设备等方面。 T 类磁环(锰锌磁环) T型磁芯只要用于滤波、电感线圈和变压器。 铁氧体(铁氧体磁环-铁氧体磁珠)在抑制电磁干扰(EMI)中的应用 用铁氧体磁性材料抑制电磁干扰(EMI)是经济简便而有效的方法,已广泛应用于计算机等各种军用或民用电子设备。那么什么是铁氧体呢如何选择,怎样使用铁氧体元件呢这篇文章将对这些问题作一简要介绍。 一、什么是铁氧体抑制元件 铁氧体是一种立方晶格结构的亚铁磁性材料,它的制造工艺和机械性能与陶瓷相似。但颜色为黑灰色,故又称黑磁或磁性瓷。铁氧体的分子结构为MO·Fe2O3,其中MO为金属氧化物,通常是MnO或ZnO。 衡量铁氧体磁性材料磁性能的参数有磁导率μ,饱和磁通密度Bs,剩磁Br和矫顽力Hc等。 对于抑制用铁氧体材料,磁导率μ和饱和磁通密度Bs是最重要的磁性参数。磁导率定义为磁通密度随磁场强度的变化率。 μ=△B/△H 对于一种磁性材料来说,磁导率不是一个常数,它与磁场的大小、 频率的高低有关。当铁氧体受到一个外磁场H作用时,例如当电流 流经绕在铁氧体磁环上的线圈时,铁氧体磁环被磁化。随着磁场H 的增加,磁通密度B增加。当磁场H场加到一定值时,B值趋于平 稳。这时称作饱和。对于软磁材料,饱和磁场H只有十分之几到几 个奥斯特。随着饱和的接近,铁氧体的磁导率迅速下降并接近于空 气的导磁率(相对磁导率为1)如图1所示。 图1 铁氧体的B-H曲线铁氧体的磁导率可以表示为复数。实数部分μ'代表无功磁导率, 它构成磁性材料的电感。虚数部分μ"代表损耗,如图2所示。 μ=μ'-jμ"图2 铁氧体的复数磁导率 磁导率与频率的关系如图3所示。在一定的频率范围内μ'值(在某一磁场下的磁导率)保持不变,然后随频率的升高磁导率μ'有一最大值。频率再增加时,μ'迅速下降。代表材料损耗的虚数磁导率μ"在低频时数值较小,随着频率增加,材料的损耗增加,μ"增加。如图3所示,图中tanδ=μ"/μ' 图3 铁氧体磁导率与频率的关系 图4 铁氧体抑制元件的等效电路(a)和阻抗矢量图(b) 二、铁氧体抑制元件的阻抗和插入损耗 当铁氧体元件用在交流电路时,铁氧体元件是一个有损耗的电感器,它的等效电路可视为由电感L和损耗电阻R组成的串联电路,如图4所示。 铁氧体元件的等效阻抗Z是频率的函数Z(f)=R(f)+jωL(f)=Kωμ"(f)+jKωμ'(f) 式中:K是一个常数,与磁芯尺寸和匝数有关,ω为角频率。

相关主题
文本预览
相关文档 最新文档