当前位置:文档之家› 进化计算

进化计算

进化计算
进化计算

进化优化研究领域

由于优化在工程应用问题的广泛存在,数学家和计算领域的专家已经投入了巨大的精力并取得了一系列有意义的研究成果。

★广义上来说,这些优化算法可以分为两类:精确和随机算法。精确算法包括分支限界算法和动态规划算法等等。但是,当出现问题的规模上升到一定的程度、先验知识较少或者问题的复杂性较高的情况时,这些算法的性能会急剧下降,甚至出现失效的情况。特别地,对于NP完全或者NP难问题的解决上,精确算法的应用非常有限。

★随机算法中的进化算法(Evolutionary Algorithm)是一类算法框架灵感来源于自然的算法。相比于精确算法,进化算法具有以下特性:(1)无需先验过多问题先验知识;(2)对于问题是否线性可微、可导和连续没有要求;(2)自动采取设定机制对抗各种约束条件;(3)优化性能优秀。因此进化优化领域研究已经成为了国内外研究的热点。

★实验室工作主要包括:(1)面向大规模优化应用的进化计算研究;(2)进化算法应用于电力系统经济负载调配应用;(3)应用于数字IIR滤波器涉及的进化计算研究;(4)最优化软硬件协同设计研究。

进化算法能够做什么?

设计一个有鲁棒性的算法可以在未知高维空间中寻找出最小值。

应用领域:

面向大规模优化的进化计算研究

在生产实践与科学研究中,存在许多大规模优化问题。例如,大规模电网配置与调度[1]、移动通信网络设计、生物医学信息处理、以及数据挖掘等等。这些问题的共同特点是决策空间维数很高,一般在102~104量级。维数的增高在导致决策空间急剧增大的同时,也会造成问题求解难度的迅速增大。例如,有些优化问题的局部最优的个数会随着维数增加呈指数

级增长[5],使得算法更难接近全局最优解。此外,在一些应用问题中,各维之间还可能存在较强的依赖关系,使得问题变得更为复杂。

对于这个问题,我们展开以下几方面研究内容:一、研究不同类型优化问题的特性随维数增长的变化规律及其分析方法;二、研究各种进化计算技术在大规模优化问题中的行为规律及其分析方法;三、研究针对复杂大规模优化问题的进化策略及其评测方法;四、研究有效求解大规模复杂优化问题的进化算法。

进化算法应用于电力系统经济负载调配应用;

作为电力系统运行中一个重要的优化任务,经济分配(Economic load dispatch:ELD)的目标是在一个大型电网中优化全部发电机组的发电成本,同时保证发电量的总和满足系统的负载需求,以及发电总量不超过各发电机发电能力之和。实际工程应用中的ELD问题常常被描述为一个多峰的、带有严格等式和不等式约束的优化问题。

电力系统经济分配问题是电力系统运行中一个重要的优化问题。此前,各国学者已经应用多种经典数学逼近方法和启发式搜索算法对该问题进行了研究。但是,这些方法仍然存在一些问题,主要表现为:1)算法的稳定性得不到保证;2)算法在大规模电力系统ELD问题上的性能仍然不能令人满意。为了解决这些问题,我们致力于设计搜索效率高、简单易行、和简便的参数控制的进化算法。

应用于数字IIR滤波器设计的进化计算研究;

数字滤波器是对数字信号进行滤波处理以得到期望的响应特性的离散时间系统。作为一种电子滤波器,数位滤波器与完全工作在模拟信号域的模拟滤波器不同。数位滤波器工作在数字信号域,它处理的对象是经由采样器件将模拟信号转换而得到的数字信号。

数位滤波器理论上可以实现任何可以用数学算法表示的滤波效果。数位滤波器的两个主要限制条件是它们的速度和成本。数位滤波器不可能比滤波器内部的计算机的运算速度更快。但是随着集成电路成本的不断降低,数位滤波器变得越来越常见并且已经成为了如收音机、蜂窝电话、立体声接收机这样的日常用品的重要组成部分。

我们全面考虑数字IIR滤波器的各项指标:幅频响应、相频响应和阶数,运用多目标优化进化算法的框架,寻求自动化程度较高的智能设计途径。

差分进化算法及应用研究

湖南大学 硕士学位论文 差分进化算法及应用研究 姓名:吴亮红 申请学位级别:硕士 专业:控制理论与控制工程指导教师:王耀南 20070310

硕士学位论文 摘要 论文首先介绍了智能优化算法的产生对现代优化技术的重要影响,阐述了智能优化算法的研究和发展对现代优化技术和工程实践应用的必要性,归纳总结了智能优化算法的主要特点,简要介绍了智能优化算法的主要研究内容及应用领域。 对差分进化算法的原理进行了详细的介绍,给出了差分进化算法的伪代码。针对混合整数非线性规划问题的特点,在差分进化算法的变异操作中加入取整运算,提出了一种适合于求解各种混合整数非线性规划问题的改进差分进化算法。同时,采用时变交叉概率因子的方法以提高算法的全局搜索能力和收敛速率。用四个典型测试函数进行了实验研究,实验结果表明,改进的差分进化算法用于求解混合整数非线性规划问题时收敛速度快,精度高,鲁棒性强。 采用非固定多段映射罚函数法处理问题的约束条件,提出了一种用改进差分进化算法求解非线性约束优化问题的新方法。结合差分进化算法两种不同变异方式的特点,引入模拟退火策略,使算法在搜索的初始阶段有较强的全局搜索能力,而在后阶段有较强的局部搜索能力,以提高算法的全局收敛性和收敛速率。用几个典型Benchmarks函数进行了测试,实验结果表明,该方法全局搜索能力强,鲁棒性好,精度高,收敛速度快,是一种求解非线性约束优化问题的有效方法。 为保持所求得的多目标优化问题Pareto最优解的多样性,提出了一种精英保留和根据目标函数值进行排序的多目标优化差分进化算法。对排序策略中目标函数的选择方式进行了分析和比较,并提出了一种确定进化过程中求得的精英解是否进入Pareto最优解集的阈值确定方法。用多个经典测试函数进行了实验分析,并与NSGA-Ⅱ算法进行了比较。实验结果表明,本文方法收敛到问题的Pareto前沿效果良好,获得解的散布范围广,能有效保持所求得的Pareto最优解的多样性。 提出了一种新的基于群体适应度方差自适应二次变异的差分进化算法。该算法在运行过程中根据群体适应度方差的大小,增加一种新的变异算子对最优个体和部分其它个体同时进行变异操作,以提高种群多样性,增强差分进化算法跳出局部最优解的能力。对几种典型Benchmarks函数进行了测试,实验结果表明,该方法能有效避免早熟收敛,显著提高算法的全局搜索能力。提出了将该改进算法用来整定不完全微分PID控制器最优或近似最优参数的新方法。为克服频域中常用的积分性能指标如IAE,ISE和ITSE的不足,提出了一种新的时域性能指标对控制器性能进行测试和评价。用三个典型的控制系统对提出的ASMDE-PID控制器进行了测试。实验结果表明,该方法实现容易,收敛性能稳定,计算效率高。与ZN,GA和ASA方法相比,DE在提高系统单位阶跃响应性能方面效率更高,鲁棒性更强。 为了提高差分进化算法的全局搜索能力和收敛速率,提出了一种双群体伪并行差分

现代混凝土配合比全计算法设计软件使用说明

现代混凝土配合比全计算法设计软件使用说明 混凝土配合比设计是混凝土材料科学和工程应用的基础。现代混凝土应包括高性能混凝土、高强混凝土、流态混凝土、泵送混凝土、自密实自流平混凝土和商品混凝土等。以强度(水灰比定则)为基础的传统配合比设计方法不能满足现代混凝土的要求。作者提出的"全计算法"是以强度、工作性和耐久性为基础建立了体积相关数学模型,通过严格的推导得到用水量和砂率的计算公式。并且将其二式与水胶比定则相结合计算出混凝土各组分的配比和用量。因此称谓全计算法。全计算法的研究、应用和推广工作己近十年,广泛用于各种大型混凝土工程和近100个混凝土预拌站,取得了良好的技术经济效益。为了便于广泛应用现制作成计算机软件。国家版权局计算机软件著作权登记号2005SR00529 1.现代混凝土配合比全计算法设计模板(1) . 2.HPC混凝土配合比设计模板(2) 3..固定用水量法混凝土配合比设计模板(3) 4.卵石流态混凝土配合比设计模板(4) 一. 模板使用说明 1..模板适用范围: 现代混凝土配合比全计算法设计模版(表1)适用于高性能混凝土(HPC)、高强混凝土(HSC)、流态混凝土(FLC)、泵送混凝土、引气混凝土和商品混凝土、自密实自流平混凝土,防渗抗裂混凝土、细砂混凝土、以及其他现代混凝土。 2.有关参数的变化范围: 模板(1)中红色的数值是使用者根据混凝土施工工程的设计要求和混凝土原材料的性能指标应输入的设计参数(共12项)。相关参数输入后,模板中自动生成混凝土系列配合比。 (1)..混凝土配制强度 fcu.p≥fcu.0+1.645σ 或 fco.p=fcu.0+10 (Mpa)

全计算法HPC配合比设计

全计算法HPC砼设计 (刘良亚整理于2008-4-11)Hpc配合比设计的理论基础为王栋民、陈建奎教授研究发展的hpc配合比设计全计算法。 2.1Hpc配合比设计的基本原则 满足工作性的情况下,用水量要小 满足强度的情况下,水泥用量小,细掺量多 材料组成及用量合理,满足耐久性及特殊性能要求 掺加新型高效减水剂,改善与提高砼的多种性能。 2.2全计算法配合比设计的技术基础 砼各种组成材料(包括固、液、气三相)具有体积加和性; 石子的空隙由干砂浆来填充; 干砂浆由水泥、细掺料、砂和空气所组成。 该模型假定砼总体积为1m3(1000L),由水、水泥、细掺料、空气、砂、石部分组成,对应的体积分别为vw. Vc. Vf. Va.vs.vg.,浆体体积(Ve)=Vw+vc+vf+va,vs+vg(骨料体积)=1000-ve;干砂浆体积(ves)=vc+vf+va+vs.在HPC配合比计算时,式中ve和ves应根据原材料及施工现场具体确定,理论值可作为参考。 □C50HPC配合比设计实例 我们假定ve=350;ves=460,砼含气量4%。 原材料采用P.O42.5低碱水泥,细集料采用渭河Ⅱ区中砂,细度模数2.8,粗集料为二级级配碎石,最大粒径25mm;外加剂为聚羟酸高效减水剂,试验减水率26%,掺量(1.0%×胶体材料用量);各原材料经检验符合(客运专线高性能砼暂行技术条件)要求。 3.1配制强度=50+1.645*6=60MPa fcu。p——砼试配强度(mpa); fcu。0——砼设计强度(mpa);ó——强度标准差(mpa); 3.2水胶比=1/((60/0.48*42.5*1.09)+0.52)=0.31 A B―――回归系数; 回归系数AB资料显示以下取值都有人用过,而且更倾向于后者,实际上水胶比很大程度

01_TRIZ的技术系统八大进化法则

(一)TRIZ的技术系统八大进化法则 阿奇舒勒的技术系统进化论可以与自然科学中的达尔文生物进化论和斯宾塞的社会达尔文主义齐肩,被称为“三大进化论”。TRIZ的技术系统八大进化法则分别是:1、技术系统的S曲线进化法则;2、提高理想度法则;3、子系统的不均衡进化法则;4、动态性和可控性进化法则;5、增加集成度再进行简化法则;6、子系统协调性进化法则;7、向微观级和场的应用进化法则;8、减少人工进入的进化法则。技术系统的这八大进化法则可以应用于产生市场需求、定性技术预测、产生新技术、专利布局和选择企业战略制定的时机等。它可以用来解决难题,预测技术系统,产生并加强创造性问题的解决工具。 八大技术系统进化法则 1.技术系统的S曲线进化法则 1)婴儿期2)成长期3)成熟期4)衰退期

各阶段的特点。 S曲线族 2.提高理想度法则 1)一个系统在实现功能的同时,必然有2个方面的作用:有用功能和有害功能; 2)理想度是指有用作用和有害作用的比值 3)系统改进的一般方向是最大化理想度比值 4)在建立和选择发明解法的同时,需要努力提升理想度水平 提高理想度可以从以下4个方向予以考虑: 1)增加系统的功能2)传输尽可能多的功能到工作元件上3)将一些系统功能转移到超系统和外部环境中4)利用内部或外部已经存在的可利用资源。 3.子系统的不均衡进化法则

1)每个子系统都是沿着自己的S曲线进化的 2)不同的子系统将依据自己的时间进度进化 3)不同的子系统在不同的时间点到达自己的极限,这将导致子系统间矛盾的出现 4)系统中最先到达其极限的子系统将抑制整个系统的进化,系统的进化水平取决于此系统 5)需要考虑系统的持续改进来消除矛盾 4.动态性和可控性进化法则 1)增加系统的动态性,以更大的柔性和可移动性来获得功能的实现 2)增加系统的动态性要求增加可控性 5.增加集成度再进行简化法则 1.增加集成度的路径 2简化路径 3单--双---多--路径 4子系统分离路径 6.子系统协调性进化法则 1.匹配和不匹配元件的路径 2调节的匹配和不匹配的路径 3工具和工件匹配的路径 4匹配制造工程中加工动作节拍的路径 7.向微观级和场的应用进化法则 1.向微观级转化的路径 2转化到高效场的路径 3增加场效率的路径 4分割的路径 8.减少人工介入的进化法则 (1)减少人工介入的一般路径 本路径的技术进化阶段:包括人工动作的系统→替代人工但仍保留人工动作的方法→用机器动作完全代替人工。

进化计算综述

进化计算综述 1.什么是进化计算 在计算机科学领域,进化计算(Evolutionary Computation)是人工智能(Artificial Intelligence),进一步说是智能计算(Computational Intelligence)中涉及到组合优化问题的一个子域。其算法是受生物进化过程中“优胜劣汰”的自然选择机制和遗传信息的传递规律的影响,通过程序迭代模拟这一过程,把要解决的问题看作环境,在一些可能的解组成的种群中,通过自然演化寻求最优解。 2.进化计算的起源 运用达尔文理论解决问题的思想起源于20世纪50年代。 20世纪60年代,这一想法在三个地方分别被发展起来。美国的Lawrence J. Fogel提出了进化编程(Evolutionary programming),而来自美国Michigan 大学的John Henry Holland则借鉴了达尔文的生物进化论和孟德尔的遗传定律的基本思想,并将其进行提取、简化与抽象提出了遗传算法(Genetic algorithms)。在德国,Ingo Rechenberg 和Hans-Paul Schwefel提出了进化策略(Evolution strategies)。 这些理论大约独自发展了15年。在80年代之前,并没有引起人们太大的关注,因为它本身还不够成熟,而且受到了当时计算机容量小、运算速度慢的限制,并没有发展出实际的应用成果。

到了20世纪90年代初,遗传编程(Genetic programming)这一分支也被提出,进化计算作为一个学科开始正式出现。四个分支交流频繁,取长补短,并融合出了新的进化算法,促进了进化计算的巨大发展。 Nils Aall Barricelli在20世纪六十年代开始进行用进化算法和人工生命模拟进化的工作。Alex Fraser发表的一系列关于模拟人工选择的论文大大发展了这一工作。 [1]Ingo Rechenberg在上世纪60 年代和70 年代初用进化策略来解决复杂的工程问题的工作使人工进化成为广泛认可的优化方法。[2]特别是John Holland的作品让遗传算法变得流行起来。[3]随着学术研究兴趣的增长,计算机能力的急剧增加使包括自动演化的计算机程序等实际的应用程序成为现实。[4]比起人类设计的软件,进化算法可以更有效地解决多维的问题,优化系统的设计。[5] 3.进化计算的分支 进化计算的主要分支有:遗传算法GA ,遗传编程GP、进化策略ES、进化编程EP。下面将对这4个分支依次做简要的介绍。 1遗传算法(Genetic Algorithms): 遗传算法是一类通过模拟生物界自然选择和自然遗传机制的随机化搜索算法,由美国John HenryHoland教授于1975年在他的专著《Adaptation in Natural and Artificial Systems》中首次提出。[6]它是利用某种编码技术作用于称为染色体的二进制数串,其基本思想是模拟由这些串组成的种群的进化过程,通过有组织地然而是随机地信息交换来重新组合那些适应性好的串。遗传算法对求解问题的本身一无所知,它所需要的仅是对算法所产生的每个染

现代混凝土配合比设计-全计算法

现代混凝土土配合比设计------全计算法 传统混凝土配合比设计方法(如绝对体积法和假容重法),是以强度为基础的半定量计算方法,不能全面满足现代混凝土的性能要求,现代混凝土配合比计算方法是以工作性、强度和耐久性为基础建立数学模型,通过严格的数学推导的到混凝土的用水量和砂率的计算公式,并将此二式与水灰(胶)比定则相结合能计算出混凝土各组分(水泥、细掺料、砂、石、含气量、用水量和超塑化剂掺量等)之间的定量关系和用量。用于流态混凝土、高强混凝土、泵送混凝土、自密实混凝土、商品混凝土以及防渗抗裂混凝土等现代化混凝土的配合比设计。 (一)高性能混凝土配合比全计算法设计高性能混凝土(HPC)与高强混凝土(HSC)和流态混凝土(FLC)最显著的差别就是混凝土配合比考虑工作性、强度和耐久性,其配合比设计的基本原则是:(1)满足工作性的情况下,用水量要小;(2)满足强度的情况下,水泥用量少、细掺料多掺;(3)材料组成及其用量合理,满足耐久性及特殊性能要求;(4)掺多功能复合超塑化剂(CSP)改善和提高混凝土的多种性能。因此,HPC的配合比设计比HSC和FLC更为严格合理,图--1表示各种材料类型的混凝土配合比分区范围,无论采取什么方法设计,HSC、FLCHE和PLC(塑性混凝土)的配合比在一个范围之内,而HPC在AB线附近,由此证明HPC的配合比设计必须严格、精确和合理。 图1 混凝土配合比组成图 一、强度与水灰(胶)比的关系 混凝土配合比设计是混凝土材料学中最基本而又最重要的一个问题,早在1919年Duff Abrams(D.艾布拉姆斯)就发表了混凝土强度的水灰比定则:“对于一定的材料,强度仅取决于一个因素,即水灰比。”这一定则可用下列公式表示: σc=a/b1.5(W/C) 式中:σ c----一定龄期的抗压强度

混凝土配合比设计新法(全计算法)-陈建奎

混凝土配合比设计新法-全计算法 北京工业大学陈建奎教授 一.现代混凝土概念或理念 二.配合比全计算法设计的数学模型 三.砂率和用水量计算公式 四.混凝土配合比设计步骤 五.配合比设计工程应用实例 六.结论 一.现代混凝土概念或理念现代混凝土是由水泥、矿物细掺料、砂、石、空气、水和外加剂等组成的多相聚集体,并能满足“高工作性、高早强增强和高耐久性”的基本要求。现代混凝土应包括高性能混凝土、高强混凝土、流态混凝土、泵送混凝土、自流平自密实混凝土、防渗抗裂混凝土、水下浇筑混凝土和商品混凝土等。以强度为基础的传统混凝土配合比设计方法不能满足现代混凝土配合比设计的要求。 综合考虑工作性、强度和耐久性。其配合比设计的基本原则是: (1)满足工作性的情况下,用水量要小; (2)满足强度的情况下,水泥用量少,多掺细掺料; (3)材料组成及其用量合理,满足耐久性及特殊性能要求; (4)掺多功能复合超塑化剂(CSP),改善和提高混凝土的多种性能。

配合混凝土配合比组成图二. 图1 比全计算法设计的数学模型 混凝土配合比设计是混凝土材料科学和工程应用中最基混即假 定容重法和(的问题。以强度为基础的传统配合比设计方法已不能满足现代混凝土配合比设计的要求。现代混)绝对体积法凝土配合比“全计算法”设计是以“工作性、强度和耐久性”为并推导出混凝土用水量和砂率的计算基础建立的普适数学模型,比定则相结合就能实现混凝土配(灰)公式。进而将此二式与水胶全计算法的创建和推广合比和组成的全计算,故称谓全计算法。应用几近十年,受到广泛的关注,取得良好的技术经济效益。近“现代混凝土配合期在总结混凝土工程应用实践的基础上编制了国 家版权局计算机软件著作权登记号比全计算法设计软件”(。这样使“全计算法”更加实用化、科学化和智能2005SR00529)化。全计算法不仅适用于所有现代混凝土的配合比设计和计算,而且能检验和验证其它配合比的正确性。 2 1.现代混凝土的数学模型现代混凝土组成复杂,其中包括水泥、矿物细掺料、砂、石、空气、水和外加剂等7个组分。最简单处理方法是用多项式表示: F(x)=a+bx+cx+fx+gx+hx+ix+jx 7412635(1)

TRIZ理论八大技术系统进化法则

机械创新设计课程论文(TIZE理论的八大技术系统进化法则) 专业机械设计制造及其自动化 班级10机自职1 学号1010113126 姓名姚巧珍 成绩 教师刘小鹏 2013年5月23日

TRIZ理论的八大技术系统进化法则 姚巧珍 (10机自职1班,学号:1010113126) [摘要] 技术系统的这八大进化法则可以应用于产生市场需求、定性技术预测、产生新技术、专利布局和选择企业战略制定的时机等。它可以用来解决难题,预测技术系统,产生并加强创造性问题的解决工具。本文讲述了TRIZ理论的八大技术系统进化法则,这些技术系统进化法则基本涵盖了各种产品核心技术的进化规律,每条法则又包含多种具体的进化路线和模式。它可以帮助设计者在方案设计阶段迅速地产生个具有创造性的新概念,实现产品的快速创新。 [关键词] 技术系统,进化法则,子系统,S曲线。 引言 一个产品或物体都可以看做是一个技术系统,技术系统可以简称为系统。系统是由多个子系统组成的,并通过子系统间的相互作用来实现一定的功能,子系统可以是零件或部件甚至于构成元素。系统是处于超系统之中的,超系统是系统所在的环境,环境中的其他相关的系统可以看做是超系统的构成部分。技术系统的进化是指实现系统功能的技术从低级向高级变化的过程,进化是客观进行着的,不管人们是认识了它还是没有认识它。如果认识和掌握了系统的进化规律,有利于设计者开发出更先进的产品,从而提升产品的竞争力。 1.八大技术系统进化法则 TRIZ的技术系统八大进化法则分别是:1)技术系统的S曲线进化法则; 2)提高理想度法则; 3)子系统的不均衡进化法则; 4)动态性和可控性进化法则;5)增加集成度再进行简化法则; 6)子系统协调性进化法则; 7)向微观级和场的应用进化法则; 8)减少人工进入的进化法则 1.1技术系统的S曲线进化法则 图1-1是一条典型的S曲线。S曲线描述了一个技术系统的完整生命周期,图中的横轴代表时间;纵轴代表技术系统的某个重要的性能参数,比如飞机这个技术系统,飞行速度、可靠性就是其重要性能参数,性能参数随时间的延续呈现S形曲线。 一个技术系统的进化一般经历4个阶段,分别是: 1)婴儿期 2)成长期 3)成熟期 4)衰退

进化计算 复习题及部分参考答案

进化计算复习总结 一、选择填空 1.生命的共同特性是_D_____;__C____保证正熵世界中任何生命能延续;有限区域不断膨胀的种群中__B____和_A_____是不可避免的。 A.选择 B.竞争 C.变异 D.繁殖 D,C,B和A教材p4 2.__D____使复杂生命系统更为复杂。 A.非线性 B.多变量 C.环境多变 D.进化 D 3.生物独立进化中某些明显相同的功能对应的__A____结构却是_D_____的,如从软体、节肢到脊椎动物的视觉凝视机制。 A.底层基因 B.表现型 C.多变 D.各种各样 A、D https://www.doczj.com/doc/4117683093.html,marck认为环境引起有神经系统动物变异的过程是___D___。 A.机能→需要→习性→环境→形态构造 B.需要→习性→环境→形态构造→机能 C.习性→需要→环境→机能→形态构造 D.环境→需要→习性→机能→形态构造 D教材p2 5.Medel定律表明:有深层次的__遗传因子____控制着遗传过程。 [遗传因子/基因] 教材p3 6.Weismann用连续切割鼠尾的实验明确否定了__D____的观点。 A.演变和进化是缓慢而连续的 B.演变和进化是连续有突变 C.用进废退 D.获得性遗传 D教材p3 7.Morgen果蝇实验研究了遗传性状的变化与_B_____之间的关系。 A.基因 B.染色体 C.细胞 D.核糖核酸 B教材p3 8.生物体外在表现特征是__D____构成的体现。生物进化本质体现在_A_____的改进上。 A.基因 B.细胞 C.核糖核酸 D.染色体 D教材p3 9.____C__的特异性决定生物多样性,____B__的稳定性保证物种稳定性,____D__的改变决定生物体的变异。 A.基因的杂交和变异 B.基因结构 C.基因组合 D.遗传信息 C,B,D教材p3 10.现代进化论中进化机制本质上是鲁棒的___C___和___B___过程 A.选择 B.优化 C.搜索 D.繁殖 C,B教材p3

现代混凝土配合比设计-全计算法

现代混凝土土配合比设计------全计算法传统混凝土配合比设计方法(如绝对体积法和假容重法),是以强度为基础的半定量计算方法,不能全面满足现代混凝土的性能要求,现代混凝土配合比计算方法是以工作性、强度和耐久性为基础建立数学模型,通过严格的数学推导的到混凝土的用水量和砂率的计算公式,并将此二式与水灰(胶)比定则相结合能计算出混凝土各组分(水泥、细掺料、砂、石、含气量、用水量和超塑化剂掺量等)之间的定量关系和用量。用于流态混凝土、高强混凝土、泵送混凝土、自密实混凝土、商品混凝土以及防渗抗裂混凝土等现代化混凝土的配合比设计。 (一)高性能混凝土配合比全计算法设计高性能混凝土(HPC)与高强混凝土(HSC)和流态混凝土(FLC)最显著的差别就是混凝土配合比考虑工作性、强度和耐久性,其配合比设计的基本原则是:(1)满足工作性的情况下,用水量要小;(2)满足强度的情况下,水泥用量少、细掺料多掺;(3)材料组成及其用量合理,满足耐久性及特殊性能要求;(4)掺多功能复合超塑化剂(CSP)改善和提高混凝土的多种性能。因此,HPC的配合比设计比HSC和FLC更为严格合理,图--1表示各种材料类型的混凝土配合比分区范围,无论采取什么方法设计,HSC、FLCHE和PLC(塑性混凝土)的配合比在一个范围之内,而HPC在AB线附近,由此证明HPC的配合比设计必须严格、精确和合理。 图1 混凝土配合比组成图 一、强度与水灰(胶)比的关系 混凝土配合比设计是混凝土材料学中最基本而又最重要的一个问题,早在1919年Duff

Abrams(D.艾布拉姆斯)就发表了混凝土强度的水灰比定则:“对于一定的材料,强度仅取决于一个因素,即水灰比。”这一定则可用下列公式表示: σc=a/b1.5(W/C) 式中:σ c----一定龄期的抗压强度 3 a----经验常数,一般取925kg/m 该式成为混凝土配合比设计计算强度的基础,近80年来混凝土配合比设计几经发展,到目前为止最常用的两种方法是绝对体积法和假定容量法。 二、混凝土的普适体积模型, 混凝土是多相聚集、其组分包括:水泥、矿物细掺料、砂、石、水、空气和外加剂。我们基本观点如下:(1)混凝土各组成材料(包括固、气、液三相)具有体积加和性(2)石子间的空隙由干砂浆来填充(3)干砂浆的空隙由水来填充(4)干砂浆由水泥、细掺料、砂和空气组成,根据以上观点混凝土普适体积模型建立如图---2

进化计算

进化优化研究领域 由于优化在工程应用问题的广泛存在,数学家和计算领域的专家已经投入了巨大的精力并取得了一系列有意义的研究成果。 ★广义上来说,这些优化算法可以分为两类:精确和随机算法。精确算法包括分支限界算法和动态规划算法等等。但是,当出现问题的规模上升到一定的程度、先验知识较少或者问题的复杂性较高的情况时,这些算法的性能会急剧下降,甚至出现失效的情况。特别地,对于NP完全或者NP难问题的解决上,精确算法的应用非常有限。 ★随机算法中的进化算法(Evolutionary Algorithm)是一类算法框架灵感来源于自然的算法。相比于精确算法,进化算法具有以下特性:(1)无需先验过多问题先验知识;(2)对于问题是否线性可微、可导和连续没有要求;(2)自动采取设定机制对抗各种约束条件;(3)优化性能优秀。因此进化优化领域研究已经成为了国内外研究的热点。 ★实验室工作主要包括:(1)面向大规模优化应用的进化计算研究;(2)进化算法应用于电力系统经济负载调配应用;(3)应用于数字IIR滤波器涉及的进化计算研究;(4)最优化软硬件协同设计研究。 进化算法能够做什么? 图 设计一个有鲁棒性的算法可以在未知高维空间中寻找出最小值。

应用领域: 面向大规模优化的进化计算研究 在生产实践与科学研究中,存在许多大规模优化问题。例如,大规模电网配置与调度[1]、移动通信网络设计、生物医学信息处理、以及数据挖掘等等。这些问题的共同特点是决策空间维数很高,一般在102~104量级。维数的增高在导致决策空间急剧增大的同时,也会造成问题求解难度的迅速增大。例如,有些优化问题的局部最优的个数会随着维数增加呈指数

全面工程造价全计算公式

建设项目总投资构成 设备、及工器具购置费的构成及计算 设备购置费= 设备原价+设备运杂费 进口设备抵岸价的构成及计算 进口设备抵岸价=货价+国际运费+运输保险费+银行财务费+外贸手续费+关税+增值税+消费税+海关监管手续费+车辆购置附加费

国产非标准设备原价的构成及计算 单台非标准设备原价={[(材料费+加工费+辅助材料费)×(1+专用工具费率)×(1+废品损失费)+外购配套件费]×(1+包装费率)-外购配套件费}×(1+利润率)+销项税金

1、以直接费为基数: 间接费=直接费合计×间接费费率(%) 2、以人工费、机械费合计为基数: 间接费=直接费中的人工费和机械费合计×间接费费率(%) 3、以人工费为基数: 间接费=直接费中的人工费合计×间接费费率(%) 间接费费率(%)=规费费率(%)+企业管理费费率(%) 规费的费率 1、以直接费为基数: )(人工费占直接费的比例工费含量 每万元发承包价中的人数每万元发承包价计算基规费缴纳标准)规费费率(%%??= ∑ 2、以人工费、机械费合计为基数: %100%??= ∑工费含量和机械费含量 每万元发承包价中的人数 每万元发承包价计算基规费缴纳标准)规费费率( 3、以人工费为基数: %100%??= ∑工费含量 每万元发承包价中的人数每万元发承包价计算基规费缴纳标准)规费费率( 企业管理费的费率 1、以直接费为基数: ) (人工费占直接费的比例人工单价 年有效施工天数生产工人年平均管理费 )企业管理费费率(%%??= 2、以人工费、机械费合计为基数: %100%?+?=每一工日机械使用费) (人工单价年有效施工天数生产工人年平均管理费 )企业管理费费率( 3、以人工费为基数: %100%??=人工单价年有效施工天数生产工人年平均管理费 )企业管理费费率( 利润 1、以直接费为基数: 利润=(直接费+间接费)×相应利润率(%) 2、以人工费、机械费合计为基数: 利润=直接费中的人工费和机械费合计×相应利润率(%) 3、以人工费为基数: 利润=直接费中的人工费合计×相应利润率(%)

浅谈演化计算及其应用与发展

《演化计算》课程报告

浅谈演化计算及其应用与发展 ——以水利学科为例 摘要:通过《演化计算》课程的学习,在阅读文献的基础上,本报告简述了演化计算的基本思想、特点、主要分支及设计基本原则和方法,并例举了演化计算在水利学科中的应用,对演化计算的应用作了进一步展望。 关键词:演化计算;水利工程;智能计算 1.引言 近年来,智能计算在人类生活中扮演着越来越重要的角色。一些新的研究方向如演化计算(Evolutionary Computation)、人工神经网络和模糊系统等,由于它 们通过模拟某一自然现象或过程以使问题得到解决,具有适于高度并行及自组织、自适应、自学习等特征,因而正受到越来越多的关注。 演化算法是一类统计优化算法,它们是受自然界演化过程特别是演化过程中生物个体对环境表现出的自适应性启发而产生的一类优化技术。大自然一直是人类解决各种问题获得灵感的思想源泉,生物进化论揭示了生物长期自然选择的进化发展规律,认为生物进化主要有三个原因:遗传、变异和选择。自然界中个体对环境的自适应性主要表现在基因遗传和个体对环境的适应能力上。尽管物竞天择、优胜劣汰的原则是达尔文于几个世纪前提出的,但它今天仍被普遍认为在许多生物领域是有效的,而且这个原则还在不断被扩充与细化。 演化算法采用简单的编码技术来表示各种复杂的结构,它将问题的可行解进行编码,这些已编码的解被作为群体中的个体(染色体);将问题的目标函数转换为个体对环境的适应性;模拟遗传学中的杂交(crossover)、变异(mutation)、复制(reproduction)来设计遗传算子;用优胜劣汰的自然选择法则来指导学习和确定搜索方向。简而言之,演化算法不用了解问题的全部特征,就可以通过体现进化机制的演化过程完成问题的求解。 现如今,科学技术和工程应用领域具有挑战性的实践问题大都具有高度的计算复杂性的特点,这些是使传统方法失效的致命障碍,而演化算法正好可以克服

技术系统进化法则培训讲义

TRIZ培训讲义
技术系统进化法则
技术系统进化法则
DAOV路线图—优化阶段
定义 Define 分析 Analyze 优化 Optimize 验证 Verify
1.概念列表
2.方案选择
S曲线 进化法则 进化树 列出概念方案 风险分析
决策分析 Pro/Innovator 评价模块
A Pera Global Company ? 2011 IWINT,INC
进化法则的作用和意义
对于新产品的预测分析给予建议 对于现有产品的改进方向给予建议 作为产品专利规避的有效工具
A Pera Global Company ? 2011 IWINT,INC
第 1 页
IWINT

TRIZ培训讲义
技术系统进化法则
主题大纲
进化规律简介 技术系统进化法则 Pro/E软件简介 产品预测的步骤和案例 小结
A Pera Global Company ? 2011 IWINT,INC
TRIZ的核心思想之一
技术系统的进化和发展并不是随机的,而是遵循 着一定的客观规律
A Pera Global Company ? 2011 IWINT,INC
TRIZ体系——创新的规律
算法
S曲线
完备性法则 能量传递法则 协调性法则 动态性法则 子系统不均衡进化 向超系统进化
创新的思维 创新的方法
工具 工具
创新的规律
向微观级进化 提高理想度法则
……
正确预测 产品未来!
术语
A Pera Global Company ? 2011 IWINT,INC
第 2 页
IWINT

分子进化与病毒进化

分子进化与病毒进化 武汉大学基础医学院赵旻 本章内容提要 1. 进化总论 2. 分子进化的模式 3. 病毒的起源与进化 第一节进化总论 ?进化含有连续变化的意思,而这种变化又带有定向的成分,进化即朝一定方向变化的趋势。?生物从共同祖先由低级到高级,由简单到复杂逐步分化演变的过程叫进化(evolution)。 一.生物进化的证据 1.古生物进化的证据 ?化石?同位素衰变 2.比较解剖学证据 ?同源器官homologue organ 是指具有不同的功能和外部形态,但却有相同的基本结构的器官。如:蝾螈和鳄的前肢;鸟类的翅和哺乳类的前肢以及人的手臂。同源器官在构造及发育上的一致性说明这些动物起源于共同的祖先,具有相似的遗传基础。 1肱骨;2尺骨和桡骨;3腕骨和掌骨;4指骨 3.胚胎学证据 从鱼类、两栖类、爬行类、鸟类到哺乳类和人,它们的早期胚胎很相似,都具有鳃裂和尾。这说明脊椎动物也具有共同的祖先,它们均来自用鳃呼吸、有尾的水栖动物祖先,而人类则是从有尾的动物发展而来的。 4.免疫学证据 根据抗原抗体沉淀反应的强弱程度,确定不同生物之间的亲疏关系。 ?1964年,Linus Pauling提出分子进化理论 ?DNA & RNA: 4种碱基;蛋白质分子:20种氨基酸 ?发生在分子层面的进化过程:DNA, RNA和蛋白质分子 ?基本假设:核苷酸和氨基酸序列中含有生物进化历史的全部信息 ?细胞色素C 细胞色素C是一个具有104~112个氨基酸的多肽分子,从进化上看,它是很保守的分子。不同生物的细胞色素C中氨基酸的组成和顺序反映了这些生物之间的亲缘关系。 根据细胞色素C分子中氨基酸顺序的差异,可以得知这一分子的基因核苷酸顺序的差异,依此也同样反映出不同生物之间的亲缘关系。 ?在细胞色素c中,根据差异的程度,推算它们在进化过程中分歧的时间。大概每2千万年,有1%的氨基酸残基发生替换。在哺乳动物与爬行动物104个氨基酸中,平均有14.3个的差异(占13.7%)。可算出哺乳类从原始兽形爬行类分歧的时间为2.74亿年,这与古生物学上的资料完全相符;陆生脊椎动物与鱼类的细胞色素c中,平均有18.5个氨基酸(占17.8%)的差异,那么两者分歧的时间应为3.56亿年。 ? 16S rRNA 通过比较真核细胞rRNA的核苷酸顺序和“真细菌”、“古细菌”的rRNA核苷酸顺序,发现它们之间截然不同,表明真核细胞不是来自原核细胞,而是远在原核细胞生成之前,真核细胞就已和原核细胞分开而成独立的一支,即“早真核生物”,它才是现代真核生物的始祖。 (1) Tree of Life: 16S rRNA Mitochondrial DNA

推移质全断面计算方法

附录A 推移质输沙率公式 根据公式建立的条件和适用范围,推移质输沙率公式可分为二类。一类为床沙全部可动的均匀沙推移质输沙率公式。我国工程设计中较广泛采用的是梅叶—彼德及R 〃摩勒公式,窦国仁公式,沙莫夫公式。 另一类为床沙部分可动、部分不可动的非均匀沙推移质输沙率公式。较有代表性的是非均匀推移质分组输沙率公式。根据我国西南地区卵石河床,颗粒组成范围大、粗细悬殊、很不均匀的特点,用水槽模拟天然河道卵石推移质输移,由9条河流162组试验资料,建立了该公式。该公式首先将床沙分为 n 级粒径组,求得各粒径组的平均粒径D mi ,该粒径组在床沙级配曲线中所占百分数为△P i 。 g g b bi i n ==∑1 g P p p p p gD bi p i s s mi =??-?φ()()//12312 当V V i ≤0时,φi =0。 当V V i >0时, φi oi b oi b mi m b mi b b V V V V D D h D =-012241()()()() b 0=6.31×10-6, b 1=4.83, b 2=1.98, b 3=2.33, b 4=0.95

式中:g b——推移质单宽输沙率; g bi——各粒径组单宽输沙率; P i——各粒径组在床沙中所占的百分数; D mi——各粒径组的平均粒径; D m——床沙平均粒径; V i——分组输沙强度参数; V——平均流速; V0i——各粒径组的起动流速, V p p gD h D i s mi mi 1212017 = - ()()() //. ρ h——水深; ps——泥沙密度; p——水的密度; g——重力加速度。 附录B 推移质全断面输沙率计算 B1 适用于单一的宽浅河槽的计算方法 Q b=B b〃g——————————————(B1) 式中:Q b——推移质全断面输沙率,kg/s; B b——推移质运动宽度,m; g b——推移质单宽输沙率,kg/(s〃m)。 B2 适用于复式河槽,或单一的宽浅河槽的计算方法 (1) 根据河槽形态,将横断面垂直划分成m个子断面; (2) 每一个子断面可概化为矩形,根据断面的水位—流量关系和断面形态,求得各级流量下各子断面的河宽和水深; (3) 由式(B2)求得各子断面的平均流速,由各子断面的水深可求得子断面的单宽流量。

分子进化树构建及数据分析的简介

【转载】分子进化树构建及数据分析的简介+oldfish的批评意见 分子进化树构建及数据分析的简介 mediocrebeing, rodger, lylover1[1], klaus, oldfish, yzwpf 一、引言 开始动笔写这篇短文之前,我问自己,为什么要写这样的文章?写这样的文章有实际的意义吗?我希望能够解决什么样的问题?带着这样的疑惑,我随手在丁香园(DXY)上以关键字“进化分析求助”进行了搜索,居然有289篇相关的帖子(2006年9月12日)。而以关键字“进化分析”和“进化”为关键字搜索,分别找到2,733和7,724篇相关的帖子。考虑到有些帖子的内容与分子进化无关,这里我保守的估计,大约有3,000~4,000篇帖子的内容,是关于分子进化的。粗略地归纳一下,我大致将提出的问题分为下述的几类: 1.涉及基本概念。例如,“分子进化与生物进化是不是一个概念”,“关于微卫星进化模型有没有什么新的进展”以及“关于Kruglyak的模型有没有改进的出现”,等等。2.关于构建进化树的方法的选择。例如,“用boostrap NJ得到XX图,请问该怎样理解?能否应用于文章?用boostrap test中的ME法得到的是XXX树,请问与上个树比,哪个更好”,等等。 3.关于软件的选择。例如,“想做一个进化树,不知道什么软件能更好的使用且可以说明问题,并且有没有说明如何做”,“拿到了16sr RNA数据,打算做一个系统进化树分析,可是原来没有做过这方面的工作啊,都要什么软件”,“请问各位高手用clustalx做出来的进化树与phylip做的有什么区别”,“请问有做过进化树分析的朋友,能不能提供一下,做树的时候参数的设置,以及代表的意思。还有各个分支等数值的意思,说明的问题等”,等等。 4.蛋白家族的分类问题。例如,“搜集所有的关于一个特定domain的序列,共141条,做的进化树不知具体怎么分析”,等等。 5.新基因功能的推断。例如,“根据一个新基因A氨基酸序列构建的系统发生树,这个进化树能否说明这个新基因A和B同源,属于同一基因家族”,等等。 6.计算基因分化的年代。例如,“想在基因组水平比较两个或三个比较接近物种之间的进化年代的远近,具体推算出他们之间的分歧时间”,“如何估计病毒进化中变异所需时间”,等等。 7.进化树的编辑。例如生成的进化树图片,如何进行后续的编辑,比如希望在图片上标注某些特定的内容,等等。 由于相关的帖子太多,作者在这里对无法阅读全部的相关内容而致以歉意。同时,作者归纳的这七个问题也并不完全代表所有的提问。对于问题1所涉及到的基本的概念,作者推荐读者可参考由Masatoshi Nei与Sudhir Kumar所撰写的《分子进化与系统发育》(Molecular Evolution and Phylogenetics)一书,以及相关的分子进化方面的最新文献。对于问题7,作者之一lylover一般使用Powerpoint进行编辑,而Photoshop、Illustrator及Windows自带的画图工具等都可以使用。

多目标进化算法总结

x 是第 t 代种群中个体,其 rank 值定义为: rank (x ,t ) =1+p (t ) p (t )为第t 代种群中所有支配x 的个体数目 适应值 (fitness value )分配算法: 1、 将所有个体依照 rank 值大小排序分类; 2、 利用插值函数给所有个体分配适应值(从 rank1 到 rank n * N ),一般采用线性函数 3、 适应值共享:rank 值相同的个体拥有相同的适应值, 保证后期选择时同一 rank 值的个体概率相同 最后采用共享适应值随机选取的方法选择个体进入下一代 一种改进的排序机制(ranking scheme ): 向量y a =(y a ,1,,y a ,q )和y b =(y b ,1,,y b ,q )比较 分为以下三种情况: k =1,,q -1; i =1,,k ; j =k +1,,q ; (y a ,i g i )(y a ,j g j ) i =1, ,q ; (y a ,i g i ) 当 y a 支配 y b 时,选择 y a 3、j =1, ,q ; (y a ,j g j ) 当 y b 支配 y a 时,选择 y b 优点:算法思想容易,效率优良 缺点:算法容易受到小生境的 大小影响 理论上给出了参数share 的计算方法 goal vector : g = (g 1, ,g q ) 1、 2、

基本思想: 1、初始化种群 Pop 2、锦标赛选择机制:随机选取两个个体 x 和 x 和一个 Pop 的 子集 CS(Comparison Set)做参照系。若 x 被 CS 中不少于一 个个体支配,而 x 没有被 CS 中任一个体支配,则选择 x 。 3、其他情况一律称为死结(Tie ),采用适应度共享机制选择。 个体适应度: f i 小生境计数(Niche Count ): m =j Pop Sh d (i , j ) 共享适应度(the shared fitness ): 选择共享适应度较大的个体进入下一代 优点:能够快速找到一 些好的非支配最优解域 能够维持一个较长的种群更新期 缺 点:需要设置共享参数 需要选择一个适当的锦标赛机制 限制 了该算法的实际应用效果 1- 共享函数: Sh (d ) = d share 0, d share d share

全计算法HPC配合比设计

全计算法HPC砼设计 Hpc配合比设计的理论基础为王栋民、陈建奎教授研究发展的hpc 配合比设计全计算法。 2.1Hpc配合比设计的基本原则 满足工作性的情况下,用水量要小 满足强度的情况下,水泥用量小,细掺量多 材料组成及用量合理,满足耐久性及特殊性能要求 掺加新型高效减水剂,改善与提高砼的多种性能。 2.2全计算法配合比设计的技术基础 砼各种组成材料(包括固、液、气三相)具有体积加和性; 石子的空隙由干砂浆来填充; 干砂浆由水泥、细掺料、砂和空气所组成。 该模型假定砼总体积为1m3(1000L),由水、水泥、细掺料、空气、砂、石部分组成,对应的体积分别为vw. Vc. Vf. ,浆体体积(Ve)=Vw+vc+vf+va,vs+vg(骨料体积)=1000-ve;干砂浆体积(ves)=vc+vf+va+vs.在HPC配合比计算时,式中ve和ves应根据原材料及施工现场具体确定,理论值可作为参考。 □C50HPC配合比设计实例 我们假定ve=350;ves=460,砼含气量4%。 原材料采用,细集料采用渭河Ⅱ区中砂,细度模数2.8,粗集料为二级级配碎石,最大粒径25mm;外加剂为聚羟酸高效减水剂,试验减水率26%,掺量(1.0%×胶体材料用量);各原材料经检验符合(客

运专线高性能砼暂行技术条件)要求。 3.1配制强度=50+1.645*6=60MPa fcu。p——砼试配强度(mpa);fcu。0——砼设计强度(mpa);ó——强度标准差(mpa); 3.2水胶比=1/((60/0.48*42.5*1.09)+0.52)=0.31 A B―――回归系数; 回归系数AB资料显示以下取值都有人用过,而且更倾向于后者,实际上水胶比很大程度上已经验确定,因此读者可以根据具体情况及经验计算选取更合理的水胶比。 表1 回归系数选用表 3.3用水量―――――3 =(350-40)/(1+0.335/0.31)=149kg/m3 其中0.335为体积掺量有关。计算表明体积掺量的变化对掺量系数影响不大,见下表。在一般计算中采用0.335就可以,当细集料的密度与设计值相差较大时,可用下表系数进行精确用水量计算。 表2 细集料的体积掺量对系数的影响 (注:括号内为质量掺量(%)) 3.4胶凝材料用量 Mb=mc+mf+mk=w/(w/b)=149/0.31=481kg 取mf=mk=100kg mc=281kg w/b-----------氺胶比; mb、mc、mf、mk、分别为每立方米胶凝材料、水泥、粉煤灰、矿粉用量(kg);

相关主题
文本预览
相关文档 最新文档