当前位置:文档之家› 数学物理方法第二次作业答案

数学物理方法第二次作业答案

数学物理方法第二次作业答案
数学物理方法第二次作业答案

第七章 数学物理定解问题

1.研究均匀杆的纵振动。已知0=x 端是自由的,则该端的边界条件为 __。

2.研究细杆的热传导,若细杆的0=x 端保持绝热,则该端的边界条件为

3.弹性杆原长为l ,一端固定,另一端被拉离平衡位置b 而静止,放手任其振动,将其平衡位置选在x 轴上,则其边界条件为 00,0x x l u u ==== 。

4.一根长为l 的均匀弦,两端0x =和x l =固定,弦中张力为0T 。在x h =点,以横向力0F 拉弦,达到稳定后放手任其振动,该定解问题的边界条件为___

f (0)=0,f (l )=0; _____。 5、下列方程是波动方程的是 D 。

A 2tt xx u a u f =+;

B 2

t xx u a u f =+; C 2t xx u a u =; D

2tt x u a u =。 6、泛定方程20tt xx u a u -=要构成定解问题,则应有的初始条件个数为 B 。

A 1个;

B 2个;

C 3个;

D 4个。 7.“一根长为l 点朝横向拨开距离h ,(如图〈1〉所示)然后放 手任其振动。”该物理问题的初始条件为( D )。

A .?????∈-∈==]

,2[),(2]2,0[,2l l x x l l

h l x x l h

u o

t B .????

?====00

t t

t u h

u

C .h u t ==0

D .???????=????

?∈-∈===0

],2[),(2]2,0[,200t t t u

l l x x l l h l x x l h

u

8.“线密度为ρ,长为l 的均匀弦,两端固定,开始时静止,后由于在点)0(00l x x <<受谐变力t F ωsin 0的作用而振动。”则该定解问题为( B )。

A .?????===<<-=-===0

,0,0)0(,)(sin 0000

2

t l x x xx tt u u u

l x x x t F u a u ρ

δωu

x

h

2/l

0 u 图〈1〉

B .???

?

???====<<-=-====0,00,0)0(,)(sin 00

0002

t t t l x x xx tt

u

u u u l x x x t F u a u ρ

δω

C .?????==<<-=-==0

,0)0(,)(sin 00002

t t t xx tt

u u

l x x x t F u a u ρδω

D .??

??

???==-==<<=-====0

,0)(sin ,0)0(,0000002t t t l x x xx tt u u x x t F u u l x u a u ρδω

9.线密度为ρ长为l 的均匀弦,两端固定,用细棒敲击弦的0x 处,敲击力的冲量为I ,然后弦作横振动。该定解问题为:( B )。

A .?????????=====-====0,00,000

02

t t t l x x xx tt u u u u I u a u ρ

B .?????????====-=-====0,00

,0)(00002

t t t l x x xx tt u u u u x x I u a u ρδ C .???

?

?????====<<=-====ρI u u u u l x u a u t t t l x x xx tt 0002

,00

,0)0(,0 D .???

?

?????-====<<=-====ρδ)(,00

,0)0(,000002

x x I u u u u l x u a u t t t l x x xx tt 10.下面不是定解问题适定性条件的( D )。

11、名词解释:定解问题;边界条件

答:定解问题由数学物理方程和定解条件组成,定解条件包括初值条件、边界条件和连接条件。 研究具体的物理系统,还必须考虑研究对象所处的特定“环境”,而周围花牛的影响常体现为边界上的物理状况,即边界条件,常见的线性边界条件,数学上分为三类:第一类边界条件,直接规定了所研究的物理量在边界上的数值;第二类边界条件,规定了所研究的物理量在边界外法线方向上方向导数的数值;第三类边界条件,规定了所研究的物理量以及其外法向导数的线性组合在边界上的数值。用

表示边界

A .有解

B .解是唯一的

C .解是稳定的

D .解是连续的

(1)第一类边界条件:直接规定了所研究的物理量在边界上的数值,

,代表边界

(2)第二类边界条件:规定了所研究的物理量在边界外法线方向上方向导数在边界眩的数值,

(3)第三类边界条件:规定了所研究的物理量及其外法向导数的线性组合在边界上的数值,

第八章分离变数(傅里叶级数)法

1.用分离变数法求定解问题

2

0,(0)

0,0

()

t

xx

x x

x x l

t

u a u x

l

u u

u x

?

==

=

?-

=<<

?

==

?

?=

?

的解,其中)

(x

?为x的已知函数。解:令bx

x=

)

(

?

2.用分离变数法求定解问题20000,(0)0,0,0tt xx x x x x l t t t u a u x l u u u bx u ====?-=<

==??==??的解,其中b 为常数。

解:以分离变数形式的试探解 )()(),(t T x X t x u = 代入泛定方程和边界条件,得

02

='

'-''T X a T X ?λ-≡'

'=''T

a T X X 2, 0=+''X X λ;02=+''T a T λ; ?

?

?==00

0)()(l X X ???===+''0

)(,0)0(0

l X X X X λ

本征值:2

22l n n πλ=),3,2,1( =n ;本征函数:x l n c x X n π

sin )(2= 将222l n n πλ=代入02

=+''T a T λ,得0)()(2

222=+''t T l

a n t T n n π 其通解为t l

a

n B t l a n A t T n ππsin cos )(+= 本征解为:)()(),(t T x X t x u n n n =x l

n t l a n B t l a n A n n π

ππsin )sin cos (+= ),3,2,1( =n

一般解为:(,)u x t ∑∞

=+=

1

n n n

x l

n t l a n B t l a n A

π

ππsin )sin cos

( 0,00

=∴==n t t

B u

bx x l n A n n ∑∞

==1

sin π ?=∴l

n xdx l n x l b A 0sin 2π

12(1)n bl n π+=-

112(,)(1)cos sin n n bl n a n u x t t x n l l ππ

π

+=∴=-∑

3.求定解问题200

sin ,(0)

0,00t xx x x x x l t u a u t x l u u u ω===?-=<

==??=?的解

解:令∑∞

==

cos

)(),(n n x l

n t T t x u π

t x l n T l a n T n n n ωππsin cos )(0

2

222=+'∑∞

=

t T ωsin 0='∴00cos 1

A t T +-

=ωω

02

2

22=+'n n T l

a n T π2222

n a t

l n n T C e

π-=

00t u ==, (0)0n T ∴=

0,1

0==

∴n C A ω

)cos 1(1

),(t t x u ωω

-=

4.求定解问题???

??===<<=-===0,)0(,00

0002t l x x xx t u u u u u l x u a u 的解,其中0u 为常数。

解:设(,)(,)u w x t v x t =+ 000,x

x x l

v v u ====

()()v A t x B t =+ 0)(,0)(u t A t B ==∴

x u v 0=∴

????

???-====-===,

0,000002x u w w w w a w t l x x x xx t 令0

1

()2(,)()sin n n n x w x t T t l π∞

=+=∑ 0)21

(22

22=++'n n T l

a n T π t l a n n n e

C t T 2

2

22)21

()(π+-=∴

222

2

1

()20

1()2(,)sin n a t l n n n x

w x t C e

l

ππ+∞

-=+∴=∑

x u x l n C n n 00

)21(sin -=+∑∞

?

+-=∴l n

xdx l n x

l u C 00

)21

(sin

2

π12

20)1(

)2

1(2+-+=n n l u π

∴所求的定解问题的解为

222

2

1

()210022

1()22(,)(1)sin

1()2

n a t

n l n n x

u l

u x t u x e l

n πππ+∞

-+=+=+-+∑

5.求定解问题2000000000,(0),,(),(0)

tt xx x x l t t t u a u x l u u u u I

u u u x x x l δρ====?-=<

==???==-<

的解,其中0u 、I 、ρ均为常数。

所求的定解问题的解为:

第十章 球函数

1.当r R <时,函数

2

2

cos 21

r

rR R +-θ以)(cos θl P 为基本函数族的广义傅里叶级数展开为

)(cos 10

1

θl P r

R l l l

∑∞

=+

2.已知1)(0=x P 、x x P =)(1、)13(2

1

)(22-=x x P ,则2)(x x f =以)(x P l 为基本函数族的广义傅里叶级数为( D ).

A .)(23

2x P

B .)(3

2

)(3121x P x P +

C .)(3

2

)(3120x P x P +

D .以上都不对

3.在球0r r =的内部求解0=?u ,使满足边界条件θ2cos 0

==r r u 。已知1)(cos 0=θP ,

θθcos )(cos 1=P ,)1cos 3(2

1

)(cos 22-=

θθP 解 定解问题为:

这是一个关于极轴对称的拉氏方程的定解问题

有限

所求的定解问题的解为

4.半径为0r 的球形区域外部没有电荷,球面上的电势为20cos sin u θθ,0u 为常数,求球形区域外部的电势分布。已知1)(cos 0=θP ,θθcos )(cos 1=P ,)1cos 3(2

1

)(cos 22-=

θθP

,331

(cos )(5cos

3cos )2

P θθθ=-。

解:

?????=>=?=θ20cos )(,00

r r u r r u

∑∞

=++

=0

1

)(cos )(l l l l

l l P r B r A u θ

∞→r u 有限 0=∴l A ∑∞

=+=

∴0

1)(cos l l l l

P r B u θ

)(cos 3

2

31cos )(cos 2020

1

θθθP P P r

B l l l l

+==∑∞

=+

3

00r

B =∴

)2,0(0,3

23

02≠==l B r

B l

)(cos 32)(cos 3233

000θθP r

r

P r r u +=∴

5.在本来是匀强的静电场0E 中放置导体球,球的半径为0r ,求球外静电场的电势。(已知

0(cos )1P θ=,θθcos )(cos 1=P )。

解:

如图所示,建立坐标系,则定解问题为:

6.在点电荷q 04πε的电场中放置一个接地导体球,球的半径为a ,球心与点电荷相距)(11a r r >。求球外静电场的电势。

解:选择球心为球坐标系的极点,极轴通过点电荷,则极轴是对称轴,问题与无关;

又设导体球接地,所以导体球内电势为0,即

在球外,(除点电荷处)任意点的电势是点电荷产生的电势和导体球

感应电荷产生的电势

的叠加。

因静电感应电荷只在球面上,故由它在球外所产生的电势满足拉普拉斯方程。于是定解问题为,

(1)

因为

,,

所以,(2)

在轴对称情况下,方程(1)的一般解为,

考虑到(2)的无限远边界条件,应舍弃项,

(3)

以(3)代入(2)的球面边界条件,

引用母函数

比较两边的广义傅里叶系数,得

(4)

在解(4)中,第二项,相当于像电荷产生的电势,这像电荷处在球内极轴上,带电量为。

如有侵权请联系告知删除,感谢你们的配合!

数学物理方法第八章作业答案

P 175 8.1在0x =的邻区域内,求解下列方程: (1) 2 (1)0x y''xy'y -+-= 解:依题意将方程化为标准形式2 2 10(1) (1) x y''y'y x x + - =-- 2 ()(1) x p x x = -,2 1()(1) q x x =- - 可见0x =是方程的常点. 设方程的级数解为0 ()n n n y x c x ∞ == ∑,则1 1 ()n n n y'x nc x ∞ -== ∑,2 2 ()(1)n n n y''x n n c x ∞ -== -∑ 代入原方程得2 2 2 1 2 2102 2 2 1 (1)(1)0(1)(1)0 n n n n n n n n n n n n n n n n n n n n n n n n n n c x x n n c x x nc x c x n n c x n n c x nc x c x ∞ ∞ ∞ ∞ ---====∞ ∞ ∞ ∞ -====---+- =? -- -+ - =∑∑∑∑∑∑∑∑ 由0 x 项的系数为0有:202012102 c c c c ?-=?= 由1 x 项的系数为0有:311313200 (0)c c c c c ?+-=?=≠ 由2x 项的系数为0有:42224201143212012 24 c c c c c c c ?-?+-=?= = 由3 x 项的系数为0有:533355432300c c c c c ?-?+-=?= 由4x 项的系数为0有:64446403165434010 80 c c c c c c c ?-?+-=?= = 由5 x 项的系数为0有:755577654500c c c c c ?-?+-=?= 由6 x 项的系数为0有:866686025587656056 896 c c c c c c c ?-?+-=?== …… ∴ 方程的级数解为 2 4 6 8 0100000 1115()2 24 80 896 n n n y x c x c c x c x c x c x c x ∞== =++ + + + +???∑

扬州大学数学物理方法期末试卷A

院 系 班级 学号 姓名 --------------------------------------装---------------------------------------订-------------------------------------------线----------------------------------------------- 扬州大学试题纸 ( 2010-2011学年第 二 学期) 物 理 学院 微电、物理09级 课程 数学物理方法(A )卷 题目 一 二 三 四 总分 得分 一、填空题(共20分,2分/题) 1. 数量场23 2 2+=x z y z u 在点)1,0,2(-M 处沿24 23=-+ l xi xy j z k 方向 的方向导数为 . 2. 设 A 为一矢性函数, ?表示哈密顿算符, 则()????= A . 3. 在三维直角坐标系中,矢径=++ r xi yj zk ,r r = ,?表示哈密顿算符, 则当0≠r 时,有3?? ??? ??= r r . 4. 在二维平面极坐标系下,调和量?=u . 5.考虑长为l 的均匀细杆的导热问题,若杆0x =的一端保持为恒温零度, l x =的一端绝热,用u 表示温度,则对应的边界条件为 . 6.方程20,(,0)tt xx u a u x t -=-∞<<∞>的通解可以表示为 ()u x,t = . 7. l 阶勒让德多项式的微分表示式为)(x P l = . 8. 设)(x P l 为l 阶勒让德多项式,则积分1 21002001()()-=?x P x P x dx . 9. 常微分方程22(9)0'''++-=x y xy x y 为 阶Bessel 方程. 10. 利用Bessel 函数的递推公式,计算积分1 210()=?x J x dx .

数学物理方法综合试题及答案

复变函数与积分变换 综合试题(一) 一、单项选择题(本大题共10小题,每小题2分,共20分) 在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。 1.设cos z i =,则( ) A . Im 0z = B .Re z π= C .0z = D .argz π= 2.复数3(cos ,sin )55z i ππ =--的三角表示式为( ) A .443(cos ,sin )55i ππ- B .443(cos ,sin )55i ππ- C .44 3(cos ,sin )55i ππ D .44 3(cos ,sin )55 i ππ-- 3.设C 为正向圆周|z|=1,则积分 ?c z dz ||等于( ) A .0 B .2πi C .2π D .-2π 4.设函数()0 z f z e d ζζζ= ? ,则()f z 等于( ) A .1++z z e ze B .1-+z z e ze C .1-+-z z e ze D .1+-z z e ze 解答: 5.1z =-是函数 4 1) (z z cot +π的( ) A . 3阶极点 B .4阶极点 C .5阶极点 D .6阶极点 6.下列映射中,把角形域0arg 4 z π << 保角映射成单位圆内部|w|<1的为( ) A .4411z w z +=- B .44-11z w z =+ C .44z i w z i -=+ D .44z i w z i +=- 7. 线性变换[]i i z z i z a e z i z i z a θω---= =-++- ( ) A.将上半平面Im z >0映射为上半平面Im ω>0 B.将上半平面Im z >0映射为单位圆|ω|<1 C.将单位圆|z|<1映射为上半平面Im ω>0 D.将单位圆|z|<1映射为单位圆|ω|<1 8.若()(,)(,)f z u x y iv x y =+在Z 平面上解析,(,)(cos sin )x v x y e y y x y =+,则(,)u x y = ( ) A.(cos sin )y e y y x y -) B.(cos sin )x e x y x y -

数学物理方法期末考试规范标准答案

天津工业大学(2009—2010学年第一学期) 《数学物理方法》(A)试卷解答2009.12 理学院) 特别提示:请考生在密封线左侧的指定位置按照要求填写个人信息,若写在其它处视为作弊。本试卷共有四道大题,请认真核对后做答,若有疑问请与监考教师联系。 一 填空题(每题3分,共10小题) 1. 复数 i e +1 的指数式为:i ee ; 三角形式为:)1sin 1(cos i e + . 2. 以复数 0z 为圆心,以任意小正实数ε 为半径作一圆,则圆内所有点的集合称为0z 点的 邻域 . 3. 函数在一点可导与解析是 不等价的 (什么关系?). 4. 给出矢量场旋度的散度值,即=????f ? 0 . 5. 一般说来,在区域内,只要有一个简单的闭合曲线其内有不属 ------------------------------- 密封线 ---------------------------------------- 密封线 ---------------------------------------- 密封线--------------------------------------- 学院 专业班 学号 姓名 装订线 装订线 装订线

于该区域的点,这样的区域称为 复通区域 . 6. 若函数)(z f 在某点0z 不可导,而在0z 的任意小邻域内除0z 外处处可导,则称0z 为)(z f 的 孤立奇点 . 7. δ函数的挑选性为 ? ∞ ∞ -=-)()()(00t f d t f ττδτ. 8. 在数学上,定解条件是指 边界条件 和 初始条件 . 9. 常见的三种类型的数学物理方程分别为 波动方程 、 输运方程 和 稳定场方程 . 10. 写出l 阶勒让德方程: 0)1(2)1(222 =Θ++Θ -Θ-l l dx d x dx d x . 二 计算题(每小题7分,共6小题) 1. )(z 的实部xy y x y x u +-=22),(,求该解析函数

数学物理方法第二次作业答案解析

第七章 数学物理定解问题 1.研究均匀杆的纵振动。已知0=x 端是自由的,则该端的边界条件为 __。 2.研究细杆的热传导,若细杆的0=x 端保持绝热,则该端的边界条件为 。 3.弹性杆原长为l ,一端固定,另一端被拉离平衡位置b 而静止,放手任其振动,将其平衡位置选在x 轴上,则其边界条件为 00,0x x l u u ==== 。 4.一根长为l 的均匀弦,两端0x =和x l =固定,弦中力为0T 。在x h =点,以横向力0F 拉弦,达到稳定后放手任其振动,该定解问题的边界条件为___ f (0)=0,f (l )=0; _____。 5、下列方程是波动方程的是 D 。 A 2tt xx u a u f =+; B 2 t xx u a u f =+; C 2t xx u a u =; D 2tt x u a u =。 6、泛定方程20tt xx u a u -=要构成定解问题,则应有的初始条件个数为 B 。 A 1个; B 2个; C 3个; D 4个。 7.“一根长为l 两端固定的弦,用手把它的中 点朝横向拨开距离h ,(如图〈1〉所示)然后放 手任其振动。”该物理问题的初始条件为( D )。 A .?????∈-∈==] ,2[),(2]2,0[,2l l x x l l h l x x l h u o t B .???? ?====00 t t t u h u C .h u t ==0 D .???????=???? ?∈-∈===0 ],2[),(2]2,0[,200t t t u l l x x l l h l x x l h u 8.“线密度为ρ,长为l 的均匀弦,两端固定,开始时静止,后由于在点)0(00l x x <<受谐变 u x h 2 /l 0 u 图〈1〉

北邮数学物理方法18-19期末试题B

北京邮电大学2018-2019学年第一学期 《数学物理方法》期末试题(B ) 注意:本试卷共5 道大题。答题时不必抄题,要注明题号,所有答案一律写在答题纸上,否则不计成绩。 一、 解答下列各题(每题6分,共36分) 1、 写出三类基本方程的最简单形式。 2、求解下列本征值问题的本征值和本征函数 ()()()()()() 02,2?λ??π??π?''Φ+Φ=???''Φ+=ΦΦ+=Φ??3、将Bessel 方程 222()0x y xy x m y λ'''++-= 化成Sturm-Liouville 型方程,并指出其核函数和权函数。 4、用达朗贝尔公式求下列定解问题的解 ()()()20,0,,0cos ,,0. tt xx x t u a u x t u x x u x e ?-=-∞<<∞>??==??5、设()f x 在区间[-1,1]上的有界且连续,并设 ()()()0Legendre n n n n f x f P x P x ∞ ==∑其中是多项式 试证明 ()()11 212n n n f P x f x dx -+= ?. 6、已知Bessel 函数的递推公式1[()]()m m m m d x J x x J x dx -=,试计算30()x J x dx ?。

二、研究细杆上的热传导问题。设杆上的初始温度是均匀的为0,u 然后保持杆的一端的温度为不变的0,u 而另一端则有强度为恒定的热流0q 进入,即求解定解问题 22200000,,,.x x x l t u u a t x q u u u k u u ===???=?????==???=?? (25分) 三、 求解下列定解问题 ()222220001,0,0,,,0.b t t u u u a b t u u u u f t ρρρρρρρ====??????=+<

数学物理方法典型习题

典型习题 一、填空题: 1 的值为 , , 。 2 、1-+的指数表示为_________ ,三角表示为 。 3、幂级数2 k k=1(k!)k z k ∞ ∑的收敛半径为 。 4、ln(5)-的值为 。 5、均匀介质球,半径为0R ,在其中心置一个点电荷Q 。已知球的介电常数为 ε,球外为真空,则电势所满足的泛定方程为 、 。 6、在单位圆的上半圆周,积分1 1||__________z dz -=?。 7、长为a 的两端固定弦的自由振动的定解问问题 。 8、具有轴对称性的拉普拉斯方程的通解为 。 9、对函数f(x)实施傅里叶变换的定义为 ,f (k )的傅里叶逆变换为 。 10、对函数f(x)实施拉普拉斯变换的定义为 。 二、简答题 1、已知()f z u iv =+是解析函数,其中22 v(x,y)=x y +xy -,求 (,)u x y 。 2、已知函数1w z = ,写出z 平面的直线Im 1z =在w 平面中的,u v 满足的方程。 3、将函数21()56f z z z =-+在环域2||3z <<及0|2|1z <-<内展开成洛朗级数. 4、长为L 的弹性杆,一端x=0固定,另一端沿杆的轴线方向被拉长p 后静止(在弹性限度内),突然放手后任其振动。试写出杆的泛定方程及定解条件。 三、计算积分: 1. ||22(1)(21)z zdz I z z ==-+? 2.||2sin (3)z zdz I z z ==+? 3.22202(1)x I dx x ∞ =+? 4.||1(31)(2) z zdz I z z ==++? 5. ||23cos z zdz I z ==? 6. 240x dx 1x I ∞=+? 7、0sin x dx x ∞ ? 8、20cos 1x dx x ∞+? 四、使用行波法求解下列方程的初值问题

武大数学物理方法期末考试试题-2008

2008年数学物理方法期末试卷 一、求解下列各题(10分*4=40分) 1. 长为l 的均匀杆,其侧表面绝热,沿杆长方向有温差,杆的一段温度为零,另一端有热量流入,其热流密度为t 2sin 。设开始时杆内温度沿杆长方向呈2 x 分布,写出该杆的热传导问题的定解问题。 2. 利用达朗贝尔公式求解一维无界波动问题 ?????=-=>+∞<<-∞=-==2||)0,(040 0t t t xx tt u x u t x u u 并画出t=2时的波形。 3. 定解问题???? ???≤≤==∞<<==<<<<=+====) 0( 0,sin )0( 0 ,)0 ,0( ,000a x u x B u y u ay u b y a x u u b y y a x x yy xx ,若要使边界条件齐次化,,求其辅助函数,并写出相应的定解问题 4. 计算积分?-+=1 11)()(dx x P x xP I l l 二、(本题15分)用分离变量法求解定解问题 ?????+===><<=-===x x u u u t x u a u t x x x xx t 3sin 4sin 20 ,0)0,0( 0002ππ 三、(本题15分)设有一单位球壳,其球壳的电位分布12cos |1+==θr u ,求球内、外的电位分布 四、(本题15分)计算和证明下列各题 1.)(0ax J dx d 2.C x x xJ x x xJ xdx x J +-=? cos )(sin )(sin )(100 五、(本题15分)圆柱形空腔内电磁振荡满足如下定解问题

???????===<<<<=+=?===0 00),(0,00),(0),(0l z z z z a u u z u l z a z u z u ρρρρλρ 其中2)(c ω λ=,为光速为电磁震荡,c ω。 (1) 若令)()(),(z Z R z u ρρ=,写出分离变量后关于)()(z Z R 和ρ满足的方程; (2) 关于)()(z Z R 和ρ的本征值问题,写出本征值和本征函数; (3) 证明该电磁振荡的固有频率为 ,3,2,1;,2,1,0 ,)()(220==+=m n l n a x c m mn πω 其中0m x 为零阶Bessel 函数的零点。 参考公式 (1) 柱坐标中Laplace 算符的表达式 (2) Legendre 多项式 (3) Legendre 多项式的递推公式 (4) Legendre 多项式的正交关系 (5) 整数阶Bessel 函数 (6) Bessel 函数的递推关系

数学物理方法习题解答(完整版)

数学物理方法习题解答 一、复变函数部分习题解答 第一章习题解答 1、证明Re z 在z 平面上处处不可导。 证明:令Re z u iv =+。Re z x =,,0u x v ∴==。 1u x ?=?,0v y ?=?, u v x y ??≠??。 于是u 与v 在z 平面上处处不满足C -R 条件, 所以Re z 在z 平面上处处不可导。 2、试证()2 f z z = 仅在原点有导数。 证明:令()f z u iv =+。()2 2222,0f z z x y u x y v ==+ ∴ =+=。 2,2u u x y x y ??= =??。v v x y ?? ==0 ??。 所以除原点以外,,u v 不满足C -R 条件。而 ,,u u v v x y x y ???? , ????在原点连续,且满足C -R 条件,所以()f z 在原点可微。 ()00 00x x y y u v v u f i i x x y y ====???????? '=+=-= ? ?????????。 或:()()()2 * 00 0lim lim lim 0z z x y z f z x i y z ?→?→?=?=?'==?=?-?=?。 2 2 ***0* 00lim lim lim()0z z z z z z z zz z z z z z z z z =?→?→?→+?+?+??==+??→???。 【当0,i z z re θ≠?=,*2i z e z θ-?=?与趋向有关,则上式中**1z z z z ??==??】

3、设333322 ()z 0 ()z=0 0x y i x y f z x y ?+++≠? =+??? ,证明()z f 在原点满足C -R 条件,但不可微。 证明:令()()(),,f z u x y iv x y =+,则 ()332222 22 ,=0 0x y x y u x y x y x y ?-+≠? =+?+??, 332222 22 (,)=0 0x y x y v x y x y x y ?++≠? =+?+?? 。 3 300(,0)(0,0)(0,0)lim lim 1x x x u x u x u x x →→-===, 3300(0,)(0,0)(0,0)lim lim 1y y x u y u y u y y →→--===-; 3300(,0)(0,0)(0,0)lim lim 1x x x v x v x v x x →→-===, 3300(0,)(0,0)(0,0)lim lim 1y y x v y v y v y y →→-===。 (0,0)(0,0),(0,0)(0,0)x y y x u v u v ∴ = =- ()f z ∴ 在原点上满足C -R 条件。 但33332200()(0)() lim lim ()()z z f z f x y i x y z x y x iy →→--++=++。 令y 沿y kx =趋于0,则 333333434322222 0()1(1)1(1) lim ()()(1)(1)(1)z x y i x y k i k k k k i k k k x y x iy k ik k →-++-++-++++-+==+++++ 依赖于k ,()f z ∴在原点不可导。 4、若复变函数()z f 在区域D 上解析并满足下列条件之一,证明其在区域D 上

数学物理方法试题

数学物理方法试卷 一、选择题(每题4分,共20分) 1.柯西问题指的是( ) A .微分方程和边界条件. B. 微分方程和初始条件. C .微分方程和初始边界条件. D. 以上都不正确. 2.定解问题的适定性指定解问题的解具有( ) A .存在性和唯一性. B. 唯一性和稳定性. C. 存在性和稳定性. D. 存在性、唯一性和稳定性. 3.牛曼内问题 ?????=??=?Γ f n u u ,02 有解的必要条件是( ) A .0=f . B .0=Γu . C .0=?ΓdS f . D .0=?Γ dS u . 4.用分离变量法求解偏微分方程中,特征值问题???==<<=+0 )()0(0 ,0)()(''l X X l x x X x X λ 的解是( ) A .) cos , (2x l n l n ππ??? ??. B .) sin , (2 x l n l n ππ?? ? ??. C .) 2)12(cos ,2)12( (2x l n l n ππ-??? ??-. D .) 2)12(sin ,2)12( (2x l n l n ππ-?? ? ??-. 5.指出下列微分方程哪个是双曲型的( ) A .0254=++++y x yy xy xx u u u u u . B .044=+-yy xy xx u u u . C .02222=++++y x yy xy xx u y xyu u y xyu u x . D .023=+-yy xy xx u u u . 二、填空题(每题4分,共20分)

1.求定解问题???? ?????≤≤==>-==><<=??-??====πππx 0 ,cos 2 ,00 t ,sin 2 ,sin 20 ,0 ,00002222x u u t u t u t x x u t u t t t x x 的解是( ) 2.对于如下的二阶线性偏微分方程 0),(),(2),(=++++-fu eu du u y x c u y x b u y x a y x yy xy xx 其特征方程为( ). 3.二阶常微分方程0)()4341()(1)(2'''=-++ x y x x y x x y 的任一特解=y ( ). 4.二维拉普拉斯方程的基本解为( r 1ln ),三维拉普拉斯方程的基本解为( ). 5.已知x x x J x x x J cos 2)( ,sin 2)(2 121ππ== -,利用Bessel 函数递推公式求 =)(2 3x J ( ). 三、(20分)用分离变量法求解如下定解问题 222220 000, 0, 00, 0, t 0, 0, 0x .x x l t t t u u a x l t t x u u x x u x u l ====???-=<<>???????==>?????==≤≤?? 解:

【】数学物理方法试卷(全答案)

嘉应学院物理系《数学物理方法》B 课程考试题 一、简答题(共70分) 1、试阐述解析延拓的含义。解析延拓的结果是否唯一(6分) 解析延拓就是通过函数的替换来扩大解析函数的定义域。替换函数在原定义域上与替换前的函数相等。 无论用何种方法进行解析延拓,所得到的替换函数都完全等同。 2、奇点分为几类如何判别(6分) 在挖去孤立奇点Zo而形成的环域上的解析函数F(z)的洛朗级数,或则没有负幂项,或则只有有限个负幂项,或则有无限个负幂项,我们分别将Zo称为函数F(z)的可去奇点,极点及本性奇点。 # 判别方法:洛朗级数展开法 A,先找出函数f(z)的奇点; B,把函数在的环域作洛朗展开 1)如果展开式中没有负幂项,则为可去奇点; 2)如果展开式中有无穷多负幂项,则为本性奇点; 3)如果展开式中只有有限项负幂项,则为极点,如果负幂项的最高项为,则为m阶奇点。 3、何谓定解问题的适定性(6分) 1,定解问题有解;2,其解是唯一的;3,解是稳定的。满足以上三个条件,则称为定解问题的适定性。 > 4、什么是解析函数其特征有哪些(6分) 在某区域上处处可导的复变函数 称为该区域上的解析函数. 1)在区域内处处可导且有任意阶导数. 2) () () ? ? ? = = 2 1 , , C y x v C y x u 这两曲线族在区域上正交。 3)()y x u,和()y x v,都满足二维拉普拉斯方程。(称为共轭调和函数) 4)在边界上达最大值。 |

4、数学物理泛定方程一般分为哪几类波动方程属于其中的哪种类型(6分) 数学物理泛定方程一般分为三种类型:双曲线方程、抛物线方程、椭圆型偏微分方程。波动方程属于其中的双曲线方程。 5、写出)(x δ挑选性的表达式(6分) ()()()()()()?????????=-==-???∞ ∞∞-∞∞ -)()()(00000R f dv R r r f f dx x x f x f dx x x x f δδδ 6、写出复数 231i +的三角形式和指数形式(8分) ¥ 三角形式:()3 sin 3cos 231cos sin 2 321isin cos 222ππ? ?ρ??ρi i i +=++=+=+ 指数形式:由三角形式得: 313πρπ?i e z === 7、求函数 2)2)(1(--z z z 在奇点的留数(8分) 解: 奇点:一阶奇点z=1;二阶奇点:z=2

北京航空航天大学 数学物理方法 模拟试题

数理试卷 1. 设有半径为a 的导体球壳被一过球心的水平绝缘层分割成两个半球壳,若上下各半球壳 各充电到V 1、V 2,则球壳内的电势所满足的定解问题是 2. 初值问题 U tt -a 2U xx =0(-∞<<=-===0|0||0) t l,x (0 sin 002t t l x x x x xx t U U U wt A U a U

数学物理方法第08章习题

第八章 习题答案 8.1-1 证明递推公式: (1)()()()x l x x x l l l P P P 1=' -'- (2)()()()()x l x x x l l l P 1P P 1+=' -'+ (3)()()()()x l x x l l l P 12P P 11+=' -'-+ 证明:基本递推公式 ()()()()()x l x l x x l l l l 11P 1P P 12+-++=+ ① ()()()()x x x x x l l l l ' -'+'=-+P 2P P P 11 ② (1)将①式对x 求导后可得: ()()()()()()()x l x l x l x x l l l l l '++'=++'++-11P 1P P 12P 12 ③ 由③-()?+1l ②可得 (目的:消去()x l ' +1P ) ()()()()()()x l x l x x l l l l P 1P 12P 12+-++'+ ()()()()()x l x x l x l l l l '++'+-'=--P 12P 1P 11 整理可得:()()()x l x x x l l l P P P 1=' -'- (2)将()()()x l x x x l l l P P P 1=' -'-乘以l 得: ()()()x l x l x lx l l l P P P 21=' -'- ④ 由③-④得 (目的:消去()x l ' -1P ) ()()()()()()x l x l x x l l l l '+=++'++12P 1P 1P 1 整理可得:()()()()x l x x x l l l P 1P P 1+=' -'+ (3)由2×③-()12+l ×②可得: (目的:消去()x l ' P ) ()()()()()()x l x l x l l l l '++'+++-+11P 12P 12P 24 ()()()()()x l x l x l l l l P 12P 22P 211++' ++'+- 整理可得:()()()()x l x x l l l P 12P P 11+=' -'-+

信息学院2015-2016学年数学物理方法期末考试试题_A

兰州大学2015~2016 学年第1学期 期末考试试卷(A卷) 课程名称:数学物理方法任课教师: 学院:信息学院专业:年级:姓名:校园卡号: 一、填空(共24分,每空2分) 1. = ; 2. 由柯西公式可得= ,其中要求函数是函数; 3.幂级数收敛半径是; 4.积分= ; 5. 是f(z)的奇点,根据洛朗级数展开负幂项的个数可以将奇点分为三类,分别是、、。 6.已知函数f(x, y, z),对于边界,则相应的第一类齐次边界条件可以表示 为。 7. 和,可以构成,与本征值相应的解称为。 8.一般情况下的求解域并不是规则形状,则可以采用法使得求解 域成为规则图形以简化求解。 二、简单计算(共26分,第1、2题每题6分,第3、4题每题7分) 1.在1<|z|<的环域上将函数f(z)= (z+1)/(z2-1)展开为洛朗级数。

2. 以勒让德多项式为基,在区间[-1, 1]上将函数展开为广义 傅里叶级数。 注: 3. 利用留数定理求。 4. 解析函数知识在求解某些势函数时有很大的帮助。我们已知复势表达式为 ,并且 , ,求复势 , 并写成关于z 的表达式。 三、 简答(共23分,前3题每题5分,第4题8分) 1. 简述解析函数的性质。 2. 施图姆-刘维尔型方程为 拉盖尔方程表示为施图姆-刘维尔型如下式所示 与勒让德方程相似,拉盖尔方程的解可以由拉盖尔多项式 表出。试根据 所学过的施图姆-刘维尔本征值问题的相关性质,最少写出拉盖尔方程的三条性质。 3. 写出柱坐标系下的Bessel 方程,Bessel 方程一般有哪几种解的形式,并写出方程的一种通解。 4. 在电路中会经常使用到矩形脉冲信号 试在初始边界条件f (0)=0的条件下,利用傅里叶积分的知识进行计算,简要说明如何通过简单的正弦信号获得该信号。 四、 综合题(共27分,第1题15分,第2题12分) 1. 有一个沿z 轴无限长的矩形波导,如右图所示,横截 面长为a ,宽为b ,左、右、底面三面接地,顶面电 a

【最最最最最新】数学物理方法试卷(附答案)

福师大物理系《数学物理方法》B 课程考试题 一、简答题(共70分) 1、试阐述解析延拓的含义。解析延拓的结果是否唯一?(6分) 解析延拓就是通过函数的替换来扩大解析函数的定义域。替换函数在原定义域上与替换前的函数相等。 无论用何种方法进行解析延拓,所得到的替换函数都完全等同。 2、奇点分为几类?如何判别?(6分) 在挖去孤立奇点Zo而形成的环域上的解析函数F(z)的洛朗级数,或则没有负幂项,或则只有有限个负幂项,或则有无限个负幂项,我们分别将Zo称为函数F(z)的可去奇点,极点及本性奇点。 判别方法:洛朗级数展开法 A,先找出函数f(z)的奇点; B,把函数在的环域作洛朗展开 1)如果展开式中没有负幂项,则为可去奇点; 2)如果展开式中有无穷多负幂项,则为本性奇点; 3)如果展开式中只有有限项负幂项,则为极点,如果负幂项的最高项为,则为m阶奇点。 3、何谓定解问题的适定性?(6分) 1,定解问题有解;2,其解是唯一的;3,解是稳定的。满足以上三个条件,则称为定解问题的适定性。 4、什么是解析函数?其特征有哪些?(6分) 在某区域上处处可导的复变函数 称为该区域上的解析函数. 1)在区域内处处可导且有任意阶导数. 2) () () ? ? ? = = 2 1 , , C y x v C y x u 这两曲线族在区域上正交。 3)()y x u,和()y x v,都满足二维拉普拉斯方程。(称为共轭调和函数) 4)在边界上达最大值。 4、数学物理泛定方程一般分为哪几类?波动方程属于其中的哪种类型?(6分)

数学物理泛定方程一般分为三种类型:双曲线方程、抛物线方程、椭圆型偏微分方程。波动方程属于其中的双曲线方程。 5、写出)(x δ挑选性的表达式(6分) ()()()()()()?????????=-==-???∞ ∞∞-∞∞ -)()()(00000R f dv R r r f f dx x x f x f dx x x x f δδδ 6、写出复数2 31i +的三角形式和指数形式(8分) 三角形式:()3sin 3cos 231cos sin 2 321isin cos 222ππ? ?ρ??ρi i i +=++=+=+ 指数形式:由三角形式得: 313πρπ?i e z === 7、求函数 2)2)(1(--z z z 在奇点的留数(8分) 解: 奇点:一阶奇点z=1;二阶奇点:z=2 1)2)(1()1(lim Re 21)1(=????? ?---=→z z z z sf z

数学物理方法期末考试试题典型汇总

Mathematical methods for physics 一、 单项选择题(每小题2分) 1.齐次边界条件0),(),0(==t u t u x x π的本征函数是_______。 A)Λ3,2,1 sin =n nx B) Λ,2,1,0 cos =n nx C)Λ2,1,0 )21sin(=+n x n D) Λ2,1,0 )2 1cos(=+n x n 2.描述无源空间静电势满足的方程是________。 A) 波动方程 B)热传导方程 C) Poisson 方程 D)Laplace 方程 3.半径为R 的圆形膜,边缘固定,其定解问题是???? ?????====?-??===)(| ),(|0|0),(),(0t 02222ρψρ?ρρρt t R u u u t u a t t u 其解的形式为∑∞ ==100)()(),(m m m k J t T t u ρρ,下列哪一个结论是错误的______。 A) )()()()(20222 t T k a t T dt d t T m m m m -=满足方程 B )圆形膜固有振动模式是)sin(0t ak m 和)cos(0t ak m C )0m k 是零阶Bessel 函数的第m 个零点。 D ))()(00ρρm m k J R =满足方程0)(2202=+'+''R k R R m ρρρ 4.)(5x P 是下列哪一个方程的解_________。 A )0202)1(2=+'-''-y y x y x B )0252)1(2=+'-''-y y x y x C )0302)1(2=+'-''-y y x y x D )052)1(2=+'-''-y y x y x 5.根据整数阶Bessel 函数的递推公式,下列结论哪一个是正确的________。 A ))(2)()(120x J x J x J '=- B ))()()(1 11x J x x J x xJ '=+ C ))(2)()(210x J x x J x J = - D ))(2)()(120x J x x J x J '=+ 二、 填空题(每题3分)

数学物理方法习题及解答

2. 试解方程:()0,04 4 >=+a a z 44424400000 ,0,1,2,3 ,,,,i k i i z a a e z ae k ae z i i πππ π ωωωωω+=-=====--若令则 1.计算: (1) i i i i 524321-+ -+ (2) y = (3) 求复数2 12?? + ? ??? 的实部u 和虚部v 、模r 与幅角θ (1) 原式= ()()()12342531081052 916 2525255 i i i i i i +?+-?+-++=+=-+-- (2) 3 32( )10205 2(0,1,2,3,4)k i e k ππ+==原式 (3) 2 223 221cos sin cos sin ,3333212u v 1,2k ,k 0,1,2,223 i i i e r π πππππ θπ??==+=+==- ?????=-===+=±±L 原式所以:, 3.试证下列函数在z 平面上解析,并分别求其导数. (1)()()y i y y ie y y y x e x x sin cos sin cos ++- 3.

()()()()()()()()cos sin ,cos sin ,cos sin cos ,sin sin cos ,cos sin sin sin ,cos sin cos ,,,x x x x x x x x u e x y y y v e y y x y u e x y y y e y x u e x y y y y y v e y y x y e y y x v e y y y x y y u v u v x y y x u v z f z u iv z u f z =-=+?=-+??=---??=++??=-+?????==-????=+?'= ?证明:所以:。 由于在平面上可微 所以在平面上解析。()()()cos sin cos cos sin sin .x x x x v i e x y y y e y i e y y x y e y x x ?+=-++++? 由下列条件求解析函数()iv u z f += (),1,22i i f xy y x u +-=+-= 解: ()()()()()()()222222222212,2,21 2,2,,,2112, 2211 1,0,1,1,, 221112. 222u v x y v xy y x x y v u v y x y x x x x x c x y x f z x y xy i xy y x c f i i x y c c f z x y xy i xy x y ??????==+∴=++?????''=+=-=-+∴=-=-+?????=-+++-+ ??? =-+==+==? ?=-++-++ ?? ?而即所以由知带入上式,则则解析函数 2. ()21,3,,.i i i i i i e ++试求

数理方程试题

2013-2014 1 数学物理方程(A ) 数理学院 信计101-2、应数 (答案写在答题纸上,写在试题纸上无效) 一.填空题(每小题3分,共15分) 1.已知非齐次波动方程22 222(,)(0,0) (0,)(,)0 (0)(,0)(,0)0(0) u u a f x t t x l t x u u t l t t x x u u x x x l t ???=+><? ????? ==<<? ??? ?? ==<

数学物理方法期末考试试题-2006

一、单项选择题(每小题2分) 1. 齐次边界条件0),(),0(==t u t u x x π的本征函数是_______。 A) 3,2,1 sin =n nx B) ,2,1,0 cos =n nx C) 2,1,0 )21sin(=+n x n D) 2,1,0 )2 1cos(=+n x n 2. 描述无源空间静电势满足的方程是________。 A) 波动方程 B)热传导方程 C) Poisson 方程 D)Laplace 方程 3. 半径为R 的圆形膜,边缘固定,其定解问题是???? ?????====?-??===) (| ),(|0|0),(),(0t 02222ρψρ?ρρρt t R u u u t u a t t u 其解的形式为∑∞ ==100)()(),(m m m k J t T t u ρρ,下列哪一个结论是错误的______。 A) )()()()(20222 t T k a t T dt d t T m m m m -=满足方程 B )圆形膜固有振动模式是)sin(0t ak m 和)cos(0t ak m C )0m k 是零阶Bessel 函数的第m 个零点。 D ))()(00ρρm m k J R =满足方程0)(2202=+'+''R k R R m ρρρ 4. )(5x P 是下列哪一个方程的解_________。 A )0202)1(2=+'-''-y y x y x B )0252)1(2 =+'-''-y y x y x C )0302)1(2=+'-''-y y x y x D )052)1(2=+'-''-y y x y x 5. 根据整数阶Bessel 函数的递推公式,下列结论哪一个是正确的________。 A ))(2)()(1 20x J x J x J '=- B ))()()(111x J x x J x xJ '=+ C ))(2)()(210x J x x J x J =- D ))(2)()(120x J x x J x J '=+ 二、填空题(每题3分)

相关主题
文本预览
相关文档 最新文档