2015年秋西南大学《线性代数》第2次作业答案
- 格式:doc
- 大小:137.00 KB
- 文档页数:5
2015-2016-2线性代数A 卷答案及评分标准一、单项选择题(每小题3分,共15分)1.设B A ,均是n 阶矩阵,则下列等式正确的是(B )(A )2222)(B AB A B A ++=+(B )T T T )(A B AB =(C )||||||B A B A +=+(D )BAAB =2.设向量组n ααα,,,21 )2(≥n 是线性相关的,则下列表述正确的是(A )(A )向量组n ααα,,,21 中一定有一个向量可由其余向量线性表示(B )向量组n ααα,,,21 的极大无关组一定唯一(C )向量组n ααα,,,21 中任意两个向量必线性相关(D )向量组n ααα,,,21 中一定有一个为零向量3.设A ,B 是同阶方阵,则下列表述错误的是(B )(A ))()(),(B R A R B A R +≤(B ))()()(B R A R B A R +≥+(C ))()(A R AB R ≤(D ))()(B R AB R ≤4.假设方阵A 与B 相似,则下述说法错误的是(C )(A )||||B A =(B )A 与B 有相同的特征值(C )A 与B 有相同的特征向量(D )A 与B 有相同的秩5.设三阶方阵),,(321ααα=A 且1||=A ,则三阶方阵)2,,(3211αααα+=B 的行列式的值是(D )(A )不确定(B )0(C )1(D )2二、填空题(每小题3分,共15分)6.已知E A =3,则2)(21E A A E A +-=+-.7.设方阵A 的行列式2||=A ,则=||T T AA A _____8___.8.已知向量组⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=a 32,321,111321ααα线性相关,则=a ____4______.9.已知矩阵A =⎪⎪⎪⎭⎫ ⎝⎛--2 1 02 0 04 2 1,则=)(A R __3__.10.设三阶方阵A 的特征值为1,1,2则=+-||1A A ___10____.三、判断题,对的打√,错的打×(每小题2分,共10分)11.设B A ,均是n 阶对称矩阵,则B A +必是对称矩阵(√).12.设A 是n 阶矩阵,则n A A ||||*=(×).13.若矩阵A 可逆,则A 的特征值必不为0(√).14.任意齐次方程组0=⨯x A n m 必有非零解(×).15.对矩阵A 施加初等列变换秩不改变(√).四、计算题(每小题10分,共50分)16.求行列式00000000a ba b b a b a 的值.解:互换行列式的第2列与第4列,再互换新行列式的第2行与第4行得------4分原行列式222)(00000000b a b a a b b a a b b a a bb a a b -===----------------------------------------10分(此题目也可以按照某一行展开这种方法来做)17.设3阶矩阵X 满足等式X B AX 2+=,其中311110012,102,004202A B ⎛⎫⎛⎫ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭求矩阵X .解:由X B AX 2+=得到B X E A =-)2(,所以若E A 2-可逆,则B E A X 1)2(--=-----------------------------4分考虑矩阵⎪⎪⎪⎭⎫ ⎝⎛-=-2 0 2 2 0 02 0 1 2 1 00 1 1 1 1 1),2(B E A 化成行最简形⎪⎪⎪⎭⎫ ⎝⎛---1 0 1 1 0 00 0 1 0 1 01 1 1 0 0 1~),2(B E A -----------------------------8分所以⎪⎪⎪⎭⎫ ⎝⎛--=1 0 1 0 0 1 1 1 1X --------------------------------------------10分18.问,a b 各取何值时,线性方程组1231231232021324x x x x x ax x x x b ++=⎧⎪++=⎨⎪++=⎩有无穷多解?并求其通解.解:增广矩阵⎪⎪⎪⎭⎫ ⎝⎛----⎪⎪⎪⎭⎫ ⎝⎛----⎪⎪⎪⎭⎫ ⎝⎛12001410021121014100211~4231120211 a b a ~ b a b a ---5分当1,2==b a 时,32),()(<==b A R A R ,此方程组有无穷多解-------------7分所以增广矩阵⎪⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛0 0 0 01 2 1 01 0 0 1~0 0 0 01 2 1 00 2 1 1142312120211~ 所以⎩⎨⎧-=+=121321x x x 即⎪⎩⎪⎨⎧+=--=+=011210333231x x x x x x 所以通解.,011120为任意数k k x ⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎭⎫ ⎝⎛-=-------------------------------------------10分19.求向量组123411343354,,,,22323342αααα--⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪-- ⎪ ⎪ ⎪ ⎪==== ⎪ ⎪ ⎪ ⎪-- ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭⎝⎭53101α⎛⎫ ⎪⎪= ⎪ ⎪-⎝⎭的秩,并求出一个极大无关组.解:向量组()⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---------=1 2 4 3 30 2 3 2 21 4 5 3 33 4 3 1 1,,,,54321ααααα~⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--------0 0 0 0 00 0 0 0 02 2 1 0 03 4 3 1 1~10 10 5 0 06 6 3 0 08 8 4 0 03 4 3 1 1-----------7分所以向量组的秩等于2,31,αα为一个极大无关组.------10分-20.已知矩阵⎪⎪⎪⎭⎫ ⎝⎛=3 0 00 1 20 2 1A ,求100A .解:由0)1()3(||2=---=-λλλE A 得A 的特征值321==λλ,13-=λ----3分当3=λ时,对应特征向量是0)3(=-x E A 的非零解,⎪⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎭⎫ ⎝⎛--=-0 0 00 0 00 1 1~0 0 0 0 2 2 0 2 23E A ,基础解系⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=100,01121ζζ,-----5分当1-=λ时,对应特征向量是0)(=+x E A 的非零解,⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛=+0 0 01 0 00 1 1~4 0 0 0 2 2 0 2 2 E A ,基础解系,0 1 13⎪⎪⎪⎭⎫ ⎝⎛-=ζ------------7分令⎪⎪⎪⎭⎫ ⎝⎛-==0 1 01 0 11 0 1),,(321ζζζP ,⎪⎪⎪⎭⎫ ⎝⎛-=-0 1/2 1/21 0 00 1/2 1/21P 则⎪⎪⎪⎭⎫ ⎝⎛-=-1 0 00 3 00 0 31AP P 11001001001001)( 0 00 3 00 0 3-⎪⎪⎪⎪⎭⎫ ⎝⎛-=P P A =⎪⎪⎪⎪⎭⎫ ⎝⎛⋅+--+10010010010010032 0 00 13 130 13 1321--------------------10分五、证明题(每小题5分,共10分)21.设A 为对称矩阵,B 为反对称矩阵,且,A B 可交换,A B -可逆,证明:()()1A B A B -+-是正交矩阵.证明:由正交矩阵的定义,我们只需要证明E B A B A B A B A =-+-+--)))((()))(((1T 1-------2分因为A 为对称矩阵,B 为反对称矩阵,所以1111T 1T 11T 1))()(()())(()())(())(()())(()))((()))(((---------+-+=-++-=-++-=-+-+B A B A B A B A B A B A B A B A B A B A B A B A B A B A B A B A T T 又因为且,A B 可交换,所以))(())((B A B A B A B A -+=+------------------4分所以E B A B A B A B A B A B A B A B A =--++=-+-+----111T 1))()(()()))((()))(((.--5分22.设A 为n m ⨯矩阵,B 为s n ⨯矩阵,且0=AB ,证明n B R A R ≤+)()(.证明:令),,(21s B βββ =,则0),,(),,(2121===s s A A A A AB ββββββ -----2分所以0,0,021===s A A A βββ ,即s βββ,,21 均为齐次线性方程组0=Ax 的解所以向量组s βββ,,21 可由0=Ax 的基础解系)(21,,A R n -ζζζ 表示---------4分所以)(),,(21A R n R s -≤βββ ,即n B R A R ≤+)()(.---------------------5分。
《线性代数》作业及参考答案一.单项选择题1.设行列式a aa a11122122=m,a aa a13112321=n,则行列式a a aa a a111213212223++等于()A. m+nB. -(m+n)C. n-mD. m-n2.设矩阵A=100020003⎛⎝⎫⎭⎪⎪⎪,则A-1等于()A.130012001⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪B.100120013⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪C.13000100012⎛⎝⎫⎭⎪⎪⎪⎪⎪D.120013001⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪3.设矩阵A=312101214---⎛⎝⎫⎭⎪⎪⎪,A*是A的伴随矩阵,则A *中位于(1,2)的元素是()A. –6B. 6C. 2D. –24.设A是方阵,如有矩阵关系式AB=AC,则必有()A. A =0B. B≠C时A=0C. A≠0时B=CD. |A|≠0时B=C5.已知3×4矩阵A的行向量组线性无关,则秩(A T)等于()A. 1B. 2C. 3D. 46.设两个向量组α1,α2,…,αs和β1,β2,…,βs均线性相关,则()A.有不全为0的数λ1,λ2,…,λs使λ1α1+λ2α2+…+λsαs=0和λ1β1+λ2β2+…λs βs=0B.有不全为0的数λ1,λ2,…,λs使λ1(α1+β1)+λ2(α2+β2)+…+λs(αs+βs)=0C.有不全为0的数λ1,λ2,…,λs使λ1(α1-β1)+λ2(α2-β2)+…+λs(αs-βs)=0D.有不全为0的数λ1,λ2,…,λs和不全为0的数μ1,μ2,…,μs使λ1α1+λ2α2+…+λsαs=0和μ1β1+μ2β2+…+μsβs=07.设矩阵A的秩为r,则A中()A.所有r-1阶子式都不为0B.所有r-1阶子式全为0C.至少有一个r阶子式不等于0D.所有r阶子式都不为08.设Ax=b是一非齐次线性方程组,η1,η2是其任意2个解,则下列结论错误的是()A.η1+η2是Ax=0的一个解B.12η1+12η2是Ax=b的一个解C.η1-η2是Ax=0的一个解D.2η1-η2是Ax=b的一个解9.设n阶方阵A不可逆,则必有()A.秩(A)<nB.秩(A)=n-1C.A=0D.方程组Ax=0只有零解10.设A是一个n(≥3)阶方阵,下列陈述中正确的是()A.如存在数λ和向量α使Aα=λα,则α是A的属于特征值λ的特征向量B.如存在数λ和非零向量α,使(λE-A)α=0,则λ是A的特征值C.A的2个不同的特征值可以有同一个特征向量D.如λ1,λ2,λ3是A的3个互不相同的特征值,α1,α2,α3依次是A的属于λ1,λ2,λ3的特征向量,则α1,α2,α3有可能线性相关11.设λ0是矩阵A的特征方程的3重根,A的属于λ0的线性无关的特征向量的个数为k,则必有()A. k≤3B. k<3C. k=3D. k>312.设A是正交矩阵,则下列结论错误的是()A.|A|2必为1B.|A|必为1C.A-1=A TD.A的行(列)向量组是正交单位向量组13.设A是实对称矩阵,C是实可逆矩阵,B=C T AC.则()A.A与B相似B. A与B不等价C. A与B有相同的特征值D. A与B合同15.设有矩阵Am×n,Bm×s,Cs×m,则下列运算有意义的是()。
===================================================================================================1:[论述题]线性代数模拟试题三参考答案:线性代数模拟试题三参考答案 1:[论述题]线性代数模拟试题四参考答案:线性代数模拟试题四参考答案 1:[论述题]线性代数模拟试题五参考答案:线性代数模拟试题五参考答案 1:[论述题]线性代数模拟试题六 一、填空题(每小题3分,共15分) 1. 行列式332313322212312111b a b a b a b a b a b a b a b a b a = ( ). 2. 设A 是4×3矩阵,R (A ) = 2,若B = ⎪⎪⎪⎭⎫ ⎝⎛300020201,则R (AB ) = ( ).3. 设矩阵A = ⎪⎪⎪⎭⎫⎝⎛54332221t ,若齐次线性方程组Ax = 0有非零解,则数t = ( ).4. 已知向量,121,3012⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=k βαα与β的内积为2,则数k = ( ).5. 已知二次型232221321)2()1()1(),,(x k x k x k x x x f -+-++=正定,则数k 的取值范围为( ).二、单项选择题(每小题3分,共15分) 1. 设A 为m ×n 矩阵,B 为n ×m 矩阵,m ≠n , 则下列矩阵中为n 阶矩阵的是( ). (A) B T A T (B) A T B T (C) ABA (D) BAB2. 向量组α1,α2,…,αS (s >2)线性无关的充分必要条件是( ). (A) α1,α2,…,αS 均不为零向量(B) α1,α2,…,αS 中任意两个向量不成比例 (C) α1,α2,…,αS 中任意s -1个向量线性无关(D) α1,α2,…,αS 中任意一个向量均不能由其余s -1个向量线性表示===================================================================================================3. 设3元线性方程组Ax = b ,A 的秩为2,η1,η2,η3为方程组的解,η1 + η2 = (2,0,4)T ,η1+ η3 =(1,-2,1)T ,则对任意常数k ,方程组Ax = b 的通解为( ).(A) (1,0,2)T + k (1,-2,1)T (B) (1,-2,1)T + k (2,0,4)T (C) (2,0,4)T + k (1,-2,1)T (D) (1,0,2)T + k (1,2,3)T 4. 设3阶方阵A 的秩为2,则与A 等价的矩阵为( ).(A) ⎪⎪⎪⎭⎫ ⎝⎛000000111(B) ⎪⎪⎪⎭⎫⎝⎛000110111(C) ⎪⎪⎪⎭⎫ ⎝⎛000222111(D) ⎪⎪⎪⎭⎫ ⎝⎛3332221115. 二次型f (x 1,x 2,x 3,x 4,)=43242322212x x x x x x ++++的秩为( ).(A) 1 (B) 2 (C) 3 (D) 4三、判断题(正确的打“√”,错误的打“×”,每小题3分,共15分)1. 设A 为n 阶方阵,n ≥2,则|-5A |= -5|A |. ( )2. 设行列式D =333231232221131211a a a a a a a a a = 3,D 1=333231312322212113121111252525a a a a a a a a a a a a +++,则D 1的值为5. ( ) 3. 设A = ⎪⎪⎭⎫⎝⎛4321, 则|A *| = -2. ( )4. 设3阶方阵A 的特征值为1,-1,2,则E - A 为可逆矩阵. ( )5. 设λ = 2是可逆矩阵A 的一个特征值,则矩阵(A 2)-1必有一个特征值等于41. ( ) 四、(10分) 已知矩阵A = ⎪⎪⎪⎭⎫⎝⎛-210011101,B =⎪⎪⎪⎭⎫⎝⎛410011103, (1) 求A 的逆矩阵A -1. (2) 解矩阵方程AX = B .===================================================================================================五、(10分)设向量组⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=42111α,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=21302α,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=147033α,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=02114α,求向量组的秩和一个极大线性无关组,并将其余向量用该极大线性无关组线性表示.六、(10分) 求线性方程组⎪⎩⎪⎨⎧=++=+++=+++322023143243214321x x x x x x x x x x x 的通解(要求用它的一个特解和导出组的基础解系表示)七、(15分) 用正交变换化二次型f (x 1, x 2, x 3)=2331214x x x x +-为标准形,并写出所用的正交变换.八、(10分) 设a ,b ,c 为任意实数,证明向量组⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=1111a α,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=0112b α,⎪⎪⎪⎪⎪⎭⎫⎝⎛=0013c α,线性无关.参考答案:线性代数模拟试题六参考答案 一、填空题1. 0.2. 23.2.4.32. 5. k > 2. 二、单项选择题1(B). 2(D). 3(D). 4(B). 5(C). 三、判断题1. (⨯). 2(⨯). 3(√). 4(⨯). 5(√).===================================================================================================四、Solution (1)由于⎪⎪⎪⎭⎫ ⎝⎛---→⎪⎪⎪⎭⎫ ⎝⎛-+-100210011110001101100210010011001101211r r⎪⎪⎪⎭⎫ ⎝⎛-----→⎪⎪⎪⎭⎫ ⎝⎛----→+-++111100122010112001111100011110001101132332111r r r r r r ⎪⎪⎪⎭⎫ ⎝⎛-----→-11110012201011200121r ,因此,有⎪⎪⎪⎭⎫ ⎝⎛-----=-1111221121A .(2) 因为B AX =,所以⎪⎪⎪⎭⎫⎝⎛-----=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛-----==-3222342254100111031111221121B A X .五、Solution 因为()⎪⎪⎪⎪⎪⎭⎫⎝⎛-→⎪⎪⎪⎪⎪⎭⎫⎝⎛--=+-+400027120330130101424271210311301,,,4321214321r r r r αααα⎪⎪⎪⎪⎪⎭⎫⎝⎛→⎪⎪⎪⎪⎪⎭⎫ ⎝⎛→⎪⎪⎪⎪⎪⎭⎫⎝⎛→↔+--+-00001000011013011000000001101301100001100110130143324231141312r r r r r r r r ⎪⎪⎪⎪⎪⎭⎫⎝⎛→+-0000100001100301131r r , 于是,421,,ααα是极大无关组且2133ααα+=.===================================================================================================六、Solution 将增广矩阵B 化为行最简形得⎪⎪⎪⎭⎫ ⎝⎛----→⎪⎪⎪⎭⎫ ⎝⎛=+-322103221011111322100112311111213r r B⎪⎪⎪⎭⎫ ⎝⎛-------→⎪⎪⎪⎭⎫ ⎝⎛----→++000003221021101000003221011111123211r r r r ⎪⎪⎪⎭⎫ ⎝⎛---→-00000322102110121r , 这时,可选43,x x 为自由未知量.令0,043==x x 得特解⎪⎪⎪⎪⎪⎭⎫⎝⎛-=0032*η.分别令⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛10,0143x x 得基础解系⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=1021,012121ξξ. 原线性方程组的通解为⎪⎪⎪⎪⎪⎭⎫⎝⎛-+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=00321021012121k k x ,其中21,k k 为任意常数.七、Solution 所给二次型的矩阵为⎪⎪⎪⎭⎫⎝⎛--=102000201A ,)3)(1(122110200201||λλλλλλλλλλ-+=-----=-----=-E A ,===================================================================================================所以A 的特征值为-1,0,3.当1-=λ时,齐次线性方程组=+x E A )(0的基础解系为⎪⎪⎪⎭⎫ ⎝⎛=1011ξ,单位化得⎪⎪⎪⎪⎪⎭⎫⎝⎛=210211p . 当0=λ时,齐次线性方程组=-x E A )0(0的基础解系为⎪⎪⎪⎭⎫⎝⎛=0102ξ,单位化得⎪⎪⎪⎭⎫ ⎝⎛=0102p .当3=λ时,齐次线性方程组=-x E A )3(0的基础解系为⎪⎪⎪⎭⎫ ⎝⎛-=1013ξ,单位化得⎪⎪⎪⎪⎪⎭⎫⎝⎛-=210213p .取()⎪⎪⎪⎪⎪⎭⎫⎝⎛-==2102101021021,,321p p p P ,在正交变换Py x =下得二次型的标准型为23213y y f +-=.===================================================================================================八、Proof 因为()⎪⎪⎪⎪⎪⎭⎫ ⎝⎛→⎪⎪⎪⎪⎪⎭⎫ ⎝⎛→⎪⎪⎪⎪⎪⎭⎫⎝⎛=+-+-001010100001011100001011111,,341311321c b a c b a c b ar r r r ααα ⎪⎪⎪⎪⎪⎭⎫⎝⎛→⎪⎪⎪⎪⎪⎭⎫⎝⎛→⎪⎪⎪⎪⎪⎭⎫⎝⎛→↔↔↔+-+-+-00010*********0000010001001010000100433241212324r r r r r r r cr r br r ar , 于是321,,ααα的秩为3,所以321,,ααα线性无关.1:[论述题]一、填空题(每小题3分,共15分)1. 设A = ⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤411023, B =,010201⎢⎣⎡⎥⎦⎤则AB = ⎪⎪⎪⎭⎫⎝⎛. 2. 设A 为33⨯矩阵, 且方程组Ax = 0的基础解系含有两个解向量, 则R (A ) = ( ). 3. 已知A 有一个特征值-2, 则B = A 2+ 2E 必有一个特征值( ). 4. 若α=(1, -2, x )与),1,2(y =β正交, 则x y = ( ). 5. 矩阵A = ⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤-301012121所对应的二次型是( ).二、单选题(每小题3分,共15分)1. 如果方程⎪⎩⎪⎨⎧=+=-=-+0404033232321kx x x x x kx x 有非零解,则k = ( ).(A) -2 (B) -1===================================================================================================(C) 1 (D) 22. 设A 为n 阶可逆方阵,下式恒正确的是( ). (A) (2A )-1 = 2A -1 (B) (2A )T = 2A T (C) [(A -1)-1]T = [(A T )-1]T (D) [(A T )T ]-1 = [(A -1)-1]T3. 设β可由向量α1 = (1,0,0),α2 = (0,0,1)线性表示,则下列向量中β只能是( ). (A) (2,1,1) (B) (-3,0,2) (C) (1,1,0) (D) (0,-1,0)4. 向量组α1 ,α2 …,αs 的秩不为s (s 2≥)的充分必要条件是( ). (A) α1 ,α2 …,αs 全是非零向量 (B) α1 ,α2 …,αs 全是零向量(C) α1 ,α2 …,αs 中至少有一个向量可由其它向量线性表出 (D) α1 ,α2 …,αs 中至少有一个零向量 5. 与矩阵A = ⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤200010001相似的是( ).(A) ⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤100020001(B) ⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤200010011(C) ⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤200011001(D) ⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤100020101三、判断题(每小题3分,共15分): 正确打“√”,错误打“×”.1. 设A 为三阶方阵且|A | = -2,则|3A T A | = -108. ( )2. 设A 为四阶矩阵,且|A | = 2,则|A *| = 23. ( ) 3. 设A 为m n ⨯矩阵,线性方程组Ax = 0仅有零解的充分必要条件是A 的行向量组线性无关. ( )4. 设A 与B 是两个相似的n 阶矩阵,则E B E A λλ-=-. ( )5. 设二次型,),(23222132,1x x x x x x f +-=则),(32,1x x x f 负定. ( )四、 (10分) 计算四阶行列式1002210002100021的值.===================================================================================================五、(10分) 设A =⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤-200200011, B =⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤300220011,且A , B , X 满足E X B A B E =--T T 1)( . 求X , X .1-六、(10分) 求矩阵A = ⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤-311111002的特征值和特征向量.七、(15分) 用正交变换化二次型322322213214332),,(x x x x x x x x f +++=为标准型,并写出所作的变换.八、(10分) 设21,p p 是矩阵A 的不同特征值的特征向量. 证明21p p +不是A 的特征向量.参考答案: 一、填空题1.⎪⎪⎪⎭⎫ ⎝⎛241010623. 2. 1. 3. 6. 4. 0.5. 2322312121324x x x x x x x +-++. 二、单项选择题1(B). 2(B) . 3(B) . 4(C) . 5(A) . 三、判断题1.( ⨯). 2(√). 3(⨯). 4(√). (5) (⨯). 四、Solution 按第1列展开,得===================================================================================================210021002)1(2100210021)1(110022100021000211411++-⋅+-⋅= 158)1(21-=⋅-⋅+=.五、Solution 由于E X B A B E =--T T 1)(,即[]E X A B E B =--T1)(,进而()E X A B =-T ,所以()[]1T --=A B X .因为()⎪⎪⎪⎭⎫ ⎝⎛=-100020002TA B ,所以⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=-100021000211000200021X . 六、Solution 因为λλλλλλλ----=----=-3111)2(31111102||E A321)2(3111)2(3212)2(12λλλλλλλ-=--=----=+c c , 所以A 的特征值为2.对于2=λ时,齐次线性方程组=-x E A )2(0与0321=+-x x x 同解,其基础解系为⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛=101,01121ξξ,于是,A 的对应于2的特征向量为⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎭⎫ ⎝⎛10101121k k ,其中21,k k 不全为0. 七、Solution 所给二次型的矩阵⎪⎪⎪⎭⎫ ⎝⎛=320230002A .===================================================================================================因为λλλλλλλ---=---=-3223)2(32023002||E A )1)(5)(2(3121)5)(2(3525)2(121λλλλλλλλλλ---=---=----=+c c , 所以A 的特征值为1, 2, 5.当1=λ时,齐次线性方程组=-x E A )(0的基础解系为⎪⎪⎪⎭⎫ ⎝⎛-=1101ξ,单位化得⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=212101p . 当2=λ时,齐次线性方程组=-x E A )2(0的基础解系为⎪⎪⎪⎭⎫ ⎝⎛=0012ξ,单位化得⎪⎪⎪⎭⎫ ⎝⎛=0012p .当5=λ时,齐次线性方程组=-x E A )5(0的基础解系为⎪⎪⎪⎭⎫ ⎝⎛=1103ξ,单位化得⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=212103p .===================================================================================================取()⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-==2102121021010,,321p p p P ,在正交变换Py x =下得二次型的标准型为23222152y y y f ++=. 八、Proof 令21,p p 是A 的对应于不同特征值21,λλ的特征向量,即111p Ap λ=,222p Ap λ=.假设21p p +是A 的对应于λ的特征向量,即)()(2121p p p p A +=+λ. 由于22112121)(p p Ap Ap p p A λλ+=+=+,所以)(212211p p p p +=+λλλ,于是=-+-2211)()(p p λλλλ0. 根据性质4,知021=-=-λλλλ,进而21λλ=,矛盾.。
西南大学课程考核《 线性代数 》课程试题 【A 】卷3. A =⎪⎪⎪⎭⎫ ⎝⎛300020001, then A -1 is ( )A. ⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛10002100031 B. ⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛31000210001 C. ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛21000100031 D.⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛100031000214. A , B , C are square matrices and AB =AC , we can conclude ( ):A. A is a zero matrixB. A is a zero matrix if B ≠CC. B =C if A is not zero matrixD. B =C if det A ≠05. Rewrite ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫⎝⎛-=2121211422),(),(x x x x x x f as a standard quadratic form x T A x , A = ( ) A. ⎪⎪⎭⎫ ⎝⎛1-332B. ⎪⎪⎭⎫ ⎝⎛1-422C. ⎪⎪⎭⎫⎝⎛1-212 D. ⎪⎪⎭⎫⎝⎛1001III. Solve the following problem (15points)Given a homogenous linear system: ⎪⎩⎪⎨⎧-=+++=+++=+++2321321321)1()1(0)1(λλλλλx x x x x x x x xFind the value of λ when the system has:a) Exactly one solution; b) No solution;c) Infinitely many solutions.In case c), describe all possible solutions as a linear combination of some vectors. Answer:西南大学课程考核(试题【A】卷) ——————————————密————————————封————————————线——————————————《 线性代数 》课程试题 【A 】卷IV . Calculate the determinant of matrix A (9points)⎪⎪⎪⎪⎪⎭⎫⎝⎛--+---+---=1111111111111111x x x x A Answer:西南大学课程考核(试题【A】卷)——————————————密————————————封————————————线——————————————V. Calculation (10 points)Matrix A and B satisfy AB=A+2B,⎪⎪⎪⎭⎫⎝⎛=321-11324A, Calculate matrix B. Answer:《线性代数》课程试题【A】卷VI. (12points)A linear transformation in 2 is defined as the composition of the following steps:(1)Rotate θ counterclockwise (逆时针旋转θ), where θ=tan-1(0.75); (0.75的反正切)(2)Scale by the factor 2 (放大到原来的2倍);(3)Reflection through x1-axis (绕x1轴翻转).Determine: the standard matrix of this linear transformation.Is this linear transformation a one to one linear transformation? Explain the reason. Answer:西南大学课程考核(试题【A】卷)——————————————密————————————封————————————线——————————————VII. System analysis (12points)The Internet service supply is a duopoly (两家垄断) in a city. Investigation shows that in customer who currently contracted with company A, 10% will contract with company B in the next year. On the other hand, in the customer who currently contracted with company B, 15% will move to company A in the next year.a)Establish the model which describes the relationship between the market share of currentyear and the market share of the next year.b)Estimate the vector which describes the long-term market share (长期以后的市场份额) ofthese two companies. Explain why it is a stable status and how to converge to this status.(解释为何此份额是稳定的,以及是怎样收敛到此数值的).Answer:《线性代数》课程试题【A】卷VIII. Prove the following statement (7points)A is a 3×3 matrix and A T=-A.Prove: A is not invertible.Answer:。
线性代数课后习题参考答案(初稿)习题一1. 用行列式定义计算下列各题(1)4245322635-=-⨯-⨯=-(2)12130111110101(1)(1)21011110++=-+-=(3)1312001002020030(1)3002(1)243000040040004++=-=⨯-=- (4)11121310000230234645(1)4562(1)3(1)4045681089891078910+++=-=⨯-+⨯-= 2. 利用行列式的性质计算下列各题(1)214121413121506201232123250625062-== (2)28512851105131025319061906512511310805120512121100107609712--------==---=----=----------(3)111111111abac aebcebdcdde adf b c e adfbce bfcfef b c e ----=-=----111024020adfbce adfbce -== (4)3300011()()01000a b b b a b b b ab a b a b a a b a a b a a b a a b b a a b b b b a b a b a -==--=-------- (5)x a a aa x aa a ax a a a ax =(1)(1)(1)(1)x n a a aax n a x a ax n a a x a x n a a ax+-+-+-+- =[(1)]x n a+-1111a aa x a a a x a a ax=[(1)]x na +-1001001001x ax a x a---[(1)]x n a =+-1()n x a --(6)22222222222222222222(1)(2)(3)212325(1)(2)(3)2123250(1)(2)(3)212325(1)(2)(3)212325a a a a a a a ab b b b b b b bc c c c c c c cd d d d d d d d ++++++++++++==++++++++++++(7)12311000011231110001223110200(1)!1232110020123111001n n n n n n n n n n n n n nn -+-+-==--+----+-(8)0121111110001012111112002131111122012301230123241n n n n n n n n n n n n n --------==-----------------12(1)2(1)n n n --=--3. 证明下列各题(1)111111111111111122222222222222223333333333333333a b b c c a a b c c a b b c c a a b b c c a a b c c a b b c c a a b b c c a a b c c a b b c c a ++++++++++=++++++++++++111111111111112222222222222233333333333333a b c c b c c a a b c b c a a b c c b c c a a b c b c a a b c c b c c a a b c b c a ++=+++=+++ 1112223332a b c a b c a b c = (2)00()()()()00x y z x z yx y z y z x z x y x y z y z x z y x =-+++-+-+-(证明略)(3)11111111111111111110111111111110111111111110111x x x x x y y y y y y+---=++++--- 21000111111111001111110111001111110111000x x x x y xy x y y y y y y y-⎛-⎫- ⎪=++=++++ ⎪ ⎪---⎝⎭- 222222210011001100y xy x y x xy xy x y x y y y ⎛⎫+ ⎪=+-=-+= ⎪- ⎪-⎝⎭(4)设01211000100010n n n a a x D a x a x----=-, 则按最后一行展开,可得01113210001101(1)0011n n n n n a a x xD a x a x x a x+-------=-+--211122122()n n n n n n n n a xD a x a xD a xa x D --------=+=++=++. 332123223321123210n n n n n n n n n n n a xa a x a xx D a xa a x a x a x a x -----------==+++++=++++++4. 解法参考例 1.11.5. 问齐次线性方程组123123123(1)2402(3)0(1)0x x x x x x x x x λλλ--+=⎧⎪+-+=⎨⎪++-=⎩ 有非零解时,必须满足什么条件? 解:齐次线性方程组有非零解,当且仅当1242310111λλλ---=-. 又124111111231231012111112403(1)(3)λλλλλλλλλλλλ-----=--=--------+-(2)(3)0,λλλ=---=解得,0,λ=或2λ=,或3λ=.所以,当0,λ=或2λ=,或3λ=,齐次线性方程组有非零解.习题二 1. 1654127,2211210712A B A B -⎛⎫⎛⎫+=-=⎪ ⎪---⎝⎭⎝⎭2. 解:由A X B +=, 得020133.221X B A -⎛⎫⎪=-=-- ⎪ ⎪--⎝⎭ 3. 解:213220583221720,0564292290T AB A A B -⎛⎫⎛⎫ ⎪ ⎪-=--=- ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭ 4. 解:(1)()31,2,32132231101⎛⎫ ⎪=⨯+⨯+⨯= ⎪ ⎪⎝⎭ (2)()22411,212336-⎛⎫⎛⎫ ⎪ ⎪-=- ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭, (3)12110162134021311491231042217--⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪=⎪⎪ ⎪ ⎪⎪ ⎪-⎝⎭⎝⎭⎝⎭(4) 131********78113413120510402⎛⎫⎪--⎛⎫⎛⎫⎪= ⎪ ⎪ ⎪---⎝⎭⎝⎭⎪⎝⎭5. 解: (1) 错误,令1101,,0111A B ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭则有AB BA ≠;(2)错误,令1101,,0111A B ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭则有222()2.A B A AB B +≠++(3) 错误,令1101,,0111A B ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭则可得22()().A B A B A B +-≠- (4) 错误, 设00,10A ⎛⎫= ⎪⎝⎭则有20A =,但0.A ≠(5)错误, 设10,00A ⎛⎫= ⎪⎝⎭则有2A A =,但.A I ≠6. 解:2221010(),0101AB A B -⎛⎫⎛⎫== ⎪ ⎪-⎝⎭⎝⎭7. 证明: 因为A 为对称矩阵,所以T A A =. 故(),T T T T T B AB B A B B AB ==因此,T B AB 是对称矩阵.8. 证明: 因为(),(),T T T T T T A A A A AA AA == 所以,T T A A AA 是对称矩阵.9. 解: 由32,A X B -=得43/211(3)15/2127/211/25/2X B A -⎛⎫ ⎪=--=- ⎪ ⎪⎝⎭. 10. 2cos 2sin 2,sin 2cos 2A θθθθ-⎛⎫=⎪⎝⎭cos sin sin cos n n n A n n θθθθ-⎛⎫= ⎪⎝⎭对n 作数学归纳法. 当2n =时,22222cos 2sin 2cos sin 2cos sin sin 2cos 22cos sin cos sin A θθθθθθθθθθθθ-⎛⎫--⎛⎫==⎪ ⎪-⎝⎭⎝⎭, 结论成立. 假设, 当n k =时, 结论成立, 即cos sin sin cos k k k A k k θθθθ-⎛⎫=⎪⎝⎭. 下证1n k =+结论成也立. 由归纳假设可得,1k A+=cos sin cos sin sin cos sin cos k k k A A k k θθθθθθθθ--⎛⎫⎛⎫=⎪⎪⎝⎭⎝⎭cos cos sin sin cos sin sin cos cos sin sin cos cos cos sin sin k k k k k k k k θθθθθθθθθθθθθθθθ---⎛⎫=⎪+-⎝⎭cos(1)sin(1)sin(1)cos(1)k k k k θθθθ+-+⎛⎫=⎪++⎝⎭因此,由归纳法可得cos sin sin cos n n n A n n θθθθ-⎛⎫=⎪⎝⎭. 11. (1)解: 由初等行变换可得,11103111031110311007221240012200122001043314500244000390001311118002150000000000A -------⎛⎫⎛⎫⎛⎫⎛⎫⎪⎪ ⎪⎪----⎪ ⎪ ⎪ ⎪=→→→⎪ ⎪ ⎪ ⎪------ ⎪⎪ ⎪⎪-⎝⎭⎝⎭⎝⎭⎝⎭(2)解: 由初等行变换可得,111111107125016016234000000⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪-→-→- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭12. 解法见第38页 例2.14. 13. (1)解:22222311111111111011111110111λλλλλλλλλλλλλλλλλλλ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪→→---⎪ ⎪ ⎪ ⎪ ⎪ ⎪---⎝⎭⎝⎭⎝⎭2221101100(1)(2)(1)(1)λλλλλλλλλλ⎛⎫ ⎪→--- ⎪ ⎪-+-+⎝⎭, 当2λ=-时, 方程组无解, 当1λ=时,方程组的增广矩阵为111100000000⎛⎫⎪ ⎪ ⎪⎝⎭因此方程组的解为12111010001k k --⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪++ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 12,k k 为任意常数, 当1λ≠, 且2λ≠-时,方程组有唯一解,221211(1)(1),,222x x x λλλλλλλ+++=-=-+=-+++(2)解:322111************213221λλλλλλλλλλλλ---⎛⎫⎛⎫ ⎪⎪--→-- ⎪ ⎪ ⎪ ⎪---⎝⎭⎝⎭ 112111210111011101(2)(1)2(1)00(1)(3)1λλλλλλλλλλλλλλλ--⎛⎫⎛⎫⎪ ⎪→-+--→--- ⎪ ⎪ ⎪ ⎪-------⎝⎭⎝⎭当1λ=时,方程组无解,方程组的增广矩阵为111100000000⎛⎫⎪ ⎪ ⎪⎝⎭因此方程组的解为12111010001k k --⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪++ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 12,k k 为任意常数,当3λ=时,方程组无解,当3λ≠且1λ≠时,方程组有唯一解,123411,,.33x x x λλλ-=-==-- 14. 解: 通过初等变换,可得A 的标准型矩阵为,17100010101002800105100015⎛⎫- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭15. 解析:通过初等行变换可将矩阵()A I 化为()()A I I B →,则1A B -= 例如(1)通过初等行变换,121012101052250101210121-⎛⎫⎛⎫⎛⎫→→ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭, 故 112522521--⎛⎫⎛⎫= ⎪ ⎪-⎝⎭⎝⎭相类似的方法可求的其余矩阵的逆矩阵,答案见教材第177页. 16. 解: 原线性方程组可写成123123122103430x x x ⎛⎫⎛⎫⎛⎫⎪⎪ ⎪= ⎪⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭,因此,11231123132210234301x x x -⎛⎫⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪ ⎪ ⎪==- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭17.(1) 由原矩阵方程可得121122111321182431511133X --⎛⎫-⎛⎫-⎛⎫ ⎪ ⎪== ⎪ ⎪ ⎪-- ⎪⎝⎭ ⎪-⎝⎭⎝⎭, (2) 由原矩阵方程可得1111143120112011104X --⎛⎫⎛⎫⎛⎫⎛⎫ ⎪== ⎪ ⎪⎪ ⎪---⎝⎭⎝⎭⎝⎭⎝⎭(3)由原矩阵方程可得11010143100210100201001134001120010102X ----⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪⎪ ⎪=-=- ⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪--⎝⎭⎝⎭⎝⎭⎝⎭18证明: 因为21()()k k I A I A A A I A I +-++++=-=, 所以12()()k I A I A A A --=++++19. 解: 由220A A I --=, 得()2A I AI -=,3(2)4A IA I I -+=-, 因此,1(),2A I A --=13(2)4A IA I --+=- 20. 证明: 由220A AB B ++=, 且B 可逆得,22[()],()A A B B E B A A B E ---+=-+=,因此,,A A B +可逆,且1212(),().A A B B A B B ----=-++=-21. 令11123,01121001B C ⎛⎫⎛⎫ ⎪== ⎪ ⎪⎝⎭ ⎪⎝⎭,则111311044,0111100122B C --⎛⎫-⎛⎫- ⎪ ⎪==-⎪ ⎪ ⎪ ⎪- ⎪⎝⎭⎝⎭, 因此1111130004411000002200001100001101B B A A A ----⎛⎫- ⎪ ⎪ ⎪-⎛⎫⎛⎫⎪=== ⎪⎪ ⎪⎝⎭⎝⎭- ⎪ ⎪- ⎪⎝⎭. 22. 证明: 若,B C 可逆,则有11000B C I CB --⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭, 所以A 可逆,且1110.0C A B---⎛⎫= ⎪⎝⎭ 反之,若A 可逆, 设其逆为XY Z V ⎛⎫⎪⎝⎭, 则, 000B X Y I o C Z V I ⎛⎫⎛⎫⎛⎫= ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭, 因此,,BZ I CY I ==, 因此,B C 可逆.23. 证明:用反证法. 假设A 是奇异矩阵,则由2A A =, 得211A A AA --=, 即A E =, 这与已知条件矛盾,所以A 是非奇异矩阵.习题三 1. (3,8,7)T β=2. 解: 设11223344,x x x x βαααα=+++ 即12341111121111,1111111111x x x x ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪-- ⎪ ⎪ ⎪ ⎪ ⎪=+++ ⎪ ⎪ ⎪ ⎪ ⎪-- ⎪ ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭ 解得, 12345111,,,4444x x x x ===-=-, 因此12345111.4444βαααα=+--3. 解: 由3(),αβαβ-=+ 得117(1,,2,)222T αα=-=---. 4. 类似第2题的解法,可得1234243.βαααα=+-+ 5. (1) 解: 设1122330,x x x ααα++= 即1231111260133x x x ⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪++= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 上面方程组只有零解,所以123,,ααα线性无关. (2) 因为111111111141406120612117024000A ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=-→-→- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭, 所以秩(A)=2, 故123,,ααα线性相关. 6. 用反证法容易证明结论成立.7. 证明: (1) 设11220,m m x x x βββ+++= 则有11220,m m x x x ααα+++= 又因为12,,,m ααα线性无关, 所以120,m x x x ==== 因此12,,,,mβββ线性无关.(2) 若12,,,,m βββ线性相关, 则存在不全为零的数12,,,,m x x x 使得11220,m m x x x βββ+++= 因此11220,m m x x x ααα+++= 故而12,,,m ααα线性相关.8. 证明: ()⇒设112223331()()()0,k k k αααααα+++++= 整理得,131122233()()()0k k k k k k ααα+++++=,因为123,,ααα线性无关, 所以131223000k k k k k k +=⎧⎪+=⎨⎪+=⎩ 又因为1011100011≠, 所以上面方程组只有零解, 故122331,,αααααα+++线性无关.()⇐ 设1122330,k k k ααα++= 整理得,123121232312331111()()()()()()0,222k k k k k k k k k αααααα+-++-++++-++= 又因为122331,,αααααα+++线性无关, 所以123123123(000k k k k k k k k k +-=⎧⎪-++=⎨⎪-+=⎩ 解得上面方程组只有零解, 因此,123,,ααα线性无关. 证明: 9.(⇒)设1mi i i k αα==∑, 和10.mi i i l α==∑ 则,111()mmmi i i i i i i i i i k l k l αααα====+=+∑∑∑,又α的表达式唯一,因此,i i i k l k += 即0,i l = 故,12,,,m ααα 线性无关.(⇐)设11m m i i i i i i k l ααα====∑∑, 则1()0mi i i i k l α=-=∑,因为12,,,m ααα 线性无关,所以,,i i k l =故α的表达式唯一.10. 证明:因为12,,,m ααα 线性相关, 则存在不全为零的数12,,,m k k k 使得,10.mi i i k α==∑若有某个0i k =, 不妨设10k =,则有20,mi i i k α==∑ 又任一1m -向量都线性无关,因此230m k k k ====, 这与12,,,m k k k 不全为零矛盾,因此12,,,m k k k 全不为零, 命题得证. 11. 答案见教材178页. 12. 解: (1) 因为13213213221307107132076005A c c c ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=-→--→-- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪--+-+⎝⎭⎝⎭⎝⎭所以, 当50,c -+≠ 即5c ≠时,123,,ααα线性无关.(2 ) 当5c =时,123,,ααα线性相关, 且312111.77ααα=+ 13. 解: (1)因为234411231123112311232344050100501032613261050100000102110210120000A ------⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪⎪-- ⎪ ⎪ ⎪ ⎪=→→→⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪⎪------⎝⎭⎝⎭⎝⎭⎝⎭因此,向量组1234,,,αααα的秩为2, 12,αα是一个极大线性无关组, 且314122,2.ααααα==-+用类似的方法可求(2), (3), 答案见教材.14. (1) 因为120131(,)1224αα⎛⎫ ⎪- ⎪= ⎪ ⎪⎝⎭, 有一个二阶子式01331=--,所以秩(12,αα)=2, 即12,αα线性无关.(2) 容易计算124,,ααα线性无关. 15. 答案见教材.16. (1)任取()()12121,,,,,,,,,n n x x x y y y V k R ∈∈则有11220n n x y x y x y ++++++=,120n kx kx kx +++=所以()()()121211221,,,,,,,,,n n n n x x x y y y x y x y x y V +=+++∈,12121(,,,)(,,,)n n k x x x kx kx kx V =∈,因此,1V 是线性空间.(2) 任取()()12122,,,,,,,n n x x x y y y V ∈,则有11222n n x y x y x y ++++++=,因此, ()()()121211222,,,,,,,,,.n n n n x x x y y y x y x y x y V +=+++∉ 因此,2V 不是线性空间. 17. 证明: 因为111111101101211110011==-=--,所以123,,ααα线性无关, 即秩(123,,ααα)=3,故123,,ααα生成的子空间就是R .18. 因为 12311160,032-=-≠ 所以,秩(123,,ααα)=3,故123,,ααα是R 的一组基.令1112233k k k βααα=++, 即123(5,0,7)(1,1,0)(2,1,3)(3,1,2).k k k =-++ 因此123123232350327k k k k k k k k ++=⎧⎪-++=⎨⎪+=⎩, 解得,1232,3,1,k k k ===- 所以112323βααα=+-.19. 方法见例3.17. 20. 见教材答案21. 证明: 因为A 是正交阵, 所以21,1T A A A -==.又*,A A A E = 即*1A A A -=.因此,2**()T A A A E E ==, 故*A 是正交阵. 习题四 1. 解(1)1251251251320170171490214000378017000⎛⎫⎛⎫⎛⎫⎪ ⎪⎪---⎪ ⎪ ⎪→→⎪ ⎪ ⎪-- ⎪ ⎪⎪-⎝⎭⎝⎭⎝⎭, 所以,原方程组与下面方程组同解,1232325070x x x x x ++=⎧⎨-=⎩选取3x 作为自由未知量, 解得基础解系为1971-⎛⎫ ⎪ ⎪ ⎪⎝⎭, 因此, 方程组的解为1971k -⎛⎫ ⎪ ⎪ ⎪⎝⎭(2)313411311131159815980467113131340000------⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪--→--→-- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪----⎝⎭⎝⎭⎝⎭, 选取选取34,x x 作为自由未知量, 解得基础解系为3/23/43/27/4,1001-⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭故方程组的同解为123/23/43/27/41001k k -⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭(3)见教材答案 (4)见教材答案2. (1) 对增广矩阵做行初等变换得1121011210(,)211210*********/200031/2A b --⎛⎫⎛⎫ ⎪ ⎪=--→ ⎪ ⎪ ⎪ ⎪----⎝⎭⎝⎭解得特解为5/6101/6⎛⎫⎪ ⎪ ⎪ ⎪-⎝⎭, 对应的齐次线性方程组的基础解系为3510-⎛⎫ ⎪- ⎪ ⎪ ⎪⎝⎭, 因此方程组的同解为5/6101/6⎛⎫ ⎪ ⎪ ⎪ ⎪-⎝⎭+3510k -⎛⎫ ⎪- ⎪ ⎪ ⎪⎝⎭(2) 答案见教材 3. (略)4. 证明: 令i e 为n 阶单位矩阵的第i 列,即(0,0,,1,0,,0)Ti ie =, 则有0,1,2,,i Ae i n ==,因此12(,,,)0,n A e e e AI == 故0A =。
线性代数练习题(答案)一、填空题:1. 五阶行列式中,项a 21 a 32 a 53 a 15a 44 的符号为 负 。
2. 行列式某两行(列)元对应成比例,则行列式的值 0 。
3. 已知⎪⎪⎭⎫⎝⎛-=162131A ,⎪⎪⎪⎭⎫ ⎝⎛-=4113095B ,则AB 等于⎪⎪⎭⎫⎝⎛--42146 . 4. 若⎪⎪⎪⎭⎫⎝⎛=t A 31322013,且秩(A)=2,则t = 6 .5. 已知方阵A 满足02=++cE bA aA (c b a ,,为常数0≠c ),则=-1Ac bE aA )(+6.4阶行列式4713482475010532--中(3,2)元素的代数余子式A 32是 -223 .7.向量组(Ⅰ)α1 , α2 ,…, αr 与向量组(Ⅱ)β1,β2,…, βs 等价,且组(Ⅰ)线性无关,则r 与s 的大小关系为 s r ≤ .8. 设A=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡500030201,A *为A 的伴随矩阵,则| A *|= 225 .9. 排列4 6 7 1 5 2 3的逆序数是 13 .10.四阶行列式44434241343332312423222114131211a a a a a a a a a a a a a a a a D =是 24 项的代数和,其中含11a 的项共6项。
11. 任意一个数域都包含 有理 数域.12. 设λ1, λ2 ,…, λn 是矩阵A 的n 个特征值,则λ1 λ2…λn= | A| 。
13. 设矩阵A =100220340⎛⎫ ⎪⎪ ⎪⎝⎭,那么矩阵A 的列向量组的秩为 2 .14.设向量α=(1,2,3,4),则α的单位化向量为 30)4,3,2,1( .15.设A ,B 均为三阶方阵,且|A |= -3,|B |=6,则|AB |= 18 . 16. 设)0,1,1(),1,1,0(),1,0,1(321===βββ是3F 的一个基,则3F 的自然基321,,εεε到321,,βββ的过渡矩阵为 ⎪⎪⎪⎭⎫ ⎝⎛011110101 .16. 在欧氏空间4R 中,()1,0,0,1=α,()0,1,0,1=β,则α与β的夹角等于3π. 17.已知⎪⎪⎪⎭⎫⎝⎛--=710321A ,⎪⎪⎪⎭⎫ ⎝⎛-=4113095B ,则A-2B 等于⎪⎪⎪⎭⎫⎝⎛---12163209 . 18. 与矩阵101032120-⎛⎫⎪=- ⎪⎪-⎝⎭A 对应的二次型是x x x x x x x x x f 32312221321423),,(-++-= .19. 二次型f(x 1,x 2,x 3)=323121232221x x 4x x x x 4x 3x 2x +--+-的对称矩阵为___⎪⎪⎪⎭⎫ ⎝⎛---322220201_____ . 20. 若二次型f(x 1,x 2,x 3, x 4)的正惯性指数为3,符号差为2,则f(x 1,x 2,x 3 ,x 4)的规范型为yy y y 24232221-++二、单项选择题:1. 设2阶方阵A 可逆,且A=⎪⎭⎫ ⎝⎛--2173,则A -1=( A )。
2015年数学二线代大题1. 计算题(1)已知正整数 $a$ 和 $b$ 满足$\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{5}{18}$,求 $a+b$ 的值。
解:两边同乘 $18ab$,得 $18b+18a=5ab$。
移项整理可得 $ab-18a-18b=0$。
根据韦达定理,$a,b$ 是 $x^2-18x$ 的两个根,所以 $a+b=18$。
答案:$a+b=18$。
(2)已知函数 $f(x)=\log_2\left(\dfrac{2^x+1}{2^x-1}\right)$,求$f(2015)$。
解:$$\begin{aligned}f(x)&=\log_2\left(\dfrac{2^x+1}{2^x-1}\right)=\log_2\left(\dfrac{(2^x-1)+2}{(2^x-1)-1}\right)\\&=\log_2\left(1+\dfrac{2}{2^x-1}\right)=\log_2\left(1+\dfrac{1}{2^{x-1}-\frac{1}{2}}\right)\\&=\log_2\left(\dfrac{2^{x-1}+\frac{1}{2}}{2^{x-1}-\frac{1}{2}}\right)=\log_2\left(\dfrac{(2^{x-1}+\frac{1}{2})^2}{(2^{x-1}-\frac{1}{2})(2^{x-1}+\frac{1}{2})}\right)\\&=\log_2\left(\dfrac{2^{2x-2}+2^{x-1}+\frac{1}{4}}{2^{2x-2}-\frac{1}{4}}\right)=2-\log_2\left(2^{2x-2}-\frac{1}{4}\right)\end{aligned}$$因为 $2014=2^1+2^2+\cdots+2^{10}$,所以$2^{2014}=2^{2^1}\times2^{2^2}\times\cdots\times2^{2^{10}}$。
西南大学线性代数作业答案第一次行列式部分的填空题1.在5阶行列式ij a 中,项a 13a 24a 32a 45a 51前的符号应取 + 号。
2.排列45312的逆序数为 5 。
3.行列式25112214---x中元素x 的代数余子式是 8 . 4.行列式10232543--中元素-2的代数余子式是—11 。
5.行列式25112214--x 中,x 的代数余子式是—5 。
6.计算00000d c ba = 0行列式部分计算题 1.计算三阶行列式381141102--- 解:原式=2×(—4)×3+0×(—1)×(—1)+1×1×8—1×(—1)×(—4)—0×1×3—2×(—1)×8=—42.决定i 和j ,使排列1 2 3 4 i 6 j 9 7 为奇排列. 解:i =8,j=5。
3.(7分)已知0010413≠x x x,求x 的值.解:原式=3x 2—x 2—4x=2 x 2—4x=2x(x —2)=0 解得:x 1=0;x 2=2所以x={x │x ≠0;x ≠2 x ∈R } 4.(8分)齐次线性方程组=++=++=++000z y x z y x z y x λλ 有非零解,求λ。
解:()211110100011111111-=--==λλλλλD由D=0 得λ=15.用克莱姆法则求下列方程组:=+-=++=++10329253142z y x z y x z y x 解:因为331132104217117021042191170189042135113215421231312≠-=?-?=-------=-------=)(r r r r r r D 所以方程组有唯一解,再计算:811110212942311-=-=D 1081103229543112-==D1351013291531213=-=D因此,根据克拉默法则,方程组的唯一解是:x=27,y=36,z=—45第二次线性方程组部分填空题1.设齐次线性方程组A x =0的系数阵A 的秩为r ,当r= n 时,则A x =0 只有零解;当A x =0有无穷多解时,其基础解系含有解向量的个数为 n-r .2.设η1,η2为方程组A x =b 的两个解,则η1-η2或η2-η1 是其导出方程组的解。
线性代数第1次作业本次作业是本门课程本学期的第1次作业,注释如下:一、单项选择题(只有一个选项正确,共8道小题)1. 下列矩阵中,不是初等矩阵。
(A) (001010100)(B) (100000010)(C) (100020001)(D) (10001−2001)正确答案:B解答参考:初等矩阵一定是可逆的。
2. 设 A为m×n 矩阵,则。
(A) 若m<n,则Ax=b有无穷多个解;(B) 若m<n,则Ax=0有非零解,且基础解系含有n−m个解向量;(C) 若A有n阶子式不为零,则Ax=b有唯一解;(D) 若A有n阶子式不为零,则Ax=0仅有零解。
正确答案:D解答参考:A错误,因为 m<n ,不能保证 R(A)=R(A|b) ;B错误, Ax=0 的基础解系含有 n−R( A ) 个解向量;C错误,因为有可能 R(A)=n<R(A|b)=n+1 , Ax=b 无解;D正确,因为R(A)=n。
3. A、B为 n阶方阵,且A、B等价,| A |=0 ,则R(B) 。
(A) 小于n(B) 等于n(C) 小于等于n(D) 大于等于n正确答案:A解答参考:4. 若A为5阶方阵且|A|=2,则|-2A|= 。
(A) 4(B) -4(C) -64(D) 64正确答案:C解答参考:5. 线性方程组 { a11 x 1 + a12 x 2 +⋯+a 1n x n =b 1 a 21 x 1 + a 22 x 2 +⋯+ a 2n x n = b 2 ⋯⋯⋯⋯ a m1 x 1 + a m2 x 2 +⋯+ a mn x n = b m 的系数矩阵为 A,增广矩阵为 A ¯ ,则它有无穷多个解的充要条件为。
(A) R(A)=R(A¯)<n(B) R(A)=R(A¯)<m(C) R(A)<R(A¯)<m(D) R(A)=R(A¯)=m正确答案:A解答参考:6. 一个 n维向量组α 1 , α 2 ,⋯, αs (s>1) 线性相关的充要条件是(A) 有两个向量的对应坐标成比例(B) 含有零向量(C) 有一个向量是其余向量的线性组合(D) 每一个向量都是其余向量的线性组合正确答案:C解答参考:7. 设3阶矩阵 A的特征值为 1 , −1 , 2 ,则下列矩阵中可逆矩阵是(A) E−A(B) E+A(C) 2E−A(D) 2E+A正确答案:D解答参考:8. 设α 1 , α 2 , α 3 是齐次方程组Ax=0 的基础解系,则下列向量组中也可作为 Ax=0 的基础解系的是(A) α1+α2,α2+α3,α1+2α2+α3(B) α1+α2,α2+α3,α3−α1(C) α1+α2,α2+α3,α3+α1(D) α1−α2,0,α2−α3正确答案:C解答参考:三、判断题(判断正误,共6道小题)9.如果行列式有两行元素完全相同,则行列式为零。
2015线性代数练习题答案1001. 二阶行列式2一、单项选择题3k?0的充分必要条件是15kA. k?k? B. ?kC.?k?D. k?2或k?3100解析:按第一行展开:23k3k?1?A11?1?1?3?k2?0k15k13?521110?5设中第一行元素的代数余子式为A11,A12,A13,A1411112. ?4?1?3则A11?A12?A13?A14=A.0 B.2C.3D.71111110?5解析:A11?A12?A13?A14=?011112?4?1?3第二个等号:行列式的性质。
1103. 已知行列式x31中,代数余子式A12?0,则|A|? x2解析:A12?所以x?21?2x1?4?2x?02福建师范大学协和学院答题纸共页,第1页代入原行列式计算。
A. -B.C.D. 04.下列结论正确的是A. 若AB?AC,则B?CB. ?AB??A?1B?1T?1C. ?AB??BTATD. 若A2?0,则A=05.设向量组?1?,?2?,?3?,和?1?,?2?,则向量组间的关系是A. 向量组?1,?2,?3能被?1,?2线性表示,但?1,?2不能被?1,?2,?3线性表示B. 向量组?1,?2能被?1,?2,?3线性表示,但?1,?2,?3不能被?1,?2线性表示C. 向量组?1,?2和?1,?2,?3等价D.向量组?1,?2不能被?1,?2,?3线性表示,且?1,?2,?3不能被?1,?2线性表示R?3R?3R?2解析:R?R1,?2可以由?1,?2,?3线性表出R?2?R?3??1,?2,?3不可以由?1,?2线性表出6. 下列不是矩阵An?n可逆的充分必要条件的是A. 矩阵A为非奇异矩阵B. A?0C. 齐次线性方程组Ax?0有唯一解D. A满秩矩阵解析:A:定义。
?10?B:例如,??不是0矩阵,但是其行列式=0,不可逆。
00??福建师范大学协和学院答题纸共页,第2页A?0才是矩阵An?n可逆的充要条件。
一、填空题(每小题3分,共15分)
1. 设线性方程组Ax = 0,A 是4×5阶矩阵,如果R (A ) = 3,则其解空间的维数为(2 ).
2. 设三阶方阵2000023A x y ⎛⎫ ⎪
= ⎪ ⎪⎝⎭
可逆,则,x y 应满足条件(
).
3. 向量组(A ): r ααα,,,21 与向量组(B ): s βββ,,,21 等价,且向量组(A )线性无关,则r 与s 的大小关系是(
).
4. 设A 为3阶方阵, 且2||-=A ,*A 是A 的伴随矩阵, 则
=+-*14A A ( -4 ).
5. 若线性方程组⎪⎩
⎪
⎨⎧+==--=+-2221
32332321λλx x x x x x 无解..
,则λ = ( 0 ). 二、单选题(每小题3分,共15分)
1. 在下列矩阵中,可逆的是( D ).
(A)
(B)
(C)
(D)
.
2、已知
、
是非齐次线性方程组Ax = b 的两个不同的解,
、
是其导出组Ax
= 0的一个基础解系,k 1、k 2为任意常数,则方程组Ax = b 的通解可表成( D ).
(A) 2)(2121211ββββα-+
++k k (B) 2
)(2
121211ββββα++++k k (C) 2212211ββαα-+
+k k (D) 2
212211ββαα+++k k 3. 设A 是
矩阵,则齐次线性方程组Ax = 0仅有零解的充分必要条件是( C ).
(A) A 的行向量组线性无关 (B) A 的行向量组线性相关 (C) A 的列向量组线性无关
(D) A 的列向量组线性无关
4. 设A , B 为同阶可逆矩阵,0λ≠为数,则下列命题中不正确的是( B ). (A) A A =--11)( (B) 11)(--=A A λλ (C) 111)(---=A B AB (D) ()T
1
1T )(--=A A
5. 二次型222
1231213231002f x x x x x x x x x =+++-+是( A ).
(A) 正定的 (B) 负定的 (C) 半正定的 (D) 不定的
三、判断题(下列叙述正确的打“√”,错误的打“×”,每小题3分,共15分)
1. 方阵3223⨯⨯B A 一定不可逆. ( × )
2. 若Ax = 0只有零解,则Ax = b (b ≠ 0)有唯一解. ( √ )
3. 转置运算不改变方阵的行列式、秩和特征值. ( √ )
4. 设 A 、B 为n 阶方阵,且AB = 0,但 |A | ≠ 0,则B = 0. ( √ )
5. 设n 阶实矩阵n n n ij a λλλ 21,,)(⨯=A 是它的n 个实特征值,则有
||21A =n λλλ . ( × )
四、(10分) 设三阶方阵⎪⎪⎪
⎭
⎫
⎝⎛-=100110111A ,且E AB A =-2,求矩阵B .
解:Solution 显然|A | = 1 1 0,于是A 可逆,因为
,所以,
两边左乘
,得
. 由于
所以,进而.
五、(10分) 若λ是A 的特征值(λ≠0,A 可逆)证明λ
λ1
2+
是1
2-+A A 的特征值.
解:Proof 若
,则,
所以是的特征值.
六、(10分) 向量组1234(1,3,2,0),(7,0,14,3),(2,1,0,1),(5,1,6,2),T T T T αααα===-=
5(2,1,4,1)T α=-,(1) 计算该向量组的秩,(2) 写出一个极大无关组,并将其余向量用该极
大无关组线性表示.
解:
Solution
,
为一个极大无关组,
,
.
七、(10分) 计算矩阵110430102-⎛⎫
⎪- ⎪ ⎪⎝⎭
的特征值与特征向量.
解:Solution 由于
,
于是A 的所有特征值为1, 2.
当时,解线性方程组,得基础解系为, 对应的所有特征向量
为,其中为任意常数.
当时,解线性方程组,得基础解系为, 对应的所有特征向量
为,其中为任意常数.
八、(15分) k 满足什么条件时,方程组⎪⎩⎪
⎨⎧=++=++-=++0
2223221
2321321x k x x k kx x x k
x x x 有唯一解,无解,有无穷多
解?
解:Solution 由于
(1) 当
且
时,线性方程组有惟一解.
(2) 当时,有原线性方程组无解.
(3) 当时, 有原线性方程组有解.当时,
, 这时线性方程组只有零解. 当时,
, 这时方程组有无穷多解.。