当前位置:文档之家› 谈谈等积式的证明

谈谈等积式的证明

谈谈等积式的证明
谈谈等积式的证明

希望同学们在做这类题目时,注意研究它们的这些规律

中值定理证明

中值定理 首先我们来瞧瞧几大定理: 1、 介值定理:设函数f(x)在闭区间[a,b]上连续,且在该区间的端点取不同的函数值f(a)=A 及 f(b)=B,那么对于A 与B 之间的任意一个数C,在开区间(a,b)内至少有一点ξ使得f(ξ)=C(a<ξ

专题:比例式等积式的常见证明方法

专题:比例式、等积式的常见证明方法 ◆类型一 三点定型法:找线段对应的三角形,利用相似证明 1.如图,在菱形ABCD 中,G 是BD 上一点,连接CG 并延长交BA 的延长线于点F ,交AD 于点E ,连接AG . (1)求证:AG =CG ; (2)求证:AG 2=GE ·GF . 2.如图,在△ABC 中,∠ACB =90°,CD ⊥AB ,垂足为D ,E 是AC 的中点,ED 的延长线与CB 的延长线交于点F . (1)若FD =2FB ,求FD FC 的值; (2)若AC =215,BC =15,求S △FDC 的值. ◆类型二 利用等线段代换

3.如图,在四边形ABCD 中,AB =AD ,AC 与BD 交于点E ,∠ADB =∠ACB .求证: AB AE =AC AD . ◆类型三 找中间比利用等积式代换 4.如图,已知CE 是Rt △ABC 斜边AB 上的高,在EC 的延长线上任取一点P ,连接AP ,作BG ⊥AP ,垂足为G ,交CE 于D ,求证:CE 2=PE ·DE . 参考答案与解析 1.证明:(1)∵四边形ABCD 是菱形,∴AB ∥CD ,AD =CD ,∠ADB =∠CDB ,∴∠F

=∠FCD .在△ADG 与△CDG 中,???? ?AD =CD ,∠ADG =∠CDG ,DG =DG ,∴△ADG ≌△CDG ,∴∠EAG = ∠DCG ,AG =CG . (2)∵∠EAG =∠DCG ,∠F =∠DCG ,∴∠EAG =∠F .又∵∠AGE =∠FGA ,∴△AGE ∽△FGA ,∴AG FG =EG AG ,∴AG 2=GE ·GF . 2.解:(1)∵∠ACB =90°,CD ⊥AB ,∴∠A +∠ABC =∠DCB +∠ABC ,∴∠A =∠DCB .∵E 是AC 的中点,∠ADC =90°,∴ED =EA ,∴∠A =∠EDA .∵∠BDF =∠EDA ,∴∠DCB =∠BDF .又∵∠F =∠F ,∴△BDF ∽△DCF ,∴FD ∶CF =BF ∶FD =1∶2. (2)∵∠ACB =90°,CD ⊥AB ,∴∠BDC =∠ACB .∵∠ABC =∠CBD ,∴△BDC ∽△BCA ,∴BD ∶CD =BC ∶AC =15∶215=1∶2.在Rt △BAC 中,由勾股定理可得AB =53,∴S △BDC S △BCA =BC 2AB 2=15,∴S △BDC =15×12×215×15=3.∵△BDF ∽△DCF ,∴S △FBD S △FDC =????BD CD 2=14, 即S △BDC S △FDC =3 4 .∵S △BDC =3,∴S △FDC =4. 3.证明:∵AB =AD ,∴∠ADB =∠ABE .∵∠ADB =∠ACB ,∴∠ABE =∠ACB .又∵∠BAE =∠CAB ,∴△ABE ∽△ACB ,∴AB AE =AC AB .又∵AB =AD ,∴AB AE =AC AD . 4.证明:∵∠ACB =90°,CE ⊥AB ,∴∠ACE +∠BCE =90°,∠ACE +∠CAE =90°,∴∠CAE =∠BCE ,∴Rt △ACE ∽Rt △CBE ,∴ CE BE =AE CE ,∴CE 2=AE ·BE .又∵BG ⊥AP ,CE ⊥AB ,∴∠DEB =∠DGP =∠PEA =90°.∵∠1=∠2,∴∠P =∠3,∴△AEP ∽△DEB ,∴PE BE =AE DE ,∴PE ·DE =AE ·BE ,∴CE 2=PE ·DE .

专训2 比例式或等积式的技巧

专训2证比例式或等积式的技巧 名师点金: 证比例式或等积式,若所遇问题中无平行线或相似三角形,则需构造平行线或相似三角形,得到成比例线段;若比例式或等积式中的线段分布在两个三角形中,可尝试证这两个三角形相似;若不在两个三角形中,可先将它们转化到两个三角形中,再证这两个三角形相似;若在两个明显不相似的三角形中,可运用中间比代换. 构造平行线法 1.如图,在△ABC中,D为AB的中点,DF交AC于点E,交BC的延长线于点F. 求证:AE·CF=BF·EC. (第1题) 2.如图,已知△ABC的边AB上有一点D,边BC的延长线上有一点E,且AD=CE,DE交AC于点F. 求证:AB·DF=BC·EF. (第2题)

三点定型法 3.如图,在?ABCD 中,E 是AB 延长线上的一点,DE 交BC 于F. 求证:DC AE =CF AD . (第3题) 4.如图,在△ABC 中,∠BAC =90°,M 为BC 的中点,DM ⊥BC 交CA 的延长线于D ,交AB 于E. 求证:AM 2=MD·ME.

(第4题) 构造相似三角形法 5.如图,在等边三角形ABC中,点P是BC边上任意一点,AP的垂直平分线分别交AB,AC于点M,N. 求证:BP·CP=BM·CN. (第5题)

等比过渡法 6.如图,在△ABC中,AB=AC,DE∥BC,点F在边AC上,DF与BE相交于点G,且∠EDF=∠ABE. 求证:(1)△DEF∽△BDE; (2)DG·DF=DB·EF. (第6题) 7.如图,CE是Rt△ABC斜边上的高,在EC的延长线上任取一点P,连接AP,作BG⊥AP 于点G,交CE于点D. 求证:CE2=DE·PE. (第7题)

相似三角形-等积式-比例式工作单讲解学习

M H F D C A 相似三角形的判定——等积式、比例式证明技巧导学单 一、 预备知识: 1、“双垂直”指:“Rt △ABC 中,∠BCA=900,CD ⊥AB 于D ”, 结论: (1)△ADC ∽△CDB ∽△ACB (2)由△ADC ∽△CDB 得CD 2 =AD ·BD (3)由△ADC ∽△ACB 得AC 2=AD ·AB (4)由△CDB ∽△ACB 得BC 2 =BD ·AB (5)由面积得AC ·BC=AB ·CD (6)勾股定理 …… 二、等积式、比例式证明的一般技巧 相关题:如图,M 是平行四边形ABCD 的对角线BD 上的一点,射线AM 交BC 于F,交DC 的延长线于点H 。求证:AM 2=M F ·MH 思路:根据基本图形寻找“中间比” (一)遇到等积式(或比例式)时,直接利用“左看、右看、上看、下看”,看是否能找到相似三角形。 1、已知:如图,△ABC 中,DA 平分∠BAC=,CD=CE 。求证:AB ·AE=AC ·AD 。 策略1:先把等积式转化为比例式;再观察比例式的线段确定可能相似的两个三角形;最后找这两个三角形相似所需的条件. A E D C B

(二)若由求证的等积式或比例式中找不到三角形或找到的三角形不相似。如果有相等的线段时,可用相等的线段去替换。 2.如图,已知:在△ABC中,∠BAC=900,AD⊥BC,E是AC的中点,ED交AB 的延长线于F。求证:。 策略2:当要证明的比例式中的线段在同一条直线上时,由求证的等积式或比例式中找不到三角形或找到的三角形不相似,可以用相等的比、相等的线段、相等的等积式来替换相应的量,把看似无路可走的题目盘活,从而达到“车到山前疑无路,柳暗花明又一村”的效果. (三)若由求证的等积式或比例式中找不到三角形或找到的三角形不相似,也没有等线段代换或等比代换. 3、如图,⊿ABC中,AB=AC,AD是中线,P是AD上一点,过C作CF∥AB交BP延长线于F,求证:BP2=PE·PF.

拉格朗日中值定理证明中的辅助函数的构造及应用

分类号 编号 本科生毕业论文(设计) 题目拉格朗日中值定理证明中的辅助函数的构造及应用 作者姓名常正军 专业数学与应用数学 学号 2 9 1 0 1 0 1 0 2 研究类型数学应用方向 指导教师李明图 提交日期 2 0 1 3 - 3 - 1 5

论文原创性声明 本人郑重声明:所呈交毕业论文,是本人在指导教师的指导下,独立进行研究工作所取得的成果。除文中已经注明引用的内容外,本论文不包含任何其他人或集体已经发表或撰写过的作品成果。对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。本人完全意识到本声明的法律结果由本人承担。 论文作者签名:年月日

摘要拉格朗日中值定理是微积分学三大基本定理中的主要定理,它在微积分中占据极其重要的地位,有着广泛地应用。关于它的证明,绝大多数教科书采用作辅助函数的方法,然后利用罗尔中值定理的结论证明拉格朗日中值定理来证明。罗尔中值定理是其的特殊形式,而柯西中值定理是其的推广形式,鉴于微分中值定理的广泛地应用,笔者将从以下几个不同的角度探讨拉格朗日中值定理中辅助函数的构造,以及几个方面的应用加以举例。 关键词:拉格朗日中值定理辅助函数的构造证明及应用 Abstract Lagrange mean value theorem is the main theorem of calculus three basic theorem, It occupies an important status and role in the calculus, has wide application. Proof of it, the vast majority of textbooks by using the method of auxiliary function, and then use the conclusion of Rolle's theorem to prove the Lagrange mean value theorem. Rolle mean value theorem is a special form of it, and Cauchy's theorem is extended form of it, given the widely application of the differential mean value theorem. This paper will discuss the construction of auxiliary function of the Lagrange mean value theorem from several following different angles, and several applications for example. Keyword: Lagrange mean value theorem The construction of auxiliary function Proof and Application

证明线段比例式或等积式的方法

证明线段比例式或等积式的方法 (一)比例的性质定理: (二)平行线中的比例线段: ①平行线分线段成比例定理:三条平行线截两条直线所得对应线段成比例(图1、2)。 ②平行于三角形的一边的直线截其他两边(或两边的延长线)所得的对应线段成比例(图 3、4)。 ③平行于三角形的一边,且与其他两边(或两边的延长线)相交的直线所截得的三角 形的三边与原三角形的三边对应成比例(图3、4)。 (三)三角形中比例线段: ①相似三角形中一切对应线段(对应边、对应高、对应中线、对应角平分线、对应周长…)的比都相等,等于相似比。 ②相似三角形中一切对应面积的比都相等,等于相似比的平方。 ③勾股定理:直角三角形斜边的平方等于两直角边的平方和(图5)。 ④射影定理:直角三角形斜边上的高是两直角边在斜边上射影的比例中项(图5)。 直角三角形上任一直角边是它在斜边上的射影与斜边的比例中项(图5)。 ⑤正弦定理:三角形中,每一边与对角的正弦的比相等(图6)。即/sinA=b/sinB=c/sinC ⑥余弦定理:三角形中,任一边的平方等于另两边的平方和减去这两边及其夹角余弦乘积

的二倍(图6)。 如a2 = b2+c2 - 2 b·c·cosA (四)圆中的比例线段: 圆幂定理: ①相交弦定理圆内的两条相交弦,被交点分成的两条线段的积相等(图7)。 (推论:若弦与直径垂直相交,则弦的一半为它分直径所成两线段的比例中项。图8) ②切割线定理从圆外一点引圆的切线和割线,切线长为这点到割线与圆交点的两线段长的比例中项(图9)。 ③割线定理从圆外一点引圆的两条割线,这一点到每条割线与圆交点的两线段长的积相等(图10)。 (五)比例线段的运算: ①借助等比或等线段代换。 ②运用比例的性质定理推导。 ③用代数或三角方法进行计算。

相似三角形模型总结2(比例式、等积式的常见证明方法)

解题技巧专题:比例式、等积式的常见证明方法 ——直接法、间接法—网搜罗类型一:找线段对应的三角形,利用相似证明 1.(虹口区模拟)如图,在△ABC中,△C=90°,AD是△CAB的平分线,BE△AE,垂足为点E,求证:BE2=DE·AE. 证明:∵AD平分∠CAB,∴∠CAD=∠BAD.∵∠C=90°,AE⊥BE,∴∠ADC+∠CAD =∠BDE+∠DBE.∵∠ADC=∠BDE,∴∠CAD=∠DBE,∴∠BAD=∠DBE, ∴Rt△ABE∽Rt△BDE,∴BE DE=AE BE,∴BE2=DE·AE. 2.如图,四边形ABCD的对角线AC,BD交于点F,点E是BD上一点,且△BAC= △BDC=△DAE.求证:AB AC=AE AD. 证法一:∵∠BAC=∠DAE,∴∠BAC+∠CAE=∠DAE+∠CAE,即∠BAE=∠CAD.又∵∠BAC=∠BDC,∠BF A=∠CFD,∴180°-∠BAC-∠BF A=180°-∠BDC-∠CFD, 即∠ABE=∠ACD,∴△ABE∽△ACD,∴AB AC=AE AD. 证法二:∵∠BAC=∠DAE,∴∠BAC+∠CAE=∠DAE+∠CAE,即∠BAE=∠CAD.又∵∠BEA=∠DAE+∠ADE,∠ADC=∠BDC+∠ADE,∠DAE=∠BDC,∴∠AEB= ∠ADC,∴△ABE∽△ACD,∴AB AC=AE AD.

3.如图,在△ABCD 中,AM △BC ,AN △CD ,M ,N 分别为垂足.求证:AM AB =MN AC . 证明:在?ABCD 中,∠B =∠D ,AD =BC ,又∵∠AMB =∠AND =90°,∴Rt △AMB ∽Rt △AND ,∴ AM AN =AB AD =AB BC .又∵AB ∥CD ,AN ⊥CD ,∴AN ⊥AB .∴∠BAM +∠MAN =∠BAM +∠B =90°,∴∠B =∠MAN ,∴△AMN ∽△BAC ,∴AM AB =MN AC . 类型二:利用等线段代换证明 4.如图,在四边形ABCD 中,AB =AD ,AC 与BD 交于点E ,△ADB =△ACB .求证: AB AE =AC AD . 证明:∵AB =AD ,∴∠ADB =∠ABE .又∵∠ADB =∠ACB ,∴∠ABE =∠ACB .又∵∠BAE =∠CAB ,∴△ABE ∽△ACB ,∴AB AC =AE AB ,∴AB AE =AC AB .又∵AB =AD ,∴AB AE =AC AD . 5.如图,已知AD 是△ABC 的角平分线,EF 垂直平分AD ,交BC 的延长线于E ,交AD 于F .求证:DE 2=BE ·CE . 证明:如图,连接AE .∵EF 垂直平分AD ,∴AE =DE ,∴∠DAE =∠4.∵AD 是△ABC 的角平分线,∴∠1=∠2.∵∠DAE =∠2+∠3,∠4=∠B +∠1,∴∠B =∠3.又∵∠BEA =∠AEC ,∴△BEA ∽△AEC ,∴AE CE =BE AE ,∴AE 2=BE ·CE ,∴DE 2=BE ·CE .

2016考研数学中值定理证明思路总结

2016考研数学中值定理证明思路总结中值定理这块一直都是很多考生的“灾难区”,一直没有弄清楚看到一个题目到底怎么思考处理,因此也是考研得分比较低的一块内容,如果考生能把中值定理的证明题拿下,那么我们就会比其他没做上的同学要高一个台阶,也可以说这是一套“拉仇恨”的题目。下面小编就和大家来一起分析一下这块内容。 1.具体考点分析 首先我们必须弄清楚这块证明需要的理论基础是什么,相当于我们的工具,那需要哪些工具呢? 第一:闭区间连续函数的性质。 最值定理:闭区间连续函数的必有最大值和最小值。 推论:有界性(闭区间连续函数必有界)。 介值定理:闭区间连续函数在最大值和最小值之间中任意一个数,都可以在区间上找到一点,使得这一点的函数值与之相对应。 零点定理:闭区间连续函数,区间端点函数值符号相异,则区间内必有一点函数值为零。 第二:微分中值定理(一个引理,三个定理)

费马引理:函数f(x)在点ξ的某邻域U(ξ)内有定义,并且在ξ处可导,如果对于任意的x∈U(ξ),都有f(x)≤f(ξ) (或f(x)≥f(ξ) ),那么f'(ξ)=0。 罗尔定理:如果函数f(x)满足: (1)在闭区间[a,b]上连续 (2)在开区间(a,b)内可导 在区间端点处的函数值相等,即f(a)=f(b), 那么在(a,b)内至少有一点ξ(a<ξ 柯西中值定理:如果函数f(x)及F(x)满足 (1)在闭区间[a,b]上连续 (2)在开区间(a,b)内可导 (3)对任一x∈(a,b),F'(x)≠0 那么在(a,b) 内至少有一点ξ,使等式[f(b)-f(a)]/[F(b)-F(a)]=f'(ξ)/F'(ξ)成立。 第三:积分中值定理: 如果函数f(x) 在积分区间[a, b]上连续,则在[a, b]上至少存在一个点ξ,使下式成立

初中几何证明常用方法归纳

初中几何证明常用方法 归纳 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

几何证明常用方法归纳 一、证明线段相等的常用办法 1、同一个三角形中,利用等角对等边:先证明某两个角相等。 2、不同的三角形中,利用两个三角形全等:A找到两个合适的目标三角形B确定已有几个 条件C还要增加什么条件。 3、通过平移或旋转或者折叠得到的线段相等。 4、线段垂直平分线性质:线段垂直平分线的一点到线段两个端点的距离相等。 5、角平分线的性质:角平分线上的一点到角两边的距离相等。 6、线段的和差。 二、求线段的长度的常用办法 1、利用线段的和差。 2、利用等量代换:先求其他线段的长度,再证明所求线段与已求的线段相等。 3、勾股定理。 三、证明角相等的常用办法 1、同(等)角的余(补)角相等。 2、两直线平行,内错角(同位角)相等。 3、角的和差 4、同一个三角形中,利用等边对等角:先证明某两条边相等。 5、不同的三角形中,利用两个三角形全等:A找到两个合适的目标三角形B确定已有几个 条件C还要增加什么条件。 四、求角的度数的常用方法 1、利用角的和差。 2、利用等量代换:先求其他角的长度,再证明所求角与已求的角相等。 3、三角形内角和定理。 五、证明直角三角形的常用方法 1、证明有一个角是直角。(从角) 2、有两个角互余。(从角) 3、勾股定理逆定理。(从边) 4、30度角所对的边是另一边的一半。 5、三角形一边上的中线等于这边的一半 六、证明等腰三角形的常用方法 1、证明有两边相等。(从边) 2、证明有两角相等。(从角) 七、证明等边三角形的常用方法 1、三边相等。 2、三角相等。 3、有一角是60度的等腰三角形。 八、证明角平分线的常用方法 1、两个角相等(定义)。 2、等就在:到角两边的距离相等的点在角平行线上。 九、证明线段垂直平分线的常用方法 1、把某条线段平分,并与它垂直。

关于高等数学常见中值定理证明及应用

中值定理 首先我们来看看几大定理: 1、介值定理:设函数f(x)在闭区间[a,b]上连续,且在该区间的端点取不同的函数值 f(a)=A及f(b)=B,那么对于A与B之间的任意一个数C,在开区间(a,b)内至少有一点ξ使得f(ξ)=C(a<ξ

比例式与等积式

比例式与等积式 一、知识点分析: 判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似.简述为:两角对应相等,两三角形相似. 判定定理2:如果一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似.简述为:两边对应成比例且夹角相等,两三角形相似. 判定定理3:如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似.简述为:三边对应成比例,两三角形相似. 二、典例解析: 例1、如图,△ABC三内角平分线交于点D,过点D引DE⊥AO,分别交AB、AC于点D、E.求证:△BOD∽△BCO∽△OCE. 【随堂练习】 △ABC中,∠1=∠2=∠3,图中有相似三角形吗?请说明理由.

如图,在正方形ABCD中,E为AD的中点,EF⊥EC交AB于F,连接FC(AB>AE),△AEF ∽△EFC吗?若相似,请证明;若不相似,请说明理由.若ABCD为矩形呢? 例3、如图,已知:AP2=AQ?AB,且∠ABP=∠C,试说明△QPB∽△PBC. 例4、如图,点C、D在线段AB上,△PCD是等边三角形,且△ACP∽△PDB. (1)求∠APB的大小.(2)说明线段AC、CD、BD之间的数量关系.

如图所示,已知Rt△ABC(AC>BC)的斜边AB的中点D,过D作斜边的垂线交AC于E,交BC延长线于F,求证:DC2=DE·DF。 【随堂练习】 已知:如图,点E是四边形ABCD的对角线BD上一点,且∠BAC=∠BDC=∠DAE. (1)求证:△ABE∽△ACD;(2)求证:BC?AD=DE?AC.

如何做几何证明题(方法总结)

如何做几何证明题 知识归纳总结: 1. 几何证明是平面几何中的一个重要问题,它对培养学生逻辑思维能力有着很大作用。几何证明有两种基本类型:一是平面图形的数量关系;二是有关平面图形的位置关系。这两类问题常常可以相互转化,如证明平行关系可转化为证明角等或角互补的问题。 2. 掌握分析、证明几何问题的常用方法: (1)综合法(由因导果),从已知条件出发,通过有关定义、定理、公理的应用,逐步向前推进,直到问题的解决; (2)分析法(执果索因)从命题的结论考虑,推敲使其成立需要具备的条件,然后再把所需的条件看成要证的结论继续推敲,如此逐步往上逆求,直到已知事实为止; (3)两头凑法:将分析与综合法合并使用,比较起来,分析法利于思考,综合法易于表达,因此,在实际思考问题时,可合并使用,灵活处理,以利于缩短题设与结论的距离,最后达到证明目的。 3. 掌握构造基本图形的方法:复杂的图形都是由基本图形组成的,因此要善于将复杂图形分解成基本图形。在更多时候需要构造基本图形,在构造基本图形时往往需要添加辅助线,以达到集中条件、转化问题的目的。 一. 证明线段相等或角相等 两条线段或两个角相等是平面几何证明中最基本也是最重要的一种相等关系。很多其它问题最后都可化归为此类问题来证。证明两条线段或两角相等最常用的方法是利用全等三角形的性质,其它如线段中垂线的性质、角平分线的 系来证,也可通过边对应成比例、三角形中位线定理证明。证两条直线垂直,可转化为证一个角等于90°,或利用两

的角平分线AD、CE相交于O。 (补

AE=BD,连结CE、DE。

求证:BC=AC+AD B、C作此射线的垂线BP和CQ。 设M为BC的中点。求证:MP=MQ

中考数学复习题比例式、等积式的常见证明方法

类比归纳专题:比例式、等积式的常见证明方法 ——直接法、间接法一网搜罗 ◆类型一三点定型法:找线段对应的三角形,利用相似证明 1.如图,在菱形ABCD中,G是BD上一点,连接CG并延长交BA的延长线于点F,交AD于点E,连接AG. (1)求证:AG=CG; (2)求证:AG2=GE·GF. 2.如图,在△ABC中,∠ACB=90°,CD⊥AB,垂足为D,E是AC的中点,ED的延长线与CB的延长线交于点F. (1)若FD=2FB,求 FD FC的值; (2)若AC=215,BC=15,求S△FDC的值.

◆类型二利用等线段代换 3.如图,在四边形ABCD中,AB=AD,AC与BD交于点E,∠ADB =∠ACB.求证: AB AE = AC AD. ◆类型三找中间比利用等积式代换 4.如图,已知CE是Rt△ABC斜边AB上的高,在EC的延长线上任取一点P,连接AP,作BG⊥AP,垂足为G,交CE于D,求证:CE2=PE·DE.

参考答案与解析 1.证明:(1)∵四边形ABCD是菱形,∴AB∥CD,AD=CD,∠ADB=∠CDB,∴∠F =∠FCD.在△ADG与△CDG中, ?? ? ?? AD=CD, ∠ADG=∠CDG, DG=DG, ∴△ADG≌△CDG,∴∠EAG= ∠DCG,AG=CG. (2)∵∠EAG=∠DCG,∠F=∠DCG,∴∠EAG=∠F.又∵∠AGE=∠FGA,∴△AGE∽△FGA,∴ AG FG= EG AG,∴AG 2=GE·GF. 2.解:(1)∵∠ACB=90°,CD⊥AB,∴∠A+∠ABC=∠DCB+∠ABC,∴∠A=∠DCB.∵E是AC的中点,∠ADC=90°,∴ED=EA,∴∠A=∠EDA.∵∠BDF=∠EDA,∴∠DCB=∠BDF.又∵∠F=∠F,∴△BDF∽△DCF,∴FD∶CF=BF∶FD=1∶2. (2)∵∠ACB=90°,CD⊥AB,∴∠BDC=∠ACB.∵∠ABC=∠CBD,∴△BDC∽△BCA,∴BD∶CD=BC∶AC=15∶215=1∶2.在Rt△BAC中,由勾股定理可得AB=53,∴ S△BDC S△BCA = BC2 AB2= 1 5,∴S△BDC= 1 5× 1 2×215×15=3.∵△BDF∽△DCF,∴ S△FBD S△FDC =???? BD CD 2 = 1 4,即 S△BDC S△FDC = 3 4.∵S△BDC=3,∴S△FDC=4. 3.证明:∵AB=AD,∴∠ADB=∠ABE.∵∠ADB=∠ACB,∴∠ABE=∠ACB.又∵∠BAE=∠CAB,∴△ABE∽△ACB,∴ AB AE= AC AB.又∵AB=AD,∴ AB AE= AC AD. 4.证明:∵∠ACB=90°,CE⊥AB,∴∠ACE+∠BCE=90°,∠ACE+∠CAE=90°,∴∠CAE=∠BCE,∴Rt△ACE∽Rt△CBE,∴ CE BE= AE CE,∴CE 2=AE·BE.又∵BG⊥AP,CE⊥AB,∴∠DEB=∠DGP=∠PEA=90°.∵∠1=∠2,∴∠P=∠3,∴△AEP∽△DEB,∴ PE BE= AE DE,∴PE·DE=AE·BE,∴CE 2=PE·DE.

第五讲中值定理的证明分析

第四讲 中值定理的证明技巧 一、 考试要求 1、 理解闭区间上连续函数的性质(最大值、最小值定理,有界性定理,介值定 理),并会应用这些性质。 2、 理解并会用罗尔定理、拉格朗日中值定理、泰勒定理,了解并会用柯西中值 定理。掌握这四个定理的简单应用(经济)。 3、 了解定积分中值定理。 二、 内容提要 1、 介值定理(根的存在性定理) (1)介值定理 在闭区间上连续的函数必取得介于最大值 M 与最小值m 之间的任何值. (2)零点定理 设f(x)在[a 、b]连续,且f(a)f(b)<0,则至少存在一点,c ∈(a 、b),使得f(c)=0 2、 罗尔定理 若函数)(x f 满足: (1))(x f 在[]b a ,上连续 (2))(x f 在),(b a 内可导 (3))()(b f a f = 则一定存在),(b a ∈ξ使得0)('=ξf 3、 拉格朗日中值定理 若函数)(x f 满足: (1))(x f 在[]b a ,上连续 (2))(x f 在),(b a 内可导 则一定存在),(b a ∈ξ,使得))((')()(a b f a f b f -=-ξ 4、 柯西中值定理 若函数)(),(x g x f 满足: (1)在[]b a ,上连续 (2)在),(b a 内可导 (3)0)('≠x g 则至少有一点),(b a ∈ξ使得)(')(') ()()()(ξξg f a g b g a f b f =--

5、 泰勒公式 如果函数)(x f 在含有0x 的某个开区间),(b a 内具有直到1+n 阶导数, 则当x 在 ),(b a 内时, )(x f 可以表示为0 x x -的一个n 次多项式与一个余项)(x R n 之和,即 )())((!1 ))((!21))(()()(00)(200000x R x x x f n x x x f x x x f x f x f n n n +-+???+-''+-'+= 其中10)1()()!1()()(++-+=n n n x x n f x R ξ (ξ介于0x 与x 之间). 在需要用到泰勒公式时,必须要搞清楚三点: 1.展开的基点; 2.展开的阶数; 3.余项的形式. 其中余项的形式,一般在求极限时用的是带皮亚诺余项的泰勒公 式,在证明不等式时用的是带拉格朗日余项的泰勒公式. 而基点和阶数,要根据具体的问题来确定. 6、 积分中值定理 若f(x)在[a 、b]上连续,则至少存在一点c ∈[a 、b],使得 b a ?f(x)dx=f(c)(b-a) 三、 典型题型与例题 题型一 、与连续函数相关的问题(证明存在ξ使0)(=ξf 或方程f(x)=0有根) 例1、设)(x f 在[a,b]上连续,),,2,1(0,21n i c b x x x a i n ΛΛ=><<<<<,证明存在],[b a ∈ξ ,使得 n n n c c c x f c x f c x f c f ++++++=ΛΛ212211)()()()(ξ 例2、设)(,0x f a b >>在[a,b]上连续、单调递增,且0)(>x f ,证明存在),(b a ∈ξ 使得 )(2)()(222ξξf a f b b f a =+ 例3、设)(x f 在[a,b]上连续且0)(>x f ,证明存在),(b a ∈ξ使得 ???==b b a a dx x f dx x f dx x f ξξ )(2 1)()(。 例4、设)(),(x g x f 在[a,b]上连续,证明存在),(b a ∈ξ使得

专题训练:证比例式或等积式的技巧(含答案)

专训2证比例式或等积式的技巧 名师点金:证比例式或等积式,若所遇问题中无平行线或相似三角形,则需构造平行线或相似三角形,得到成比例线段;若比例式或等积式中的线段分布在两个三角形中,可尝试证这两个三角形相似;若不在两个三角形中,可先将它们转化到两个三角形中,再证这两个三角形相似,若在两个明显不相似的三角形中,可运用中间比代换. 构造平行线法 △1.如图,在ABC中,D为AB的中点,DF交AC于点E,交BC的延长线于点F,求证:AE·C F=BF·E C. △2.如图,已知ABC的边AB上有一点D,边BC的延长线上有一点E,且AD=CE,DE交AC于点F, 求证:AB·D F=BC·E F.

求证:=. 三点定型法 3.如图,在ABCD中,E是AB延长线上的一点,DE交BC于F. DC CF AE AD △4.如图,在ABC中,∠BAC=90°,M为BC的中点,DM⊥BC交CA的延长线于D,交AB于E. 求证:AM2=MD·M E.

构造相似三角形法 5.如图,在等边三角形ABC中,点P是BC边上任意一点,AP的垂直平分线分别交AB,AC于点M,N. 求证:BP·C P=BM·C N. 等比过渡法 6.如图,在△ABC中,AB=AC,DE∥BC,点F在边AC上,DF与BE相交于点G,且∠EDF=∠ABE. 求证:(1)△DEF∽△BDE; (2)DG·D F=DB·E F.

求证:=. 7.如图,CE是△Rt ABC斜边上的高,在EC的延长线上任取一点P,连接AP,作BG⊥AP于点G,交CE于点D. 求证:CE2=DE·P E. 两次相似法 8.如图,在△Rt ABC中,AD是斜边BC上的高,∠ABC的平分线BE交AC于E,交AD于F. BF AB BE BC

罗尔中值定理的内容及证明方法

罗尔中值定理的内容及证明方法 (一)定理的证明 证明:因为函数)(x f 在闭区间[]b a ,上连续,所以存在最大值与最小值,分别用M 和m 表示,现在分两种情况讨论: 1.若m M =,则函数)(x f 在闭区间[]b a ,上必为常数,结论显然成立。 2.若m M >,则因为)()(b f a f =使得最大值M 与最小值m 至少有一个在()b a ,内某点ξ处取得,从而ξ是)(x f 的极值点,由条件)(x f 在开区间()b a ,内可导得,)(x f 在ξ处可导,故由费马定理推知:0)('=ξf 。 (二)罗尔中值定理类问题的证明 罗尔中值定理在微分学解题中有着广泛的应用,下面我们就对罗尔中值定理的应用作深入的研究,归纳出证题技巧。 1.形如“在()b a ,内至少存在一点ξ,使k f =)('ξ”的命题的证法。 (1)当0=k 时,一般这种情况下,我们只需验证)(x f 满足罗尔定理的条件,根据罗尔定理来证明命题。在证明过程中,我们要注意区间的选取,有时候所需验证的条件并不是显而易见的。 例1 设)(x f 在闭区间[]1,0上连续,开区间()1,0内可导,?=1 32 )(3)0(dx x f f 。 证明:()1,0∈?ξ,使0)('=ξf 分析:由于所需验证的罗尔中值定理的条件并不是显而易见的,而且这个问题涉及到定积分,所以我们考虑运用积分中值定理的知识,尝试在()1,0中找到一个区间()η,0,在()η,0中运用罗尔中值定理去证明。 证:因为??????∈=-==?1,32,)()()321(3)(3)0(1 3 2ηηηf f dx x f f 显然)(x f 在闭区间[]η,0上连续,在开区间()η,0内可导 根据罗尔定理,()1,0∈?ξ,使0)('=ξf (2)当0≠k 时,若所证明的等式中不出现端点值,则将结论化为:0)('=-k f ξ的形式,构造辅助函数)(x F ,我们就可以运用(1)中的方法证明命题。我们在构造辅助函数时,可用观察法、积分法、递推法,常数k 法等等。

证明方法总结

一、证明两线段相等 1.两全等三角形中对应边相等。 2.同一三角形中等角对等边。 3.等腰三角形顶角的平分线或底边的高平分底边。 4.平行四边形的对边或对角线被交点分成的两段相等。 5.直角三角形斜边的中点到三顶点距离相等。 6.线段垂直平分线上任意一点到线段两段距离相等。 7.角平分线上任一点到角的两边距离相等。 8.过三角形一边的中点且平行于第三边的直线分第二边所成的线段相等。 9.同圆(或等圆)中等弧所对的弦或与圆心等距的两弦或等圆心角、圆周角所对的弦相等。 10.圆外一点引圆的两条切线的切线长相等或圆内垂直于直径的弦被直径分成的两段相等。 11.两前项(或两后项)相等的比例式中的两后项(或两前项)相等。 12.两圆的内(外)公切线的长相等。 13.等于同一线段的两条线段相等。 二、证明两个角相等 1.两全等三角形的对应角相等。 2.同一三角形中等边对等角。 3.等腰三角形中,底边上的中线(或高)平分顶角。 4.两条平行线的同位角、内错角或平行四边形的对角相等。 5.同角(或等角)的余角(或补角)相等。 6.同圆(或圆)中,等弦(或弧)所对的圆心角相等,圆周角相等,弦切角等于它所夹的弧对的圆周角。

7.圆外一点引圆的两条切线,圆心和这一点的连线平分两条切线的夹角。 8.相似三角形的对应角相等。 9.圆的内接四边形的外角等于内对角。 10.等于同一角的两个角相等。 三、证明两条直线互相垂直 1.等腰三角形的顶角平分线或底边的中线垂直于底边。 2.三角形中一边的中线若等于这边一半,则这一边所对的角是直角。 3.在一个三角形中,若有两个角互余,则第三个角是直角。 4.邻补角的平分线互相垂直。 5.一条直线垂直于平行线中的一条,则必垂直于另一条。 6.两条直线相交成直角则两直线垂直。 7.利用到一线段两端的距离相等的点在线段的垂直平分线上。 8.利用勾股定理的逆定理。 9.利用菱形的对角线互相垂直。 10.在圆中平分弦(或弧)的直径垂直于弦。 11.利用半圆上的圆周角是直角。 四、证明两直线平行 1.垂直于同一直线的各直线平行。 2.同位角相等,内错角相等或同旁内角互补的两直线平行。 3.平行四边形的对边平行。 4.三角形的中位线平行于第三边。 5.梯形的中位线平行于两底。

中值定理的证明题

第五讲 中值定理的证明技巧 一、 考试要求 1、 理解闭区间上连续函数的性质(最大值、最小值定理,有界性定理,介值定 理),并会应用这些性质。 2、 理解并会用罗尔定理、拉格朗日中值定理(泰勒定理),了解并会用柯西中 值定理。掌握这三个定理的简单应用(经济)。 3、 了解定积分中值定理。 二、 内容提要 1、 介值定理(根的存在性定理) (1)介值定理 在闭区间上连续的函数必取得介于最大值 M 与最小值m 之间的任何值. (2)零点定理 设f(x)在[a 、b]连续,且f(a)f(b)<0,则至少存在一点,c ∈(a 、b),使得f(c)=0 2、 罗尔定理 若函数)(x f 满足: (1))(x f 在[]b a ,上连续 (2))(x f 在),(b a 内可导 (3))()(b f a f = 则一定存在),(b a ∈ξ使得0)('=ξf 3、 拉格朗日中值定理 若函数)(x f 满足: (1))(x f 在[]b a ,上连续 (2))(x f 在),(b a 内可导 则一定存在),(b a ∈ξ,使得))((')()(a b f a f b f -=-ξ 4、 柯西中值定理 若函数)(),(x g x f 满足: (1)在[]b a ,上连续 (2)在),(b a 内可导 (3)0)('≠x g 则至少有一点),(b a ∈ξ使得)(') (') ()()()(ξξg f a g b g a f b f = --

5、 泰勒公式 如果函数)(x f 在含有0x 的某个开区间),(b a 内具有直到1+n 阶导数, 则当x 在 ),(b a 内时, )(x f 可以表示为0 x x -的一个n 次多项式与一个余项)(x R n 之和,即 ) ())((!1 ))((!21))(()()(00)(200000x R x x x f n x x x f x x x f x f x f n n n +-+???+-''+-'+= 其中1 0)1()()!1() ()(++-+=n n n x x n f x R ξ (ξ介于0x 与x 之间). 在需要用到泰勒公式时,必须要搞清楚三点: 1.展开的基点; 2.展开的阶数; 3.余项的形式. 其中余项的形式,一般在求极限时用的是带皮亚诺余项的泰勒公式,在证明不等式时用的是带拉格朗日余项的泰勒公式. 而基点和阶数,要根据具体的问题来确定. 6、 积分中值定理 若f(x)在[a 、b]上连续,则至少存在一点c ∈[a 、b],使得 b a ? f(x)dx=f(c)(b-a) 三、 典型题型与例题 题型一 、与连续函数相关的问题(证明存在ξ使0)(=ξf 或方程f(x)=0有根) 方法:大多用介值定理 f(x)满足:在[a,b]上连续;f(a)f(b)<0. 思路:1)直接法 2)间接法或辅助函数法 例1、设)(x f 在[a,b]上连续,),,2,1(0,21n i c b x x x a i n ΛΛ=><<<<<,证明存在],[b a ∈ξ ,使得 n n n c c c x f c x f c x f c f ++++++= ΛΛ212211) ()()()(ξ

相关主题
文本预览
相关文档 最新文档