当前位置:文档之家› 感应热处理mm

感应热处理mm

感应热处理mm
感应热处理mm

感应热处理

1.1、感应加热物理基础:将金属导体放在通有交变电流的线圈中,根据电磁感应原理,在交变磁场的作用下,会在导体中产生与线圈中电流的方向相反、大小相等、频率相同的感应电流(涡流),利用在该导体中产生的感应电流使其加热的方法称之为“感应加热”。

1.2、感应加热的物理现象:以下4种

1.2.1、集肤效应:也称趋肤效应或表面效应,当直流电通过一导体时,导体截面上各点的电流密度是均匀的。当交流电通过导体时,导体表面处的电流密度较大,导体内部的电流密度较小。当高频率电流通过导体时,导体截面上的电流密度差更加增大,电流主要集中在导体表面,这种现象称为集肤效应

1.2.2、邻近现象:两邻近导体,如两汇流排或感应器的有效加热导线与被感应加热的零件,在有交变电流通过的情况下,由于电流磁场的相互作用,导体上的电流将重新分布,这种现象称之为邻近效应。同向电流主要集中在两相邻导体的外侧;反向电流主要集中在两相邻导体的内侧。两导体离的越近,效果越明显。

1.2.3、圆环效应:圆环形的导体通入交变电流时,最大电流密度分布在环状导体的内侧,这种现象叫做圆环效应。圆环效应使感应器的电流密集到圆环感应的内侧,对于加热零件的外表面有利。但对加热零件内孔时,该效应使感应器中的电流远离加热零件的内表面,对内孔加热十分不利。

1.2.4、导磁体的槽口效应:一根矩形截面的导体,装上由硅钢片叠成的导磁体体的槽口中,当导体通有交变电流时,电流集中在导磁体开口的导体表面,这一现象称之为导磁体的槽口效应。导磁体的槽口越深,电流的频率越高,则导磁体的槽口效应越强烈。利用该效应可以克服导体的圆环效应将电流驱逐到圆环导体的外表面,在加热内孔和平面类零件时,强化了邻近效应,以提高感应器的加热效率。

1.3、电流透入深度:由于集肤效应的作用,导体或零件中的电流分布是不均匀的。工程上规定,从表面电流最大值处(I0)测到1/e I0处的深度为电流的透入深度。钢在居里点(770℃)以下的电流透入深度称为冷透入深度,在居里点以上的电流透入深度称为热透入深度。

1.4、加热方式:以下2种

1.4.1、透入式加热:零件在加热时,电流的热透入深度大于淬硬层深度,淬硬层得到的热能全部由涡流产生,整个层中的温度基本上是均匀的。该方式适用于设备的频率和功率较高,而淬硬层深度要求较浅的零件。

1.4.2、传导式加热:零件加热在时,电流的热透入深度小于淬硬层深度,淬硬层得到的热能只能在热透入深度内由涡流产生,超出这一层的金属,其温度的提高完全依靠表层的热量通过热传导的方式实现。该方式适用于设备的功率较低,而淬硬层深度要求较深的零件;

利用感应加热方式实现的热处理过程称为感应热处理。

根据不同的用途可以进行工件的局部或整体的感应淬火、退火、正火、回火及调质处理。

用途:在现代汽车制造技术中,感应加热还用于熔炼、钎焊、毛坯加热(透热)、热装配、金属件粘结后的固化、涂料的干燥等多种领域。

2.1、锻造毛坯透热

主要用于各种汽车零件(如曲轴、连杆、钢板弹簧、冲焊桥壳、各种齿轮等零件)的锻造毛坯的透热。

优点是加热效率高、温度控制精度高、毛坯的温度均匀性好、设备占地面积小、节能、

可改善工作环境。

2.2、铝镁合金半固态铸造

有色金属的半固态成型技术是将金属加热到固液混合状态,利用高压将熔融金属射入型腔内,通过铸造或压力加工的方式成型的技术。在该工艺中广泛采用感应加热技术,其优点是加热速度快、节能高效、零件成型后的成分和组织均匀性好、机械性能好,且工艺设备符合环保要求。在汽车制造技术先进的公司用于铝合金及铝镁合金的零件成型。

2.3、热处理

为了提高汽车零件的疲劳性能及耐磨性感应淬火技术得到了广泛的应用,典型零件有曲轴、半轴、凸轮轴、贯通轴、变速叉、变速叉轴、导块、摇臂、摇臂轴、转向齿条、花键轴叉、输出突缘、轴头、球头销、转向节等零件;汽车零件的局部感应退火可以改善渗碳零件的机械性能,主要是降低零件的脆性、提高韧性,在主动齿轮——减速器的螺纹退火中应用较多,取代了传统的铅炉加热,改善工作环境,符合环保要求。

2.4、铸造熔炼

主要用于钢铁材料及有色金属(铝合金、黄铜等合金压铸件)的熔炼、保温。

优点是加热速度快生产率高、温度均匀性好、设备投资少、液态金属的成分均匀性好,可以提高铸件的质量。

2.5、汽车零件粘接后感应加热固化

在使用热硬性粘接剂将汽车零件(金属与金属、金属与橡胶、金属与玻璃等)粘接后需要通过加热使粘接剂固化。

优点:没有焊点,不破坏防锈层,粘接剂在起到密封的同时还可以减小振动。采用感应加热技术可实现局部加热,具有节能、高效、零件的变形小、质量稳定的特点。

用于:在汽车制造技术先进的公司得到广泛的应用,一汽——大众现生产的车型中捷达、保来、凯迪已有20套该设备在用,主要用于车门、行李箱盖及发动机盖的粘接后的固化处理,并与自动生产线相连。以上设备全部是引进技术,目前国内尚未开展该项技术的研究。

2.6、焊管

2.7、感应加热钎焊

主要用于各种汽车零件的钎焊(如钢铁材料与钢铁较少材料、钢铁材料与铜材、铜材与铜材)的钎焊。

优点是加热速度快、温度均匀性好、可实现局部加热零件的热影响区小、易于实现自动化与生产线相连。

2.8、铝缸体铸铁缸套感应预热

利用感应加热方法对铸铁缸套进行预热,能够保证预热温度的均匀性和稳定性,可以提高发动机铝缸体铸铁缸套与铝缸体之间镶铸造质量,并达到了节能高效的目的。

2.9、双频感应淬火技术

2.10、齿条接触式感应淬火技术

感应热处理优越性:

●节能——内部感应电流直接加热,能量转换过程损耗少

●环保——降低水资源污染,降低空气污染,生产环境清洁

●提高性能——细化晶粒,提高强度

●高效——加热速度快,易实现自动化

3.4、感应热处理能够提高零件的强度与寿命

感应热处理加热速度快,能获得细化或超细化的奥氏体晶粒。许多研究资料表明,在铁素体向奥氏体转变时,提高加热速度使成核率提高,从而使奥氏体的起始晶粒尺寸明显减小,因此其奥氏体晶粒更为细小。淬火后得到细致的马氏体组织,再经回火后得到高度弥散的回火组织,由于晶界的强化作用,使零件的强度和韧性得到得到明显提高。

感应加热表面淬火零件,由于淬硬层中马氏体比容增大,能形成相当大的残余压应力,其最大值可达539~784MPa。实践证明零件的疲劳强度与其表面压应力值有明显的对应关系,一般情况下,压应力大,疲劳强度和疲劳寿命提高。以汽车半轴为例,调质处理的半轴表面残余压应力为245~343MPa,中频感应淬火处理的半轴表面残余压应力为343~539MPa,在扭矩7811KN.m作用下,前者的疲劳扭转寿命为19~42.万次,后者的疲劳寿命为112~300万次,提高6~7倍。前者疲劳强度为162.68MPa后者疲劳强度为311.64MPa 3.5、感应淬火零件应力分布状态对性能的影响原理

1、感应淬火工艺可以使零件表面获得较高的残余压应力;

2、表面强化不仅直接提高了表层的强度与表层的疲劳极限,其表层压应力的存在,也降低了交变载荷下表层的拉应力,使疲劳裂纹不易产生和扩展;

3、扭转疲劳强度要求较高的零件,其硬化层深度设计与零件的直径尺寸有关,一般情况下,硬化层深度为零件直径的15~18%比较合适;

4、当预测零件疲劳寿命时,扭转强度、有效硬化层深度、硬化区总深度(有效硬化层深度+过渡区)和心部硬度几方面应同时考虑。其中,有效硬化层深度对静态扭转性能有影响较大,总硬化层深度对疲劳性能影响较大。

一般情况下、当有效硬化层深度为轴径的15%左右,总硬化深度为轴径的25%左右时,能够获得比较高的疲劳寿命。

4.1、感应淬火工艺

4.1.1、感应淬火工艺方法:具体分类见下表

1.同时加热法:是将工件所要求进行加热的部分放在感应器(线圈)中或其临近的位置,保

持感应器和工件的相对位置不变,在感应器中接通交变电流,使工件加热,待加热到所需要的温度切断电源,根据不同的热处理种类,选择相应的冷却方式及介质,对加热部分进行冷却,使该部位达到热处理的目的。优点:在加热和冷却过程中,可以根据零件和感应器的形状及工艺要求,确定工件是否旋转。同时加热法操作简单,控制容易,具有高效、节能2.连续加热法:是先将工件所需进行热处理部分的局部放在感应器中或其临近位置,在感应器中通有交变电流,使工件加热。待该局部加热到所需温度时,让感应器和工件以合适的速度相对运动,同时通过喷水器将冷却介质喷射到已加热到所需温度的部分,直到工件的热处理区域全部完成加热和冷却过程后,断开电源和停止喷射介质,加热和冷却过程是逐步完成的,使工件达到局部热处理的目的。同样在加热和冷却过程中,可以根据零件和感应器的形状及工艺要求,确定工件是否旋转。连续加热的优点是可以使用较小容量的设备处理较大的工件。

4.1.3、感应电流频率的选择

4-3 各种频率电流热透入深度

频段频率(KHz)电流透入深度(mm)

中频115.6 2.59.8 47.9 8 5.6

超音频30~40 2.5~2.9

高频100~200 1.1~1.6 200~3000.9~1.1 300~5000.7~0.9 500~8000.55~0.7

表4-4 频率与有效硬化层之间的关系

4.1.4、汽车零件感应器结构设计

感应器是为实现金属导体(零件)的感应加热,通有交变电流的金属线圈(施感导体)。

组成:感应器一般由有效圈、汇流部分和供水装置三部分组成。有效圈是使工件在被加热部位产生感应电流的部分;汇流部分是为使有效圈与淬火变压器有机结合在一起的过度部分;供水装置是用于冷却有效圈和工件的供水水路,分为冷却水和淬火水两部分。

按工件被加热部位的形状分类,一般分为圆柱外表面淬火感应器、平板淬火感应器、内孔淬火感应器及特殊形状淬火感应器。

4.3、感应淬火零件的预处理工艺

由于感应加热的效率高、温升速度快、加热时间短,过于粗大原始组织不利于奥氏体均匀化转变,原始组织越细,所形成的奥氏体晶粒越细小,加热温度相对较低,也可以获得较高的淬火硬度。因此,汽车感应淬火零件一般采用正火或调质两种预处理工艺对原始组织进行细化。与正火工艺相比,调质工艺所获得的组织晶粒较细、原始组织弥散;钢的屈服强度、塑性和韧性明显提高,综合机械性能优良;加热时奥氏体均匀化时间短、淬火温度较低、淬火变形与裂纹倾向性较低。

4.4、感应淬火零件的回火工艺

很多情况下,感应淬火零件需要进行回火处理,回火可以降低零件的脆性,提高韧性,减少内应力,防止开裂,防止变形,提高尺寸稳定性,是保证零件综合机械性能的重要热处理工序。

4.5、淬火冷却介质

淬火冷却介质是用于工件淬火冷却所使用的介质。选择合适的淬火介质和冷却参数是保证淬火质量,避免淬火缺陷产生的重要环节。通常感应淬火采用喷射冷却的方式,有时也采用流水冷却和浸沉冷却。目前常用的淬火介质有水、水溶性高分子合成淬火剂(聚乙烯醇合成淬火剂、聚醚水溶液)、淬火油等。水是最便宜、最清洁,对环境没有污染的淬火介质。用于中碳钢制造的形状简单的零件;水溶性高分子合成淬火剂用于中碳合金钢的淬火;淬火油多用于浸沉淬火。

影响冷却能力的因素:喷射压力、介质浓度、介质温度、

零件表面感应淬火技术条件一般包括:表面硬度、有效硬化层深度、硬化区范围、预先热处理等

5.2、有效硬化层深度

从淬硬的工件表面量至规定硬度值处的垂直距离。

对耐磨性要求一般,用于传递扭矩并承受冲击载荷,要求具有较高的强度和韧性的零件。

有效硬化层深度一般按零件直径的10∽15%计算。可以根据零件的直径及所承受的扭矩和冲击载荷分为以下几个范围:

Ds=0.5-1.0mm 、Ds=2.0-4.0mm、Ds=3.0-5.0mm、Ds=5.0-7.0mm、Ds=7.0-9.0mm等(花键和齿轮Ds从齿根算起)。

5.3、硬化区范围

硬化区范围是根据零件的服役条件、几何形状及结构尺寸所规定的需要进行强化的区域。合理地规定硬化区范围和硬化层分布,使其过渡层不出现在工作应力的集中部位,对提高零件的强度和防止淬火变形及开裂非常重要。

注意:1)在轴端部,可以保留2∽8mm的不淬硬区,以免在轴端产生淬火裂纹;

2)花键类零件淬硬区花键全长大10∽15mm,将不完全花键部分包含在淬硬区内。

3)同一零件上的两个相邻的淬硬区应保持足够大的距离,以免在交接过渡

4)对于承受扭矩并带有法兰的区域产生裂纹;

5)淬硬区内有孔,孔应倒角;件(如半轴等)轴径与法兰的过度部分应规定有相应的有效硬化层深度。

5.4、淬火质量检验

目的:进行质量评价确认零件感应淬火质量是否达到产品图纸规定的技术要求、检验感应淬火工艺是否正确和稳定、质量问题分析等。

5.4.1、表面硬度检验: 分为硬度计检验、标准锉刀检验

1)硬度计检验:硬度计检验多用洛氏硬度计(HRC或HRA)检验。但对于无法用洛氏硬度计直接进行检测表面硬度的零件,须制成样品用在有关技术文件规定的位置进行检验。为了方便现场检验有时也使用便携式里氏硬度计。硬度计检验可以得到较准确的表面硬度值,但检验数量受到限制。

2)锉刀检验:因操作简单、易于携带、受工件形状的影响较小,多用于现场检验。尽管测量不能得到准确的表面硬度值,但在大批量生产中对零件质量的总体控制是行之有效的方法。

5.4.2、有效硬化层深度检验:硬度法、金相法

1)硬度法:硬度法是将零件在感应淬火区内最具代表性的位置,垂直于硬化层表面取样,经磨平、抛光制备成符合检验标准的样品,使用维氏硬度计(HV),从硬化层表面向心部测量至规定的硬度值处的垂直距离。在未明确规定极限硬度值的情况下,可以将所规定硬度范围下限值的0.8倍作为极限硬度值进行测量,目前该方法是国际通用的有效硬化层检验方法。2)金相法:金相法是将零件在感应淬火区内最具代表性的位置,垂直于硬化层表面取样,经磨平、抛光、腐蚀制备成符合检验标准的样品,用金相显微镜从硬化层表面向心部测量至50%马氏体处的垂直距离。作为硬度法的一种补充该方法仍在广泛使用。对于有效硬化层深度要求不深,淬火过渡区较短的中碳钢和中碳低合金钢制零件,两方法的检验结果差别不大。

6.1、感应淬火技术要求在图样上的表示方法总则

6.1.1 零件图样上的感应淬火技术要求(以下简称技术要求)是指零件经感应淬火处理后成品零件最终状态(以下简称最终状态)应达到的技术指标。

6.1.2 感应淬火技术要求可以用已标准化的符号、代号标注,也可以用文字说明,文字说明一般写在图面左下角,与其他工艺的技术要求写在一起。特殊情况允许写在图面上其他部位的空白处。能在图形上标注的,尽量避免用文字说明。

6.1.3 技术要求标注必须简明、准确、完整、合理。如果技术要求内容较多,且另有技术标准或技术规范时,除标注主要内容外,可写明按相关标准或相关技术规范执行。

6.1.4 技术要求的指标值,如表面硬度值、有效硬化层深度值、心部硬度值等要求(参照JB/T 8555规定),一般采用范围表示法标出上、下限,如52~58HRC;DS=1~3。也可以用偏差表示法表示。偏差表示法以技术要求的下限值为名义值、下偏差的偏差值为零,加上偏差来表示,如52+6 HRC,DS=1+2 。特殊情况也可只标注下限值或上限值,如不小于45HRC,DS≥3。

在同一产品的所有零件图样上,应采用统一的表达形式。

要求零件表面硬度或有效硬化层深度检测必须在指定点(部位)时,如图

感应淬火硬化区域在图样上的表示局部有硬化要求的部位在图样上用粗点划线框出

轴对称零件可用一条粗点划线硬化与不硬化均可的部位用虚线表示不允许硬化画在热处理部位外侧表示或不要硬化的部位则不必标注

零件感应淬火标注图Y部感应淬火技术要求标注图Z部感应淬火技术要求标注图6.3、感应淬火硬度要求在图样上的表示

用洛氏硬度(GB/T 230)在图样上表示表面硬度。表面硬度的标注包括两部分,即要求硬度值和相应的试验力,如:78HRA,55HRC。试验力的选取与所要求的最小有效硬化层深度有关。表1-1是用洛氏硬度表示表面硬度时的关系表。

心部硬度在图样上的表示用布氏硬度(GB/T 231)表示零件心部硬度。代表符号HBS,如170~230HBS。

6.4、有效硬化层深度在图样上的表示

图样上感应淬火、回火零件有效硬化层深度代号按GB 5617规定,用‘DS’表示,单位为mm(标注时,单位‘mm’可省略),有效硬化层深度的定义和测量方法按GB 4340、A08 M—8.1规定执行。

,测量有效硬化层深度的界限硬度值和要求的有效硬化层深度值,有效硬化层深度界

8.1规定执行。

6.5、感应淬火技术条件图样标注示例

标注除硬度以外的其他力学性能要求时(如强度、冲击韧性等),应在零件图样上注明具体技术指标和取样方法。

偏差表示法局部感应淬火

范围表示法局部感应淬火:表面硬度56~62HRC,有效硬化层深度DS=450HV1 1.2~2.0

7.1、感应淬火硬化区域设计通则

感应淬火可以实现零件的局部淬火,根据零件的服役条件,原则上淬火硬化区域可以设计在零件需要的任何部位。但对感应淬火具有的独特特点,如边缘效应(亦称楞角效应)等,在零件硬化区域设计时必须考虑到,否则可能给零件带来伤害。

7.1.1 靠近轴端和孔边的淬火硬化区设计

淬硬区表面有槽、孔、淬火硬化区靠近轴的端头时,为防止孔边、或楞边产生淬火裂纹,端头应该有大于1×45°的倒角,以削弱边缘效应,同时允许在槽、孔附近和轴的端头有宽度为A的软带或未淬区,如图6-1、图6-2 及表2-2所示。

图7-1 允许在槽、孔附近和轴的端头图7-2 感应淬火硬化区接近端头

有宽度为A的软带或未淬区或孔边的设计示例

7.1.2 淬火硬化区域内有孔时的设计

孔、楞、沟、槽等结构的存在经常是产生淬火裂纹的根源,所以感应淬火区域内不希望有这些结构。当由于零件的功能需要,这些结构必须存在时,孔径越小越好,并且在孔的端部应有大于1×45°的倒角;楞越低越好,并加上大于1×45°的倒角;沟槽越浅越好,并能完全包容在硬化层之内。淬火硬化区域内有孔时的设计如图6-3所示。

销子淬硬区域内的孔曲轴轴颈淬硬区内的油孔

图7-3 淬火硬化区域内有孔

7.1.3 淬火硬化区域内有沟槽时的设计

淬火硬化区域内的轴颈表面需要有安装卡环的凹槽或有螺纹时,应使凹槽深度h小于或等于有效硬化层深度DS的1/2,以减弱尖角效应,同时凹槽对轴的强度的损害也能得到适当的补偿。

图7-4 硬化区域内有沟槽时图7-5 当淬火硬化区域内有轴向键槽时

当淬火硬化区域内有轴向键槽时,槽的深度h应小于有效硬化层深度DS,键槽在轴上纵切面的形状应为月牙形,圆弧过渡到轴颈表面。

7.1.4 两段互相靠近的淬火硬化区域的设计

淬硬区不能一次连续淬火时,两段相邻硬化区接头处的软带或未淬区最小距离A应符合下表

7.1.5 淬火硬化层内侧存在小孔时的设计

在淬火硬化层内侧存在小孔时,其孔边和零件外表面间的距离d与有效硬化层深度DS有关

7.1.6 管状零件的淬火硬化区域设计

管状零件采用感应淬火时,其壁厚应大于4mm。如果管子里面有内台阶存在,淬硬区边缘与内台阶的底边之间的软带或未淬区至少为4mm,以防过渡区的张应力与结构因素叠加而出现裂纹。

7.1.7 阶梯轴的楞角及R弧

当阶梯轴大直径和小直径的交界面正处在淬火硬化区里,为避免因尖角效应产生过热

和淬火裂纹,阶梯轴间所形成的90°直角楞必须加上大于1×45°的倒角。小轴径向大轴径变径的轴根处最好用圆角过渡,过渡圆角的R越大对小轴径根部感应淬火的质量越有利。

当该轴不作为传递扭矩、输出功率的零件时,则淬硬区域可以设计成两段,既可以减小感应淬火的难度,又可以提高局部区域的耐磨性,两段淬硬区域都要离开端面一定的距离,以取得合理的硬化区分布状态。

7.1.8 花键轴淬火硬化区域设计

当结构上带有花键的零件要求花键部分感应淬火时,为避免因工作应力和过渡区应力叠加而损害轴的强度,花键部分的淬硬区域应该超过花键结束端10~15mm

7.1.9 仅法兰内端面需要淬硬区设计

当仅法兰内端面需要淬硬时,允许在相邻轴颈周围有宽度A为小于等于12mm的环形软带或未淬区。

7.2、有效硬化层深度等级及其用途

7.3、汽车零件感应淬火常用材料

7.3.1 冶金质量

1)化学成份、低倍和高倍组织,非金属夹杂物应符合GB 699、GB 5676、GB 1348、GB/T 3077、GB 5216 的规定。

2)合金结构钢应采用细晶粒钢,按GB/T 6394规定,晶粒度应为5-8级

3)球墨铸铁零件,为保证零件感应淬火的硬度,其基体的珠光体含量应≥35%,球墨铸铁用于曲轴、凸轮轴等重要零件时,其基体的珠光体含量应≥70%。

7.3.2 汽车零件感应淬火常用的材料

1)最适合感应淬火的材料是中碳结构钢、中碳低合金钢结构钢。

2)优质碳素结构钢35、40、45、50、55等(GB699)。

3)合金结构钢35Cr、40Cr、45Cr、50Mn、40MnB、45MnB、35CrMo、42CrMo、42CrNiMo 4)铸钢:ZG270-500(ZG35)、ZG310-570(ZG45)等(GB5676)。

5)球墨铸铁:QT500、QT600-3、QT700-2、QT800-2、QT900-2等(GB1348)6)非调质钢如50MnVS

7)其他化学成份、性能相当的材料。

7.5、常用钢铁材料感应淬火后的硬度及最大硬化层深度

钢铁材料感应淬火后的所能达到的最大硬化层深度与零件的材料、零件感应淬火部位的结构(如平面、外圆、内孔、花键、圆角)及尺寸等因素有关。

产生淬火裂纹的因素:(3点)零件结构、零件表面质量、冷却条件不良

零件的淬火区域内形状复杂,存在台阶、端头、尖角、键槽、孔洞和油道等结构,感应加热时导致感应电流集中,使这些部位过热,加热过深,在接下来的淬火冷却中其表面很快形成了马氏体薄层,而随后的继续冷却中,薄层内部的奥氏体不断地转变为马氏体,比容增大向外扩张,使最初形成的马氏体在拉应力的作用下剥落,而产生淬火裂纹。

解决办法:(6点)

8.1.1、将在不影响总体结构和使用性能的情况下,将台阶或断头的尖角去掉,孔洞的出口处进行倒角;

8.1.2、严格控制淬火区域;

8.1.3、在孔洞处打入紫铜销,销子的顶面与孔表面平齐,改善温度的均匀性;

8.1.4、孔洞内塞入湿软木削或石棉绳,减缓边缘处的冷却速度;

8.1.5、将零件的孔洞对应感应器有效圈处的喷水孔堵塞,改善冷却条件;

8.1.6、在感应器有效圈对应零件空洞的部位嵌入合适的导磁材料,改善电流的分布。

8.2、零件的表面质量引起的淬火裂纹

零件的表面粗糙度太差残留的刀痕,在冷却过程中,在应力集中的作用下将以刀痕的尖部作为裂纹源,向淬硬层纵深发展形成淬火裂纹。

解决办法:改善零件的表面粗糙度,加工时刀锋不宜太尖。

8.3、冷却条件不良引起的淬火裂纹

感应淬火时冷却速度和冷却均匀性是十分重要的参数,如果淬火介质的冷却性能不良或冷却方式不当将引起淬火裂纹和其他缺陷。感应淬火时一般是零件的表层淬火,淬火冷却速度应该很快,否则达不到表面淬火的目的,为此多采用喷射冷却方式。但冷却速度也不宜过分激烈,否则将产生淬火裂纹和变形。理想的淬火介质的冷却性能应该是在钢的奥氏体等温分解曲线的临界温度具有大于或等于临界冷却速度,而在Ms 点以下具有较小的冷却速度。

解决措施:根据零件的材料及工艺成本选用合适的淬火介质,如聚乙烯醇水溶性淬火介质,UCON、豪富顿251、贝多非亚等聚醚类水溶性淬火介质,具体浓度根据要求的使用说明配制。

水喷射冷却和浸液冷却能力比较乳化油及不同温度水喷射能力比较

表8-1 淬火液温度对裂纹倾向性影响

淬火水温度/℃

裂纹情况

裂纹比例% 裂纹程度

30 80 严重

40 60 严重

50 50 一般

60 10 轻微

68 0 无

注:①淬火水泵压力0.15-0.2MPa,喷水压力0.015 Mpa。②每种水温淬火零件20件。③磁粉探伤检查裂纹。

表8-2 水在工件表面温度200-350℃区间的最大冷却能力

冷却方式及水温℃最大冷却速度/(℃/S)

喷射冷却152000 201800 301400 40900 50550

浸沉冷却(水温15℃)600

8.4、感应器与零件间隙对淬火裂纹的影响

间隙的大小对淬火裂纹的影响较大,间隙增加能显著减小淬火裂纹的倾向性(以主销静止淬火为例)

8. 5、喷射压力对淬火裂纹的倾向性影响

喷射压力越大,淬火裂纹情况越严重,随着喷射压力的提高,喷出的水柱水量越大,冷却的均匀性越差,淬火裂纹倾向性越大

解决方案:

1)根据零件的形状、结构尺寸及材料选择合适的感应器与零件的间隙,一般选用2.5-4mm 的间隙;

2)根据零件的形状、结构尺寸及材料选择合适的淬火水喷射压力,一般为0.1-0.3Mpa 。 8. 6、材料因素引起的淬火裂纹

感应淬火零件的材料成分、毛坯质量都直接影响零件的感应淬火裂纹的倾向性。

火裂纹的敏感性。为充分体现感应淬火的作用含碳量一般为0.35-0.5%;

1.5%时,淬火裂纹的敏感性增大,作为合金元素一般控制在1.1-1.4%比较合适;

般控制在1.5%以下;

响非常敏感,即便是微量(<0.01%),也强烈增加钢的淬火裂纹敏感性,尽量避免使用含钼的合金钢。零件的毛坯质量对感应淬火裂纹的影响很大,如砂眼、气孔或非金属夹杂、折叠、和原材料裂纹在感应淬火时,能够作为裂纹源扩展形成淬火裂纹。 零件感应淬火前的应力状态对淬火裂纹有明显地影响。 解决措施:

在能够满足零件使用性能的前提下尽量选用合金元素含量低的中碳材料,改善零件的毛坯质量,感应淬火前消除材料的应力。 电击伤是零件与感应器的相对位置定位不好,无法保证合适的间隙,导致零件与感应器

之间导电或产生电弧放电使感应器和零件烧伤在零件的淬火表面形成麻点和熔坑的一种质量缺陷。解决办法就是采取相应的措施保证感应器与工件具有合适的间隙。

8.8、感应淬火零件表面硬度不足和软点问题

感应淬火零件硬度不足和软点一般由以下几个因素引起:(3点)零件表面脱碳;材料中原始组织粗大;加热温度不足及冷却速度不够。

(1) 零件表面脱碳引起的表面硬度不足,在显微镜下可观察到明显的白色脱碳层,其组织应该是铁素体。

(2) 材料的组织粗大或有严重的带状组织,按正常的工艺参数进行感应淬火时,由于加热的时间短,速度快,其中的碳没有充分的时间和条件进行扩散,导致奥氏体中存在未溶铁素体,冷却后保留下来造成硬度不足及有软点。其淬火组织应该是铁素体加马氏体;

(3) 加热温度不足使奥氏体化不充分,淬火组织除马氏体外还将有屈氏体或铁素体存在,造成硬度偏低。其原因是加热时间短,功率不够,感应器间隙过大或设计不合理,感应器内有存水,加热时水流出附在零件上导致加热温度不足,淬火后出现硬度偏低及软点;

(4) 冷却速度不够使零件淬火后在马氏体的晶界周围有屈氏体析出,甚至有形态较瘦的铁素体出现与屈氏体一同沿晶界分布。其原因是淬火液喷射压力不够,淬火液流量小,淬火液温度过高,喷水孔堵塞及喷水器设计不合理,喷出的水柱没有直接射到零件表面,而是水柱与水柱之间互相作用减缓冷却速度。引起硬度偏低。

10点

9.1、汽车零件的感应热处理工艺研究及工装设备研制,

9.2、汽车零件感应热处理新工艺、新技术及新材料推广应用;

9.3、集团公司新车型汽车零件感应热处理试制;

9.4、集团公司新车型汽车零件感应热处理工艺验证;

9.5、国内外相关厂家感应热处理零件工艺及成本对标分析;

9.6、感应热处理专业相关标准、规范及流程起草与制定;

9.7、质量攻关,质量检查、质量监控,协助解决生产工艺与设备相关问题;9.8、配合各专业厂制定高频工艺发展、技改规划及感应淬火工艺文件;

9.9、规划并组织集团公司各专业厂感应热处理生产和工艺人员技术培训;

9.10、感应热处理行业发展与技术交流。

感应热处理-mm

感应热处理 1.1、感应加热物理基础:将金属导体放在通有交变电流的线圈中,根据电磁感应原理,在交变磁场的作用下,会在导体中产生与线圈中电流的方向相反、大小相等、频率相同的感应电流(涡流),利用在该导体中产生的感应电流使其加热的方法称之为“感应加热”。 1.2、感应加热的物理现象:以下4种 1.2.1、集肤效应:也称趋肤效应或表面效应,当直流电通过一导体时,导体截面上各点的电流密度是均匀的。当交流电通过导体时,导体表面处的电流密度较大,导体内部的电流密度较小。当高频率电流通过导体时,导体截面上的电流密度差更加增大,电流主要集中在导体表面,这种现象称为集肤效应 1.2.2、邻近现象:两邻近导体,如两汇流排或感应器的有效加热导线与被感应加热的零件,在有交变电流通过的情况下,由于电流磁场的相互作用,导体上的电流将重新分布,这种现象称之为邻近效应。同向电流主要集中在两相邻导体的外侧;反向电流主要集中在两相邻导体的内侧。两导体离的越近,效果越明显。 1.2.3、圆环效应:圆环形的导体通入交变电流时,最大电流密度分布在环状导体的内侧,这种现象叫做圆环效应。圆环效应使感应器的电流密集到圆环感应的内侧,对于加热零件的外表面有利。但对加热零件内孔时,该效应使感应器中的电流远离加热零件的内表面,对内孔加热十分不利。 1.2.4、导磁体的槽口效应:一根矩形截面的导体,装上由硅钢片叠成的导磁体体的槽口中,当导体通有交变电流时,电流集中在导磁体开口的导体表面,这一现象称之为导磁体的槽口效应。导磁体的槽口越深,电流的频率越高,则导磁体的槽口效应越强烈。利用该效应可以克服导体的圆环效应将电流驱逐到圆环导体的外表面,在加热内孔和平面类零件时,强化了邻近效应,以提高感应器的加热效率。 1.3、电流透入深度:由于集肤效应的作用,导体或零件中的电流分布是不均匀的。工程上规定,从表面电流最大值处(I0)测到1/e I0处的深度为电流的透入深度。钢在居里点(770℃)以下的电流透入深度称为冷透入深度,在居里点以上的电流透入深度称为热透入深度。 1.4、加热方式:以下2种 1.4.1、透入式加热:零件在加热时,电流的热透入深度大于淬硬层深度,淬硬层得到的热能全部由涡流产生,整个层中的温度基本上是均匀的。该方式适用于设备的频率和功率较高,而淬硬层深度要求较浅的零件。 1.4.2、传导式加热:零件加热在时,电流的热透入深度小于淬硬层深度,淬硬层得到的热能只能在热透入深度内由涡流产生,超出这一层的金属,其温度的提高完全依靠表层的热量通过热传导的方式实现。该方式适用于设备的功率较低,而淬硬层深度要求较深的零件; 利用感应加热方式实现的热处理过程称为感应热处理。 根据不同的用途可以进行工件的局部或整体的感应淬火、退火、正火、回火及调质处理。 用途:在现代汽车制造技术中,感应加热还用于熔炼、钎焊、毛坯加热(透热)、热装配、金属件粘结后的固化、涂料的干燥等多种领域。 2.1、锻造毛坯透热 主要用于各种汽车零件(如曲轴、连杆、钢板弹簧、冲焊桥壳、各种齿轮等零件)的锻造毛坯的透热。 优点是加热效率高、温度控制精度高、毛坯的温度均匀性好、设备占地面积小、节能、

(整理)国际先进的感应淬火技术

1、电源 国外IGBT、MOSFET和SIT全固态晶体管电源技术逐步成熟,并已商品化、系列化,目前有1200kW、50kHz;50~100kHz、30~600kW;300kW、80kHz;低频段有取代晶闸管电源趋势;MOSFET多采用并联振荡电路,SIT多采用串联谐振电路,功率高达1000 kW、频率200kHz和400kW、400kHz。它们都是电子管式高频电源的理想替代产品。当输出功率与电子管电源相同时,节电35%~40%,节省安装面积50%,节约冷却水40%~50%。随着科技的进步,在高频感应淬火领域,MOSFET有望取代SIT。 2、淬火机床 感应淬火机床更加趋向自动化,CNC控制逐渐增多,自动分检零件与自动识别进机零件功能的机床增多。 (1)通用淬火机床 通用淬火机床朝柔性化方向发展,一台淬火机床可以对不同性能要求的不同零件感应加热淬火。德国研制的一种曲轴淬火机床,法兰件感应淬火柔性加工系统略加调整能处理不同尺寸的相似工件;对于轴类零件在一定直径范围内(如30mm)与长度300~800 mm范围内,对于相似淬火要求的轴类零件,淬火机能自动编制14种程序,自动识别进机零件;Robotron.Eiotherm最近推出了双主轴立式淬火机,在一个紧凑的工艺单元内进行工件的淬火与回火,能处理轮轴、三槽套及其他万向节件,转换工件只需2~5min,用计算机编程,根据工件号在2 min 内就可调出有关工艺数据;一汽引进的GH公司数控淬火设备通用性强、自动化程度,在复杂零件上可实现多段变功变速,编程容易、操作方便。图1是GH公司的数控淬火机床。 (2)专用淬火机床 专用淬火机床更加专用化,采用机械手上下零件,加热、淬火、回火、校直、检查完全自动进行。先进的计算机控制技术可以监控并屏幕显示淬火过程和工艺参数,跟踪全部操作过程,如发现故障或工艺参数偏离给定值,便自动修正或自动列出不合格零件,使控制系统暂停工作并报警,同时屏幕上显示故障性质和所要修正的动作。更先进的控制系统还适应材料化学成分的波动,并自动调整比功率或加热时间,以保证感应淬火零件的质量。例如日本高周波热炼株式会社川崎工厂的卧式半轴淬火机床,上尾厂可同时淬三根半轴,群马厂可同时淬两根半轴,机床实际上是感应热处理生产线,全过程除校直、荧光探伤检查需一名工人外,其余全部自动进行。 (3)机器人的应用 日本高周波热炼株式会社制造的一台立式通用淬火机床上配置一台机器人,机器人将一个二匝的感应器进行依次平面扫描,使一块塑料板变色,虽然使用电源功率只3 kW,但也可以看出机器人在感应热处理中的应用趋势。 (4)机电一体化 将电源、淬火机床、冷却系统组成成套装置,具有占地面积小、生产效率高、一次安装调试容易等优点。国外最近问世的曲轴固定加热淬火装置占地面积仅为组合式成套装置的1/4。 3、淬火工艺 (1)静止式曲轴感应淬火 采用静止式曲轴感应淬火新技术的最初的两台装置在福特公司V6和V8曲轴淬火和回火工艺中得以应用,表现出了良好的市场前景。其特点是:加热时间

热处理工艺规范(最新)

华尔泰经贸有限公司铸钢件产品热处理艺规范 随着铸造件产品种类增多,对外业务增大,方便更好的管理铸造件产品,特制定本规定,要求各部门严格按照规定执行。 1目的: 为确保铸钢产品的热处理质量,使其达到国家标准规定的力学性能指标,以满足顾客的使用要求,特制定本热处理工艺规范。2范围 本规范适用于本公司生产的各种精铸、砂铸产品的热处理,材质为各种低碳钢、中碳钢、低合金钢、中合金钢、高合金钢、铸铁及有色合金。 3术语 3.1退火:指将铸钢产品加热到规定的温度范围,经保温一段时间后, 降温出炉的操作工艺。 3.2正火:指将铸钢产品加热到规定的温度范围,经保温一段时间后, 从炉中取出,在空气中冷却下来的操作工艺。 3.3淬火:指将铸钢产品加热到规定的温度范围,经保温一段时间后, 快速冷却的操作工艺。 3.4回火:指将淬火后的铸钢产品加热到规定的温度范围,经保温一 段时间后出炉,冷却到室温的操作工艺。 3.5调质:淬火+回火 4 职责

4.1热处理操作工艺由公司技术部门负责制订。 4.2热处理操作工艺由生产部门负责实施。 4.3热处理操作者负责教填写热处理记录,并将自动记录曲线转换到 热处理记录上。 4.4检验员负责热处理试样的力学性能检测工作,负责力学性能检测 结论的记录以及其它待检试样的管理。 5 工作程序 5.1每次装炉前应对设备进行检查,把炉底板上的氧化渣清除干净, 错位炉底板应将其复位后再装,四周应留有足够的间隙,轻拿轻放,装炉应结实,摆放合理。 5.2装炉时大铸件产品放在下面,对易产生热处理变形的铸件,必须 作好防变形或反变形处理,力学性能试样应装在高温区,对特别小的铸件采用铁桶或其它框类工装集中盛放。 5.3炉车上的铸钢件入炉时,应缓慢推进,仔细观察铸钢件是否与炉 壁碰撞,关闭炉门,通电后应经常观察炉内工作状况。 5.4作好铸件产品后续热处理的准备工作,严格控制出炉温度,对水 淬铸件应控制入水时间,水池应有足够水量,以保证淬火质量。 5.5作业计划应填写同炉热处理铸件产品的材质、名称、规格、数量、 时间等要素,热处理园盘记录纸可多次使用,但每处理一次都必须与热处理工艺卡上的记录曲线保持一致。 6 不合格品的处置 6.1热处理试样检验不合格,应及时通知相关部门。

真空感应熔炼技术的发展及趋势

真空感应熔炼技术的发展及趋势 随着现代工业技术的迅猛发展,人们对机械零件的使用要求越来越高,愈加严苛的使用环境对金属材料的耐高温,耐磨,抗疲劳等性能提出了更高的要求。对于某些特定的金属或合金材料,无论是前期研发试验还是后期的大批量生产投入使用,研究或得到高性能的金属合金材料都需要金属熔炼设备,表面热处理设备等的支持。在众多的特种加热或熔炼方法中,感应加热技术用于熔炼制备金属材料或在一定工艺中对材料进行烧结,热处理等,都起到了至关重要的作用。 1、真空感应熔炼技术 1.1、原理 感应加热技术通常是指真空条件下,通过电磁感应原理使感磁性较好的材料获得感应电流,达到加热的目的一种技术。电流以一定频率通过环绕在金属材料周围的电磁线圈,变化的电流产生感应磁场,并使得金属内部产生感应电流,并产生大量的热量,用来加热材料。当热量相对较低时可用于真空感应热处理等工艺,当热量较高时,产生的热量足以熔化金属,用来制备金属或合金材料。 1.2、应用 1.2.1、真空感应熔炼 真空感应熔炼技术是目前对金属材料加热效率最高、速度最快,低耗节能环保型的感应加热技术。该技术主要在感应熔炼炉等设备上实现,应用范围十分广泛。固态的金属原材料放入由线圈缠绕的坩埚中,当电流流经感应线圈时,产生感应电动势并使金属炉料内部产生涡流,电流发热量大于金属炉料散热量的速度时,随着热量越积越多,到达一定程度时,金属由固态熔化为液态,达到冶炼金属的目的。在此过程中,由于整个过程发生在真空环境下,因此,有利于金属内部气体杂质的祛除,得到的金属合金材料更加纯粹。同时冶炼过程中,通过真空环境以及感应加热的控制,可以调整熔炼温度并及时补充合金金属,达到精炼的目的。在熔化过程中,因为感应熔炼技术的特点,液态的金属材料在坩埚内部由于受到电磁力的相互作用,可以自动实现搅拌,使成分更加均匀,这也是感应熔炼技术的一大优势。 与传统的冶炼相比,真空感应熔炼节能,环保,工人作业环境好,劳动强度小,具有很大优势。利用感应熔炼技术,最终浇注的合金材料杂质更少,添加的合金比例更加合适,能够更加符合工艺对材料各性能的要求。 真空感应熔炼技术目前已经得到大规模的使用,从用于试验研究的几千克感应炉到用于实际生产的几十吨容量的大型感应炉,由于其操作工艺简单,熔化升温快熔炼过程容易控制,所冶炼金属成分均匀等优点,具有很大的应用前景,近些年得到了快速的发展。 1.2.2、真空感应烧结 真空烧结是指在真空度为(10~10-3Pa)的环境下将金属、合金或金属化合物粉末在低于熔点的温度下烧结成金属制品和金属坯。真空条件下烧结,不存在金属与气体间的反应,也没有吸附气体影响,不仅致密化效果好,而且可以起到净化和还原作用,降低烧结温度,和常温烧结比可降低100℃~150℃,节省能耗,提高烧结炉寿命和获得高质量产品。 对于某些物料需要通过受热借助原子迁移实现颗粒间的结合,而感应烧结技术在此过程中则起到了对其的加热作用。真空感应烧结的优点在于,真空条件下有助于减少气氛中的有害物质(水蒸气,氧气,氮气等其他杂质),避免出现脱碳,渗氮,渗碳,还原,氧化等一系列反应。过程中降低孔隙内的气体量,减少气体分子的化学反应,同时在物料出现液相之前排除其表面的氧化膜,从而在材料熔化互相结合的时候使材料结合更致密,提高其耐磨性及强度。另外真空感应烧结对降低产品成本也具有一定的效果。 由于真空环境下,气体含量处于相对很低的状态,因此可以忽略热量的对流和传导,热量主

常用材料热处理工艺

常用材料热处理工艺 Prepared on 22 November 2020

常用材料热处理工艺二、ASTM A182 F22 1.退火(A)≥90±10℃炉冷; 2.回火(T)≥675℃ 3.HB≤170(一级)156~207(三级) 三、ASTM A694 F60,F52 1.N+T或Q+T N(Q):920±10℃保温,空冷(水淬) T:≥540±10℃保温,空冷 2.HB实测 四、16MnJB4726-2000 或N+T N:930±10℃保温,空冷 T:≥600±10℃保温空冷 2.HB:121~178 五、16MnDJB4727-2000 1.Q+T Q:930±10℃保温,水冷 T:≥600±10℃保温空冷 2.HB实测 六、A105ASTM A105-2002 1.正火(N):900±10℃保温,空冷

2:HB:137~187 七、20# JB4726-2000 1.正火(N):910±10℃保温,空冷 2.HB:106~159 八、LF2ASTM A350 LF2 1.淬火+回火(Q+T) Q:870~940℃保温,水冷 T:540~665℃保温,空冷 2.HB≤197 九、LF3ASTM A350-2002b 1.淬火+回火(Q+T) Q:870~940℃保温,水冷 T:540~665℃保温,空冷 2.HB≤197 十、15CrMo JB4726-2000 1.淬火+回火(Q+T) Q:900±10℃保温,水冷 T:≥620℃保温,空冷 2.HB:118~180 十一、1Cr5Mo JB4726-2000 1.淬火+回火: Q:880~900℃,保温,水冷

中频感应加热技术在钢管热处理工艺中应用

中频感应加热技术在钢管热处理工艺中应用 文章介绍了利用中频电流的感应加热原理进行钢管热处理的工艺与设备,指出该工艺技术由于设备投资不大、没有环境污染,符合环保要求,且便于进行工艺控制,易于组织生产,比较起燃气加热反腐蚀的钢管热处理,具有一定的技术优势,应当属于政府鼓励发展、企业可以优先采用的新技术、新工艺。 前言 利用中频电流的电磁感应加热原理来进行油井管的的淬火、回火以及正火,在美国等发达国家已经属于一种成熟的工艺技术,并且在石油专用管的制造领域得到了广泛的应用。美国LONGSTAR公司、无限制管公司、日本JFE公司、俄罗斯塔干罗格冶金厂、伏尔加钢厂等制管企业都拥有自己的中频感应热处理生产线。感应加热以电作为能源,完全不同于使用天然气、发生煤气或液化石油气等燃气那样,在钢管的加热过程中会产生烟尘,形成空气的污染。因为电能属于绿色能源,不会对环境造成破坏,符合人类社会对环保的要求,所以也是国内外政府鼓励发展的环保型工艺技术开发项目。同时,采用感应加热技术对钢管进行淬火、回火或正火,升温速度快,效率高,生产组织灵活方便,避免并节省了燃气加热钢管时炉子的升温和降温所需要的时间及能耗。 感应加热技术在我国最早应用于军工、汽车、机械等行业,后来逐步扩展到冶金行业,20世纪80年代初期首钢特殊钢公司在国内首先开始使用中频加热技术,对45MoMnB、35CrMo、40Cr、40Mn2Mo和45#钢管进行调质

处理;对GCr15钢管进行冷加工中间的软化热处理;对5Cr21Mn9Ni4N进行钢管固溶热处理;对T10A、20Mn2、20#钢棒材进行退火热处理,均取得良好的效果。 实践证明,采用中频感应加热技术进行钢管的热处理,不仅环境污染小、生产效率高,而且成本可以达到与燃气加热相当的水平;如果在用电的低峰期使用,则成本更低。同时,如果工艺参数选择合理、工艺控制得很好时,甚至可以省去矫直工序。以下主要介绍西姆莱斯石油专用管制造有限公司建设的第一条油井管中频热处理生产线。 1、钢管感应热处理生产线的产品大纲及技术要求: 1.1、生产能力:热处理6万吨(12吨/h)油管、套管或钻杆; 1.2、产品规格: 其中:平式或加厚油管 Ф60.3×4.83mm 5000吨 Ф73.0×5.51mm 10000吨 Ф88.9×6.45mm 10000吨 套管 Ф114.3×6.35~8.56mm 5000吨 Ф139.7×6.20~10.54mm 20000吨 钻杆 Ф73.0×9.19mm 2000吨 Ф88.9×9.35mm 3000吨 Ф127.0×9.19mm 5000吨 1.3、被处理钢管几何尺寸:管体外径:Ф60.3×Ф139.7mm 油管和钻杆加厚端外径:Ф65.89×Ф149.23mm(加厚端最大壁厚20.30mm)

(完整版)五种先进的热处理技术分析

五种先进的热处理技术分析(壹佰钢铁网推荐)随着技术水平的发展,有关金属表面处理技术也在不断提升,以前关于金属表面处理时都会对环境造成一定的污染,这会有害人们的身体健康,为了能够绿化环境,需求对热处理技术进行改进,中华标准件网根据了解,分享现在热处理先进技术供大家使用。 1、可控气氛热处理 可控气氛热处理主要是防氧化和脱碳,并对渗碳和渗氮做到精确的控制。20世纪80年代末开始应用于工业生产,至今,发展之速度,应用之广泛,叹为观止。中外各设备厂家结合中国市场的特点,全新推出各种档次、功能多样的可控气氛热处理炉。大型的如易普森公司密封箱式多用炉,丰东的全自动智能化密封箱式多用炉生产线,不仅能满足渗碳、碳氮共渗,而且能实现光亮淬火、光亮退火等多种热处理工艺。还有Aichelin公司(爱协林),这些生产线,都可实现计算机辅助设计、生产管理、物流管理、现场控制、质量管理、工艺管理等系列工作。同时改变了过去热处理车间“脏、乱、差”的局面,取而代之的为简洁、明快。当然,这些生产线,价格昂贵,适应于大批量生产,如汽车行业等。国内厂家更是紧贴用户要求,针对性推出各种价格适中、款式多样、性能优越的可控气氛炉。大都能做到工艺参数的优化、预测和精确控制碳浓度的分布,获得理想的浓度分布和渗层组织;可实现计算机管理,具有简单的菜单设计,友好的人机界面。如北京的培特公司,南京年达炉业有限责任公司等。 2、真空热处理 盐浴淬火受环境的限制,已呈夕阳之势。真空热处理技术应用和发展得到进一步的完善和推广,它具有无氧化、无脱碳、淬火后工件表面清洁光亮、耐磨性高、无污染、自动化程度高等特点。工业生产中广泛采用了真空退火,真空除气,真空油淬,真空水淬,真空气淬,真空回火及真空渗碳等热处理技术。近年来,随着高压气淬真空炉的面世,高速钢刀具的真空淬火已成为现实。真空炉制造厂家众多,国内或合资的,如易普森公司,法国的ECM工业炉公司,G-M公司等。国内厂家知名品牌也不少,像中国航天航空集团“长城”系列,北京机电研究所WZ系列真空炉等等,其技术水平、性能、价格,在国内具有极强的竞争优势,真空热处理将成为热处理车间最普及的最主要的技术之一。 3、感应热处理和离子氮化热处理技术 感应热处理以高效、节能、清洁、灵活性等优势广泛应用于汽车工业,工程机械,石油化工等行业,近40%的汽车零部件可采用感应热处理,如曲轴、齿轮、万向节、半轴等。采用感

先进热处理技术的发展和展望

先进热处理技术的发展和展望 1 历史的回顾 自俄国冶金学家D.K.切尔诺夫1868年发现钢在加热和冷却过程中有组织转变,F1奥斯蒙德用热分析法确定了钢的相变临界点温度以及合金状态图的建立以来,热处理从工匠手艺发展为科学技术只有百余年历史。在这段历史中,无论是作为热处理基础的物理冶金理论还是实用生产技术都取得了辉煌成就。最值得称道的理论贡献是:①E.C.贝茵、P.梅拉和威列尔在20世纪20~30年代对钢和杜拉铝相变机制的系统研究成果。②P.德拜、G.V.沃尔富、W.G.布赖格等从20世纪20年代开始的用X射线射法对金属合金和其中相的晶体结构的一系列研究结果。③G.V.库久莫夫和萨克斯对低碳马氏体相变的晶体变化的共格特征进行了精确测定,确立了著名的马氏体相变的晶体K-S关系。④金属晶体位错结构缺陷的发现及其对强度影响规律的结论使物理冶金理论向更微观和更量化的深度发展,解释了金属材料热处理强韧化效果的机理,并启发了一系列热处理新技术的开发,特别是各种类型的形变热处理新工艺。⑤柯俊、阿隆松分别提出了贝氏体转变的无扩散—切变和扩散—台阶机制的两个针锋相对观点,徐祖耀、康沫狂、俞德刚等人在贝氏体相变理论研究和开发贝氏体钢方面有突出贡献。 在实用生产技术发展上值得回顾的有:①1890年英国首次公布了制备不可燃气氛发生炉的专利,该气氛用于金属的光亮热处理,德国的A.富利1921年申请了在井式炉中通氨渗氮的专利。 ②P.P.阿诺索夫在1837年就倡导用气体渗碳法,而经过100年后(1935年)前苏联的利哈乔夫汽车厂才有了第一台用煤油裂解气的罐式连续渗碳炉;直到20世纪50年代才逐步取代了固体渗碳和用氰盐的液体渗碳。③前苏联的G.V.沃罗格金在20世纪40年代逐步把感应加热技术应用到炼钢、锻造加热和表面淬火热处理等领域。④20世纪40年代末出现了用LiCl露点仪的碳势可控渗碳。⑤离子渗氮于20世纪30年代在德国就有了专利,而Klêckner公司是在20世纪50年代末才开发出商品设备,并推向工业应用。⑥20世纪60年代初瑞士的H.魏斯发明了在井式炉中的CARBOMAAG滴注可控渗碳法。⑦20世纪60年代中期,用吸热式气(载气)、甲烷或丙烷(作富化气)并用CO2红外仪测控炉气碳势的可控渗碳在汽车工业中得到推广。与此同时第一代的冷壁式真空加热油中淬火炉和真空渗碳炉问世。⑧20世纪50年代开发,60年代推广的被称作Tenifer或Tufftride商品名称的盐浴氮碳共渗,使渗氮周期由数十小时缩短到1h~2h,可明显提高传动件的抗疲劳、耐磨性和抗咬合能力;由于处理温度低(<580℃),工件畸变小,其缺点是所用氰盐剧毒、废盐废水需妥善处理。⑨为避免使用剧毒的氰盐,20世纪60年代后期开发出了NH3 吸热式气(Nikotrier)和NH3 CO2(Nitroc)在570℃的井式或箱式炉中施行的气体氮碳共渗法,随后在汽车曲轴、低载齿轮等零件上获得广泛应用。⑩20世纪50年代高分子聚合物溶液开始用做淬火剂。最早使用的此类聚合物是聚乙烯醇(PVA),以0.1%~0.3%的浓度用做感应加热件的喷冷淬火,其冷却能力介于水油之间,不易燃、无污染。 20世纪60年代美国联碳公司推出UCON(PAG)系列合成淬火剂,可代替油用于铁和非铁合金的淬火及固溶处理的冷却。随后又有一系列其它类别的合成淬火剂商品问世。⑾高、中、工频以及超音频和超高频、超高频脉冲感应加热表面热处理工艺广泛应用。各种静态固体电路高频、大功率电源相继问世,全自动程控多工位淬火机床和自动装卸料机械手或机器人获得工业应用。?⑿20世纪80年代氧探头逐步代替红外仪用于炉气碳势控制的传感器和计算机仿真自适应控制、无损检测技术、机器人装卸结合,使大批量生产的汽车零件的渗碳、淬火、清洗、回火、质检全过程实现自动化和无人作业。?⒀20世纪90年代,欧洲IpsenInternational、ALD和ECM 等公司相继推出低压渗碳、低压离子渗碳和高压气淬的周期炉和半连续生产线,为提高效率、改善质量、减少畸变和保护环境作出了贡献,为汽车工业热处理未来提供了前景。 近20年来,热处理新技术的大量涌现,为机器制造业的发展、机械产品质量的提高、热处理企业的技术改造积累了大量的技术储备,为热处理生产技术的进步提供了广阔前景。

渗碳淬火热处理工艺

渗碳淬火工艺 1、钢的淬火 钢的淬火与回火是热处理工艺中最重要,也是用途最广泛的工序。淬火可以显著提高钢的强度和硬度。为了消除淬火钢的残余应力,得到不同强度,硬度和韧性配合的性能,需要配以不同温度的回火。所以淬火和回火又是不可分割的、紧密衔接在一起的两种热处理工艺。淬火、回火作为各种机器零件及工、模具的最终热处理是赋予钢件最终性能的关键工序,也是钢件热处理强化的重要手段之一。 1.1 淬火的定义和目的 把钢加热到奥氏体化温度,保温一定时间,然后以大于临界冷却速度进行冷却,这种热处理操作称为淬火。钢件淬火后获得马氏体或下贝氏体组织。图4为渗碳齿轮20CrNi2Mo材料淬火、回火工艺。 温830℃ 度 ℃油 冷200℃ 8 空冷 时间h 图4 渗碳齿轮20CrNi2Mo材料淬火、回火工艺 淬火的目的一般有: 1.1.1 提高工具、渗碳工件和其他高强度耐磨机器零件等的强度、硬度和耐磨性。例如高速工具钢通过淬火回火后,硬度可达63HRC,且具有良好的红硬性。渗碳工件通过淬火回火后,硬度可达58~63HRC。 1.1.2 结构钢通过淬火和高温回火(又称调质)之后获得良好综合力学性能。例如汽车半轴经淬火和高温回火(280~320HB)及外圆中频淬火后,不仅提高了花键耐磨性,而且使汽车半轴承受扭转、弯曲和冲击载荷能力(尤其是疲劳强度和韧性)大为提高。 淬火时,最常用的冷却介质是水、盐水、碱水和油等。通常碳素钢用水冷却,水价廉易得,合金钢用油来冷却,但对要求高硬度的轧辊采用盐水或碱水冷却,辊面经淬火后硬度高而均匀,但对操作要求非常严格,否则容易产生开裂。 1.2 钢的淬透性 2.2.1 淬透性的基本概念 所谓钢材的淬透性是指钢在淬火时获得淬硬层深度大小的能力(即钢材淬透能力),其大小用钢在一定条件下(顶端淬火法)淬火获得的有效淬硬层深度来表示,淬透性是每种钢材所固有的属性,淬硬层愈深,就表明钢的淬透性愈好,例如45、40Cr 、42CrMo钢三种

热处理工艺设计课程设计

北华航天工业学院 《热处理工艺设计》 课程设计报告 报告题目:CA8480轧辊车床主轴 和淬火量块 热处理工艺的设计 作者所在系部:材料工程系 作者所在专业:金属材料工程 作者所在班级:B10821 作者学号:20104082104 作者姓名:倪新光 指导教师姓名:翟红雁 完成时间:2013.06.27

课程设计任务书 课题名称 CA8480轧辊车床主轴和淬火量块 热处理工艺的设计 完成时间06.27 指导教师翟红雁职称教授学生姓名倪新光班级B10821 总体设计要求 一、设计要求 1.要求学生在教师指导下独立完成零件的选材; 2.要求学生弄清零件的工作环境。 3.要求学生通过对比、讨论选择出最合理的预先热处理工艺和最终热处理工艺方法; 4.要求学生分别制定出预先热处理和最终热处理工艺的正确工艺参数,包括加热方式、加热温度、保温时间以及冷却方式; 5.要求学生写出热处理目的、热处理后组织以及性能。 工作内容及时间进度安排 内容要求时间备注 讲解并自学《金属热处理工艺》课本第六章;收集资料, 分析所给零件的工作环境、性能要求, 了解热处理工艺设计的方法、内容和步骤; 通过对零件的分析,选择合适的材料以及技术要 求 0.5天 热处理工艺方法选择和工艺路线的制定 确定出几种(两种以上)工艺 线及热处理 方案,然后进行讨论对比优缺点, 确定最佳工艺 路线及热处理工艺方案 1.5天 热处理工艺参数的确定及热处理后组织、性能 查阅资料,确定出每种热处理工艺的参数, 包括加热方式、温度和时间,冷却方式等,并绘 出相应的热处理工艺曲线 1.5天 编写设计说明书按所提供的模板 0.5天 答辩1天 课程设计说明书内容要求 一. 分析零件的工作环境,确定出该零件的性能要求,结合技术要求,选出合适的材料,并阐述原因。 二. 工艺路线和热处理方案的讨论。要求两种以上方案进行讨论,条理清晰,优缺点明确。 三. 每种热处理工艺参数的确定(工序中涉及到的所有热处理工艺)。写出确定参数的理由和根据,(尽可能写出所使用的设备)要求每一种热处理工艺都要画出热处理工艺曲线; 四. 写出每个工序的目的以及该零件热处理后常见缺陷。

电磁感应加热技术的发展

电磁感应加热技术的发展 磁感应加热来源于法拉第发现的电磁感应现象,也就是交变的电流会在导体中产生感应电流,从而导致导体发热。1890年瑞典技术人员发明了第一台感应熔炼炉——开槽式有芯炉,1916年美国人发明了闭槽有芯炉,从此感应加热技术逐渐进入实用化阶段。 20世纪电力电子器件和技术的飞速发展,极大地促进了感应加热技术的发展。 1957年,美国研制出作为电力电子器件里程碑的晶闸管,标志着现代电力电子技术的开始,也引发了感应加热技术的革命。1966年,瑞士和西德首先利用晶闸管研制感应加热装置,从此感应加热技术开始飞速发展。 20世纪80年代后,电力电子器件再次快速发展,GTO、MOSFET、IGBT、M CT及SIT等器件相继出现。感应加热装置也逐渐摒弃晶闸管,开始采用这些新器件。现在比较常用的是IGBT和MOSFET,IGBT用于较大功率场合,而MOSFET用于较高频率场合。据报道,国外可以采用IGBT将感应加热装置做到功率超过1000kW ,频率超过50kHz。而MOSFET较适用高频场合,通常应用在几千瓦的中小功率场合,频率可达到500kHz以上,甚至几兆赫兹。然而国外也有推出采用MOSFET的大功率的感应加热装置,比如美国研制的2000kW /400kHz的装置。

我国感应热处理技术的真正应用始于1956年,从前苏联引入,主要应用在汽车工业。随着20世纪电源设备的制造,感应淬火工艺装备也紧随其后得到发展。现在国内感应淬火工艺装备制造业也日益扩大,产品品种多,原来需要进口的装备,逐步被国产品所取代,在为国家节省外汇的同时,发展了国内的相关企业。目前感应加热制造业的服务对象主要是汽车制造业,今后现代冶金工业将对感应加热有较大需求。 一、感应加热特点 感应加热技术具有快速、清洁、节能、易于实现自动化和在线生产、生产效率高等特点,是内部热源,属非接触加热方式,能提供高的功率密度,在加热表面及深度上有高度灵活的选择性,能在各种载气中工作(空气、保护气、真空),损耗极低,不产生任何物理污染,符合环保和可持续发展方针,是绿色环保型加热工艺之一。它与可控气氛热处理、真空热处理少无氧化技术已成为热处理技术的发展主流。 其主要应用有: (1)冶金有色金属的冶炼,金属材料的热处理,锻造、挤压、轧制等型材生产的透热,焊管生产的焊缝。 (2)机械制造各种机械零件的淬火,以及淬火后的回火、退火和正火等热处理的加热;压力加工前的透热。 (3)轻工罐头以及其他包装的封口,比如着名的利乐砖的封口包装。

热处理工艺

本文由biaoyangbiaoa贡献 洛氏硬度(HRC)和布氏硬度(HB)具体区别和换算 硬度是衡量材料软硬程度的一个性能指标。硬度试验的方法较多,原理也不相同,测得的硬度值和含义也不完全一样。 最常用的是静负荷压入法硬度试验,即布氏硬度(HB)、洛氏硬度(HRA,HRB,HRC)、维氏硬度(HV),其值表示材料表面抵抗坚硬物体压入的能力。 而里氏硬度(HL)、肖氏硬度(HS)则属于回跳法硬度试验,其值代表金属弹性变形功的大小。因此,硬度不是一个单纯的物理量,而是反映材料的弹性、塑性、强度和韧性等的一种综合性能指标。 1、钢材的硬度:金属硬度(Hardness)的代号为H。按硬度试验方法的不同, ●常规表示有布氏(HB)、洛氏(HRC)、维氏(HV)、里氏(HL)硬度等,其中以HB及HRC较为常用。 ●HB应用范围较广,HRC适用于表面高硬度材料,如热处理硬度等。两者区别在于硬度计之测头不同,布氏硬度计之测头为钢球,而洛氏硬度计之测头为金刚石。 ●HV-适用于显微镜分析。维氏硬度(HV) 以120kg以内的载荷和顶角为136°的金刚石方形锥压入器压入材料表面,用材料压痕凹坑的表面积除以载荷值, 即为维氏硬度值(HV)。 ●HL手提式硬度计,测量方便,利用冲击球头冲击硬度表面后,产生弹跳;利用冲头在距试样表面1mm处的回弹速度与冲击速度的比值计算硬度, 公式:里氏硬度HL=1000×VB(回弹速度)/ V A(冲击速度)。 便携式里氏硬度计用里氏(HL)测量后可以转化为:布氏(HB)、洛氏(HRC)、维氏(HV)、肖氏(HS)硬度。 或用里氏原理直接用布氏(HB)、洛氏(HRC)、维氏(HV)、里氏(HL)、肖氏(HS)测量硬度值。 2、HB - 布氏硬度; 布氏硬度(HB)一般用于材料较软的时候,如有色金属、热处理之前或退火后的钢铁。洛氏硬度(HRC)一般用于硬度较高的材料,如热处理后的硬度等等。 布式硬度(HB)是以一定大小的试验载荷,将一定直径的淬硬钢球或硬质合金球压入被测金属表面,保持规定时间,然后卸荷, 测量被测表面压痕直径。布式硬度值是载荷除以压痕球形表面积所得的商。一般为:以一定的载荷(一般3000kg)把一定大小(直径一般为10mm)的淬硬钢球压 入材料表面,保持一段时间,去载后,负荷与其压痕面积之比值,即为布氏硬度值(HB),单位为公斤力/mm2 (N/mm2)。 3、洛式硬度是以压痕塑性变形深度来确定硬度值指标。以0.002毫米作为一个硬度单位。当HB>450或者试样过小时,不能采用布氏硬度试验而改用洛氏硬度计量。 它是用一个顶角120°的金刚石圆锥体或直径为1.59、3.18mm的钢球,在一定载荷下压入被测材料表面,由压痕的深度求出材料的硬度。根据试验材料硬度的不同, 分三种不同的标度来表示: HRA:是采用60kg载荷和钻石锥压入器求得的硬度,用于硬度极高的材料(如硬质合金等)。HRB:是采用100kg载荷和直径1.58mm淬硬的钢球,求得的硬度,用于硬度较低的材料(如退火钢、铸铁等)。

感应热处理

感应热处理 1.2感应加热原理 将工件放入感应器(线圈)内,当感应器中通入一定频率的交变电流时,周围即产生交变磁场。交变磁场的电磁感应作用使工件内产生封闭的感应电流──涡流。感应电流在工件截面上的分布很不均匀,工件表层电流密度很高,向内逐渐减小, 这种现象称为集肤效应。工件表层高密度电流的电能转变为热能,使表层的温度升高,即实现表面加热。电流频率越高,工件表层与内部的电流密度差则越大,加热层越薄。在加热层温度超过钢的临界点温度后迅速冷却,即可实现表面淬火。 a)高频淬火:频率在100~500kHz之间,常用250kHz,表面淬 硬层较浅(一般为1~1.5mm),常用于较小零件的 表面淬火。 b)中频淬火:频率在0.5~10kHZ之间,常用2.5kHz及8kHz,用于 较大零件的表面淬火(一般淬硬层深2~8mm)及穿 透加热。 c)工频淬火:电流频率为50Hz称为,用于大型工件的表面淬火 及穿透加热。 1.3特点: 1)加热速度快,转变温度升高,转变温度范围扩大,转变所需时间缩短; 2)可在工件表层得到极细的“隐晶马氏体”组织,使表层具有比普通淬火稍高的硬度(高 2~3HRC)和较低的脆性,并具有较高的疲劳强度 3)工件不易氧化和脱碳,变形小。 4)淬硬层深度易控制,淬火操作容易实现机械化和自动化。 1.4 常见设备: 多功能淬火机床;全自动CVJ/TJ淬火机床;机器人 2.感应热处理应用举例 感应加热广泛用于齿轮、轴、曲轴、凸轮、轧辊等工件的表面淬火,目的是提高这些工件的耐磨性和抗疲劳破断的能力。 应用一:双频感应淬火技术 利用双频感应电流对汽车齿轮进行感应加热,高低频率电流分别加热齿部基圆以上和齿部基圆以下,淬火后可以得到仿形效果非常理想的硬化层分布,热处理变形非常小。 应用二:齿条接触式感应淬火技术 将齿条作为感应器导电线路的一部分,并充分利用邻近效应的作用,使绝大部分的交变电流汇聚于齿部,其优点是加热速度快,生产效率高,耗能低,感应热处理质量稳定。 3.存在的问题及发展前景 感应加热热处理也有一些缺点。与火焰淬火相比,感应加热设备较复杂,而且适应性较差,对某些形状复杂的工件难以保证质量。

热处理的高端感应加热方案

热处理的高端感应加热方案 感应加热处理在100多年前开始为人所知,它的工业应用早在20世纪初就开始了。仅用高频电子管振荡器和中频电动发电机就可以完成许多任务的快速加热方式已存在了很多年。 现在,生产方案不仅更加灵活、多变,而且也更复杂。对用户而言,具备更高可靠性的设备和更简化的人机界面(HMI)已经成为一种潜在的需要,因为这能够简化机器的操作以及工艺的控制。 在这篇文章中,本人首先提出一个在感应加热中应用的最新的技术,然后阐述一些感应加热方面的特别应用的示例。 一、现代技术 1.电源 与20世纪60年代应用的电源大不相同,现在的电源是非常完善的,以晶体管为基础,它们在效率、功率和频率方面获得了很大的提高。IGBT晶体管作为基础功率元件代表了现在绝大部分电源的部件。EFD在80年代开发了非常便捷的电源,取名为MINAC(见图1)。这种电源是当今在其功能范畴内体积最小的电源,它能够满足双输出不同功率的输出变压器,以完成两种不同的作业。不难想象,这将给用户带来巨大利益。 图1 MINAC 18/25 Twin 另一个重要创新是中频和高频电源模块同时输送给一个单线圈的专利方案,以MFC技术命名(多频率概念)。EFD创造了(SINAC S MFC系列)的整个电源系列,以适应热处理方案的商业用途,用单个系列的电源电柜、大范围的解决方案和根据需要的混合功率,来完成高功率应用。SINAC 200/100 S MFC如图2所示,SINAC S MFC输出站如图3所示。

图2 SINAC 200/100 S MFC 图3 SINAC S MFC输出站 属于不同商业用途的主要应用包括: (1)商业热处理车间,当需要一个小体积电源来取代独立的中频、高频电源和机床——一个机床,一个线圈,一个电源。 (2)齿轮淬火,当需要混合的频率(如锥形齿轮,小链轮齿等)。 (3)其他的部件,为达到热处理的仿形效果,或者当材料由薄转厚时的一个扫描过程(例如传动部件等),而不需要更换感应线圈、电源。 2. 实时过程监控 一个重要的改变是质量监控系统的增加,不仅是新的机器,而且许多翻新的现有生产线也需要这种方案。在这种情况下,用户需要一个灵活的方案用于实时地同时监测几个过程。这种单元通常建立在工业PC上,一些特殊软件和相应探测器实时监控生产参数。通过这种系统来监测各种参数。我们可以考虑一些重要参数:功率(kW)或能量(kW/s);频率(kHz);加热时间(s);淬火液流量(L/min);淬火液温度(℃);淬火延时(s);表面温度(℃);其他。

常用材料热处理工艺完整版

常用材料热处理工艺 Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】

常用材料热处理工艺二、ASTM A182 F22 1.退火(A)≥90±10℃炉冷; 2.回火(T)≥675℃ 3.HB≤170(一级)156~207(三级)三、ASTM A694 F60,F52 1.N+T或Q+T N(Q):920±10℃保温,空冷(水淬) T:≥540±10℃?保温,空冷 2.HB实测 四、16MnJB4726-2000 或N+T N:930±10℃保温,空冷 T:≥600±10℃保温空冷 2.HB:121~178 五、16MnDJB4727-2000 1.Q+T Q:930±10℃?保温,水冷 T:≥600±10℃保温空冷 2.HB实测 六、A105ASTM A105-2002

1.正火(N):900±10℃保温,空冷 2:HB:137~187 七、20# JB4726-2000 1.正火(N):910±10℃保温,空冷 2.HB:106~159 八、LF2ASTM A350 LF2 1.淬火+回火(Q+T) Q:870~940℃?保温,水冷 T:540~665℃?保温,空冷 2.HB≤197 九、LF3ASTM A350-2002b 1.淬火+回火(Q+T) Q:870~940℃?保温,水冷 T:540~665℃?保温,空冷 2.HB≤197 十、15CrMo JB4726-2000 1.淬火+回火(Q+T) Q:900±10℃?保温,水冷 T:≥620℃?保温,空冷 2.HB:118~180 十一、1Cr5Mo JB4726-2000 1.淬火+回火:

机械加工常见热处理工艺解读

渗碳 渗碳热处理 渗碳:是对金属表面处理的一种,采用渗碳的多为低碳钢或低合金钢,具体方法是将工件置入具有活性渗碳介质中,加热到900--950摄氏度的单相奥氏体区,保温足够时间后,使渗碳介质中分解出的活性碳原子渗入钢件表层,从而获得表层高碳,心部仍保持原有成分。相似的还有低温渗氮处理。这是金属材料常见的一种热处理工艺,它可以使渗过碳的工件表面获得很高的硬度,提高其耐磨程度。 概述 渗碳(carburizing/carburization)是指使碳原子渗入到钢表面层的过程。 也是使低碳钢的工件具有高碳钢的表面层,再经过淬火和低温回火,使工件的表面层具有高硬度和耐磨性,而工件的中心部分仍然保持着低碳钢的韧性和塑性。 渗碳工件的材料一般为低碳钢或低碳合金钢(含碳量小于0.25%)。渗碳后﹐钢件表面的化学成分可接近高碳钢。工件渗碳后还要经过淬火﹐以得到高的表面硬度﹑高的耐磨性和疲劳强度﹐并保持心部有低碳钢淬火后的强韧性﹐使工件能承受冲击载荷。渗碳工艺广泛用于飞机﹑汽车和拖拉机等的机械零件﹐如齿轮﹑轴﹑凸轮轴等。 渗碳工艺在中国可以上溯到2000年以前。最早是用固体渗碳介质渗碳。液体和气体渗碳是在20世纪出现并得到广泛应用的。美国在20年代开始采用转筒炉进行气体渗碳。30年代﹐连续式气体渗碳炉开始在工业上应用。60年代高温(960~1100℃)气体渗碳得到发展。至70年代﹐出现了真空渗碳和离子渗碳。 分类 按含碳介质的不同﹐渗碳可分为气体渗碳、固体渗碳﹑液体渗碳﹑和碳氮共渗(氰化)。

气体渗碳是将工件装入密闭的渗碳炉内,通入气体渗剂(甲烷、乙烷等)或液体渗剂(煤油或苯、酒精、丙酮等),在高温下分解出活性碳原子,渗入工件表面,以获得高碳表面层的一种渗碳操作工艺。 固体渗碳是将工件和固体渗碳剂(木炭加促进剂组成)一起装在密闭的渗碳箱中,将箱放入加热炉中加热到渗碳温度,并保温一定时间,使活性碳原子渗人工件表面的一种最早的渗碳方法。 液体渗碳是利用液体介质进行渗碳,常用的液体渗碳介质有:碳化硅,“603”渗碳剂等。 碳氮共渗(氰化)又分为气体碳氮共渗、液体碳氮共渗、固体碳氮共渗。 原理 渗碳与其他化学热处理一样﹐也包含3个基本过程。 ①分解 渗碳介质的分解产生活性碳原子。 ②吸附 活性碳原子被钢件表面吸收后即溶到表层奥氏体中﹐使奥氏体中含碳量增加。 ③扩散 表面含碳量增加便与心部含碳量出现浓度差﹐表面的碳遂向内部扩散。碳在钢中的扩散速度主要取决于温度﹐同时与工件中被渗元素内外浓度差和钢中合金元素含量有关。 渗碳零件的材料一般选用低碳钢或低碳合金钢(含碳量小於0.25%)。渗碳后必须进行淬火才能充分发挥渗碳的有利作用。工件渗碳淬火后的表层显微组织主要为高硬度的马氏体加上残余奥氏体和少量碳化物﹐心部组织为韧性好的低碳马氏体或含有非马氏体的组织﹐但应避免出现铁素体。一般渗碳层深度范围为0.8~1.2毫米﹐深度渗碳时可达2毫米或更深。表面硬度可达HRC58~63﹐心部硬度为HRC30~42。渗碳淬火后﹐工件表面产生压缩内应力﹐对提高工件的疲劳强度有利。因此渗碳被广泛用以提高零件强度﹑冲击韧性和耐磨性﹐借以延长零件的使用寿命。 渗碳工艺流程 1、直接淬火低温回火 组织及性能特点:不能细化钢的晶粒。工件淬火变形较大,合金钢渗碳件表面残余奥氏体量较多,表面硬度较低

热处理工艺详解

热处理工艺 热处理是将材料放在一定的介质内加热、保温、冷却,通过改变材料表面或内部的组织结构,来控制其性能的一种综合工艺过程。 热处理名词: 金属:具有不透明、金属光泽良好的导热和导电性并且其导电能力随温度的增高而减小,富有延性和展性等特性的物质。金属内部原子具有规律性排列的固体(即晶体)。 合金:由两种或两种以上金属或金属与非金属组成,具有金属特性的物质。 相:合金中成份、结构、性能相同的组成部分。 固溶体:是一个(或几个)组元的原子(化合物)溶入另一个组元的晶格中,而仍保持另一组元的晶格类型的固态金属晶体,固溶体分间隙固溶体和置换固溶体两种。 固溶强化:由于溶质原子进入溶剂晶格的间隙或结点,使晶格发生畸变,使固溶体硬度和强度升高,这种现象叫固溶强化现象。 化合物:合金组元间发生化合作用,生成一种具有金属性能的新的晶体固态结构。 机械混合物:由两种晶体结构而组成的合金组成物,虽然是两面种晶体,却是一种组成成分,具有独立的机械性能。 铁素体:碳在a-Fe(体心立方结构的铁)中的间隙固溶体。 奥氏体:碳在g-Fe(面心立方结构的铁)中的间隙固溶体。

渗碳体:碳和铁形成的稳定化合物(Fe3c)。 珠光体:铁素体和渗碳体组成的机械混合物(F+Fe3c 含碳0.8%)莱氏体:渗碳体和奥氏体组成的机械混合物(含碳4.3%) 金属热处理是机械制造中的重要工艺之一,与其他加工工艺相比,热处理一般不改变工件的形状和整体的化学成分,而是通过改变工件内部的显微组织,或改变工件表面的化学成分,赋予或改善工件的使用性能。其特点是改善工件的内在质量,而这一般不是肉眼所能看到的。 为使金属工件具有所需要的力学性能、物理性能和化学性能,除合理选用材料和各种成形工艺外,热处理工艺往往是必不可少的。钢铁是机械工业中应用最广的材料,钢铁显微组织复杂,可以通过热处理予以控制,所以钢铁的热处理是金属热处理的主要内容。另外,铝、铜、镁、钛等及其合金也都可以通过热处理改变其力学、物理和化学性能,以获得不同的使用性能。 在从石器时代进展到铜器时代和铁器时代的过程中,热处理的作用逐渐为人们所认识。早在公元前770~前222年,中国人在生产实践中就已发现,铜铁的性能会因温度和加压变形的影响而变化。白口铸铁的柔化处理就是制造农具的重要工艺。 公元前六世纪,钢铁兵器逐渐被采用,为了提高钢的硬度,淬火工艺遂得到迅速发展。中国河北省易县燕下都出土的两把剑和一把戟,其显微组织中都有马氏体存在,说明是经过淬火的。 随着淬火技术的发展,人们逐渐发现淬冷剂对淬火质量的影响。三国蜀人蒲元曾在今陕西斜谷为诸葛亮打制3000把刀,相传是派人到成

相关主题
文本预览
相关文档 最新文档