当前位置:文档之家› 2.2二次函数的再认识

2.2二次函数的再认识

2.2二次函数的再认识
2.2二次函数的再认识

教 案 201 年

2.2二次函数的再认识

上课时间 第 周星期 第 节 课

教学目的 1.了解二次函数系数与图像之间的联系,能准确的画出二次函数的图像.

2.通过二次函数的图像,掌握二次函数的性质.

教学重点 二次函数的图像和性质 教学难点 二次函数的图像和性质 教具准备 教学方法

课型

课时分配

导入新课 讲授新课 课堂小结 课堂练习 合

分钟

教 学 过 程

问题1 函数y =ax 2与y =x 2的图象之间存在怎样的关系?

问题2 函数y =a (x +h )2+k 与y =ax 2的图象之间存在怎样的关系?

通过上面的研究,我们可以得到以下结论:二次函数y =a (x +h )2+k (a ≠0)中,a 决定了二次函数图象的开口大小及方向;h 决定了二次函数图象的左右平移,而且“h 正左移,h 负右移”;k 决定了二次函数图象的上下平移,而且“k 正上移,k 负下移”.

1.二次函数的图像

(1)2x y = 纵a ?,横不变 2ax y =

(2)2ax y = 左(右)平移h 个单位(左加右减) )0()(2>±=h h x a y (3)2)(h x a y ±= 上(下)平移k 个单位 )0)(2>±±=k k h x a y (

例1 怎么由2x y =的图像变成1422++=x x y 的图像?

练习:把二次函数c bx x y ++=2的图像向上平移2个单位,再向左平移4个单位,得到函数2x y =的图像,求c b ,的值.

2.二次函数y =ax 2+bx +c (a ≠0)的性质:

0>a 0

对称

轴 2b x a =-

2b x a =-

顶点坐标 2

4(,)24b ac b a a --

24(,)24b ac b a a

-- 最值 当2b x a =-时,有最小值y =244ac b a -

当2b x a =-时,有最大值y =2

44ac b a

-

例2 求二次函数y=-3x2-6x+1图象的开口方向、对称轴、顶点坐标、最大值(或最小值),并指出当x取何值时,y随x的增大而增大(或减小)?并画出该函数的图象.

例3 已知函数y=x2,-2≤x≤a,其中a≥-2,求该函数的最大值与最小值,并求出函数取最大值和最小值时所对应的自变量x的值.

3.二次函数的三种表示方式

(1).一般式:y=ax2+bx+c(a≠0);

(2).顶点式:y=a(x+h)2+k (a≠0),其中顶点坐标是(-h,k).

(3).交点式:y=a(x-x1) (x-x2) (a≠0),其中x1,x2是二次函数图象与x轴交点的横坐标.

今后,在求二次函数的表达式时,我们可以根据题目所提供的条件,选用一般式、顶点式、交点式这三种表达形式中的某一形式来解题.

例4 已知二次函数的图象过点(-3,0),(1,0),且顶点到x轴的距离等于2,求此二次函数的表达式.

练习已知二次函数的图象过点(-1,-22),(0,-8),(2,8),求此二次函数的表达式.

作业布置:

课后小结:

二次函数动点面积最值问题

二次函数最大面积 例1如图所示,等边△ ABC中,BC=10cm,点R, P?分别从B,A同时岀发,以1cm/s的速度沿线段BA,AC 移动,当移动时间 练习 1如图,在矩形ABCD中,AB=6cm , BC=12cm,点P从点A岀发沿AB边向点B以1cm/s的速度移动,同时点Q从点B岀发沿BC边向C以2cm/s的速度移动,如果P,Q同时岀发,分别到达B、C两点就停止移动。 _ ___________________________________________ 2 (1 )设运动开始后第t秒,五边形APQCD的面积是Scm ,写岀S与t函数关系式,并指岀 t的取值范围。 (2) t为何值时,S最小?并求岀这个最小值。 A开始沿 Q B B边向点B以 A 2 如图,在△ ABC 中,/ B=9 0°, AB=22CM,BC=20CM ,点P 从点 2cm/S的速度移动,点Q从点B开始沿着BC边向点C以1cm/S的速度移动,P,Q分别从A,B 同时岀发。 2 求四边形APQC的面积y ( cm )与PQ移动时间x (s)的函数关系式, 以及自变 量x的取值范围。 C 3如图正方形ABCD的边长为4cm,点P是BC边上不与B,C重合的任意一点点P作PQ丄AP交DC于点Q,设BP的长为x cm,CQ的长为y cm。 (1)求点P在BC上的运动的过程中y的最大值。 1 (2 )当y= cm时,求x的值。 4 4如图所示,边长为 在线段 记CD (1) 过A D P B B 1的正方形OABC的顶点O为坐标原点,点A在x轴的正半轴上,动点点E, 连接O BC上移动(不与B,C重合),连接OD,过点D作DE丄OD, 的长为 t o 1 当t=丄时,求线段DE 3 如果梯形CDEB的面积为所在直线的函数表达式 S,那么S是否 以及此时 (2) 存在最大值?若存在,请求出最大值,t的值; 若不存在,请说明理由。 2 2 (3)当OD DE的算术平方根取最小值时, (4)求点E的坐标。 二次函数最大面积交AB D B E 能力提高 例题如图所示,在梯形ABCD中,AD// BC,AB=AD=DC=2CM,BC=4C在等腰△ PQR中,/ QPR=120 ,底边QR=6CM点B,C,Q,R在同一直线 1cm/s的速度沿直线I向左匀速移动, (1) (2) t秒时梯形 I上,且C,Q两点重合,如果等腰△ PQR以 2 ABCD与等腰△ PQF重合部分的面积记为Scm 当t=4时,求S的值。 当4< t < 10时,求S与t的函数关系式, A 并求岀S的最大值。 D 1 / 2

第22章 二次函数单元测试题(含答案)

第22章 二次函数单元测试题 一、选择题(共24分) 1、抛物线1)3(22+-=x y 的顶点坐标是( ) A .(3,1) B .(3,-1) C .(-3,1) D .(-3,-1) 2、将抛物线y =(x ﹣1)2+3向左平移1个单位,再向下平移3个单位后所得抛物线的解析式为( ) A . y =(x ﹣2)2 B . y =(x ﹣2)2+6 C . y =x 2+6 D . y =x 2 3、已知二次函数y =x 2-3x +m (m 为常数)的图象与x 轴的一个交点为(1,0),则关于x 的一元二次方程x 2-3x +m =0的两实数根是( ) A .x 1=1,x 2=-1 B .x 1=1,x 2=2 C .x 1=1,x 2=0 D .x 1=1,x 2=3 4、下列二次函数中,图像以直线x =2为对称轴,且经过点(0,1)的是 ( ) A 、1)2(2+-=x y B 、1)2(2++=x y C 、3)2(2--=x y D 、3)2(2-+=x y 5、若x 1,x 2(x 1 <x 2)是方程(x -a )(x -b ) = 1(a < b )的两个根,则实数x 1,x 2,a,b 的大小关系为( ) A .x 1<x 2<a <b B .x 1<a <x 2<b C .x 1<a <b <x 2 D .a <x 1<b <x 2 6、)0(1≠+=k n kx y 与二次函数)0(22≠++=a c bx ax y 的图象相交于A (1-,5)、B (9,2)两点,则关于x 的不等式c bx ax n kx ++≥+2 解集为( ) A 、91≤≤-x B 、91<≤-x C 、91≤<-x D 、1-≤x 或9≥x 7、已知两点),3(),,5(21y B y A -均在抛物线)0(2 ≠++=a c bx ax y 上,点 ),(00y x C 是该抛物线的顶点,若021y y y ≥>,则0x 的取值范围是( ) A .50->x B .10->x C .150-<<-x D .320<<-x 8、若二次涵数y =ax +bx +c (a ≠0)的图象与x 轴有两个交点,坐标分别为(x 1,0),(x 2,0),且x 10 B .b 2-4ac ≥0 C .x 1

二次函数的应用——求最大面积

课后反思 这节课,始终坚持“以设计核心问题引领学生深度思考”,让学生在解决问题时,自己去思考判断,这类问题需要联系所学过的什么知识、建立什么模型来解决,在这个过程中不仅突破了本节课的难点,也很好地引领学生的数学思维、提升其数学素养,也体现了“以核心问题引领学生深度思考”。 本节课的成功之处: 1、设计核心问题,引领学生自主探究、深度思考。 在第一环节直角三角形的亲密矩形,抛出了一个大问题给学生,让他们自己设计方案,求出最大值。这个题目的素材来自于教材的96页和97页的议一议。教材中是直接给出方法,设矩形的一边为x,问另一边如何用x表示?第二问又直接设面积为y,问当x取何值时,y的值最大,最大值是多少?我把这几个小问题隐藏了,目的是要让学生自主探究,寻找渗透解决数学问题的一般思路:提出猜想之后验证,而验证又从动态演示到推理计算,让学生体验特殊到一般、直观到抽象的思维过程,积累数学活动经验。而不是老师上课说,这个题设什么什么为x,什么什么为y,而后学生就顺藤摸瓜列函数关系式。我们需要让学生在解决问题时,自己去思考判断,这样的问题我需要联系所学过的什么知识、建立什么模型来解决,将函数的概念解释的清晰明了,在这个过程中不仅突破了本节课的难点,也很好地引领学生的数学思维、提升其数学素养,这就是我们设计核心问题的价值所在——以核心问题引领学生深度思考。

2、注重培养学生的数学核心素养 由于本节课前刚把二次函数的性质结束,接下来就是二次函数的应用。学生脑子里缺乏用二次函数来解决实际问题的解题经验和思想方法。我利用课件动态演示在运动变化过程中产生了几个变量,而且其中一个变量是随着另一个变量的变化而变化时,学生可以联想到用函数来解决。同时体会解决几何图形的问题可以借助于函数模型,渗透数形结合的思想方法。 再例如,第二个探究活动——抛物线的亲密矩形的设计,当学生出现误用相似解决时,让学生自我质疑,提出问题、自我矫正,旨在培养学生自己发现问题、解决问题的数学素养。总结提升环节,让学生体会并不是所有的问题都是处在特殊位置时有最值,同时让学生进一步体会凡是解决最值问题、方案最优化问题都可以想到用二次函数解决,当产生三个变量时,我们都需要先将其中一个变量用另一个变量来表示,这也体现了“用函数表示函数”的思想方法。 整节课中,将众多的数学思想贯穿于整节课中,从开篇的“类比”、活动一的“从特殊到一般”、活动二做法的再次“类比”、两个活动中的“函数表示函数”等等,尤其是最后在知识提升环节“数形结合”思想的归纳更是让学生形成系统的解题思路与思想方法。 3、每个环节的设计充分体现了目标、评价、教学一致性 每个探究活动,由浅入深,层层递进,从初三学生认识的直角三角形的亲密矩形入手,让学生设计使矩形面积最大的方案,让学生明确二次函数的最值问题的应用,是解决这类问题的思路和方法.马上即时检

第22章 二次函数单元测试卷(含答案)

第二十二章 二次函数单元测试卷 班级 姓名 座号 成绩 一、选择题(每题5分,共30分) 1.下列各式中,y 是x 的二次函数的是( B ) A.21xy x += B.220x y -+= C.21y x = D.243y x -= 2.抛物线2 2(3)4y x =-+-的顶点坐标是( A ) A.(-3, -4) B.(-3, 4) C.(3, -4) D.(-4, 3) 3.把二次函数23y x =的图象向左平移2个单位,再向上平移1个单位,所得到的图象对应的二次函数表达式是( D ) A.23(2)1y x =-+ B.23(2)1y x =+- C.23(2)1y x =-- D.23(2)1y x =++ 4.二次函数2 (0)y ax bx c a =++≠的图象如图所示,则下列结论 ①0a >,②0c >,③240b ac ->,其中正确的有( C ) A.0个 B.1个 C.2个 D.3个 5.根据下列表格中的二次函数2(0,)y ax bx c a a b c =++≠、、为常数的自变量x 与函数y 的对应值,判断2 C.1.44<x <1.45 D.1.45<x <1.46 6.在同一直角坐标系中,一次函数y ax c =+和二次函数2y ax c =+的图象大致为( B ) 二、填空题(每题5分,共30分) 7.抛物线2245=++y x x 的对称轴是直线1x =-. 8.把二次函数247y x x =-+化成2()y a x h k =-+的形式是 2(2)3 y x =-+. 9.抛物线294y x px =-+ 与x 轴只有一个公共点,则p 的值是12 ±. 10.汽车刹车后行驶的距离s (单位:m )与行驶的时间t (单位:s )的函数关系式是2124s t t =-,汽车刹车后到停下来前进了9 m . 11.已知二次函数23(1)y x k =-+的图象上有三点1 )A y ,2(2,)B y ,3 ()C y ,则1 y 、2y 、3y 的大小关 系为 >> 32 1y y y . 12.二次函数223y x x =-++的图象与x 轴交于A B 、两点,P 为它的顶点,则PAB S ?= 8 . A B D

6.4 二次函数的应用(2)【最大面积是多少】

§6.4 二次函数的应用(2)【最大面积是多少】---( 教案) 备课时间: 主备人: 教学目标: 掌握长方形和窗户透光最大面积问题,体会数学的模型思想和数学应用价值.学会分析和表示不同背景下实际问题中的变量之间的二次函数关系,并运用二次函数的知识解决实际问题. 教学重点: 本节的重点是应用二次函数解决图形有关的最值问题,这是本书惟一的一种类型,也是二次函数综合题目中常见的一种类型.在二次函数的应用中占有重要的地位,是经常考查的题型,根据图形中的线段之间的关系,与二次函数结合,可解决此类问题. 教学难点: 由图中找到二次函数表达式是本节的难点,它常用的有三角形相似,对应线段成比例,面积公式等,应用这些等式往往可以找到二次函数的表达式. 教学方法: 教师指导学生自学法。 教学过程: 一、例题: 例1、如图,在一个直角三角形的内部作一个矩形ABCD,其中AB和AD分别在两直角边上. (1)设矩形的一边AB=xcm,那么AD边的长度如何表示? (2)设矩形的面积为ym2,当x取何值时,y的最大值是多少? 例2、某建筑物窗户如图所示,它的上半部是半圆,下半部是矩形.制造窗框的材料总长(图中所有黑线的长度和)为15m.当x等于多少时,窗户透过的光线最多(结果精确到0.01m)?此时,窗户的面积是多少? 二、练习 1、如图⑴,在Rt△ABC中,AC=3cm,BC=4cm,四边形CFDE为矩形,其中CF、CE在两直角 边上,设矩形的一边CF=xcm.当x取何值时,矩形ECFD的面积最大?最大是多少?

2、如图⑵,在Rt△ABC中,作一个长方形DEGF,其中FG边在斜边上,AC=3cm,BC=4cm,那么长方形OEGF的面积最大是多少? 3、如图⑶,已知△ABC,矩形GDEF的DE边在BC边上.G、F分别在AB、AC边上,BC=5cm, S△ABC为30cm2,AH为△ABC在BC边上的高,求△ABC的内接长方形的最大面积. 三、小结:本节课我们学习了什么? 四、作业:

二次函数面积最大值

二次函数面积最大值 教学目标: 1.通过本节课学习,巩固二次函数y=2ax bx c ++(a ≠0)的图象与性质,理解顶点 与最值的关系,会求解最值问题。 2.通过观察图象,理解顶点的特殊性,会把实际问题中的最值转化为二次函数的最值问题,通过动手动脑,提高分析解决问题的能力,并体会一般与特殊的关系,了解数形结合思想、函数思想。 教学重点: 利用二次函数y=2ax bx c ++(a ≠0)的图象与性质,求面积最值问题 教学难点: 1、正确构建数学模型 2、对函数图象顶点与最值关系的理解与应用 教学过程: 一、复习旧知: 1.二次函数y=ax 2+bx+c 的图象是一条,它的对称轴是,顶点坐标是 . 当 a>0时,抛物线开口向,有最点,函数有最值,是_____;当a<0时,抛物线开口向,有最点,函数有最值,是. 2.二次函数y=2x 2-8x+9的对称轴是,顶点坐标是.当x=时,函数有最值,是. 二、创设情境: 小明的家门前有一块空地,空地外有一面长10米的围墙,为了美化生活环境,小明的爸爸准备靠墙修建一个矩形花圃,他买回了32米长的不锈钢管准备作为花圃的围栏(如图所示),花圃的宽AD 究竟应为多少米才能使花圃的面积最大? (设计意图:寻找了学生熟悉的家门口的生活背景,从知识的角度来看,求矩形面积也较容易,我在此设计了一个条件墙长10米来限制定义域,目的在于告诉学生一个道理,数学不能脱离生活实际,估计大部分学生在求解时还会在顶点处找最值,导致错解,此时教师再提醒学生通过画函数的图象辅助观察、理解最值的实际意义,加深对知识的理解,做到数与形的完美结合,既培养了学生思维的严密性,又为今后能灵活地运用知识解决问题奠定了坚实的基础。) 三、讲解新知: 有一块三角形余料如图所示,∠A=90°,AM=30cm ,AN=40cm ,要利用这块余料截出一个矩形,怎样截取矩形的面积最大?

二次函数与三角形最大面积的3种求法(供参考)

二次函数与三角形最大面积的3种求法 一.解答题(共7小题) 1.(2012?广西)已知抛物线y=ax2+2x+c的图象与x轴交于点A(3,0)和点C,与y轴交于点B(0,3).(1)求抛物线的解析式; (2)在抛物线的对称轴上找一点D,使得点D到点B、C的距离之和最小,并求出点D的坐标; (3)在第一象限的抛物线上,是否存在一点P,使得△ABP的面积最大?若存在,求出点P的坐标;若不存在,请说明理由. 2.(2013?茂名)如图,抛物线与x轴交于点A和点B,与y轴交于点C,已知点B的坐标 为(3,0). (1)求a的值和抛物线的顶点坐标; (2)分别连接AC、BC.在x轴下方的抛物线上求一点M,使△AMC与△ABC的面积相等; (3)设N是抛物线对称轴上的一个动点,d=|AN﹣CN|.探究:是否存在一点N,使d的值最大?若存在,请直接写出点N的坐标和d的最大值;若不存在,请简单说明理由. 3.(2011?茂名)如图,在平面直角坐标系xoy中,已知抛物线经过点A(0,4),B(1,0),C(5,0),抛物线对称轴l与x轴相交于点M. (1)求抛物线的解析式和对称轴; (2)点P在抛物线上,且以A、O、M、P为顶点的四边形四条边的长度为四个连续的正整数,请你直接写出点P的坐标; (3)连接AC.探索:在直线AC下方的抛物线上是否存在一点N,使△NAC的面积最大?若存在,请你求出点N的坐标;若不存在,请你说明理由. 4.(2012?黔西南州)如图,在平面直角坐标系xOy中,已知抛物线经过点A(0,4),B(1,0),C(5,0),抛物线的对称轴l与x轴相交于点M. (1)求抛物线对应的函数解析式和对称轴; (2)设点P为抛物线(x>5)上的一点,若以A、O、M、P为顶点的四边形的四条边的长度为四个连续的正整数,请你直接写出点P的坐标; (3)连接AC,探索:在直线AC下方的抛物线上是否存在一点N,使△NAC的面积最大?若存在,请你求出点N的坐标;若不存在,请说明理由. 5.(2013?新疆)如图,已知抛物线y=ax2+bx+3与x轴交于A、B两点,过点A的直线l与抛物线交于点C,其中A点的坐标是(1,0),C点坐标是(4,3). (1)求抛物线的解析式; (2)在(1)中抛物线的对称轴上是否存在点D,使△BCD的周长最小?若存在,求出点D的坐标,若不存在,请说明理由; (3)若点E是(1)中抛物线上的一个动点,且位于直线AC的下方,试求△ACE的最大面积及E点的坐标.6.(2009?江津区)如图,抛物线y=﹣x2+bx+c与x轴交于A(1,0),B(﹣3,0)两点. (1)求该抛物线的解析式; (2)设(1)中的抛物线交y轴与C点,在该抛物线的对称轴上是否存在点Q,使得△QAC的周长最小?若存在,求出Q点的坐标;若不存在,请说明理由; (3)在(1)中的抛物线上的第二象限上是否存在一点P,使△PBC的面积最大?若存在,求出点P的坐标及△PBC的面积最大值;若没有,请说明理由. 7.如图,已知二次函数y=ax2+bx+c经过点A(1,0),C(0,3),且对称轴为直线x=﹣1. (1)求二次函数的表达式; (2)在抛物线上是否存在点P,使△PAB得面积为10,请写出所有点P的坐标. 二次函数与三角形最大面积的3种求法

二次函数面积最大问题

二次函数面积最大问题 : 1、如图,已知抛物线y=x2+bx+c的图象与x轴的一个交点为B(5,0),另一个交点为A,且与y轴交于点C(0,5).(1)求直线BC与抛物线的解析式;(2)若点M是抛物线在x 轴下方图象上的一动点,过点M作MN∥y轴交直线BC于点N,求MN的最大值;(3)求三角形CBM的最大值 2、如图,对称轴为直线x=﹣1的抛物线y=ax2+bx+c(a≠0)与x轴相交于A、B两点,其中点A的坐标为(﹣3,0).(1)求点B的坐标;(2)已知a=1,C为抛物线与y轴的交点. ①若点P在抛物线上,且S △POC =4S △BOC .求点P的坐标; ②设点Q是抛物线上一点,位于线段AC的下方,作QD⊥x轴交抛物线于点D,交AC于点P,求线段QP长度的最大值.(3)求S△ACQ的最大值,

3、如图,已知抛物线y=ax2+bx+3与x轴交于A、B两点,过点A的直线l与抛物线交于点C,其中A点的坐标是(1,0),C点坐标是(4,3).(1)求抛物线的解析式;(2)在(1)中抛物线的对称轴上是否存在点D,使△BCD的周长最小?若存在,求出点D的坐标,若不存在,请说明理由;(3)若点E是(1)中抛物线上的一个动点,且位于直线AC的下方,试求△ACE的最大面积及E点的坐标. 4、如图,已知抛物线y=ax2+bx﹣2(a≠0)与x轴交于A、B两点,与y轴交于C点,直线BD交抛物线于点D,并且D(2,3),tan∠DBA=.(1)求抛物线的解析式;(2)已知点M 为抛物线上一动点,且在第三象限,顺次连接点B、M、C、A,求四边形BMCA面积的最大值;

5、如图,在直角坐标系中,点A的坐标为(﹣2,0),点B的坐标为(1,﹣),已知抛物线y=ax2+bx+c(a≠0)经过三点A、B、O(O为原点).(1)求抛物线的解析式;(2)在该抛物线的对称轴上,是否存在点C,使△BOC的周长最小?若存在,求出点C的坐标;若不存在,请说明理由;(3)如果点P是该抛物线上x轴上方的一个动点,那么△PAB是否有最大面积?若有,求出此时P点的坐标及△PAB的最大面积;若没有,请说明理由.(注意:本题中的结果均保留根号) 6、如图,已知抛物线y=ax2+bx+c经过A(﹣3,0),B(1,0),C(0,3)三点,其顶点为D,对称轴是直线l,l与x轴交于点H.(1)求该抛物线的解析式;(2)若点P是该抛物线对称轴l上的一个动点,求△PBC周长的最小值;(3)如图(2),若E是线段AD上的一个动点(E与A、D不重合),过E点作平行于y轴的直线交抛物线于点F,交x轴于点G,设点E的横坐标为m,△ADF的面积为S.①求S与m的函数关系式;②S是否存在最大值?若存在,求出最大值及此时点E的坐标;若不存在,请说明理由.

求二次函数中三角形面积最大值压轴题专题汇编

M N B C x A O y 求二次函数中三角形面积最大值压轴题专题汇编 28.( 甘肃白银)如图,已知二次函数24y ax bx =++的图象与x 轴交于点()2,0B -,点()8,0C ,与y 轴交于点A . (1)求二次函数24y ax bx =++的表达式; (2)连接,AC AB ,若点N 在线段BC 上运动(不与点,B C 重合),过点N 作 //NM AC ,交AB 于点M ,当AMN ?面积最大时,求N 点的坐标; (3)连接OM ,在(2)的结论下,求OM 与A C 的数量关系. 解:(1)将点B ,点C 的坐标分别代入24y ax bx =++, 得:4240 64840a b a b -+=??++=? , 1分 解得:1 4 a =-,32 b =. ∴该二次函数的表达式为 213 442 y x x =-++. 3分 (2)设点N 的坐标为(n ,0)(-2<n <8), 则2BN n =+,8CN n =-. ∵B (-2,0), C (8,0), ∴BC =10. 令0x =,解得:4y =, ∴点A (0,4),OA =4,

∵MN ∥AC , ∴ 810 AM NC n AB BC -== . 4分 ∵OA =4,BC =10, ∴1 14102022 ABC S BC OA =?=??=V . 5分 11 22222 810ABN AMN ABN S BN OA n+n+S AM CN n , S AB CB = ?=?-===()4=()又V V V Q ∴2811 (8)(2)(3)51055 AMN ABN n S S n n n -= =-+=--+V V . 6分 ∴当n =3时,即N (3,0)时,△AMN 的面积最大. 7 分 (3)当N (3,0)时,N 为BC 边中点. ∴M 为AB 边中点,∴12 OM AB.= 8分 ∵AB = AC ∴12AB AC,= 9分 ∴1 4 OM AC =. 10分 24( 海南).抛物线23y ax bx =++经过点()1,0A 和点()5,0B 。 (1)求该抛物线所对应的函数解析式; (2)该抛物线与直线3 35 y x = + 相交于C D 、两点,点P 是抛物线上的动点且位于x 轴下方。直线//PM y 轴,分别与x 轴和直线CD 交与点M N 、。 ①连结PC PD 、,如图12-1,在点P 运动过程中,PCD ?的面积是否存在最大值?若存在,求出这个最大值;若不存在,说明理由; ②连结PB ,过点C 作CQ PM ⊥,垂足为点Q ,如图12-2。是否存在点P ,使得CNQ ?与PBM ?相似?若存在,求出满足条件的点P 的坐标;若不存在,说明理由。

【新人教版】九年级数学上册第22章《二次函数》教案

第二十二章二次函数 22.1 二次函数的图象和性质 22.1.1 二次函数 1.从实际情景中让学生经历探索分析和建立两个变量之间的二次函数关系的过程,进一步体验如何用数学的方法去描述变量之间的数量关系.2.理解二次函数的概念,掌握二次函数的形式. 3.会建立简单的二次函数的模型,并能根据实际问题确定自变量的取值范围. 重点 二次函数的概念和解析式. 难点 本节“合作学习”涉及的实际问题有的较为复杂,要求学生有较强的概括能力. 一.创设情境,导入新课 问题1 现有一根12 m长的绳子,用它围成一个矩形,如何围法,才使矩形的面积最大?小明同学认为当围成的矩形是正方形时,它的面积最大,他说的有道理吗? 问题2 很多同学都喜欢打篮球,你知道吗:投篮时,篮球运动的路线是什么曲线?怎样计算篮球达到最高点时的高度? 这些问题都可以通过学习二次函数的数学模型来解决,今天我们学习“二次函数”(板书课题).

二.合作学习,探索新知 请用适当的函数解析式表示下列情景中的两个变量y与x之间的关系: (1)圆的半径x(cm)与面积y(cm2); (2)王先生存入银行2万元,先存一个一年定期,一年后银行将本息自动转存为又一个一年定期,设一年定期的年存款利率为x,两年后王先生共得本息y元; (3)拟建中的一个温室的平面图如图,如果温室外围是一个矩形,周长为120 m,室内通道的尺寸如图,设一条边长为x (m),种植面积为y(m2). (一)教师组织合作学习活动: 1.先个体探求,尝试写出y与x之间的函数解析式. 2.上述三个问题先易后难,在个体探求的基础上,小组进行合作交流,共同探讨. (1)y=πx2(2)y=20000(1+x)2=20000x2+40000x+20000 (3)y=(60-x-4)(x-2)=-x2+58x-112 (二)上述三个函数解析式具有哪些共同特征? 让学生充分发表意见,提出各自看法. 教师归纳总结:上述三个函数解析式经化简后都具有y=ax2+bx+c(a,b,c是常数,a≠0)的形式. 板书:我们把形如y=ax2+bx+c(其中a,b,c是常数,a≠0)的函数叫做二次函数(quadratic function),称a为二次项系数,b为一次项系数,c

二次函数的最大面积问题

初四数学二次函数中的最大面积专题练习题 1.如图,在直角坐标系中有一直角三角形AOB ,O 为坐标原点,OA=1,tan ∠BAO=3,将此三角形绕原点O 逆时针旋转90°,得到△DOC .抛物线y=ax 2+bx+c 经过点A 、B 、 C . (1)求抛物线的解析式. (2)若点P 是第二象限内抛物线上的动点,其横坐标为t . ①设抛物线对称轴l 与x 轴交于一点E ,连接PE ,交CD 于F ,求出当△CEF 与△COD 相似时点P 的坐标. ②是否存在一点P ,使△PCD 的面积最大?若存在,求出△PCD 面积的最大值;若不存在,请说明理由. 2.如图,已知抛物线c x ax y +- =2 32与x 轴相交于A ,B 两点,并与直线221-=x y 交于B ,C 两点,其中点C 是直线221-=x y 与y 轴的交点,连接AC . (1)求抛物线的解析式; (2)证明:△ABC 为直角三角形; (3)△ABC 内部能否截出面积最大的矩形DEFG ?(顶点D 、E 、F 、G 在△ABC 各边上)若能,求出最大面积;若不能,请说明理由. 3.某基地计划新建一个矩形的生物园地,一边靠旧墙(墙足够长),另外三边用总长54米的不锈钢栅栏围成,与墙平行的一边留一个宽为2米的出入口,如图所示,如何设计才能使园地的而积最大?下面是两位学生争议的情境:请根据上面的信息,解决问题:

(1)设AB=x 米(x >0),试用含x 的代数式表示BC 的长; (2)请你判断谁的说法正确,为什么? 4.如图,已知抛物线c bx ax y ++=2 过点A (6,0),B (-2,0),C (0,-3). (1)求此抛物线的解析式; (2)若点H 是该抛物线第四象限的任意一点,求四边形OCHA 的最大面积; (3)若点Q 在y 轴上,点G 为该抛物线的顶点,且∠QGA=45o,求点Q 的坐标. 5.如图,抛物线y=-x 2-2x+3 的图象与x 轴交于A 、B 两点(点A 在点B 的左边),与y 轴交于点C ,点D 为抛物线的顶点. (1)求A 、B 、C 的坐标; (2)设点H 是第二象限内抛物线上的一点,且△HAB 的面积是6,求点H 的坐标; (3)点M 为线段AB 上一点(点M 不与点A 、B 重合),过点M 作x 轴的垂线,与直线AC 交于点E ,与抛物线交于点P ,过点P 作PQ ∥AB 交抛物线于点Q ,过点Q 作QN ⊥x 轴于点N .若点P 在点Q 左边,当矩形PQMN 的周长最大时,求△AEM 的面积. 6.如图,△ABC 中,∠C=90°,BC=7cm ,AC=5,点P 从B 点出发,沿BC 方向以2m/s 的速度移动,点Q 从C 出发,沿CA 方向以1m/s 的速度移动.

二次函数中三角形面积最大值综合题

精心整理 2017中考数学全国试题汇编------二次函数中三角形面积最大值综合题 28.(2017甘肃白银)如图,已知二次函数24y ax bx =++的图象与x 轴交于点()2,0B -,点()8,0C ,与y 轴交于点A . (1)求二次函数24y ax bx =++的表达式; (2)AB 于 点M (3∴ 810 AM NC n AB BC -== .4分 ∵OA =4,BC =10, ∴11 4102022ABC S BC OA =?=??=V .5分 ∴2811(8)(2)(3)51055 AMN ABN n S S n n n -==-+=--+V V .6分 ∴当n =3时,即N (3,0)时,△AMN 的面积最大.7分 (3)当N (3,0)时,N 为BC 边中点.

∴M 为AB 边中点,∴12 OM AB.=8分 ∵2241625AB OB OA =+=+=, 22641645AC OC OA =+=+=, ∴12AB AC,=9分 ∴1 4 OM AC =.10分 24(2017海南).抛物线23y ax bx =++经过点()和点()。 (1)求该抛物线所对应的函数解析式; (2)该抛物线与直线3 35 y x = +相交于C D 、两点,点P 是抛物线上的动点且位于x 轴下方。直线//PM y 轴,分别与x 轴和直线CD 交与点M N 、。 ①连结PC PD 、,如图12-1,在点P 运动过程中,PCD ?的面积是否存在最大值?若存在,求出这个最大值;若不存在,说明理由; ②连结PB ,过点C 作CQ PM ⊥,垂足为点Q ,如图12-2。是否存在点P ,使得CNQ ?与PBM ?相似?若存在,求出满足条件的点P 的坐标;若不存在,说明理由。 【分析】(1)由A 、B 两点的坐标,利用待定系数法可求得抛物线解析式; (2)①可设出P 点坐标,则可表示出M 、N 的坐标,联立直线与抛物线解析式可求得C 、D 的坐标,过C 、D 作PN 的垂线,可用t 表示出△PCD 的面积,利用二次函数的性质可求得其最大值; ②当△CNQ 与△PBM 相似时有 = 或 = 两种情况,利用P 点坐标,可分别表示出线段的长, 可得到关于P 点坐标的方程,可求得P 点坐标. 【解答】解: (1)∵抛物线y=ax 2+bx +3经过点A (1,0)和点B (5,0), ∴,解得, ∴该抛物线对应的函数解析式为y=x 2﹣x +3; (2)①∵点P 是抛物线上的动点且位于x 轴下方, ∴可设P (t ,t 2﹣ t +3)(1<t <5), ∵直线PM ∥y 轴,分别与x 轴和直线C D 交于点M 、N ,

(完整word版)第22章《二次函数》全章初备教案

第二十二章二次函数 22.1二次函数的图象和性质 22.1.1二次函数 教学目标 1.从实际情景中让学生经历探索分析和建立两个变量之间的二次函数关系的过程,进一步体验如何用数学的方法去描述变量之间的数量关系. 2.理解二次函数的概念,掌握二次函数的形式. 3.会建立简单的二次函数的模型,并能根据实际问题确定自变量的取值范围. 教学重点 二次函数的概念和解析式. 教学难点 本节“合作学习”涉及的实际问题有的较为复杂,要求学生有较强的概括能力. 教学过程 一、创设情境,导入新课 问题1现有一根12 m长的绳子,用它围成一个矩形,如何围法,才使矩形的面积最大?小明同学认为当围成的矩形是正方形时,它的面积最大,他说的有道理吗? 问题2很多同学都喜欢打篮球,你知道吗:投篮时,篮球运动的路线是什么曲线?怎样计算篮球达到最高点时的高度? 这些问题都可以通过学习二次函数的数学模型来解决,今天我们学习“二次函数”(板书课题). 二、合作学习,探索新知 请用适当的函数解析式表示下列情景中的两个变量y与x之间的关系: (1)圆的半径x(cm)与面积y(cm2); (2)王先生存入银行2万元,先存一个一年定期,一年后银行将本息自动转存为又一个一年定期,设一年定期的年存款利率为x,两年后王先生共得本息y元; (3)拟建中的一个温室的平面图如图,如果温室外围是一个矩形,周长为120 m,室内通道的尺寸如图,设一条边长为x (m),种植面积为y(m2). (一)教师组织合作学习活动: 1.先个体探求,尝试写出y与x之间的函数解析式. 2.上述三个问题先易后难,在个体探求的基础上,小组进行合作交流,共同探讨. (1)y=πx2(2)y=20000(1+x)2=20000x2+40000x+20000(3)y=(60-x-4)(x-2)=-x2+58x-112 (二)上述三个函数解析式具有哪些共同特征? 让学生充分发表意见,提出各自看法. 教师归纳总结:上述三个函数解析式经化简后都具有y=ax2+bx+c(a,b,c是常数,a ≠0)的形式. 板书:我们把形如y=ax2+bx+c(其中a,b,c是常数,a≠0)的函数叫做二次函数

二次函数及三角形周长,面积最值问题

二次函数与三角形周长,面积最值问题 知识点:1、二次函数线段,周长问题 2、二次函数线段和最小值线段差最大值问题 3、二次函数面积最大值问题 【新授课】 考点1:线段、周长问题 例1.(2018·)在平面直角坐标系中,已知抛物线的顶点坐标为(2,0),且经过点(4,1), 如图,直线y=x与抛物线交于A、B两点,直线l为y=﹣1. (1)求抛物线的解析式; (2)在l上是否存在一点P,使PA+PB取得最小值?若存在,求出点P的坐标;若不存在,请说明理由. 拓展:在l上是否存在一点P,使PB-PA取得最大值?若存在,求出点P的坐标。

练习 1、如图,已知二次函数24 =-+的图象与坐标轴交于点A(-1,0)和点B(0,-5). y ax x c (1)求该二次函数的解析式;

(2)已知该函数图象的对称轴上存在一点P,使得△ABP的周长最小.请求出点P的坐标. 2、如图,抛物线y=ax2-5ax+4(a<0)经过△ABC的三个顶点,已知BC ∥x轴,点A在x轴上,点C在y轴上,且AC=BC. (1)求抛物线的解析式. (2)在抛物线的对称轴上是否存在点M,使|MA-MB|最大?若存在,求出点M的坐标;若不存在,请说明理由.

例2. (2018?莱芜)如图,抛物线y=ax2+bx+c经过A(﹣1,0),B(4,0),C (0,3)三点,D为直线BC上方抛物线上一动点,DE⊥BC于E. (1)求抛物线的函数表达式; (2)如图1,求线段DE长度的最大值; 练习 1x2+bx-2与x轴交于A、B两点,与y轴交于C点,且A(一1,1、如图,抛物线y= 2

二次函数应用(最大面积问题)

一、教学过程 AB 和AD 分别在两直角边上,1、如图。在一个直角三角形的内部画一个矩形ABCD,其中 AN=40m, AM=30m (1)设矩形的一边AB= xm,那么 AD 边的长度如何表示? (2)设矩形的面积为ym2,当x 取何值时,y 的最大值是多少? (二)变式探究 【探究一】在上一个问题中,如果把矩形改成如图所示的位置,其顶点 A 和顶点 D 分别在两直角边上, BC 在斜边上,其他条件不变,那么矩形的最大面积是什么? 【探究二】如图,已知△ABC是一等腰三角形铁板余料,AB=AC=20cm, BC=24cm,若在 △ABC 上,截出一零件 DEFG,使得 EF在 BC上,点 D、G 分别在边 AB、AC上,问矩形 DEFG 的最大面积是多少?

(三)课下作业 1、如图,在一面靠墙的空地上用长为24 米的篱笆,围成中间隔有两道篱笆的长方形花圃, 设花圃的宽AB 为 x 米,面积S 平方米 (1)求 S 与 x 的函数关系式及自变量的取值范围; (2)当 x 取何值时所围成的花圃面积最大,最大值是多少? (3)若墙的最大利用长度为8 米,求此时围成花圃的最大面积和最小面积分别是多少? 2、如图, AD 是△ ABC的高, BC=60cm,AD=40cm,点 P,Q 是 BC边上的点,点 S 在 AB 边上,点 R 在 AC 边上,四边形 SPQR是矩形,求矩形 SPQR面积最大值 BC、 CD 上的两个动点,当M 点在BC 上运动时,3、正方形ABCD边长为 4, M 、N 分别是 保持 AM和MN垂直 (1)证明: RT△ ABM∽ RT△ MCN (2)设 BM=x,梯形 ABCN 的面积为y,求y与x之间的函数关系式:当 M 点运动到什么位 置时, (3)四边形ABCN 面积最大,并求出最大面积

二次函数的应用(最大利润和最大面积)

九 二次函数的应用(最大利润和最大面积) 1、如图3所示,在一个直角三角形的内部作一个长方形ABCD ,其中AB 和BC 分别在两直角边上,设AB =x m ,长方形的面积为y m 2,要使长方形的面积最大,其边长x 应为 A.424 m B.6 m C.15 m D.2 5 m 2.某商店经营一种水产品,成本为每千克40出500千克;销售价每涨1元,月销售量就减少10千克,针对这种水产品的销售情况,请回答下列问题: (1)当销售单价为每千克55元时,计算销售量和月利润. (2)设销售单价为每千克x 元,月销售利润为y 元,求y 与x 的函数关系式. (3)销售单价定为多少元时,获得的利润最多? 3.某公司推出了一种高效环保型洗涤用品,年初上市后,公司经历了从亏损到盈利的过程.下面的二次函数图象(部分)刻画了该公司年初以来累积利润S (万元)与销售时间t (月)之间的关系(即前t 个月的利润总和S 与t 之间的关系). 根据图象提供的信息,解答下列问题: (1)由已知图象上的三点坐标,求累积利润S (万元) 与时间t (月)之间的函数关系式; (2)求截止到几月末公司累积利润可达到30万元; (3)求第8个月公司所获利润是多少万元? 4某宾馆客房部有60个房间供游客居住,当每个房间的定价为每天200元时,房间可以住满.当每个房间每天的定价每增加10元时,就会有一个房间空闲.对有游客入住的房间,宾馆需对每个房间每天支出20元的各种费用. 设每个房间每天的定价增加x 元.求: (1)房间每天的入住量y (间)关于x (元)的函数关系式. (2)该宾馆每天的房间收费z (元)关于x (元)的函数关系式. (3)该宾馆客房部每天的利润w (元)关于x (元)的函数关系式;当每个房间的定价为每天多少元时,w 有最大值?最大值是多少? )

二次函数的应用--最大面积

二次函数的应用—面积问题 【知识要点】 (1)求出面积与自变量的函数关系y=ax2+bx+c(a≠0) (2)用配方法用配方法将y=ax2+bx+c化为y=a(x-h)2+k的形式: y=ax2+bx+c==a=a+. 当a>0时,则时,y最小值= 当a<0时,则时,y最大值= (3)确定自变量的取值范围,检验是否在取值范围内,若不在,则根据函数的增减性,代入自变量的端点值求出最值 求几何图形的常见方法: ①利用几何图形的面积公式; ②利用三角形的相似(面积比等于相似比的平方); ③利用割补法求几何图形的面积和或差; 【例题解析】 例4、有窗框料12m长,现要制成一个如图所示的窗框,问长宽各为多少米,才能使光照最充足?

例5、在梯形ABCD中,AD∥BC,AB=DC=AD=6,∠ABC=60°,点E,F分别在线段AD,DC上(点E与点A,D不重合),且∠BEF=120°,设AE=x,DF=y. (1)求y与x的函数表达式; (2)当x为何值时,y有最大值,最大值是多少? 例6、如图,在平面直角坐标系中,四边形OABC为矩形,点A、B的坐标分别为(4,0)、(4,3),动点M、N分别从点O、B同时出发,以每秒1个单位的速度运动,其中点M沿OA向终点A运动,点N沿BC向终点C运动,过点N 作NP⊥BC,交AC于点P,连接MP,当两动点运动了t秒时. (1)P点的坐标为______(用含t的代数式表示); (2)记△MPA的面积为S,求S与t的函数关系式(0<t<4); (3)当t=______秒时,S有最大值,最大值是______; (4)若点Q在y轴上,当S有最大值且△QAN为等腰三角形时,求直线AQ的解析式. 【课堂练习】

人教版九年级数学上册第二十二章二次函数 知识点总结

第二十二章 二次函数 一、二次函数的有关概念: 1、二次函数的定义: 一般地,形如2 y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。 2、二次函数解析式的表示方法 (1) 一般式:2 y ax bx c =++(a ,b ,c 为常数,0a ≠); (2) 顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠); (3)两根式:12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标). 二、二次函数 2 y ax bx c =++图象的画法 1.基本方法:描点法 注:五点绘图法。利用配方法将二次函数2 y ax bx c =++化为顶点式 2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点()0c ,、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有 交点,则取两组关于对称轴对称的点). 2.画草图 抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点. 三、二次函数的图像和性质 1.二次函数 2 y ax bx c =++的性质 (1). 当0a >时,抛物线开口向上,对称轴为 2b x a =- ,顶点坐标为 2424b ac b a a ?? -- ? ??,. 当 2b x a <- 时,y 随x 的增大而减小;当2b x a >- 时,y 随x 的增大而增大; 当 2b x a =- 时,y 有最小值2 44ac b a -. (2). 当0a <时,抛物线开口向下,对称轴为 2b x a =- ,顶点坐标为

二次函数中三角形面积最大值综合题

二次函数中三角形面积 最大值综合题 Revised by Petrel at 2021

2017中考数学全国试题汇编------二次函数中三角形面积最大值综合题 28.(2017甘肃白银)如图,已知二次函数24y ax bx =++的图象与x 轴交于点 ()2,0B -,点()8,0C ,与y 轴交于点A . (1)求二次函数24y ax bx =++的表达式; (2)连接,AC AB ,若点N 在线段BC 上运动(不与点,B C 重合),过点N 作 //NM AC ,交AB 于点M ,当AMN ?面积最大时,求N 点的坐标; (3)连接OM ,在(2)的结论下,求OM 与A C 的数量关系. 解:(1)将点B ,点C 的坐标分别代入24y ax bx =++, 得:4240 64840 a b a b -+=?? ++=?,1分 解得:14a =-,32 b =. ∴该二次函数的表达式为21 344 2 y x x =-++.3分 (2)设点N 的坐标为(n ,0)(-2<n <8), 则2BN n =+,8CN n =-. ∵B (-2,0),C (8,0), ∴BC =10. 令0x =,解得:4y =, ∴点A (0,4),OA =4, ∵MN ∥AC , ∴ 810 AM NC n AB BC -== .4分 ∵OA =4,BC =10, ∴11 4102022 ABC S BC OA =?=??=.5分

∴2811 (8)(2)(3)510 55 AMN ABN n S S n n n -= =-+=--+.6分 ∴当n =3时,即N (3,0)时,△AMN 的面积最大.7分 (3)当N (3,0)时,N 为BC 边中点. ∴M 为AB 边中点,∴1 2 OM AB.=8分 ∵2241625AB OB OA =+=+=, 22641645AC OC OA =+=+=, ∴12AB AC,=9分 ∴1 4 OM AC =.10分 24(2017海南).抛物线23y ax bx =++经过点()1,0A 和点()5,0B 。 (1)求该抛物线所对应的函数解析式; (2)该抛物线与直线3 35 y x = +相交于C D 、两点,点P 是抛物线上的动点且位于x 轴下方。直线//PM y 轴,分别与x 轴和直线CD 交与点M N 、。 ①连结PC PD 、,如图12-1,在点P 运动过程中,PCD ?的面积是否存在最大值?若存在,求出这个最大值;若不存在,说明理由; ②连结PB ,过点C 作CQ PM ⊥,垂足为点Q ,如图12-2。是否存在点P ,使得CNQ ?与PBM ?相似?若存在,求出满足条件的点P 的坐标;若不存在,说明理由。 【分析】(1)由A 、B 两点的坐标,利用待定系数法可求得抛物线解析式; (2)①可设出P 点坐标,则可表示出M 、N 的坐标,联立直线与抛物线解析式可求得C 、D 的坐标,过C 、D 作PN 的垂线,可用t 表示出△PCD 的面积,利用二次函数的性质可求得其最大值; ②当△CNQ 与△PBM 相似时有 = 或 = 两种情况,利用P 点坐标,可 分别表示出线段的长,可得到关于P 点坐标的方程,可求得P 点坐标.

相关主题
文本预览
相关文档 最新文档