当前位置:文档之家› 架空输电线路的防雷(正式版)

架空输电线路的防雷(正式版)

架空输电线路的防雷(正式版)
架空输电线路的防雷(正式版)

文件编号:TP-AR-L3224

In Terms Of Organization Management, It Is Necessary To Form A Certain Guiding And Planning Executable Plan, So As To Help Decision-Makers To Carry Out Better Production And Management From Multiple Perspectives.

(示范文本)

编订:_______________

审核:_______________

单位:_______________

架空输电线路的防雷(正

式版)

架空输电线路的防雷(正式版)

使用注意:该安全管理资料可用在组织/机构/单位管理上,形成一定的具有指导性,规划性的可执行计划,从而实现多角度地帮助决策人员进行更好的生产与管理。材料内容可根据实际情况作相应修改,请在使用时认真阅读。

1 架设避雷线

架设避雷线是输电线路防雷保护的最基本和最有

效的措施。避雷线的主要作用是防止雷直击导线,同

时还具有以下作用:①分流作用,以减小流经杆塔的

雷电流,从而降低塔顶电位;②通过对导线的耦合作

用可以减小线路绝缘子的电压;③对导线的屏蔽作用

还可以降低导线上的感应过电压。

通常来说,线路电压愈高,采用避雷线的效果愈

好,而且避雷线在线路造价中所占的比重也愈低。因

此规程规定,220kV及以上电压等级的输电线路应全线架设避雷线,110kV线路一般也应全线架设避雷线。

同时,为了提高避雷线对导线的屏蔽效果,减小绕击率。避雷线对边导线的保护角应做得小一些,一般采用20°~30°。220kV及330kV双避雷线线路应做到20°左右,500kV及以上的超高压、特高压线路都架设双避雷线,保护角在15°及以下。

为了起到保护作用,避雷线应在每基杆塔处接地。在双避雷线的超高压输电线路上,正常的工作电流将在每个档距中两根避雷线所组成的闭合回路里感应出电流并引起功率损耗。为了减小这一损耗,同时为了把避雷线兼作通讯及继电保护的通道,可将避雷

线经过一个小间隙对地(杆塔)绝缘起来。雷击时,间隙被击穿,使避雷线接地。

2 降低杆塔接地电阻

降低杆塔接地电阻可以减小雷击杆塔时的电位升高,这是配合架设避雷线所采取的一项有效措施。规程要求,有避雷线的线路,每基杆塔的工频接地电阻在雷季干燥时不宜超过表1所列数值。

表1 有避雷线输电线路杆塔的工频接地电阻

土壤电阻率Ωm 100及以下 100~500 500~1000 1000~2000 2000以上

接地电阻Ω 10 15 20 25 30

3 架设耦合地线

在降低杆塔接地电阻有困难时,可采用架设耦合地线的措施,即在导线下方再架设一条地线。它的作用主要有以下方面:①加强避雷线与导线间的耦合,使线路绝缘上的过电压降低;②增加了对雷电流的分流作用。运行经验表明,耦合地线对减小雷击跳闸率的效果是显著的,尤其在山区的输电线路其效果更为明显。 4 采用中性点非有效接地方式

在我国35kV及以下电力系统中采用中性点不接地或经消弧线圈接地的方式。这样可使由雷击引起的大多数单相接地故障能够自动消除,不致引起相间短路和跳闸。而在二相或三相落雷时,由于先对地闪络的一相相当于一条避雷线,增加了分流和对未闪络相

的耦合作用,使未闪络相绝缘上的电压下降,从而提高了线路的耐雷水平。因此,对35kV线路的钢筋混凝土杆和铁塔,必须做好接地措施。

5 加强线路绝缘

由于输电线路个别地段需采用大跨越高杆塔(如:跨河杆塔),这就增加了杆塔落雷的机会。高塔落雷时塔顶电位高,感应过电压大,而且受绕击的概率也较大。为降低线路跳闸率,可在高杆塔上增加绝缘子串片数,加大大跨越档导线与地线之间的距离,以加强线路绝缘。在35kV及以下的线路可采用瓷横担等冲击闪络电压较高的绝缘子来降低雷击跳闸率。

6 装设自动重合闸装置

由于线路绝缘具有自恢复性能,大多数雷击造成的闪络事故在线路跳闸后能够自行消除。因此,安装自动重合闸装置对于降低线路的雷击事故率具有较好的效果。据统计,我国110kV及以上的高压线路重合闸成功率达75%~95%,35kV及以下的线路成功率约为50%~80%。因此,各级电压等级的线路均应尽量安装自动重合闸装置。

7 安装线路避雷器

即使在全线架设避雷线,也不能完全排除在导线上出现过电压的可能性,安装线路避雷器可以使由于雷击所产生的过电压超过一定的幅值时动作,给雷电流提供一个低阻抗的通路,使其泄放到大地,从而限

制了电压的升高,保障了线路、设备安全。

8 采用不平衡绝缘方式

在现代高压及超高压线路上,同杆架设的双回路线路日益增多,对此类线路在采用通常的防雷措施尚不能满足要求时,可考虑采用不平衡绝缘方式来降低双回路雷击同时跳闸率,以保障线路的连续供电。不平衡绝缘的原则是使双回路的绝缘子串片数有差异,这样,雷击时绝缘子串片数少的回路先闪络,闪络后的导线相当于地线,增加了对另一回路导线的耦合作用,提高了线路的耐雷水平使之不发生闪络,保障了另一回路的连续供电。

此处输入对应的公司或组织名字

Enter The Corresponding Company Or Organization Name Here

架空输电线路的防雷(标准版)

( 安全技术 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 架空输电线路的防雷(标准版) Technical safety means that the pursuit of technology should also include ensuring that people make mistakes

架空输电线路的防雷(标准版) 1架设避雷线 架设避雷线是输电线路防雷保护的最基本和最有效的措施。避雷线的主要作用是防止雷直击导线,同时还具有以下作用:①分流作用,以减小流经杆塔的雷电流,从而降低塔顶电位;②通过对导线的耦合作用可以减小线路绝缘子的电压;③对导线的屏蔽作用还可以降低导线上的感应过电压。 通常来说,线路电压愈高,采用避雷线的效果愈好,而且避雷线在线路造价中所占的比重也愈低。因此规程规定,220kV及以上电压等级的输电线路应全线架设避雷线,110kV线路一般也应全线架设避雷线。 同时,为了提高避雷线对导线的屏蔽效果,减小绕击率。避雷线对边导线的保护角应做得小一些,一般采用20°~30°。220kV

及330kV双避雷线线路应做到20°左右,500kV及以上的超高压、特高压线路都架设双避雷线,保护角在15°及以下。 为了起到保护作用,避雷线应在每基杆塔处接地。在双避雷线的超高压输电线路上,正常的工作电流将在每个档距中两根避雷线所组成的闭合回路里感应出电流并引起功率损耗。为了减小这一损耗,同时为了把避雷线兼作通讯及继电保护的通道,可将避雷线经过一个小间隙对地(杆塔)绝缘起来。雷击时,间隙被击穿,使避雷线接地。 2降低杆塔接地电阻 降低杆塔接地电阻可以减小雷击杆塔时的电位升高,这是配合架设避雷线所采取的一项有效措施。规程要求,有避雷线的线路,每基杆塔的工频接地电阻在雷季干燥时不宜超过表1所列数值。 表1有避雷线输电线路杆塔的工频接地电阻 土壤电阻率Ωm100及以下100~500500~10001000~20002000以上 接地电阻Ω1015202530

架空输电线路防雷措施通用范本

内部编号:AN-QP-HT547 版本/ 修改状态:01 / 00 The Production Process Includes Determining The Object Of The Problem And The Scope Of Influence, Analyzing The Problem, Proposing Solutions And Suggestions, Cost Planning And Feasibility Analysis, Implementation, Follow-Up And Interactive Correction, Summary, Etc. 编辑:__________________ 审核:__________________ 单位:__________________ 架空输电线路防雷措施通用范本

架空输电线路防雷措施通用范本 使用指引:本解决方案文件可用于对工作想法的进一步提升,对工作的正常进行起指导性作用,产生流程包括确定问题对象和影响范围,分析问题提出解决问题的办法和建议,成本规划和可行性分析,执行,后期跟进和交互修正,总结等。资料下载后可以进行自定义修改,可按照所需进行删减和使用。 架空输电线路是电力网及电力系统的重要组成部分。由于它暴露在自然之中,故极易受到外界的影响和损害,其中最主要的一个方面是雷击。架空输电线路所经之处大都为旷野或丘陵、高山,输电线路长,遭遇雷击的机率较大。 架空输电线路雷害事故的形成通常要经历这样四个阶段:输电线路受到雷电过电压的作用:输电线路发生闪络;输电线路从冲击闪络转变为稳定的工频电压;线路跳闸,供电中断。针对雷害事故形成的四个阶段,现代输电线路在采取防雷保护措施时,要做到“四道防

架空输电线路防雷措施正式版

In the schedule of the activity, the time and the progress of the completion of the project content are described in detail to make the progress consistent with the plan.架空输电线路防雷措施正 式版

架空输电线路防雷措施正式版 下载提示:此解决方案资料适用于工作或活动的进度安排中,详细说明各阶段的时间和项目内容完成的进度,而完成上述需要实施方案的人员对整体有全方位的认识和评估能力,尽力让实施的时间进度与方案所计划的时间吻合。文档可以直接使用,也可根据实际需要修订后使用。 架空输电线路是电力网及电力系统的重要组成部分。由于它暴露在自然之中,故极易受到外界的影响和损害,其中最主要的一个方面是雷击。架空输电线路所经之处大都为旷野或丘陵、高山,输电线路长,遭遇雷击的机率较大。 架空输电线路雷害事故的形成通常要经历这样四个阶段:输电线路受到雷电过电压的作用:输电线路发生闪络;输电线路从冲击闪络转变为稳定的工频电压;线路跳闸,供电中断。针对雷害事故形成的四个阶段,现代输电线路在采取防雷保护

措施时,要做到“四道防线”,即: 1防直击,就是使输电线路不受直击雷。 2防闪络,就是使输电线路受雷后绝缘不发生闪络。 3防建弧,就是使输电线路发生闪络后不建立稳定的工频电弧。 4防停电,就是使输电线路建立工频电弧后不中断电力供应。 架空输电线路防雷的具体措施 现对生产运行部门常用的架空输电线路防雷改进措施简述如下: 1架设避雷线 架设避雷线是输电线路防雷保护的最基本和最有效的措施。避雷线的主要作用

架空输电线路的防雷(正式版)

文件编号:TP-AR-L3224 In Terms Of Organization Management, It Is Necessary To Form A Certain Guiding And Planning Executable Plan, So As To Help Decision-Makers To Carry Out Better Production And Management From Multiple Perspectives. (示范文本) 编订:_______________ 审核:_______________ 单位:_______________ 架空输电线路的防雷(正 式版)

架空输电线路的防雷(正式版) 使用注意:该安全管理资料可用在组织/机构/单位管理上,形成一定的具有指导性,规划性的可执行计划,从而实现多角度地帮助决策人员进行更好的生产与管理。材料内容可根据实际情况作相应修改,请在使用时认真阅读。 1 架设避雷线 架设避雷线是输电线路防雷保护的最基本和最有 效的措施。避雷线的主要作用是防止雷直击导线,同 时还具有以下作用:①分流作用,以减小流经杆塔的 雷电流,从而降低塔顶电位;②通过对导线的耦合作 用可以减小线路绝缘子的电压;③对导线的屏蔽作用 还可以降低导线上的感应过电压。 通常来说,线路电压愈高,采用避雷线的效果愈 好,而且避雷线在线路造价中所占的比重也愈低。因

此规程规定,220kV及以上电压等级的输电线路应全线架设避雷线,110kV线路一般也应全线架设避雷线。 同时,为了提高避雷线对导线的屏蔽效果,减小绕击率。避雷线对边导线的保护角应做得小一些,一般采用20°~30°。220kV及330kV双避雷线线路应做到20°左右,500kV及以上的超高压、特高压线路都架设双避雷线,保护角在15°及以下。 为了起到保护作用,避雷线应在每基杆塔处接地。在双避雷线的超高压输电线路上,正常的工作电流将在每个档距中两根避雷线所组成的闭合回路里感应出电流并引起功率损耗。为了减小这一损耗,同时为了把避雷线兼作通讯及继电保护的通道,可将避雷

浅谈35kV架空输电线路防雷措施及在实际工程中的应用

浅谈35kV架空输电线路防雷措施及在实际工程中的应用 【摘要】输电线路是传送电能的电力系统中的重要组成部分,本文结合架空输电线路的防雷措施与当地的环境因素,重点分析对新上海庙矿区镇属变电站至某井田煤矿的35kV架空输电线路的防雷设计,工程施工过程中遇到的相关问题及解决办法。 【关键词】35kV输电线路;防雷措施;实际应用 现代社会中,电能是一种最为广泛使用的能源,其应用程度已经成为一个国家发展水平的主要标志之一,随着科学技术和国民经济的发展,对电能的需要量日益剧增,同时对电能质量的要求也越来越高。电力系统中电厂大部分建在动力资源所在地,而大电力负荷中心则多集中在工业区和大城市,因而发电厂和负荷中心往往相距很远,就出现了电能输送的问题,需要用输电线路进行电能的输送。 根据调研,在国内高压输电线路跳闸事故中,因雷击引起的线路跳闸事故约占总跳闸事故的40%~60%,特别是在地形复杂、土壤电阻率高的多雷地带,跳闸率更高,严重威胁着电网运行的安全。随着电网建设的不断加强,输电电路越来越多,电能质量要求也越来越高。因此,如何切实有效地制定及改善架空输电线路的防雷措施,从而降低线路雷击跳闸率,一直是设计施工和运行维护工作中的重点。 1 防雷的原则 线路防雷保护首先在于抓好基础工作,目前国内外在雷电防护手段上并没有出现根本的变化,很大程度上要依赖传统的技术措施,我们应该结合当地的地貌、地形、气象环境以及土壤状况,找出可能存在薄弱环节或缺陷,因地制宜地采取措施。 2 新上海庙矿区某井田35kV输电线路工程 新上海庙矿区某某井田位于鄂尔多斯高原西侧,毛乌素沙漠西南边缘,地形呈低缓丘陵地貌,地势开阔,起伏不大,地表多为沙土;气候具有冬寒长、夏热短,干旱少雨、蒸发强烈的特点;全年冻土时间为11月至次年3月,冻土最大深度为90cm;据当地气象台(站)记录年平均为40个雷暴日。现因井田生产建设的需要,需建立一条镇属变电站至煤矿工业广场的35kV架空输电线路。 3 雷击跳闸原因分析 架空输电线路雷击跳闸类型主要有绕击跳闸、反击跳闸、感应跳闸。经过统计分析该地区的输电线路跳闸情况,引起线路跳闸雷击形式主要为反击跳闸和感应雷跳闸。

架空输电线路防雷措施

编号:AQ-JS-03414 ( 安全技术) 单位:_____________________ 审批:_____________________ 日期:_____________________ WORD文档/ A4打印/ 可编辑 架空输电线路防雷措施Lightning protection measures for overhead transmission lines

架空输电线路防雷措施 使用备注:技术安全主要是通过对技术和安全本质性的再认识以提高对技术和安全的理解,进而形成更加科 学的技术安全观,并在新技术安全观指引下改进安全技术和安全措施,最终达到提高安全性的目的。 架空输电线路是电力网及电力系统的重要组成部分。由于它暴露在自然之中,故极易受到外界的影响和损害,其中最主要的一个方面是雷击。架空输电线路所经之处大都为旷野或丘陵、高山,输电线路长,遭遇雷击的机率较大。 架空输电线路雷害事故的形成通常要经历这样四个阶段:输电线路受到雷电过电压的作用:输电线路发生闪络;输电线路从冲击闪络转变为稳定的工频电压;线路跳闸,供电中断。针对雷害事故形成的四个阶段,现代输电线路在采取防雷保护措施时,要做到“四道防线”,即: 1防直击,就是使输电线路不受直击雷。 2防闪络,就是使输电线路受雷后绝缘不发生闪络。 3防建弧,就是使输电线路发生闪络后不建立稳定的工频电弧。 4防停电,就是使输电线路建立工频电弧后不中断电力供应。

架空输电线路防雷的具体措施 现对生产运行部门常用的架空输电线路防雷改进措施简述如下: 1架设避雷线 架设避雷线是输电线路防雷保护的最基本和最有效的措施。避雷线的主要作用是防止雷直击导线,同时还具有以下作用:1)分流作用,以减小流经杆塔的雷电流,从而降低塔顶电位; 2)通过对导线的耦合作用可以减小线路绝缘子的电压; 3)对导线的屏蔽作用还可以降低导线上的感应过电压。 通常来说,线路电压愈高,采用避雷线的效果愈好,而且避雷线在线路造价中所占的比重也愈低。因此,110kV及以上电压等级的输电线路都应全线架设避雷线。 同时,为了提高避雷线对导线的屏蔽效果,减小绕击率,避雷线对边导线的保护角应做得小一些,一般采用20°~30°。220kV及330kV双避雷线线路应做到20°左右,500kV及以上的超高压、特高压线路都架设双避雷线,保护角在15°左右。

架空输电线路防雷措施

编号:SM-ZD-12767 架空输电线路防雷措施Through the process agreement to achieve a unified action policy for different people, so as to coordinate action, reduce blindness, and make the work orderly. 编制:____________________ 审核:____________________ 批准:____________________ 本文档下载后可任意修改

架空输电线路防雷措施 简介:该方案资料适用于公司或组织通过合理化地制定计划,达成上下级或不同的人员之间形成统一的行动方针,明确执行目标,工作内容,执行方式,执行进度,从而使整体计划目标统一,行动协调,过程有条不紊。文档可直接下载或修改,使用时请详细阅读内容。 架空输电线路是电力网及电力系统的重要组成部分。由于它暴露在自然之中,故极易受到外界的影响和损害,其中最主要的一个方面是雷击。架空输电线路所经之处大都为旷野或丘陵、高山,输电线路长,遭遇雷击的机率较大。 架空输电线路雷害事故的形成通常要经历这样四个阶段:输电线路受到雷电过电压的作用:输电线路发生闪络;输电线路从冲击闪络转变为稳定的工频电压;线路跳闸,供电中断。针对雷害事故形成的四个阶段,现代输电线路在采取防雷保护措施时,要做到“四道防线”,即: 1防直击,就是使输电线路不受直击雷。 2防闪络,就是使输电线路受雷后绝缘不发生闪络。 3防建弧,就是使输电线路发生闪络后不建立稳定的工频电弧。 4防停电,就是使输电线路建立工频电弧后不中断电力

输电线路的防雷技术措施

仅供参考[整理] 安全管理文书 输电线路的防雷技术措施 日期:__________________ 单位:__________________ 第1 页共7 页

输电线路的防雷技术措施 随着经济的发展,对输电线路供电可靠性的要求越来越高。同时伴随着电网的发展,雷击输电线路引起的跳闸、停电事故绝对值也日益增多。据电网故障分类统计表明,在我国跳闸率较高的地区,高压线路运行的总跳闸次数中,由于雷击原因的事故次数约占(50~70)%。尤其是在多雷、土壤电阻率高、地形复杂的山区,雷击输电线路引起的事故率更高,带来巨大的损失。要保障线路安全运行;应对雷害原因进行有效的分析,确定雷击性质,并采取相应有效的防雷措施。 1雷害原因分析 输电线路雷击闪电是由雷云放电造成的过电压通过线路杆塔建立 放电通道,导致线路绝缘击穿,这种过电压也称为大气过电压,可分为直击雷过电压和感应雷过电压。雷击主要是通过建立一个放电泄流通道,从而使大地感应电荷中和雷云中的异种电荷,因此雷击和接地装置的完好性有直接的关系。 输电线路感应雷过电压最大可达到400kV左右,它对35KV及以下线路绝缘威胁很大,但对于110kV及以上线路绝缘威胁很小,110kV及以上输电线路雷击故障多由直击雷引起,并且同接地装置的完好性有直接的关系。直击雷又分为反击和绕击,都严重危害线路安全运行。在采取各种防雷措施之前,应该对雷击性质进行有效分析,准确分析每次线路故障的闪络类型,采用针对性强的防雷措施,才能达到很好的防雷效果。 反击雷过电压是雷击杆顶和避雷线出现的雷过电压,主要与绝缘强度和杆塔接地电阻有关,一般发生在绝缘弱相,无固定闪络相别,所以对于反击雷过电压应采取降低杆塔接地电阻,加强绝缘,提高耐雷水平。 第 2 页共 7 页

输电线路的防雷技术措施通用版

解决方案编号:YTO-FS-PD892 输电线路的防雷技术措施通用版 The Problems, Defects, Requirements, Etc. That Have Been Reflected Or Can Be Expected, And A Solution Proposed T o Solve The Overall Problem Can Ensure The Rapid And Effective Implementation. 标准/ 权威/ 规范/ 实用 Authoritative And Practical Standards

输电线路的防雷技术措施通用版 使用提示:本解决方案文件可用于已经体现出的,或者可以预期的问题、不足、缺陷、需求等等,所提出的一个解决整体问题的方案(建议书、计划表),同时能够确保加以快速有效的执行。文件下载后可定制修改,请根据实际需要进行调整和使用。 随着经济的发展,对输电线路供电可靠性的要求越来越高。同时伴随着电网的发展,雷击输电线路引起的跳闸、停电事故绝对值也日益增多。据电网故障分类统计表明,在我国跳闸率较高的地区,高压线路运行的总跳闸次数中,由于雷击原因的事故次数约占(50~70)%。尤其是在多雷、土壤电阻率高、地形复杂的山区,雷击输电线路引起的事故率更高,带来巨大的损失。要保障线路安全运行;应对雷害原因进行有效的分析,确定雷击性质,并采取相应有效的防雷措施。 1雷害原因分析 输电线路雷击闪电是由雷云放电造成的过电压通过线路杆塔建立放电通道,导致线路绝缘击穿,这种过电压也称为大气过电压,可分为直击雷过电压和感应雷过电压。雷击主要是通过建立一个放电泄流通道,从而使大地感应电荷中和雷云中的异种电荷,因此雷击和接地装置的完好性有直接的关系。 输电线路感应雷过电压最大可达到400kV左右,它对

架空输电线路的防雷设计

架空输电线路的防雷设计 摘要:输电线路的垂直高度落差较大,冷暖空气更易交汇,空气对流现象频繁, 这些是导致输电线路经常发生雷击的主要原因。在防雷保护过程中,可采取加强 架空线路的绝缘水平,改善接地装置,安装侧向避雷针,减小线路保护角,安装 氧化锌避雷器等措施来提高输电线路的防雷水平,最大程度减少输电线路因雷击 而造成的经济损失。 关键词:输电线路;防雷技术设计;运维措施 引言 架空输电线路大多较长,且沿线经过山岭、丘陵、跨越河流、湖泊,在雷电 活动频繁地区,遭受雷击的机率较高。雷击架空输电线路引起跳闸是最常见的雷 害事故,不但影响电力系统的正常供电,增加线路及开关的维护工作,而且由于 输电线路上落雷,雷电波会沿线路侵入变电站,若变电站设备保护措施不完善或 失灵,往往会损坏站内设备的绝缘,造成重大损失。为此,在输电线路的设计中 必须重视防雷设计,通过采取综合的防雷措施,以提高线路的耐雷水平,降低雷 击跳闸率,确保线路和站内设备的安全运行,进而提高电网供电可靠性。 1雷害事故发生的原因 输电线路发生雷害事故主要有雷电绕击闪络、反击闪络两种原因。分析雷害 事故发生的原因,有助于针对性地实施防雷对策。 1.1雷电绕击闪络 输电线路一般均架设避雷线以保护导线免遭雷击,但并非绝对有效,仍存在 雷电绕过避雷线击中导线的情况。由于雷电直接击中导线,导线上的雷击过电压 值很高,当过电压值超过线路绝缘的耐受电压水平,则会发生冲击闪络,引起跳闸,这种闪络称为雷电绕击闪络。从线路遭受雷击的情况看,虽然绕击的概率很低,但由于导线上的雷击过电压值很高,所以因绕击发生的跳闸事故占雷击跳闸 事故的比例超过60%。 1.2雷电反击闪络 雷击避雷线档距中央时,雷电流迅速向两侧运动,经杆塔和接地体流入大地。为避免档距中央雷击过电压击穿空气间隙,闪击至导线上造成跳闸事故,设计时 应保证在档距中央,导线与避雷线间的距离S≥0.012L+1m(L为档距,单位m; 气温+15℃,无风、无冰);雷击杆塔顶部时,雷电流一部分经杆塔和接地体流 入大地,另一部分经避雷线向两侧运动,通过其它杆塔和接地体流入大地。上述 两种雷击情况,强大的雷电流经杆塔和接地体流入大地时,因杆塔电感和冲击接 地电阻的原因,使塔顶电位升高,当塔顶电位与相导线的感应电位差超过线路绝 缘子串的50%冲击放电值时,导线与杆塔之间就会发生闪络,引起跳闸,这种闪 络称为雷电反击闪络。 2防雷技术措施 2.1合理选择输电线路路径及绝缘方式 1)结合架空输电线路防雷要求,为了使其能够处于良好的运行状态,降低雷击事故发生率,则需要重视该输电线路路径的合理选择。具体表现为:在架空输 电线路建设计划实施前,需要对其所在区域进行实地考察,结合地理位置、气候 条件等,确定最佳的输电线路架设方案,给予其应用中的防雷水平提升必要的支持;在选择架空输电线路架设方向的过程中,应避开易遭受雷击因素影响的区域,像山区的风口地带、茂密的森林、大型水库、河谷以及峡谷的顺风地区等,从而

架空输电线路防雷措施实用版

YF-ED-J3782 可按资料类型定义编号 架空输电线路防雷措施实 用版 In Order To Ensure The Effective And Safe Operation Of The Department Work Or Production, Relevant Personnel Shall Follow The Procedures In Handling Business Or Operating Equipment. (示范文稿) 二零XX年XX月XX日

架空输电线路防雷措施实用版 提示:该解决方案文档适合使用于从目的、要求、方式、方法、进度等都部署具体、周密,并有很强可操作性的计划,在进行中紧扣进度,实现最大程度完成与接近最初目标。下载后可以对文件进行定制修改,请根据实际需要调整使用。 架空输电线路是电力网及电力系统的重要组成部分。由于它暴露在自然之中,故极易受到外界的影响和损害,其中最主要的一个方面是雷击。架空输电线路所经之处大都为旷野或丘陵、高山,输电线路长,遭遇雷击的机率较大。 架空输电线路雷害事故的形成通常要经历这样四个阶段:输电线路受到雷电过电压的作用:输电线路发生闪络;输电线路从冲击闪络转变为稳定的工频电压;线路跳闸,供电中断。针对雷害事故形成的四个阶段,现代输电

线路在采取防雷保护措施时,要做到“四道防线”,即: 1防直击,就是使输电线路不受直击雷。 2防闪络,就是使输电线路受雷后绝缘不发生闪络。 3防建弧,就是使输电线路发生闪络后不建立稳定的工频电弧。 4防停电,就是使输电线路建立工频电弧后不中断电力供应。 架空输电线路防雷的具体措施 现对生产运行部门常用的架空输电线路防雷改进措施简述如下: 1架设避雷线 架设避雷线是输电线路防雷保护的最基本和最有效的措施。避雷线的主要作用是防止雷

输电线路的防雷技术措施

输电线路的防雷技术措施随着经济的发展,对输电线路供电可靠性的要求越来越高。同时伴随着电网的发展,雷击输电线路引起的跳闸、停电事故绝对值也日益增多。据电网故障分类统计表明,在我国跳闸率较高的地区,高压线路运行的总跳闸次数中,由于雷击原因的事故次数约占(50~70)%。尤其是在多雷、土壤电阻率高、地形复杂的山区,雷击输电线路引起的事故率更高,带来巨大的损失。要保障线路安全运行;应对雷害原因进行有效的分析,确定雷击性质,并采取相应有效的防雷措施。 1雷害原因分析 输电线路雷击闪电是由雷云放电造成的过电压通过线路杆塔建立放电通道,导致线路绝缘击穿,这种过电压也称为大气过电压,可分为直击雷过电压和感应雷过电压。雷击主要是通过建立一个放电泄流通道,从而使大地感应电荷中和雷云中的异种电荷,因此雷击和接地装置的完好性有直接的关系。 输电线路感应雷过电压最大可达到400kV左右,它对35KV及以下线路绝缘威胁很大,但对于110kV及以上线路绝缘威

胁很小,110kV及以上输电线路雷击故障多由直击雷引起,并且同接地装置的完好性有直接的关系。直击雷又分为反击和绕击,都严重 危害线路安全运行。在采取各种防雷措施之前,应该对雷击性质进 行有效分析,准确分析每次线路故障的闪络类型,采用针对性强的 防雷措施,才能达到很好的防雷效果。 反击雷过电压是雷击杆顶和避雷线出现的雷过电压,主要与绝缘强度和杆塔接地电阻有关,一般发生在绝缘弱相,无固 定闪络相别,所以对于反击雷过电压应采取降低杆塔接地电阻,加 强绝缘,提高耐雷水平。绕击雷过电压是雷电绕过避雷线直接击中 导线而出现的雷过电压,主要与雷电流幅值,线路防雷保护方式, 杆塔高度,特殊地形有关,主要发生在两边相。目前对绕击雷过电 压采取的主要措施是减少避雷线保护角,安装避雷器等。 实际运行经验表明:山区线路由于地形因素的影响和 有效高度的增加,绕击率较高;平原,丘陵地区的线路则以反击为主。山区线路选择良好的防雷走廊,减小避雷线保护角,加强绝缘 是最有效的防雷措施。对于平原,丘陵地区的线路降低按地电阻是 最有效的防雷措施。

架空输电线路防雷措施(最新版)

架空输电线路防雷措施(最新 版) Security technology is an industry that uses security technology to provide security services to society. Systematic design, service and management. ( 安全管理 ) 单位:______________________ 姓名:______________________ 日期:______________________ 编号:AQ-SN-0586

架空输电线路防雷措施(最新版) 架空输电线路是电力网及电力系统的重要组成部分。由于它暴露在自然之中,故极易受到外界的影响和损害,其中最主要的一个方面是雷击。架空输电线路所经之处大都为旷野或丘陵、高山,输电线路长,遭遇雷击的机率较大。 架空输电线路雷害事故的形成通常要经历这样四个阶段:输电线路受到雷电过电压的作用:输电线路发生闪络;输电线路从冲击闪络转变为稳定的工频电压;线路跳闸,供电中断。针对雷害事故形成的四个阶段,现代输电线路在采取防雷保护措施时,要做到“四道防线”,即: 1防直击,就是使输电线路不受直击雷。 2防闪络,就是使输电线路受雷后绝缘不发生闪络。 3防建弧,就是使输电线路发生闪络后不建立稳定的工频电弧。

4防停电,就是使输电线路建立工频电弧后不中断电力供应。 架空输电线路防雷的具体措施 现对生产运行部门常用的架空输电线路防雷改进措施简述如下: 1架设避雷线 架设避雷线是输电线路防雷保护的最基本和最有效的措施。避雷线的主要作用是防止雷直击导线,同时还具有以下作用:1)分流作用,以减小流经杆塔的雷电流,从而降低塔顶电位; 2)通过对导线的耦合作用可以减小线路绝缘子的电压; 3)对导线的屏蔽作用还可以降低导线上的感应过电压。 通常来说,线路电压愈高,采用避雷线的效果愈好,而且避雷线在线路造价中所占的比重也愈低。因此,110kV及以上电压等级的输电线路都应全线架设避雷线。 同时,为了提高避雷线对导线的屏蔽效果,减小绕击率,避雷线对边导线的保护角应做得小一些,一般采用20°~30°。220kV 及330kV双避雷线线路应做到20°左右,500kV及以上的超高压、

输电线路防雷技术措施方案

整体解决方案系列 输电线路防雷技术措施(标准、完整、实用、可修改)

编号:FS-QG-45020输电线路防雷技术措施 Lightning protection measures for transmission lines 说明:为明确各负责人职责,充分调用工作积极性,使人员队伍与目标管理科学化、制度化、规范化,特此制定 随着经济的发展,对输电线路供电可靠性的要求越来越高。同时伴随着电网的发展,雷击输电线路引起的跳闸、停电事故绝对值也日益增多。据电网故障分类统计表明,在我国跳闸率较高的地区,高压线路运行的总跳闸次数中,由于雷击原因的事故次数约占(50~70)%。尤其是在多雷、土壤电阻率高、地形复杂的山区,雷击输电线路引起的事故率更高,带来巨大的损失。要保障线路安全运行;应对雷害原因进行有效的分析,确定雷击性质,并采取相应有效的防雷措施。 1雷害原因分析 输电线路雷击闪电是由雷云放电造成的过电压通过线路杆塔建立放电通道,导致线路绝缘击穿,这种过电压也称为大气过电压,可分为直击雷过电压和感应雷过电压。雷击主要是通过建立一个放电泄流通道,从而使大地感应电荷中

和雷云中的异种电荷,因此雷击和接地装置的完好性有直接的关系。 输电线路感应雷过电压最大可达到400kV左右,它对35KV及以下线路绝缘威胁很大,但对于110kV及以上线路绝缘威胁很小,110kV及以上输电线路雷击故障多由直击雷引起,并且同接地装置的完好性有直接的关系。直击雷又分为反击和绕击,都严重危害线路安全运行。在采取各种防雷措施之前,应该对雷击性质进行有效分析,准确分析每次线路故障的闪络类型,采用针对性强的防雷措施,才能达到很好的防雷效果。 反击雷过电压是雷击杆顶和避雷线出现的雷过电压,主要与绝缘强度和杆塔接地电阻有关,一般发生在绝缘弱相,无固定闪络相别,所以对于反击雷过电压应采取降低杆塔接地电阻,加强绝缘,提高耐雷水平。绕击雷过电压是雷电绕过避雷线直接击中导线而出现的雷过电压,主要与雷电流幅值,线路防雷保护方式,杆塔高度,特殊地形有关,主要发生在两边相。目前对绕击雷过电压采取的主要措施是减少避雷线保护角,安装避雷器等。

输电线路防雷技术及措施标准版本

文件编号:RHD-QB-K7419 (解决方案范本系列) 编辑:XXXXXX 查核:XXXXXX 时间:XXXXXX 输电线路防雷技术及措 施标准版本

输电线路防雷技术及措施标准版本操作指导:该解决方案文件为日常单位或公司为保证的工作、生产能够安全稳定地有效运转而制定的,并由相关人员在办理业务或操作时进行更好的判断与管理。,其中条款可根据自己现实基础上调整,请仔细浏览后进行编辑与保存。 随着国民经济的发展与电力需求的不断增长,电力生产的安全运行问题也越来越突出。对于输电线路来讲,雷击跳闸一直是影响高压输电线路供电可靠性的重要因素。由于大气雷电活动的随机性和复杂性,目前世界上对输电线路雷害的认识研究还有诸多未知的成分。进行高压输电线路设计时要全面考虑,综合分析每一条线路的具体情况,通过安全、经济、质量比较,选取有针对性的防雷设计技术措施,以达到提高供电可靠性的目的。 一防雷的原则 线路防雷保护首先在于抓好基础工作,目前国内

外在雷电防护手段上并没有出现根本的变化,很大程度上要依赖传统的技术措施,只要运用得好,仍然是可以信赖的。对已投运的线路,应结合地区的地貌、地形、地质以及土壤状况与接地电阻的合理水平给出正确的评价,找出可能存在薄弱环节或缺陷,因地制宜地采取措施。 二雷击跳闸分析 高压输电线路遭受雷击的事故主要与四个因素有关:线路绝缘子的50%放电电压;有无架空地线;雷电流强度;杆塔的接地电阻。高压输电线路各种防雷措施都有其针对性,因此,在进行高压输电线路设计时,我们选择防雷方式首先要明确高压输电线路遭雷击跳闸原因。 2.1 高压输电线路绕击成因分析 根据高压输电线路的运行经验、现场实测和模拟

110kV架空输电线路防雷保护间隙的设计

110kV架空输电线路防雷保护间隙的设计 摘要:由于110kV 架空输电线路地处旷野, 线路距离长, 较容易遭受雷击。而且常常会造成绝缘子串闪络烧毁, 线路跳闸停电等事故。基于这种情况, 为110kV 输电线路设计一种结构简单、维护方便的保护间隙, 既将雷击电流及时接地, 又对用户不间断供电, 从而起到防止绝缘子闪络烧毁, 维持线路正常运行的作用。 关键词:110kV;防雷保护间隙;绝缘子串电压 一、110kV 输电线路防雷保护间隙设计的意义 由于110kV 架空输电线路地处旷野, 线路距离长, 较容易遭受雷击。因雷击线路引起的直击雷过电压, 常会造成绝缘子串闪络烧毁, 线路跳闸停电等事故。据统计, 近十年来国内外运行经验表明, 输电线路50%以上的事故是由雷害引起的, 因此, 目前大气过电压引起的绝缘闪络已经成为线路故障的主要原因。降低杆塔电阻主要用于减少雷电反击, 提高线路的耐雷水平; 避雷线可以屏蔽线路, 减少雷电绕击导线的概率, 但不能完全防止绕击的发生; 加强绝缘可提高耐雷水平, 但受杆塔尺寸的限制; 安装线路避雷器效果好, 但投资巨大, 只能用于线路雷电易击段、易击点、易击相。针对这种情况, 为110kV 输电线路设计了这种结构简单, 维护方便的保护间隙, 安装在绝缘子串两端, 当雷击线路时它在系统中与自动重合闸配合使用, 即可将雷电流及时接地, 又可对用户不间断供电, 从而起到防止绝缘子闪络烧毁, 维持线路正常运行的作用。 二、110kV 输电线路防雷保护间隙的设计要求 根据保护间隙的设计原则, 用于110kV 输电线路的防雷保护间隙的设计也应该考虑以下几个方面的要求: 首先, 雷击线路时, 保护间隙应当能够先于绝缘子串放电, 捕捉放电电弧根部引导雷电流入地,从而保护绝缘子串和线路不被烧毁, 这是保护间隙的首要作用。其次,保护间隙与线路的绝缘配合也应当保证在线路最大操作过电压下不击穿, 不降低线路绝缘水平。最后, 由于110kV 线路的绝缘子串较长,因此应当考虑由于杂散电容造成的绝缘子串电压分布不均匀问题, 即要求保护间隙对绝缘子串有均压作用, 减小电晕产生的可能性。 三、110kV 防雷保护间隙构造形式、材料的选择和安装 可用于110kV 输电线路的保护间隙主要有以下两种形式: ( 一) 棒形。 用直径为28 ㎜的圆钢制造两个棒形电极, 使其相对, 其间保持一定距离形

输电线路的防雷技术措施(正式)

编订:__________________ 单位:__________________ 时间:__________________ 输电线路的防雷技术措施 (正式) Deploy The Objectives, Requirements And Methods To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level. Word格式 / 完整 / 可编辑

文件编号:KG-AO-2499-55 输电线路的防雷技术措施(正式) 使用备注:本文档可用在日常工作场景,通过对目的、要求、方式、方法、进度等进行 具体、周密的部署,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常 工作或活动达到预期的水平。下载后就可自由编辑。 随着经济的发展,对输电线路供电可靠性的要求越来越高。同时伴随着电网的发展,雷击输电线路引起的跳闸、停电事故绝对值也日益增多。据电网故障分类统计表明,在我国跳闸率较高的地区,高压线路运行的总跳闸次数中,由于雷击原因的事故次数约占(50~70)%。尤其是在多雷、土壤电阻率高、地形复杂的山区,雷击输电线路引起的事故率更高,带来巨大的损失。要保障线路安全运行;应对雷害原因进行有效的分析,确定雷击性质,并采取相应有效的防雷措施。 1雷害原因分析 输电线路雷击闪电是由雷云放电造成的过电压通过线路杆塔建立放电通道,导致线路绝缘击穿,这种过电压也称为大气过电压,可分为直击雷过电压和感应雷过电压。雷击主要是通过建立一个放电泄流通道,

浅谈输电线路的防雷保护及措施

浅谈输电线路的防雷保护及措施 摘要:本文介绍了输电线路防雷改造原则,阐述了输电线路防雷保护,提出了输电线路防雷的主要措施。 关键词:输电线路防雷保护措施 随着电网规模的不断发展,雷击引起输电线路跳闸故障也逐年增多,严重影响线路设备安全运行,架空输电线路的雷击跳闸一直是困扰安全供电的一个难题。因此,寻求更有效的线路防雷保护措施,一直是供电企业工作者关注的课题。 1、输电线路防雷改造原则 (1)可控放电避雷针造价较避雷器低,保护效果好,维护工作量小。但其保护范围有限,适用于档距小线路段。可控放电避雷针对接地电阻的要求比较宽松,一般10欧姆以下即可,对于土壤电阻率高的地方,可以放宽到30欧姆。 (2)可控放电避雷针安装完成以后不需要定期维护,针对有的地区交通不便的实际情况具有重要意义,可以大大减轻巡视人员的工作量。 (3)根据运行经验,消雷器的防雷能力存在一定问题,故需对已加装消雷器的部分杆塔进行改造。 (4)避雷器虽造价较高,但保护效果好,杆塔、导线被雷击时,能迅速动作,适用于大档距线路段,能有效的弥补可控放电避雷针保护范围不足的盲点。 2、输电线路防雷保护 (1)装设自动重合闸。由于雷击造成的闪络多数能在跳闸后自行恢复绝缘性能,所以重合闸成功率较高。重合闸装置作为线路防雷的一项重要措施,可有效地保证雷击跳闸后的供电可靠性。 (2)采用消弧线圈接地方式。对于雷电活动强烈,接地电阻又难以降低的地区,可采用中性点不接地或经消弧线圈接地的方式,绝大多数的单相闪络着雷接地故障能被消弧线圈所消除。而在两相或三相着雷时,雷击引起第一相导线闪络并不会造成跳闸,闪络后的导线相当于地线,增加了耦合作用,使未闪络相绝缘子串上的电压下降,从而提高了耐雷水平。 (3)加装氧化锌避雷器。这种方法造价高,效果最好,可以防止各种过电压,但避雷器本身需要定期检查试验,运行成本较高,对于交通不便的地方不适宜,一般用于35kV线路。 (4)采用不平衡绝缘方式。在同杆架设的双回线路中,当采用常规的防雷措施不能满足要求时,还可以采用不平衡绝缘方式来降低双回路雷击同时跳闸率。雷击时,绝缘子串片数少的回路先闪络,闪络后的导线相当于地线,增加了对另一回路导线的耦合作用,提高了另一回路的耐雷水平,使之不发生闪络以保证继续供电。 (5)适当增加线路的绝缘配置,降低建弧率。这种方法投资巨大,施工工作量也大,涉及对导线弧垂的调整。 (6)架设偶合地线。在降低杆塔接地电阻有困难时,可以采用在导线下方架设地线的措施,其作用是增加避雷线与导线间的耦合作用,以降低绝缘子串上的电压。此外,偶合地线还可增加对雷电流的分流作用。 (7)加装可控放电避雷针。该装置以缓慢变化的小电流上行雷闪放电形式泄放雷云电荷,从而避免强烈的下行雷闪放电。这种方法造价比较便宜,使用效果好,但对大档距线路保护范围不足。

架空输电线路防雷措施

架空输电线路防雷措施 架空输电线路是电力网及电力系统的重要组成部分。由于它暴露在自然之中,故极易受到外界的影响和损害,其中最主要的一个方面是雷击。架空输电线路所经之处大都为旷野或丘陵、高山,输电线路长,遭遇雷击的机率较大。 架空输电线路雷害事故的形成通常要经历这样四个阶段:输电线路受到雷电过电压的作用:输电线路发生闪络;输电线路从冲击闪络转变为稳定的工频电压;线路跳闸,供电中断。针对雷害事故形成的四个阶段,现代输电线路在采取防雷保护措施时,要做到“四道防线”,即: 1防直击,就是使输电线路不受直击雷。 2防闪络,就是使输电线路受雷后绝缘不发生闪络。 3防建弧,就是使输电线路发生闪络后不建立稳定的工频电弧。 4防停电,就是使输电线路建立工频电弧后不中断电力供应。 架空输电线路防雷的具体措施 现对生产运行部门常用的架空输电线路防雷改进措施简述如下:1架设避雷线 架设避雷线是输电线路防雷保护的最基本和最有效的措施。避雷线的主要作用是防止雷直击导线,同时还具有以下作用:1)分流作用,以减小流经杆塔的雷电流,从而降低塔顶电位; 2)通过对导线的耦合作用可以减小线路绝缘子的电压;

3)对导线的屏蔽作用还可以降低导线上的感应过电压。 通常来说,线路电压愈高,采用避雷线的效果愈好,而且避雷线在线路造价中所占的比重也愈低。因此,110kV及以上电压等级的输电线路都应全线架设避雷线。 同时,为了提高避雷线对导线的屏蔽效果,减小绕击率,避雷线对边导线的保护角应做得小一些,一般采用20°~30°。220kV及330kV 双避雷线线路应做到20°左右,500kV及以上的超高压、特高压线路都架设双避雷线,保护角在15°左右。 2安装避雷针 安装避雷针也是架空输电线路常用的一种防雷措施。 但是在实际应用却存在以下问题: 1)由于避雷针而导致雷击概率增大 2)保护范围小 国内外不少防雷专家,对避雷针能向被保护物有多大的保护距离做了系统的研究得出的结论是:“对一根垂直避雷针无法获得十分肯定的保护区域”。英国的BS6551法规曾指出:“经验显示不能依赖避雷针提供任何保护区内的完整保护”。而德国防雷法规则有意识地不引入避雷针保护范围的概念。从避雷针因侧击雷、绕击雷,造成事故的实例来分析,其保护范围是不十分肯定的。 由于避雷针的引雷作用,所以雷击次数就会提高,当雷电被吸引到针上,在强大的雷电流沿针而流入大地过程中,雷电流周围形成的

架空输电线路防雷浅谈

架空输电线路防雷浅谈 发表时间:2016-12-14T14:26:45.867Z 来源:《电力设备》2016年第20期作者:吕峰[导读] 随着电力工业的迅速发展,输电线路覆盖面不断扩大,超高压输电线路的延伸。 (运城市电力开发总公司山西运城 044000)摘要:架空输电线路是电力系统的重要组成部分。由于它暴露在自然之中,故极易受到外界的影响和损害,其中最主要一个方面是雷击。近年来,随着电网规模的不断发展,雷击引起输电线路跳闸故障也逐渐增多,严重影响线路设备安全运行及线路的供电可靠性。从输电工程伊始,架空输电线路的雷击跳闸一直是困扰安全供电的一个难题,雷害事故几乎占线路全部跳闸事故的1/3或更多。因此寻求更有 效的线路防雷保护措施,,采取有效措施降低线路的雷击跳闸次数,是确保电网安全运行的一项重要工作,也一直是世界各国电力工作者关注的课题。 1、前言 随着电力工业的迅速发展,输电线路覆盖面不断扩大,超高压输电线路的延伸,因雷击输电线路而引起的跳闸事故日益增多,据国内外输电线路故障在近十几年来的分类统计表明,由于雷击引起输电线路的跳闸次数占输电线路总故障的50%—70%,尤其是在多雷,土壤电阻率高,地形复杂地区的输电线路雷击事故率更高,这将给社会带来巨大的经济损失。 2、输电线路雷击的原理及雷击危害产生的种类2.1雷电放电的发展过程通常雷击引起的电力系统过电压,称为大气过电压。雷云放电在设备上产生的过电压,是由于雷云的影响而产生的,所以也称作雷电过电压。大气过电压可分为直击雷过电压和感应雷过电压。雷直接击于电气设备或输电线路时,巨大的雷电流在被击物上流过造成的过电压,成为直击雷过电压;雷击电气设备、输电线路附近的地面或其他物体时,由于电磁感应和静电感应在电气设备或输电线路上产生的过电压,成为感应雷过电压。 雷云对大地的放电通常包括若干次重复的放电过程,而每次放电又可分为先导放电、主放电和余辉放电三个主要阶段。雷云下部大部分带负电荷,故绝大多数的雷击是负极性的。雷云中的负电荷会在附近地面感应出大量正电荷,当云中某一电荷中心的电荷较多,雷云与大地之间局部的电场强度达到大气游离所需的电场强度(约25-30kv/cm)时,就会使空气游离。当某一段空气游离后,这段空气就由原来的绝缘状态变为导电性的通道,称为先导放电。先导通道是分级向下发展的,每级先导发展的速度相当高,但每发展到一定的长度(约25m~50m)就有一个(30~90)μs的间歇。所以它的平匀发展速度较慢(相对于主放电而言),约为(1 ~ 8)×105m/s,出现的电流不大。先导放电的不连续性,称为分级先导,历时约0.005~0.01s。在先导通道发展的初始阶段,其发展方向受到一些偶然因素的影响并不固定。但当它发展到距地面一定高度时(这个高度称为定向高度),先导通道会向地面上某个电场强度较强的方向发展,这说明先导通道的发展具有“定向性”,或者说雷击有“选择性”。当先导接近地面时,地面上一些高耸的突出物体周围电场强度达到空气游离所需的场强,会出现向上的迎面先导,当先导通道的头部与迎面先导上的异号感应电荷或与地面之间的距离很小时,剩余空气间隙中的电场强度达到极高的数值,造成空气间隙强烈地游离,最后形成高导电通道,将先导头部与大地短接,这就是主放电阶段的开始。主放电完成后,云中的剩余电荷沿着主放电通道继续流向大地,形成余辉放电,电流不大,约为103~101A,持续时间较长(0.03~0.05s)。由于云中同时可能存在几个带电中心,所以雷电放电往往是重复的。 2.2雷电的主要危害 1)电流高压效应会产生高达数万伏甚至数十万伏的冲击电压,如此巨大的电压瞬间冲击电气设备,足以击穿绝缘使设备发生短路,导致燃烧、爆炸等直接灾害。 2)电流高热效应会放出几十至上千安的强大电流,并产生大量热能,在雷击点的热量会很高,可导致金属熔化,引发火灾和爆炸。 3)雷电流机械效应主要表现为被雷击物体发生爆炸、扭曲、崩溃、撕裂等现象导致财产损失和人员伤亡。 4)雷电流经典感应可使被击物导体感生出与雷电性质相反的大亮点和,当雷电小时来不及流散时,既会产生高电压发生放电现象从而导致火灾。 5)静电流电磁感应会在雷击点周围产生强大的交变电磁场,其感生出的电流可引起变电器局部过热而导致火灾。 6)电流的侵入和防雷装置上的高电压对建筑物的反击作用也会引起配电装置或电气线路断路而燃烧导致火灾。 7)雷电流能破坏电力系统的各个元件,有可能造成发电机、电力变压器、断路器和其他电气设备绝缘损坏,线路上的绝缘子也会因雷击而发生闪络或破碎、导线烧断和木质电杆被雷劈裂等事故。 3、输电线路防雷计算3.1输电线路的感应过电压3.1.1雷击线路附近大地时

相关主题
文本预览
相关文档 最新文档