当前位置:文档之家› 静电微泵致动特性及其尺寸效应分析

静电微泵致动特性及其尺寸效应分析

静电微泵致动特性及其尺寸效应分析
静电微泵致动特性及其尺寸效应分析

静电微泵致动特性及其尺寸效应分析1

刘迎伟1,刘凯1,韩光平1,2

1.西安理工大学机械与精密仪器工程学院,西安(710048)

2.郑州航空工业管理学院,郑州(450052)

E-mail:kliu@https://www.doczj.com/doc/404721181.html,

摘要:分析静电吸合现象,给出吸合电压的计算公式,以圆形泵膜为例,研究吸合电压的尺寸效应及泵膜几何尺寸对吸合电压的影响,得到静电间隙与泵膜厚度对吸合电压呈现正尺寸效应,其中吸合电压对静电间隙的灵敏度较大;泵膜半径则呈现负尺寸效应。这为静电致动器的精确控制与设计提供依据。

关键词:静电微泵;静电吸合;尺寸效应;等效电路

静电致动微泵工作过程式是一个静电场和机械结构相耦合的过程,通过静电场的变化引起微泵结构的响应[1]。因此,微泵的结构特征与静电致动特性是影响微泵工作的两个最主要的因素。本文研究静电致动特性及其尺寸效应。

1.振膜式静电微泵的结构及其工作原理

静电力作为MEMS的主要驱动力,由于其响应时间短,可靠性极好,能耗很低,制作也相对简单,被广泛地用于许多微型器件上。静电致动只有做到电极间间隙足够小,且所加电压比较高时才能产生足够大的致动力,这样必须防止两电极的接触。而且致动力的非线性性质给精确控制增加了一定难度。应用较为成功的一类静电致动器就是静电致动式微泵。其基本结构主要由三部分组成:致动单元,微型单向阀单元和泵室。致动单元包括:固定电极(上电极对),绝缘层,泵膜片(下电极对)。微型单向阀单元包括上阀体和下阀体或扩散口和喷嘴。结构如图1和图2所式。

静电致动器原理很简单,由一个薄膜作为可动电极和一个固定电极组成,在两个电极间施加交变电压,利用两个电极之间的电荷吸引作用,使薄膜产生周期性变形,使腔体内的压力交替变化,从而驱动流体流动。静电产生的压力与电极施加的电压的平方成正比,与电极间的距离的平方成反比。静电驱动方式一般通过调节驱动电压大小来间接控制机构的运动。压力的提高受到致动器的位移量(行程)的限制。

图1 有阀静电微泵

1本课题得到了教育部高等学校博士学科点专项科研基金(项目编号:20060700002)的资助。

图2 无阀静电微泵

2.静电吸合模型

MEMS 中涉及微尺度特性的力、电、磁、流体、热等多个能量域的耦合,而且MEMS 中经常采用静电驱动以及电容检测,而MEMS 器件中平行板电容器通常与弹性机械元件共同进行工作,而实际中经常使用电压控制,这就导致了一个重要的现象,机电耦合——静电吸合[2]。由于机电耦合的固有不稳定性,使得这类器件往往受到不稳定性的影响。随着应用情况的不同,发生吸合现象有时有害、有时有利。此外,许多MEMS 设备的设计都受到这种不稳定性的限制。一个典型的例子就是设计变容二极管时,由于受到这种不稳定性的限制,其电容的变化范围受到了限制。在微泵中,当采用静电致动时,往往需要考虑静电吸合的影响,防止极板相接触发生短路的情况。并且由于吸合现象的存在会造成致动的迟滞。已经有许多学者对静电吸合进行了研究[3,4,5],这里我们对微泵中的静电吸合进行分析。

静电吸合(pull-in )是电压控制的平行板静电执行器存在的一种重要现象。为了解释这一点,需要考虑平衡的稳定性,这种平衡存在于将极板下拉的静电力与将极板上拉的弹簧力之间[6](如图3所示)。其中平行板电容的下极板固定,质量为m 的上极板与弹簧相连。

图3平行板静电执行器示意图

上极板可以上下运动。稳定性分析需要解决的问题是,给电容极板一个扰动,看合力是否有极板返回平衡位置的趋势。若间距y 增加时,所受力为正。根据这一符号约定,可以写出当电容电压为V ,间距y 时,上极板的合力为:

)(2022

y y k y AV F ?+?=ε (1)

式中,0y 为电容电压为0弹簧没有伸长时的极板间距。在这个平衡点,F 为0。ε为介电常数,A 为极板的正对面积,k 为弹簧的刚度。如果间距y 有一个微小的扰动,变为y y δ+,

则有:

y y F F δδ??= (2)

如果y δ为正时F δ也为正,则y 是一个不稳定的平衡点,因为一个微小的增量y δ会产生一个力,而这个力趋向于进一步增大F δ。相反,如果y δ为正时F δ为负,则y 为一个稳定的平衡点。根据(1)、(2)式:

y k y AV F δεδ)(

32?= (3)

为使y 成为一个平衡点,根据稳定性条件,括号内的表达式必须为负值,即:

32

y AV k ε> (4)

显然,因为平衡间距会随着电压的增大而变小,因而一定存在一个临界电压,使平衡的稳定性消失,这个电压就叫做吸合电压,或者称为下拉电压(pull-in voltage),记为PI V 。在吸合点,两个方程必须满足:一个是0=F ,另外一个为

32PI PI y AV k ε=

(5)

根据(1)、(5)式,可以得出: 032y y PI = (6)

A ky V PI ε27830= (7) 由此可见,在0

13y y δ<的区域内结构稳定;而在013y y δ>的区域内结构不稳定,即当电压超过最大临界值时,平行板电容的上,下极板相互接触,及发生所谓的吸合(pull-in)或snap-down 现象。实际中通常在极板中间加一个挡块,避免极板相接触而导致的短路现象,若极板与挡块接触,随着电压的减小,电容器发生迟滞现象。

3.尺寸效应分析及讨论

以圆形泵膜静电微泵为例,分析实际情况中吸合电压的尺寸效应。微泵参数为:圆形泵膜半径R 为2mm ,厚t 为30m μ,边缘固定,静电间隙h 为3m μ(或5m μ)。微泵泵膜的变形方程极坐标形式为:

43243223211()d w d w d w dw D q dr r dr r dr r dr

+?+= (8) 式中2

022()V q h w ε=??为静电力。对于均布载荷作用下周边固支的实心圆板,任意半径

r 点处的挠度为:任意点处的变形规律如图4所示。

42

22222()(16464q qR r w R r D D R

=?=? (9) 最大挠度出现在r =0时,既板的中心处,40064q R w D =。式中200202()V q h w ε=?。

实际驱动电压V 与板中心点处挠度w 0的关系曲线如图5。公式(5)即改写为

2

22)(64)(r R D r k ?=

(10) 公式(7)改写为

PI V = (11)

当w 0=h/3时,极板变形到达稳定的临界状态,加载在极板上的电压即为静电吸合电压。

带入式(11)中,2232320034)

1(8112827648

??==R h t E h R D V PI νεε (12) 0)

1(8112823)(2232120>?=??=?R h t E t V t D PI νε (13) 0)

1(8112823)(2212320>?=??=?R h t E h V h D PI νε (14) 0)

1(811282)(3232320

h h D t D (16)

143)()(>>=h R R D h D (17) 0)(>t D 表明PI V 对泵膜的厚度t 呈正效应,)(t D 较小,反映出PI V 对t 不十分敏感, ()0D R <表明PI V 对泵膜的半径R 呈负效应,()D R 的值反映PI V 对R 的敏感程度很低。

()0D h >表明PI V 对静电间隙h 呈正效应,()D h 较大,反映出PI V 对h 十分敏感。

图4 r/R-w/w0变化规律

图5 w/w0PI-V/VPI变化规律

图6 VPI四维切片表现图

4.结论

利用平行板电容器原理建立了静电力的计算公式分析静电吸合现象,给出了临界吸合电压的计算公式,并以圆形微泵泵膜为例,研究微泵的吸合电压的尺寸效应及泵膜几何尺寸对吸合电压的影响,得到静电间隙与泵膜厚度对吸合电压呈现正尺寸效应,其中吸合电压对静电间隙的灵敏度较大;泵膜半径则呈现负尺寸效应。

参考文献

1.Stephen D. Senturia 著,刘泽文,王晓红,黄庆安等译.微系统设计[M].电子工业出版社.2004.2.聂萌,黄庆安,王建化,戎华.多层悬臂梁静电作用下的弯曲及吸合电压分析[J].机械工程学报.2004, 8: 72-75.

3.Nemirovsky Y.Methodology and model for the pull-in parameters of electrostatic actuator[J].Journal of MEMS.2001,10(4): 601-614.

4.Petersen K E.Dynamic micromechanics on silicon technique and device [J].IEEE Transaction on Electron Devices.1978, 25(10): 1241-1249.

5.H Busta.R Amantea.D Furst etal.A MEMS shield structure for controlling pull-in forces and obtaining increased pull-in voltages [J].Journal of Micromechanical and Microengineering.2001, 11: 720–725.6.Olivier Francais, Isabelle Dufour ,Emmanuel Sarraute.Analytical static modeling and optimization of electrostatic micro pumps [J]. Journal of Micromechanical and Microengineering. 1997, 7: 183-185.7.Han Guangping, Liu Kai, Wang Xiuhong, Mechanical properties and size effects of single crystal silicon[J] Chinese journal of mechanical engineering , 2006 19(2): 290-293

Analysis of the Size Effect of Electrostatic Micro-pump

Yinwei Liu1,Kai Liu1,Guangping Han1,2

1.Department of Mechanical and Instrumental Engineering,Xi’an University of Technology,

Xi’an (710048)

2.Zhengzhou Institute of Aeronautical Industry Management,Zhengzhou (450052)

Abstract

The pull-in phenomenon is analyzed. The formula on calculation the pull-in voltage is established. The size effect of pull-in voltage was analyzed. After investigating the size effect of pull-in voltage, Sensitivity of parameters is given using functional analysis of pull-in voltage. For the Micropump with circular membrane, pull-in voltage is investigated. It is obtained that the electrode-membrane distance and membrane thickness display the positive size effect while the circular membrane radius displays the negative size effect. The effect of electrode-membrane distance is strong. It is the base in accurate control and design of electrostatic actuators in MEMS.

Keywords:electrostatic Micropump,electrostatic pull-in,size effect,equivalent circuit

水泵的性能曲线图分析

水泵的性能曲线图分析: 泵的特性曲线均在一定转速下测定,故特性曲线图上注出转速n值。 水泵的性能曲线图上水平座标标示流量,垂直座标标示压力(扬程),其中有根流量与压力曲线,一般情况下当压力升高时流量下降,你可以根据压力查到流量,也可从流量查到压力;还有根效率曲线,其这中间高,两边低,标明流量与压力在中间段是效率最高,因此我们选泵时要注意泵运行时的压力与流量,处于效率曲线最高附近;再有一个功率(轴功率)曲线,其一般随流量增加而增加。注意其轴功率不应超过电机功率。 1、曲线:Q-H,流量与扬程曲线趋势图,粗线是推荐工作范围。扬程--流量曲线 以离心式水泵为例,水泵性能曲线图包含有Q-H(流量-扬程)、Q-N(流量-功率)、Q-n(流量-效率)及Q-Hs(流量-允许吸上真空高度)。每一个流量Q都相应于一定的扬程H、轴功率N、效率n和允许吸上真空高度Hs 。扬程是随流量的增大而下降的。 Q-H(流量-扬程)是一条不规则的曲线。相应于效率最高值的(Qo,Ho)点的参数,即为水泵铭牌上所列的各数据。它将是该水泵最经济工作的一个点。在该点左右的一定范围内(一般不低于最高效率点的10%左右)都属于效率较高的区段,称为水泵的高效段。在选泵时,应使泵站设计所要求的流量和扬程能落在高效段范围内。 因无法上图,请自找一幅水泵性能曲线图对照着看。主要就这些了。 GPM :加仑/分钟,流量单位 3.=gallons per minute 加仑/分,每分钟加仑数(等于4.546升/分) 273L/h。 其中ft是英尺,表示扬程。 1英尺=12英寸, 1英寸=2.54厘米所以, 1英尺=12×2.54=30.48厘米=0.3048米. 比如说自来水管道压力为0.2Mpa,它能供到多高的高度呢转换公式是什么请大家告诉我一下!谢谢 转换公式:高度H=P/(ρg) 压力为P=0.2 Mpa=200000 Pa 高度H=P/(ρg)=200000/(1000*9.8)= 20.41 m 以上是静压转换为压力高度的计算公式,实际在使用时,水以某一流量沿管道流动,流动中有沿程水头损失和局部水头损失,水并不能供到上述高度,应是上述高度再减去水在管道流动的水头损失。 0.1个兆帕理论上能撑起10米水柱, 水泵扬程与压力有什么关系 扬程就是压力。 压力的单位是bar 巴扬程单位是m 米1巴=10米 2、功率曲线(泵轴功率与流量的关系N-Q) HP与功率的比例关系? 答:HP是英制功率的计量单位,即马力。而KW是公制功率计量单位,它们的关系:1HP=0.75KW。 首先你要明白水泵性能曲线是由管路性能曲线和扬程流量曲线构成的,其实很简单。他的交点就是工况点,两水泵并联时流量叠加,扬程基本不变。串联时扬程叠加流量不变。 cdlf2系列里面还有多级叶轮的,根据叶轮代号查看对应极数的扬程(纵坐标),X+Y 对应的那个点。压力就是扬程,1公斤=10米 汽蚀余量 Capcity m3/h H (m) N (﹪) P (kw) Speed (rymin) (NPSH)r

液压悬置的结构规范

动力总成液压悬置的结构规范

动力总成液压悬置的结构规范 1 范围 本标准适用于各系列车型动力总成液压悬置的结构规范; 本标准主要说明了动力总成液压悬置的结构规范,并假设输入的布置边界条件满足布置要求; 2 规范性引用文件 下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件,仅注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。 无 3 术语和定义 无 4 目标 液压悬置的结构目标:在5~20Hz的低频范围内,需具有高刚度、大阻尼的特性,可有效衰减因路面不平和发动机怠速燃气压力不均匀引起的低频大振幅的振动;而在20 Hz以上的频带范围内,需具有低刚度、小阻尼的特性,可降低车内噪声,提高汽车的操纵稳定性。 5 液压悬置的结构设计 5.1液压悬置的研究分析 因国内的液压悬置研究起步比较晚,目前液压悬置的设计方式主要以消化吸收国外同类轿车的悬置系统布置方式和研究现有悬置产品的动特性为主,然后根据参考样件进行参考设计;目前对参考样件的分析主要有以下两种方式: 5.1.1试验分析 液压悬置的试验包括悬置元件试验和内部组件试验。悬置元件试验的目的是获得悬置在不同的激励频率和振幅下的三向动刚度和滞后角特性,为仿真分析的验证和悬置的优化设计提供数据参考。组件试验的目的是分析单个组件在整个悬置元件中的作用,测试主要组件的特性参数值,如橡胶主簧的弹性系数kr,阻尼系数br,上、下液室体积刚度kv、kb和橡胶主簧的等效泵压面积Ap等。 5.1.2理论分析 理论分析的是根据参考样件建立精确的仿真模型,在此基础上通过仿真计算分析液压悬置的动刚度、阻尼的频变特性和幅变特性,找出影响悬置动特性的关键设计参数,进而进行结构参数的优化匹配。 5.2液压悬置的分类 液压悬置按控制方式可以分为被动悬置、半主动悬置和主动悬置三种。半主动悬置和主动悬置在隔振降噪性能方面要优于被动悬置,但它们的结构比较复杂、成本较高、系统稳定性较差。因此现在的汽车上使用最广泛的还是被动式液压悬置,目前陆风汽车上所采用的液压悬置也是被动式液压悬置。 5.3液压悬置的结构特点 典型的液压悬置结构具备以下几个特点: a)具有橡胶主簧,以承受静载和动载荷;同时具有过载保护结构; b)至少有两个独立的液室,能使液体在它们之间流动; c)液室之间有能产生阻尼作用的孔或惯性通道;对于有解耦作用的液压悬置,还应有解耦盘或解耦膜; d)液压悬置内部有液体工作介质,有多室式液压悬置内部还有气室; 2

纳米尺寸效应

纳米尺寸效应 纳米是长度单位,原称毫微米,就是10^-9米(10亿分之一米)。纳米科学与技术,有时简称为纳米技术,是研究结构尺寸在1至100纳米范围内材料的性质和应用。纳米效应就是指纳米材料具有传统材料所不具备的奇异或反常的物理、化学特性,如原本导电的铜到某一纳米级界限就不导电,原来绝缘的二氧化硅、晶体等,在某一纳米级界限时开始导电。这是由于纳米材料具有颗粒尺寸小、比表面积大、表面能高、表面原子所占比例大等特点,以及其特有的三大效应:表面效应、小尺寸效应和宏观量子隧道效应。 表面效应 球形颗粒的表面积与直径的平方成正比,其体积与直径的立方成正比,故其比表面积(表面积/体积)与直径成反比。随着颗粒直径变小,比表面积将会显著增大,说明表面原子所占的百分数将会显著地增加。对直径大于0.1微米的颗粒表面效应可忽略不计,当尺寸小于0.1微米时,其表面原子百分数激剧增长,甚至1克超微颗粒表面积的总和可高达100平方米,这时的表面效应将不容忽略。 超微颗粒的表面与大块物体的表面是十分不同的,若用高倍率电子显微镜对金超微颗粒(直径为2*10^-3微米)进行电视摄像,实时观察发现这些颗粒没有固定的形态,随着时间的变化会自动形成各种形状(如立方八面体,十面体,二十面体多李晶等),它既不同于一般固体,又不同于液体,是一种准固体。在电子显微镜的电子束照射下,表面原子仿佛进入了“沸腾”状态,尺寸大于10纳米后才看不到这种颗粒结构的不稳定性,这时微颗粒具有稳定的结构状态。超微颗粒的表面具有很高的活性,在空气中金属颗粒会迅速氧化而燃烧。如要防止自燃,可采用表面包覆或有意识地控制氧化速率,使其缓慢氧化生成一层极薄而致密的氧化层,确保表面稳定化。利用表面活性,金属超微颗粒可望成为新一代的高效催化剂和贮气材料以及低熔点材料。 小尺寸效应 随着颗粒尺寸的量变,在一定条件下会引起颗粒性质的质变。由于颗粒尺寸变小所引起的宏观物理性质的变化称为小尺寸效应。对超微颗粒而言,尺寸变小,同时其比表面积亦显著增加,从而产生如下一系列新奇的性质。 (1)特殊的光学性质当黄金被细分到小于光波波长的尺寸时,即失去了原有的富贵光泽而呈黑色。事实上,所有的金属在超微颗粒状态都呈现为黑色。尺寸越小,颜色愈黑,银白色的铂(白金)变成铂黑,金属铬变成铬黑。由此可见,金属超微颗粒对光的反射率很低,通常可低于l%,大约几微米的厚度就能完全消光。利用这个特性可以作为高效率的光热、光电等转换材料,可以高效率地将太阳能转变为热能、电能。此外又有可能应用于红外敏感元件、红外隐身技术等。 (2)特殊的热学性质固态物质在其形态为大尺寸时,其熔点是固定的,超细微化后却发现其熔点将显著降低,当颗粒小于10纳米量级时尤为显著。例如,金的常规熔点为1064C℃,当颗粒尺寸减小到10纳米尺寸时,则降低27℃,2纳米尺寸时的熔点仅为327℃左右;银的常规熔点为670℃,而超微银颗粒的熔点可低于100℃。因此,超细银粉制成的导电浆料可以进行低温烧结,此时元件的基片不必采用耐高温的陶瓷材料,甚至可用塑料。采用超细银粉浆料,可使膜厚均匀,覆盖面积大,既省料又具高质量。日本川崎制铁公司采用0.1~

静电微泵致动特性及其尺寸效应分析

静电微泵致动特性及其尺寸效应分析1 刘迎伟1,刘凯1,韩光平1,2 1.西安理工大学机械与精密仪器工程学院,西安(710048) 2.郑州航空工业管理学院,郑州(450052) E-mail:kliu@https://www.doczj.com/doc/404721181.html, 摘要:分析静电吸合现象,给出吸合电压的计算公式,以圆形泵膜为例,研究吸合电压的尺寸效应及泵膜几何尺寸对吸合电压的影响,得到静电间隙与泵膜厚度对吸合电压呈现正尺寸效应,其中吸合电压对静电间隙的灵敏度较大;泵膜半径则呈现负尺寸效应。这为静电致动器的精确控制与设计提供依据。 关键词:静电微泵;静电吸合;尺寸效应;等效电路 静电致动微泵工作过程式是一个静电场和机械结构相耦合的过程,通过静电场的变化引起微泵结构的响应[1]。因此,微泵的结构特征与静电致动特性是影响微泵工作的两个最主要的因素。本文研究静电致动特性及其尺寸效应。 1.振膜式静电微泵的结构及其工作原理 静电力作为MEMS的主要驱动力,由于其响应时间短,可靠性极好,能耗很低,制作也相对简单,被广泛地用于许多微型器件上。静电致动只有做到电极间间隙足够小,且所加电压比较高时才能产生足够大的致动力,这样必须防止两电极的接触。而且致动力的非线性性质给精确控制增加了一定难度。应用较为成功的一类静电致动器就是静电致动式微泵。其基本结构主要由三部分组成:致动单元,微型单向阀单元和泵室。致动单元包括:固定电极(上电极对),绝缘层,泵膜片(下电极对)。微型单向阀单元包括上阀体和下阀体或扩散口和喷嘴。结构如图1和图2所式。 静电致动器原理很简单,由一个薄膜作为可动电极和一个固定电极组成,在两个电极间施加交变电压,利用两个电极之间的电荷吸引作用,使薄膜产生周期性变形,使腔体内的压力交替变化,从而驱动流体流动。静电产生的压力与电极施加的电压的平方成正比,与电极间的距离的平方成反比。静电驱动方式一般通过调节驱动电压大小来间接控制机构的运动。压力的提高受到致动器的位移量(行程)的限制。 图1 有阀静电微泵 1本课题得到了教育部高等学校博士学科点专项科研基金(项目编号:20060700002)的资助。

电容静电现象

第3课时 电容器 静电现象的应用 1.电容器 ⑴任何两个彼此绝缘而又相距很近的导体都可以构成电容器. ⑵把电容器的两个极板分别与电池的两极相连,两个极板就会带上等量异种电荷.这一过程叫 电容器的充电.其中任意一块板所带的电荷量的绝对值叫做电容器的带电量;用导线把电容器的两板接通,两板上的电荷将发生中和,电容器不再带电,这一过程叫做放电. 2.电容 ⑴电容器所带的电量Q 跟两极板间的电势差U 的比值,叫做电容器的电容,用符号C 表示. ⑵定义式:C =Q U ,若极板上的电量增加ΔQ 时板间电压增加ΔU ,则C =Q U V V . ⑶单位:法拉,符号:F ,与其它单位的换算关系为:1F =106F m =1012pF ⑷意义:电容是描述电容器储存电荷本领大小的物理量,在数值上等于把电容器两极板间的 电势差增加1V 所增加的电量. 3.平行板电容器 ⑴一般说来,构成电容器的两个导体的正对面积S 越大 ,距离d 越小,这个电容器的电容 就越大;两个导体间电介质的性质也会影响电容器的电容. ⑵表达式:板间为真空时:C =4s kd p , 插入介质后电容变大r e 倍:C =4r s kd e p ,k 为静电力常数,r e 称为相对(真空)介电常数. 说明:Q C U = 是电容的定义式,它在任何情况下都成立,式中C 与Q 、U 无关,而由电容器自身结构决定.而4r s C kd e p =是电容的决定式,它只适用于平行板电容器,它反映了电容与其 自身结构S 、d、r e 的关系. 4.静电平衡状态下的导体 ⑴处于静电平衡下的导体,内部合场强处处为零. ⑵处于静电平衡下的导体,表面附近任何一点的场强方向与该点的表面垂直. ⑶处于静电平衡下的导体是个等势体,它的表面是个等势面. ⑷静电平衡时导体内部没有电荷,电荷只分布于导体的外表面. 导体表面,越尖的位置,电荷密度越大,凹陷部分几乎没有电荷. 5.尖端放电 导体尖端的电荷密度很大,附近电场很强,能使周围气体分子电离,与尖端电荷电性相反的离子在电场作用下奔向尖端,与尖端电荷中和,这相当于使导体尖端失去电荷,这一现象叫尖端放电.如高压线周围的“光晕”就是一种尖端放电现象,避雷针做成蒲公花形状,高压设备应尽量光滑分别是生活中利用、防止尖端放电. 6.静电屏蔽 处于电场中的空腔导体或金属网罩,其空腔部分的合场强处处为零,即能把外电场遮住,使内部不受外电场的影响,这就是静电屏蔽.如电学仪器的外壳常采用金属、三条高压线的上方还有两导线与地相连等都是静电屏蔽在生活中的应用. 重点难点例析 一、处理平行板电容器相关量的变化分析 进行讨论的依据主要有三个:

纳米材料的小尺寸效应

纳米材料的小尺寸效应 吴顺康四川大学生命科学学院 2016 级生命科学拔尖班 小尺寸现象产生的原因: 纳米粒子的特性当粒子的尺寸进入纳米量级时,微粒内包含的原子数仅为 100?10000 个,其中有 50 %左右为界原子,纳米微粒的微小尺寸和高比例的表面原子数导致了它的量子尺寸效应和其他一些特殊的物理性质。 小尺寸效应导致的性质(以及部分应用) 由于纳米微粒的尺寸比可见光的波长还小,光在纳米材料中传播的周期性被破坏,其光学性质就会呈现与普通材料不同的情形。例如,金属由于光反射显现各种颜色,而金属纳米微粒都呈黑色,说明它们对光的均匀吸收性、吸收峰的位置和峰的半高宽都与粒子半径的倒数有关。⑵利用这一性质,可以通过控制颗粒尺寸制造出具有一定频宽的微波吸收纳米材 料,可用于磁波屏蔽、隐形飞机等。⑴此外,金属超微颗粒的光反射率极低,可低于1%, 大约几毫米就可以完全消光。可以利用此特性,高效持续的将太阳能转化为热能和电能。 在物质超细微化之后,纳米材料的熔点显著降低,犹在颗粒直径为 10 纳米时较为明显,例如金(Au)常规熔点在1064度;然而在颗粒尺寸减少到 2纳米时仅为327度;由此,超细银粉制成的导电浆料可以进行低温烧结,此时的基片可以仅仅使用塑胶而不是高温陶瓷。使用超细银粉,可以使膜厚均匀,覆盖面积大,省料而质量高。 纳米小尺寸效应的应用: 纳米材料作为功能材料与产业技术的结合,具有很多潜在的应用价值。小尺寸超微颗粒的磁性与大尺寸材料显著不同,在颗粒尺寸下降到 0.02 微米以下之后,其矫顽力可增加 1000 倍,若进一步

减小尺寸,其矫顽力反而可以降到0,呈现出超顺磁性。利用超顺磁性颗粒的

(赵国藩)尺寸效应

混凝土作为一种脆性工程材料表现出了明显的尺寸效应(size Effect)。准确地说,它的混凝土尺寸效应现象表现在两个方面:一是试件尺寸对确定参数的影响,二是在进行数值模拟时,数值计算得到的结果显著的依赖于有限元网格尺寸大小。例如混凝土梁的弯曲强度随梁高度的增加而降低。L’Herrnite的研究则表明,由三点弯曲梁测得的混凝土平均抗拉强度随试件体积的增加而降低。Kadlecek等指出,由三点弯曲梁和四点弯曲梁试验、计算所得的混凝土平均抗拉强度与直接拉伸试件所得混凝土抗拉强度值有显著差别。Bazant等对混凝土缺口梁的试验研究表明,名义抗拉强度和抗剪强度对试件尺寸有明显的依赖性。上述研究实质上表明:1.由弹性分析或极限分析反映的水泥基复合材料的抗拉强度是试件体积和结构内部应力场的函数。这种试件尺寸效应与结构内部原始缺陷有一定的关系。也就是说材料内部的原始缺陷数量是材料体积的函数,原始缺陷在结构中的拓朴分布必定与施加于这些微缺陷的应力场有关。文献[17]的研究指出:这种试件尺寸效应可以用初始损伤发展的概率方法来分析。2.由混凝土缺口试件测得的混凝土断裂韧度有明显的尺寸效应,试件的破坏往往是断裂过程区中微裂缝发展的结果。断裂过程区的大小往往与材料中骨料粒径大小有直接关系,对于混凝土I型断裂而言,断裂过程区的宽度是最大骨料粒径D max的3倍,而其长度约是D max的5至6倍。然而断裂过程区的体积并不随结构的尺寸变化。因而对尺寸较小的试件来说,在断裂过程区和结构的其余部分之间进行的应力和能量重分布是非常重要的。而对于大试件来说,由于断裂过程区的大小与试件尺寸相比可忽略不计,其损伤可视为集中在裂缝尖端的一个相对小的区域。这种试件尺寸效应与结构破坏前的损伤发展有关而与材料中原始缺陷无关。上述两个方面实则指出了两种类型的试件尺寸效应现象,一种与结构的原始缺陷的数量和分布有关,一种与结构在应力作用下的损伤发展有关。对于有缺口试件而言,预制切口可视为结构内部的最大原始缺陷。 对混凝土这种典型的非均质材料来说,对其力学行为的模拟往往有两种方法:一种是视混凝土为均质材料,采用连续介质力学方法。定义局部应变和应力,利用一种适当的方法来分析当材料受荷时,应力和应变的变化。另一种是不再认为混凝土为均质材料,而认为其组份是随机分布,运用概率的方法来研究混凝土的力学行为,这就是通常所说的随机方法(Stochastic Approach)。已有许多学者运用这种随机方法建立了许多混凝土分析模型。

2019-2020学年高二物理(选修3) 专题1.3 静电现象 电容器(第01期)解析版

一、选择题 1、【2015-2016学年?上学期吉林一中9月高二物理检测】验电器带有正电,物体A接触验电器的金属球后,发现验电器的金属泊先闭合后又张开,这表明() A、物体A原先带有正电 B、物体A原先带有负电 C、物体A原先不带电 D、物体A原先带有负电,也可能不带电 【答案】B 考点:电荷间的相互作用. 【名师点睛】此题考查了电荷间的相互作用问题;要知道两个带异种电荷的带电体相互接触时,电荷首先要中和,然后剩余的电荷重新分配;在验电器的金箔上由于带上同性电荷而被排斥张开,若金箔不带电则闭合;此题是一道基础题目. 2.【2015—2016学年·济南一中第一学期期中质量检测】对静电现象的认识,下列说法错误的是 A.摩擦起电创造了电荷 B.电脑、电视机工作时,荧光屏表面因为带静电而易吸附灰尘 C.干燥季节在暗处脱去化纤衣服时看到火花,是静电现象 D.油罐车车尾拖在地上的铁链,它的作用是避免静电造成的危害 【答案】A 【解析】 试题分析:摩擦起点只是让正负电荷分离,并没有创造新的电荷,A错误;当电脑、电视机工作时,荧光屏表面因带电,因此会吸附灰尘等轻小尘埃,B正确;干燥季节在暗处脱去化纤衣服时看到火花,是摩擦起电后的放电现象,C正确;油罐车车尾拖在地上的铁链,是因为油罐车与空气摩擦带电后通过铁链将静电放掉,从而保证不会造成危害,D正确。只有A 错误,因此选A。 考点:静电感应现象和摩擦起电

【名师点睛】在静电感应和摩擦起电的过程中,由于不同物质对电子的束缚能力不同,因此摩擦过程中会出现正负电荷的分离,这就是摩擦起电,但不会产生新的电荷;而放电过程也只是正负电荷中和,电荷也没有消失,当然有时物体带电是有害的,因此要尽快放掉,但放电过程中,有时会出现电火花。 3、【2015-2016学年?上学期吉林一中9月高二物理检测】如图所示,A、B是被绝缘支架分别架起的两金属球,并相隔一定距离,其中A带正电,B不带电,则以下说法中正确的是() A.导体B带负电 B.导体B左端出现负电荷,右端出现正电荷,并且电荷量大小相等 C.若A不动,将B沿图中虚线分开,则两边的电荷量大小可能不等 D.只要A与B不接触,B的总电荷量总是为零 【答案】BD 故选BD. 考点:静电感应. 【名师点睛】此题考查了静电感应问题;要知道静电感应的实质就是同性电荷相互排斥,异性电荷相互吸引;同性电荷总是吸引到最近点,而异性电荷总是被排斥到最远点;开始处于中性的导体中正负电荷的代数和等于零. 4.【2014—2015学年?北京师范大学附属实验中学第一学期高二年级物理期中试卷】如图所示,取一对分别用绝缘支柱支撑的金属导体A和B,使它们彼此接触。起初它们不带电,贴在A、B下面的金属箔是闭合的。现在把带正电荷的球C移近导体A,可以看到A、B上的金属

汽车发动机液压悬置

湖北汽车工业学院 Hubei Automotive Industries Institute 《汽车新技术》 课程结业论文 论文题目:汽车发动机液压悬置 指导教师:姚胜华张庆永 学校名称:湖北汽车工业学院

发动机液压悬置 摘要:发动机液压悬置是非线性很强的隔振元件,其动特性因激振频率和激振振幅的改变而改变。试验分析和理论研究是研究液压悬置的两种基本方法。文中通过分析典型液压悬置的结构特征,全面总结液压悬置的试验方法、理论模型和优化设计方法等方面的研究现状,分析了将试验研究和理论分析相结合、采用系统参数识别方法对液压悬置进行研究的可行性,并探讨了最优试验设计准则。 关键词:发动机液压悬置振动噪声发展 发动机液压悬置是连接发动机与车体之间的支承隔振元件,它能隔离发动机的振动和噪音向车厢内的传递,明显提高整车车内的舒适性。液压悬置主要应用于中高档轿车的发动机支承。 发动机通过悬置弹性连接在车架上。悬置元件既要隔离发动机在正常工作范围内产生的振动和高频噪声向车体的传递,又要保证汽车在振动、突然加减速、转弯等工况下,发动机始终保持在设计位置,使整个动力总成不因发动机与车架之间的相对运动过大而受损。为此,发动机悬置应在高频振动激励(大于25Hz)下,具有低刚度和小阻尼的特性,以减小振动的传递和高频噪声,一般认为这时的激振振幅很小,为0.1mm级;同时在低频振动激励(1~25Hz)下,具有高刚度大阻尼的特征,以有效衰减车架的低频振动对发动机的影响,这时的激振振幅较大,为1mm级。因此理想的发动机悬置是一个动特性随激振振幅和振动频率变化而变化的元件。液压悬置因其具有良好的隔振性能而广泛应用于现在的汽车上。 本文从介绍液压悬置的基本结够,从试验研究和理论分析两方面对液压悬置的研究现状进行介绍,并对液压悬置的未来研究方向进行了探讨 液压悬置的基本结构和性能评价指标。按控制方式分,液压悬置可分为被动式、半主动控制式和主动控制式。后两种控制方式的液压悬置虽然在隔振、减振、降噪性能方面均优于被动式液压悬置,但由于结构复杂、成本高、系统稳定性差等问题,还没有被广泛使用。目前中低档轿车普遍使用的。 早期的被动式液压悬置在上、下液室之间只有小孔连接,靠液体流过小孔的节流阻尼来衰减发动机振动,其大阻尼特性在低频振动时可以控制发动机的位移,但高频时会恶化隔振效果。

(完整)量子尺寸效应

(完整)量子尺寸效应 编辑整理: 尊敬的读者朋友们: 这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)量子尺寸效应)的内容能够给您的工作和学习带来便利。同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。 本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)量子尺寸效应的全部内容。

1.1.1量子尺寸效应 所谓的量子尺寸效应是指粒子尺寸下降到某一值时,金属费米能级附近的电子能级 由准连续变为离散的现象,纳米半导体粒子存在不连续的最高被占据的分子轨道和最低未 被占据的分子轨道能级,能隙变宽,由此导致纳米微粒的光、电、磁、热、催化和超导性等 特性与宏观性存在着显著的差异。如金属纳米材料的电阻随着尺寸下降而增大,电阻温度 系数下降甚至变成负值;相反,原是绝缘体的氧化物达到纳米级时,电阻反而下降;10~ 25nm的铁磁金属微粒矫顽力比同种宏观材料大1000倍,而当颗粒尺寸小于10nm时矫顽力 变为零,表现为超顺磁性。 1。1。2小尺寸效应 当超细微粒的尺寸与光波波长、德布罗意波长以及超导态的相干长度或透射深度等 物理特征尺寸相当或更小时,晶体周期性的边界条件将被破坏;非晶态纳米微粒的颗粒表面 层附近原子密度减小,导致声、光、电、滋、热、力学等特性呈现新的小尺寸效应.例如: 光吸收显著增加,吸收峰的等离子共振频移,磁有序态向磁无序态转变,超导相向正常相 的转变,声子谱发生改变等,这种现象称为小尺寸效应。 1。1.3表面与界面效应 纳米材料的另一个重要特性是表面与界面效应.由于表面原子与内部原子所处的环境 不同,当粒子直径比原子直径大时(如大于0。01时),表面原子可以忽略,但当粒子直径 逐渐接近原子直径时,表面原子的数目及作用就不能忽略,而且这时粒子的比表面积、表 面能和表面结合能都发生很大变化.人们把由此引起的种种特殊效应统称表面效应[8,9]。 随着粒径的减小,比表面迅速增大.当粒径为5nm时,表面原子数比例达到约50%以上,当 粒径为2nm时,表面原子数达到80%,原子几乎全部集中到纳米粒子的表面.庞大的表面原 子的存在导致键态严重失配,表面出现非化学平衡、非整数配位的化学键,产生许多活性中心,从而导致纳米微粒的化学活性大大增强,主要表现在:(1)熔点降低.就熔点来说,纳 米颗粒中由于每一粒子组成原子少,表面原子处于不安定状态,使其表面晶格震动的振幅 较大,所以具有较高的表面能量,造成超微粒子特有的热性质,也就是造成熔点下降,同时 纳米粉末将比传统粉末容易在较低温度烧结,而成为良好的烧结促进材料。如金的常规熔 点是1064℃当颗粒尺寸减小到10nm时,降低了270℃,当金纳米粒子尺寸为2 nm时,熔点 仅为327℃;银的常规熔点为961℃,而超微银颗粒的熔点可低于100℃等。(2)比热增大。粒径越小,比热越大.(3)化学活性增加,有利于催化反应等。 1.1。4宏观量子隧道效应 微观粒子具有贯穿势垒的能力称为隧道效应。近年来,人们发现一些宏观量,如超微 粒的磁化强度和量子相干器件中的磁通量等也具有隧道效应,称为宏观量子隧道效应,利 用它可以解释纳米镍粒子在低温下继续保持超顺磁性的现象。宏观量子隧道效应的研究对 基础研究及实用都具有重要的意义,它确立了现存微电子器件进一步微型化的极限,是未来 微电子器件的基础. 上述的小尺寸效应、表面界面效应、量子尺寸效应及量子隧道效应都是纳米微粒与 纳米固体的基本特性。它使纳米微粒和纳米固体呈现许多奇异的物理、化学性质,出现一 些“反常现象”。例如金属纳米材料的电阻随尺寸下降而增大,电阻温度系数下降甚至变 成负值;相反,原是绝缘体的氧化物达到纳米级时,电阻反而下降;10nm-25nm的铁磁金属

复合材料中的尺寸效应

复合材料中的尺寸效应 复合材料本身就是一种广义的结构,这种结构的破坏问题与结构的尺寸效应有 着必然的联系,复合材料中很多都属于准脆性材料,因此尺寸效应显得尤其重要, 从尺度律和尺寸效应角度研究强度问题是个重要的观点,比如一个长细杠件它的稳定性能一定较差,这也是一种较常见的尺寸效应问题。强度随机性引起的尺寸效应,能量释放的尺寸效应和微裂纹和断裂的分形特性产生的尺寸效应都对复合材料结构的强度的影响有着重要意义。 目前,固体力学中有三种有关尺寸效应的基本理论 : (1)随机强度统计理论 ; (2)长裂纹引起的应力重新分布和断裂能量释放理论 (3)裂纹分形理论,它可分为两大类 : (a) 裂纹表面的侵入式分形特性理论(即表面粗糙度的分形属性) (b) 间隙分形特性理论(代表着微裂纹的分形分布)

这些基本理论概括表现为材料的四种尺寸效应: (l)边界层效应:它是由材料的非均匀性和泊松效应造成的.前者可以混凝土之类的材料为例,由于各种骨料不能穿透表面而使表面层具有不同的成分;而泊松效应指的是,在试样内部可能存在平面应变的状态,它们发生在与试件表面平行的平面上 ,但不是发生在试样的表面,而是发生在试件的中心部位 . (2)表面与裂纹边缘连接处存在三维应力的奇异性: 这也是由于泊松效应引起的.这就造成了断裂扩展区域靠近表面的那一部分的力学行为不同于试样内部 的力学行为 . (3)由扩散现象引起的时间相关的尺寸效应, 所谓扩散可以是多孔介质中热的输运或湿气和化学物质的输运,这一点已在收缩和干燥蠕变现象的尺寸效应中显示出来,原因是半干燥期依赖于尺寸,以及这种尺寸效应对收缩致裂的影响。 (4)材料本构关系的时间相关性 ,特别是材料应变软化的粘性特征

2012届高考物理一轮复习 6.4电容器 静电现象的应用学案

第 4 课时 电容器 静电现象的应用 基础知识归纳 1.静电感应现象 导体放入电场后,导体内部自由电荷在 电场力 作用下做 定向移动 ,使导体两端出现 等量 的正、负电荷的现象. 2.静电平衡 (1)状态:导体中(包括表面) 没有电荷定向移动 . (2)条件:导体 内部场强处处为零 . (3)导体处于静电平衡状态的特点: ①导体表面上任何一点的场强方向跟该点外表面 垂直 ; ②电荷只分布在导体 外表面 ; ③整个导体是一个 等势体 ,导体表面是一个 等势面 . 3.静电屏蔽 导体球壳内(或金属网罩内)达到静电平衡后, 内部场强处处为零 , 不受外部电场的影响 ,这种现象叫 静电屏蔽 . 4.尖端放电 导体尖端的电荷密度很大,附近场强很强,能使周围气体分子 电离 ,与尖端电荷电性相反的离子在电场力作用下奔向尖端,与尖端电荷 中和 ,这相当于导体尖端失去电荷,这一现象叫尖端放电.如高压线周围的“光晕”就是尖端放电现象,所以高压设备尽量做得光滑,防止尖端放电,而避雷针则是利用尖端放电的实例. 5.电容器 (1)两块互相靠近又彼此绝缘的导体组成的电子元件. (2)电容器的带电量: 一个极板 所带电荷量的 绝对值 . (3)电容器的充、放电:使电容器带电的过程叫做 充电 ,使电容器失去电荷的过程叫做 放电 . 6.电容 (1)定义:电容器所带电荷量与两极板间电势差的比值叫电容,定义式为 U Q C =. (2)单位: 法拉 ,符号F ,换算关系为 1 F =106 μF=1012 pF . (3)物理意义:电容是描述电容器储存电荷本领大小的物理量,可与卡车的载重量类比. 7.平行板电容器的电容 电容C 与平行板正对面积S 成 正比 ,与电介质的介电常数εr 成 正比 ,与两极板的距离d 成 反比 ,即C = π4 r kd S ε. 重点难点突破 一、处理平行板电容器内部E 、U 、Q 变化问题的基本思路 1.首先要区分两种基本情况; (1)电容器始终与电源相连时,电容器两极板电势差U 保持不变; (2)电容器充电后与电源断开时,电容器所带电荷量Q 保持不变. 2.赖以进行讨论的物理依据有三个: (1)平行板电容器电容的决定式C = π4 r kd S ε;

量子尺寸效应

1.1.1量子尺寸效应 所谓的量子尺寸效应是指粒子尺寸下降到某一值时,金属费米能级附近的电子能级由准连续变为离散的现象,纳米半导体粒子存在不连续的最高被占据的分子轨道 和最低未被占据的分子轨道能级,能隙变宽,由此导致纳米微粒的光、电、磁、热、 催化和超导性等特性与宏观性存在着显著的差异。如金属纳米材料的电阻随着尺寸下 降而增大,电阻温度系数下降甚至变成负值;相反,原是绝缘体的氧化物达到纳米级时,电阻反而下降;10~25nm的铁磁金属微粒矫顽力比同种宏观材料大1000倍,而当颗粒尺寸小于10nm时矫顽力变为零,表现为超顺磁性。 1.1.2小尺寸效应 当超细微粒的尺寸与光波波长、德布罗意波长以及超导态的相干长度或透射深度等物理特征尺寸相当或更小时,晶体周期性的边界条件将被破坏;非晶态纳米微粒 的颗粒表面层附近原子密度减小,导致声、光、电、滋、热、力学等特性呈现新的小 尺寸效应。例如:光吸收显著增加,吸收峰的等离子共振频移,磁有序态向磁无序态 转变,超导相向正常相的转变,声子谱发生改变等,这种现象称为小尺寸效应。 1.1.3表面与界面效应 纳米材料的另一个重要特性是表面与界面效应。由于表面原子与内部原子所处的环境不同,当粒子直径比原子直径大时(如大于0.01时),表面原子可以忽略,但当 粒子直径逐渐接近原子直径时,表面原子的数目及作用就不能忽略,而且这时粒子的 比表面积、表面能和表面结合能都发生很大变化。人们把由此引起的种种特殊效应统 称表面效应[8,9]。随着粒径的减小,比表面迅速增大。当粒径为5nm时,表面原子数比例达到约50%以上,当粒径为2nm时,表面原子数达到80%,原子几乎全部集中 到纳米粒子的表面。庞大的表面原子的存在导致键态严重失配,表面出现非化学平衡、非整数配位的化学键,产生许多活性中心,从而导致纳米微粒的化学活性大大增强, 主要表现在:(1)熔点降低。就熔点来说,纳米颗粒中由于每一粒子组成原子少,表面原子处于不安定状态,使其表面晶格震动的振幅较大,所以具有较高的表面能量, 造成超微粒子特有的热性质,也就是造成熔点下降,同时纳米粉末将比传统粉末容易 在较低温度烧结,而成为良好的烧结促进材料。如金的常规熔点是1064℃当颗粒尺寸减小到10nm时,降低了270℃,当金纳米粒子尺寸为2 nm时,熔点仅为327℃;银的常规熔点为961℃,而超微银颗粒的熔点可低于100℃等。(2)比热增大。粒径越小,比热越大。(3)化学活性增加,有利于催化反应等。 1.1.4宏观量子隧道效应 微观粒子具有贯穿势垒的能力称为隧道效应。近年来,人们发现一些宏观量,如超微粒的磁化强度和量子相干器件中的磁通量等也具有隧道效应,称为宏观量子隧

微电子机械系统尺寸效应的泛函分析

微电子机械系统尺寸效应的泛函分析 韩光平1,2,刘凯1,褚金奎2 (1.西安理工大学,陕西西安 710048;2.郑州航空工业管理学院,河南郑州 450052) 摘要:尺寸效应涉及微电子机械系统研究领域的各个方面,在分析归纳微器件或系统中尺寸对其特性影响的基础上,提出从纯尺寸因素和非尺寸因素综合考虑尺寸效应,建立了一个尺寸效应的基本数学模型,并从尺寸泛函的绝对值、相对值和对尺寸的灵敏度三个方面对该数学模型进行泛函分析,总结出一些尺寸效应的发生规律。 关键词:微电子机械系统(M EM S);尺寸效应;泛函分析;灵敏度;微器件 中图分类号:T H112 文献标识码:A 文章编号:1001-2354(2004)02-0017-03 微电子机械系统(M EM S)技术基于微电子和微机械的有机集成,涉及微电子学、微机械学、微材料学、微摩擦学、微电磁学、微光学、微动力学、微流体力学、微热力学、自动控制、物理、化学及生物医学等多个学科的研究领域[1],集约了各学科前沿领域研究的新技术、新成果,和纳米科学技术(N ST)一起被列为21世纪关键技术之首。自20世纪60年代问世以来,M EM S逐步成为人们在微观领域认识和改造客观物质世界的一种高新技术和重要手段,将人类带入信息时代。由于其应用的广泛性和迫切性,国内外投入到该研究领域的人力、物力日益增加,考虑到实用性,人们更加关注可以即时应用的各种微器件的研究开发,特别是经过近十年的迅猛发展,国内外在硅微细加工、光刻、L IGA和准L IGA技术、高能束刻蚀技术、牺牲层技术、外延技术、准分子激光微细加工技术等各种微制造工艺方面取得了显著的成就,设计制造出多种微传感器、微执行器等微器件,如M EM S力传感器、微加速度传感器、微显示器芯片、微惯性传感器、微机械血液测试仪[2]、微阀、微泵、微齿轮及微马达等。但是,各种微器件有机结合成真正意义上的M EM S,还有相当的难度,如何建立M EM S等效机构的失效模型这一问题尚未得到有效解决[3]。究其原因,人们对微观条件下M EM S器件的运动规律、物理特性和受载之下的力学行为缺乏充分的认识,没有形成基于一定理论基础之上的M EM S设计理论方法[4],只能靠传统方法进行试探性研究。目前,M EM S基础理论研究远远不能满足人们的需要,成为整个微电子机械系统进一步发展的 瓶颈 ,因此,对M EM S设计中的基础理论进行系统性研究已刻不容缓。 1 研究尺寸效应的意义 随着纳米材料、微器件、微结构和微系统的深入发展及其应用,与微尺度效应有关的理论和技术成为当前的研究热点,推动着微尺度理论的形成和发展[5]。微电子机械系统不仅是指以微小尺寸和工作空间为特征,更重要的是,微器件中的物理量和机械量等在微观状态下呈现出大大异于传统机械的特有规律,因此,M EM S具有自身独特的理论基础。对于M EM S 的基础理论范畴,大量的专著和论文报道均有详尽的描述,其中有把M EM S涉及到的各学科作为基础理论研究范畴,这种观点使得M EM S基础理论研究内容全面,但没有突出其重点;有的研究人员挑选出应用更为广泛的部分学科,如文献[4]把微机构学、微构件材料力学和微摩擦学作为现阶段M EM S基础研究的主要内容,这种观点重点突出,没有包括应有的其它学科的理论基础。无论如何划分,M EM S理论基础的研究领域都包含有一个共同的特征 微 ,这说明尺度因素才是微电子机械系统设计中最为重要的主导因素。以尺寸效应作为M EM S 理论基础的主要研究内容,既可以突出研究重点 构件的微型化,又给出了M EM S所涉及各学科之间的联系,即微型化的构件产生的效应使其具有自身独特的性能,导致在各学科领域产生新的问题。 在微观领域中,微器件的显著特征就是呈现出尺寸效应和表面效应,而表面效应也是由于尺寸的减小引起表面作用的增强。当物体的尺寸改变时,与尺寸相关的各种物理量、机械量发生相应的变化,从而产生尺寸效应。尺寸效应及其引起的变化(如表面缺陷数、晶格层错、介质不连续及量子效应等)导致了微观领域的许多物理现象与宏观领域相比较有显著差异,甚至相悖,从而出现新的研究领域,对经典理论提出挑战。因此,研究M EM S的基础理论,必须研究尺寸效应。已有关于尺寸效应的研究仅仅局限于某一个具体量,如弹性模量、拉伸强度、失效强度及形状记忆合金的回复力[6]等,而且数据是在不同的工艺条件和测试环境下获得的,缺乏通用性和权威性。在此对具有普遍性意义的尺寸效应,建立了基本的数学模型,对纯尺寸因素进行了泛函分析,并综合考虑尺寸效应引发的非尺寸因素变化。 2 尺寸效应的基本数学模型 2.1 尺寸泛函 在尺寸效应中,特征尺寸L是基本参量,尺寸的变化首先 第21卷第2期2004年2月 机 械 设 计 JOU RNA L OF MA CHIN E DESIGN V ol.21 No.2 Feb. 2004 收稿日期:2003-04-07;修订日期:2003-08-26 基金项目:国家自然科学基金资助项目(50135040) 作者简介:韩光平(1971-),男,河南郑州人,西安理工大学博士生,郑州航空工业管理学院讲师,主要研究方向:微电子机械系统(M EM S)微尺度及系统仿真。

大直径桩考虑尺寸效应系数的原因

大直径桩考虑尺寸效应系数的原因 近日,提出一个问题:“桩基规范在计算大直径桩承载力时需考虑桩侧阻力尺寸效应系数(<1的系数),但计算嵌岩桩时没有区分大直径桩,没有考虑桩侧阻力尺寸效应系数,是否 有点儿前后不对应呢?” 为了解释这个问题,我们先了解下规范是如何规定的,《建筑桩基技术规范》JGJ94-2008对于大直径桩单桩极 限承载力标准值是这样规定的: 5.3.6根据土的物理指标与承载力参数之间的经验关系,确定大直径桩单桩极限承载力标准值时,可按下式计算: ——桩侧第i层土极限侧阻力标准值,如无当地式中q sik 经验值时,可按本规范表5.3.5-1取值,对于扩底桩变截面以上2d长度范围不计侧阻力; ——桩径为800mm的极限端阻力标准值,对于干作业q pk 挖孔(清底干净)可采用深层载荷板试验确定;当不能进行 深层载荷板试验时,可按表5.3.6-1取值; 、——大直径桩侧阻、端阻尺寸效应系数,按表 5.3.6-2取

值. 而对于嵌岩桩却没有尺寸效应系数: 5.3.9桩端置于完整、较完整基岩的嵌岩桩单桩竖向极限承载力,由桩周土总极限侧阻力和嵌岩段总极限阻力组成.当根据岩石单轴抗压强度确定单桩竖向极限承载力标准值时,可按下列公式计算: 式中Q sk 、Q rk ——分别为土的总极限侧阻力、嵌岩段总 极限阻力; q sik ——桩周第i层土的极限侧阻力,无当地经验时,可根据成桩工艺按本规范表5.3.5-1取值; f rk ——岩石饱和单轴抗压强度标准值,黏土岩取天然湿度单轴抗压强度标准值; ——嵌岩段侧阻和端阻综合系数,与嵌岩深径比h r /d、岩石软硬程度和成桩工艺有关,可按表5.3.9采用;表中数值

离心泵特性曲线

一、离心泵的特性曲线定义 当转速n为常量时,列出扬程(H)、轴功率(N)、效率(η)以及允许吸上真空高度(HS)等随流量(Q)变化的函数关系,即:H=f(Q);N=F(Q);Hs= Ψ(Q);η = φ(Q),我们把这些方程关系用曲线来表示,就称这些曲线为离心泵的特性曲线。 离心泵的特性曲线是液体在泵内运动规律的外在表现形式,这三条曲线需要根据试验的方法(采用离心泵特性曲线的测定装置,逐渐开启水泵出口阀门改变其流量,测得一系列的流量及相应的扬程和轴功率,然后将H-Q、N-Q、η一Q曲线绘制在同一张坐标纸上,即为一定型式离心泵在一定转速下的特性曲线),不同的水泵特性曲线不同,水泵的特性曲线由设备生产厂家提供。严格意义上讲,每一台水泵都有特定的特性曲线。 在水泵特性曲线上,对应任意流量点都可以找到一组与其相对应的扬程、轴功率和效率值,通常把这一组相对应的参数称为工况,其对应最高效率点的一组工况称为最佳工况。 在生产实践中,水泵的运行工况点是通过管路的特性曲线与水泵的特性曲线确定的(M工况点,见下图)。在选择和使用泵时,使水泵在高效区运行,以保证运转的经济和安全。 二、影响离心泵特性曲线的因素 离心泵的特性曲线与很多因素有关,如液体的粘度与密度、叶轮出口宽度、叶片的出口安放角与叶片数及离心泵的压出室形状等均会对离心泵的特性曲线产生影响。 1、叶轮出口直径对性能曲线的影响 在叶轮其他几何形状相同的情况下,如果改变叶轮的出口直径,则离心泵的特性曲线平行移动,见下图。

根据这一特性,水泵制造厂和使用单位可采用车削离心泵叶轮外径的方法改变一台泵的性能范围,以使泵的性能更适合实际运行需要。例如,某厂的一台离心式循环泵,其运行压力偏高,为降低压力,将叶轮外径由270mm车削到250mm后,在流量相同的情况下,压力下降,给水泵的电机电流减小,满足了运行的要求。 2、转速与性能曲线的关系 同一台离心泵输送同一种液体,泵的各项性能参数与转速之间的关系式为: Q1/Q2=n1/n2 H1/H2=(n1/n2)2 N1/N2=(n1/n2)2

纳米材料小尺寸效应的应用

纳米材料小尺寸效应的应用 引言:提起“纳米”这个词,可能很多人都听说过,但什么是纳米,什么是纳米材料,可能很多人并不一定清楚,本文主要对纳米及纳米材料的研究现状和发展前景做了简介,相信随着科学技术的发展,会有越来越多的纳米材料走进人们的生活,为人类造福。纳米技术具有极大的理论和应用价值,纳米材料被誉为“21世纪最有前途的材料”。 关键词:纳米材料小尺寸效应性质分类发展前景 一、纳米材料及其性质 纳米材料是指在三维空间中至少有一维处于纳米尺度范围(1-100nm)或由它们作为基本单元构成的材料,这大约相当于10~100个原子紧密排列在一起的尺度。从尺寸大小来说,通常产生物理化学性质显著变化的细小微粒的尺寸在0.1微米以下,即100纳米以下。因此,颗粒尺寸在1~100纳米的微粒称为超微粒材料,也是一种纳米材料。粒度分布均匀、纯度高、极好分散,其比表面高,具有耐高温的惰性,高活性,属活性氧化铝;多孔性;硬度高、尺寸稳定性好,具有较强的表面酸性和一定的表面碱性,被广泛应用作催化剂和催化剂载体等新的绿色化学材料。可广泛应用于各种塑料、橡胶、陶瓷、耐火材料等产品的补强增韧,特别是提高陶瓷的致密性、光洁度、冷热疲劳性、断裂韧性、抗蠕变性能和高分子材料产品的耐磨性能尤为显著。以上这些性能决定了纳米材料在表面效应、小尺寸、量子尺寸效应、量子隧道效应、电子信息领域、航天航空、环保能源等各方面均有应用,尤其是在小尺寸方面的应用。 二、纳米科技的发展现状 著名科学家钱学森指出:“纳米科技是21世纪科技发展的重点,会是一次技术革命,而且还会是一次产业革命”。随着世界发达国家对纳米研究的深入,我国对纳米材料和技术也非常重视,为推动我国纳米技术成果产业化.国家通过财政投资并带动社会投资.希望通过5—10年的努力.造就一批具有市场竞争力的纳米高科技骨干企业。已先后安排了许多纳米科技的研究项目,并取得显著成绩,纳米技术在许多方面已达到国际领先水平。

相关主题
文本预览
相关文档 最新文档