当前位置:文档之家› 黄子杰 稀土功能材料综述

黄子杰 稀土功能材料综述

黄子杰 稀土功能材料综述
黄子杰 稀土功能材料综述

稀土功能材料综述

黄子杰

(长沙理工大学化学学院,湖南长沙 410114)

摘要:稀土元素被誉为二十一世纪新材料的宝库, 因其在电、光、磁等方面具有独特性质, 故在功能材料领域获得了广泛的应用。文章介绍了稀土磁性材料、稀土发光材料、稀土催化材料、稀土贮氢材料、稀土超导材料的研究及其应用进展。

关键词:稀土功能材料;用途;性能;分类

Abstract:Rare earth element is regarded as a treasure house of new materials in twenty-first Century, because of its unique properties in electricity, light, magnetism and so on, it has been widely used in the field of functional materials. The research and application progress of rare earth magnetic materials, rare earth luminescent materials, rare earth catalytic materials, hydrogen storage materials, rare earth materials and their applications are introduced in this paper.

Keywords:Rare earth functional materials;use;performance;classification

功能材料是以物理性能为主的工程材料的统称,即指在电、磁、声、光、热等方面具有特殊性质,或在其作用下表现出特殊功能的材料[1]。它是现代高新技术的先导和基础,对它的研究、开发和应用将促进国家的科技发展水平,提高国家的综合经济实力和在高科技领域的竞争力。被称为新材料“宝库”的稀土元素具有独特的4f电子结构,大的原子磁距,很强的自旋轨道藕合等特性,与其它元素形成稀土配合物时,配位数可在3~12之间变化,并且稀土化合物的晶体结构也是多样化的。稀土元素具有独特的光学、电学及磁学物理化学性质,使其在功能材料领域获得了广泛的应用。本文介绍了稀土磁性材料、稀土发光材料、稀土催化材料、稀土贮氢材料、稀土超导材料的研究及其应用进展。

1 稀土磁性材料

稀土磁性材料主要包括稀土永磁材料、稀土超磁致伸缩材料、稀土永磁薄膜、稀土磁致冷材料和稀土巨磁电阻材料。

1.1 稀土永磁材料

因为具有远超过铁氧体、铝镍钴等传统磁性材料的磁性能,稀土永磁材料近年来发展极为迅速。钕铁硼(NdFeB)自日本住友公司和美国通用公司发明后迅速产业化。全世界烧结NdFeB磁体产量由1989年的765 t发展到2005年的52380t ,中国44830 t ,是全球最大的烧结NdFeB生产大国,占全球的85.6%。据预测, 到2010年全世界烧结Nd-FeB产量将达到10万t,我国约占80%左右。

SmCo5和Sm2Co17永磁材料先于NdFeB商品化,曾被分别称为第一代和第二代稀土钴磁性材料。它们具有较大的磁能积、高矫顽力及良好的热稳定性。但由于钴和钐的价格昂贵,限制了它们的发展。目前,这类永磁材料主要应用于微波管、精密测量仪表、自动导航定向陀螺仪等军工产品。

SmFeN和NdFeN等稀土铁系磁体的磁能积较低(5~12MGOe)等原因,这类磁体发展较慢,但这类磁体价格低廉,所以具有广阔的前景。

稀土永磁材料的应用几乎涉及国民经济的每个领域。日本有47%的稀土永磁材料用于计算机硬盘的驱动器音圈电机(VCM),用于核磁共振(MRI)占13%,电机和致动器24%,通讯11%,音响2 %,其它3%。我国稀土永磁应用分布是:CD和DVD驱器占30%,音响22%,电机和致动器16%,通讯12%,磁分离8%,脱膜器5%,磁耦合器4%,其它3%。我国与其他国家稀土永磁材料应用领域的差距也反映我国目前稀土永磁产品与国外先进水平的差距,这些差距主要表现在:(1)磁能积较低,国外已大批量稳定生产52MGOe产品,实验室可以生产达56.7MGOE的产品。我国实验室水平虽然也达到54.1MGOe,但能大批量稳定生产的仅为48MGOe左右的产品;(2)矫顽力低,使用温度低。日本已能大批量生产大功率电机上使用的烧结钕铁硼磁体,其内禀矫顽力可达37kOe,磁能积达32MGOe,使用温度可达220℃;我国相应产品差距不小, 长时间稳定使用的温度低于150℃;(3)产品表面涂覆欠致密;光洁度、抗腐蚀性较差,是计算机HDD 最不能接受的。这些差距也是我国稀土永磁材料长期不能进入计算机等高附加值领域的最重要原因之一。

1.2 稀土超磁致伸缩材料

稀土超磁致伸缩材料(GMM)是一种高技术功能材料,也有人称其为“智能材料”。它在室温下的磁致伸缩率达1500~2000μg/g ,比压电陶瓷(PZT)大5~20 倍,比镍钴合金和铁氧体磁致伸缩材料大约50倍,而且能量密度大(14000~25000 J/m3),能量转换效率高、输出功率大、响应速度快(达到μs级)等优点,受到各国的重视。

稀土超磁致伸缩材料目前多用于军事工业,如低频大功率声纳、水下通讯、海下地貌测量、声响水雷探测与引爆、火箭燃料调节与控制、空间站与卫星控制、火箭定向调节、导弹调节、激光定位系统等,能有效地提高国防、航天、航空等领域的技术装备水平,它的应用可诱发一系列的新技术、新设备、新工艺的开发, 迅速提高国民经济的竞争力。因此,稀土超磁致材料被西方等国家列为对中国严格禁运的具有战略意义的功能材料。

1.3 稀土永磁薄膜

在现代电子器件日益要求微型化的形势下,通过用高性能的永磁体块或棒材切割加工成很小的尺寸来满足相应的需要是非常困难的,而薄膜永磁材料可以像半导体那样进行微米制版,可以集成到微型传感器、微波毫米波集成电路、集成光学系统和微电子机械系统中,提供一个强的局域磁场或一组交变磁场。它研究

的薄膜材料几乎包括了所有高性能的永磁材料。

永磁薄膜应用于集成微波和磁光隔音器和电磁型微电机等,永磁薄膜的出现还将推动以微型机器人为代表的新兴学科——微电子机械系统的研发。近10 年来,自旋电子器件的研究已有很大发展,永磁薄膜与自旋电子器材的集成将开发出新一代电子器件。

1.4 稀土磁致冷材料

2010年我国将按国际公约的规定停止生产和使用严重污染环境及破坏大气臭氧层的氟利昂等氟氯碳类化合物。因此,为冷冻机、电冰箱、冰柜及空调等寻找新的制冷介质是迫切需要解决的问题。磁制冷是优良的制冷方法之一,与通常的压缩气体制冷方式相比,具有效率高、功耗低、噪音小、体积小、无污染等优点。

目前,美国和日本在磁致冷材料、技术和装置的研发领域居世界领先水平。2002 年美国阿姆斯实验室研制出世界第一台能在室温下工作的磁制冷冰箱。据此推测,在未来3~5年内,室温磁制冷技术可望在汽车空调系统中得到应用。

国外对利用稀土元素或合金,如LaFeSi、Gd80Tb20 、Gd5Si4 、Gd3Al2等磁致冷材料的磁卡效应进行了大量研究,已取得重要进展。我国的东北大学、钢铁研究总院、南京大学、四川大学相继开展了致冷的研究。通过对LaCaMnO材料的系统研究,获得了一些熵变较大、居里点可调、价格相对便宜的材料。

近室温磁致冷技术今后要着重解决的问题如下:(1)每次磁制冷循环降低的温度不够大;(2)热交换速度不够快;(3)解决特殊要求的绝热技术。

1.5 稀土巨磁电阻材料

巨磁电阻(GMR)材料是在外磁场的作用下可显著降低电阻的功能材料,是自旋电子学的一个应用范例。类钙钛矿RE3 -XAXMnO3 型化合物薄膜(RE代表稀土,A 为碱金属)是目前巨磁电阻材料中自旋极化率最大、最具应用前景的一种。

1988 年法国磁学物理学家发现了巨磁电阻效应,1994 年美国NVE公司首先实现了巨磁电阻材料的产业化。NVE公司生产和销售灵敏度高、热稳定性好的巨磁电阻磁场传感器可广泛应用于电机、电子、电力、能源、汽车、磁信息读写及工业自动控制等领域。1998年,IBM公司成功地将巨磁电阻效应应用于计算硬盘驱动器上的读写磁头,目前存储密度已高达56GB/平方英寸,可望将计算机硬盘容量扩大20倍。2001年摩托罗拉公司研制出巨磁电阻随机读取存储器,该存储器预示有1000亿美元的市场容量。

我国香山科学会议已将巨磁电阻效应的研究和应用列为我国将要重点发展的七个领域之一。中科院物理所、北京有色金属研究总院、钢铁研究总院、南京大学等单位开展了自旋电子学的研究,但目前均属实验室水平。

2 稀土发光和激光材料

稀土的发光和激光性能都是由于稀土的4f电子在不同能级之间的跃迁产生的。由于稀土离子具有丰富的能级和4f电子跃迁特性,使稀土成为发光宝库,为高科技领域特别是信息通讯领域提供了性能优越的发光材料。

稀土发光材料的优点是吸收能力强,转换率高,可发射从紫外到红外的光谱, 在可见光区域,有很强的发射能力,且物理化学性质稳定。稀土发光材料因其激发

方式不同又可分为稀土阴极射线发光材料、稀土光致发光材料、X 射线稀土发光材料、稀土闪烁体、稀土上转换发光材料及其它稀土功能发光材料。目前,稀土发光材料主要用于彩电显像管、计算机显示器、照明、医疗设备等方面。稀土发光材料用量最大的是彩电显像管、计算机显示器、稀土三基色节能灯、PDP 等离子显示屏。

彩电显像管和计算机显示器使用的稀土发光材料属阴极射线发光材料。目前彩管中红粉普遍使用的是铕激活的硫氧化钇Y2O2S:Eu磷光体,粒度6~8μm ,计

算机显示器要求发光材料提供高亮度、高对比度和清晰度,其红粉也采Y2O2S :Eu, 但Eu含量要高一些,绿粉为Tb3+激活的稀土硫氧化物Y2O2S:Tb,Dy及Gd2O2S :Tb , Dy高效绿色荧光体,粒度为4~6μm。有消息报导说蓝粉也将由稀土发光材料取代锌、锶硫化物粉。大屏幕投影电视的红粉也为Y2O2S:Eu ,绿粉为Tb激活的稀土发光材料如纪铝石榴石YAG:Tb(P53)和钇铝镓石榴石YAGG:Tb,大屏幕投影电视因需要高电流密度激发,外屏温度高,要求发光材料能量转换效率尽可能高,温度淬灭特性好,亮度与电流呈线性关系,电流饱和特性好,且性能稳定。投影电视用荧光粉每年可消费数吨稀土氧化物。PDP等离子显示屏中的稀土发光材料为电致发光材料,红色为ZnSiNdF3 、Zn-SiSmF3 和ZnSiEuF3薄膜,绿色为ZnSiTbF3 、Zn

-SiErF3和ZnSiHoF3薄膜,由于蓝色发光材料Zn-SiTmF3亮度很低,因而使用了不

含稀土的ZnSiAg。PDP属平板显示技术,随着市场对PDP电视需求的增加,稀土的消费会进一步扩大。

稀土发光材料的另一项重要应用是稀土三基色节能灯,它使用的稀土三基色荧光粉是光致发光材料,主要组成部分为红粉Y2O3:Eu3+,约占60%~70%(质量分数),绿粉为Ce0.67Mg0.33Al11O19:Tb3+(约30%)(质量分数),蓝BaMgAl16O27 :Eu 2+(少量)。稀土节能灯发光效率高, 节约电力, 其开发应用受到世界各国重视。与国外相比,我国灯粉质量还存在一定问题,光衰较大,亮度偏低,在灯粉粒度、原料纯度控制工艺方面需要改进。

此外,还有稀土上转换发光材料,上转换发光材料发射光子的能量大于吸收

光子的能量,广泛用于红外探测,某些上转换稀土发光材料如BaYF5:Yb,Er可将红外线转换成可见光,夜视镜中使用的就是这种材料,还有一些材料如掺杂Ho3+的SrF2晶体可实现激光输出的上转换,在红色激光激发下,SrF2晶体中Ho3+可实现

兰色上转换发光。

稀土激光材料是与激光同时诞生的,稀土是激光工作物质中很重要的元素, 90 %的激光材料都与稀土有关。稀土激光材料可分为固体、液体和气体三大类, 以稀土固体激光材料的应用最广。稀土固体激光材料又可以分为晶体、玻璃、光纤及化学计量激光材料。稀土激光材料广泛用于通讯、医疗、信息储存、切割和焊接等方面。

稀土晶体激光材料主要是含氧的化合物和含氟的化合物。其中稀土石榴石体系是研究、开发和应用最活跃的体系,如Y3Al5O12Nd(YAG :Nd)因其性能优异得到了广泛的应用,还有效率更高的掺杂Nd和Cr 的钆钪嫁石榴石GSGG:Nd,Cr及与GSGG类似的(Gd,Ca)3(Ga,Mg,Zr)5O12:Nd ,Cr。掺钕钒酸钇(YVO4 :Nd)及YLiF4 , 适用于二极管泵浦的全固态连续波绿光激光器,在激光技术、医疗、科研等领域应用广泛。稀土玻璃激光材料用Nd3+、Er3+ 、Tm3+等三价离子作为稀土激活离子,种类比晶体少,容易制备,灵活性比晶体大,可以根据需要制成不同的形状和

尺寸,缺点是热导率比晶体低,因此不能用于连续激光的操作和高重复率操作。稀土玻璃激光器输出脉冲能量大,输出功率高,可用于热核聚变研究,也可用于打孔、

焊接。

稀土光纤激光材料在现代光纤通讯的发展中起着重要作用。现代信息高速公路的建设与发展,对传输容量、所传输信号的质量、速度提出了更高的要求。光信号直接放大技术是为补偿长距离传送过程中光衰减而开发的。掺铒光纤放大器(EDFA)的开发应用及其它高技术的发展,使现代光纤通信取得了长足的进步。

EDFA中Er3+在受到波长980nm 、1480nm的光激发后,其能级从基态跃迁致高能态,当处于高能态的Er3+再跃迁返回基态时发出1550nm的光,这是上转换发光, 起到了光放大的作用。除EDFA外还有掺镨氟化物光纤放大器,它们的原理相同, 后者激发光波长为1017nm。稀土在光纤中用量很少,世界总用量仅为公斤级,但所起的作用是决定性的。

3 稀土催化材料

稀土催化剂材料已广泛应用于石油裂化、合成橡胶、石油化工及汽车尾气净化等领域中。目前由于我国对环保的重视,对空气污染治理措施加强,刺激了汽车尾气净化器的市场需求,汽车尾气催化剂材料的开发应用进一步受到重视。采用铂铑等贵金属的催化剂活性高,净化效果好,但价格昂贵,而稀土汽车尾气催化剂因其价格低,热稳定性和化学稳定性好,活性较高,寿命长,抗Pb、S中毒,极受重视。汽车尾气中的主要污染物为CO、HC、NOx。调查表明,城市污染的主要来源是汽车尾气,有效控制汽车尾气污染物含量是提高空气质量的主要途径。催化净化的原理是利用催化剂将尾气排放出来的HC和CO进行氧化,而将NOx进行还原,达到净化的目的。汽车尾气净化器的主要作用是提高以下催化反应的速度(*分别代表多组分烃类和氮的氧化物):

CO +1/2O

2※CO

2

*CH4 +2O

2※CO

2

+2H

2

O

*NOx+xCO※1/2N

2+xCO

2

稀土催化剂中使用的是La和Ce的化合物,Ce具有储氧功能,并能稳定催化剂

表面上铂和铑的分散性,La在铂基催化剂中可替代铑,降低成本。在一定条件下, 贵金属催化剂和稀土催化剂可以使以上三个反应同时进行,从而达到了同时净化CO、HC和NOx的目的。此外在催化剂载体中加入La、Ce、Y等稀土元素还能提高载体的高能、抗高温氧化性能。美国汽车催化剂消费量可观,1995年消费稀土占其当年总稀土消费量的44%,达到11000t ,1997年美国各种催化剂中的稀土占其消

费总量的65%(汽车尾气和石油裂化),达到12045 t。我国对稀土汽车尾气净化催化剂的需求尚未形成规模,但随着国家对治理环境污染的重视及相关政策的制定, 稀土汽车尾气催化材料必将得到广泛应用,并成为我国稀土应用的又一重要领域, 从而带动稀土工业的发展。

4 稀土贮氢材料

贮氢材料是70年代开发的新型功能材料,它的开发使氢作为能源实用化成为可能。在能源短缺和环境污染日益严重的今天,贮氢材料的开发与应用自然成为研究的热点。贮氢合金是两种特定金属的合金,其中一种金属可以大量吸氢,形成稳定氢化物,而另一种金属与氢的亲合力小,氢很容易在其中移动。稀土与过渡族元素的金属间化合物MMNi5(MM 为混合稀土金属)及LaNi5 是优良的吸氢材料。因其对氢可进行选择性吸收并可在常压下释放,故可用作氢的提纯、分离和回收。

稀土贮氢材料的另一项重要应用是它可以被用作Ni/MH电池的阴极材料。镍氢电池与传统的镍镉电池相比,其能量密度提高两倍,且无污染,因而被称为绿色能源。Ni/MH 电池应用广泛,如笔记本电脑、计算机、摄像机、收录机、数码相机、通讯器材等,还有一项潜在的重要用途为电动汽车。日本1996 、1997 、1998 三年镍氢电池产量分别为3.5 亿支、5.8 亿支、6.4 亿支,增长迅速,可见其市场前景十分看好。中国生产的镍氢电池性能与国外相比还有差距,这是由于工艺设备落后、材料性能较差等原因造成的,电池的一致性、稳定性均有待提高。

5 稀土超导材料

最早发现的含稀土元素的高临界温度超导体是在1986年、当时由Bednorz J.G和MuelerK.A等人发现镧钡铜氧(LaBaCuO4)的Tc为35K。1987年我国科学家朱经武、赵忠贤等人发现钇钡铜氧(YBa2Cu3O7)的Tc为93 K、它已明显地超过了液氨的温区(77K)之后,虽然又发现了20多种有代表性的稀土高临界温度超导体,但至今为止最有实用价值的还是钇系超导体。这是由于:(1)该高温超导体可以在液氮的工作介质中使用,其成本费用仅是液氦为工作介质的1/50;(2)它可以制成粉体、块材和薄膜,在大电流和高磁场环境中,具有应用价值;(3)它具有优良的微波性能, 例如美国采用倒圆筒磁控溅射低压快速沉积技术制得的钇钡铜氧薄膜,在77K,10GHz的微波环境中,表面电阻为250Ψ,室温电阻率为280Ψ/cm

2目前高温超导体的研究已处于实用时期美国等先进国家已能通过商业系统

购到钇钡铜氧的粉体、块材或薄膜。美国已能按20~100 kg规模,批量生产粒径为0.5~5μm的高纯粉体。俄国也已建成采用自蔓燃烧技术生产钇钡铜氧粉体的试验装置(年产量1t)和中试设备(年产量10t)。

从稀土高温超导材料的应用研究来看,已计划将钇钡铜氧制成直径为100 mm 的块材,用于1 kWh飞轮储能装置的研究;将高温超导薄膜用于直流和射频“超导量子干涉器”,可供高灵敏的医用探测;将它制成双通道蜂窝式电话滤波器,可供移动电话站使用;研制成超导逻辑器件和超导记忆器件,可供信息产业使用。用超导陶瓷材料研制成集成电路,再制造超导计算机,不仅体积小、重量轻、使用方便, 而且运算速度比半导体计算机快10~100倍,每秒浮点运算达3000亿次到10000次。因而,美军方预言:超导计算机一旦问世,即成为部队C1系统战斗力的“倍增器”。

今后除了进一步开发钇钡铜氧超导体之外,还将发展轻稀土超导体,例如:钕钡铜氧和钐钡铜氧。

6 结语

稀土元素是二十一世纪具有战略地位的元素,稀土新材料的研究开发与应用是国际竞争最激烈也是最活命的领域之一。从某种角度讲,稀土新材料的研究开发应用水平,标志着一个国家高科技发展水平,也是一种综合国力的象征。与美、日、法等发达国家相比,虽然我国在稀土新材料的研究、开发、应用方面有-定差距,但在党和政府的关怀下,近些年我国稀土工业的发展速度很快,稀土的研究与开发也取得长足的进步,应用水平也在逐渐提高,基研究正在加强。中国是稀土资源最丰富的国家,我们的目标就是要将资源优势转化为经济优势。要实现这一目标,根本出路在于提高我国稀土产业自身高科技应用水平,提高稀土产品质量,并进一步开发稀土新材料在高科技领域的应用技术。稀土产业是一个很有前途的产业,随着稀土高科技的产业化,我国稀土工业的明天会更好。

参考文献:

[1] 师昌绪.材料大辞典[M] .北京:化学工业出版社, 1994.

[2] 陈占恒.稀土新材料及其在高技术领域的作用[ J] .稀土,

综述—永磁材料

Nd-Fe-B系稀土永磁材料的研究进展 邓少杰 合肥工业大学工业与装备技术研究院 摘要钕铁硼磁体被称为第3代稀土永磁材料,是目前综合磁性能比较高的永磁材料。探讨了钕铁硼永磁材料的发展前景以及行业存在的问题,对钕铁硼永磁材料生产和应用现状进行了分析。概述了钕铁硼永磁材料的研究进展和应用领域,介绍了钕铁硼磁体的性能及先进制备工艺。纵观全文,钕铁硼永磁材料已进入一个崭新的发展阶段,应用前景广阔。关键词 稀土永磁材料钕铁硼 磁性能 制备工艺 1绪论 1.1永磁材料的定义 永磁材料又称为硬磁材料,它是一种经过外加强磁场的磁化,再去掉外加磁场之后能长时期保留其较高的剩余磁性能,经受振动、温度等环境因素和不太强的外加磁场的干扰的强磁材料。又因为其具有高的矫顽力,能经受外加不太强的磁场的干扰,故又称硬磁材料。 1.2钕铁硼系稀土永磁材料的现状及研究意义 在钕铁硼刚开始生产应用之初,世界钕铁硼生产能力主要集中在日、美、中、欧等少数国家手中。其中,日、美在永磁的开发、生产和推广应用方面的技术一直处于世界前茅,同时也是最大的永磁消费市场,并形成了几家能力大、质量好、竞争力强的超大规模企业。目前,日本住友特殊金属公司、日本信越化学实业公司、TDK 等在钕铁硼的销量上分居世界第一、二、三位,而中国的北京中科三环高技术股份有限公司与日本的TDK 并列排在第三位。 中国在20世纪80年代初开始从事稀土永磁材料的研究。目前,中国钕铁硼产业已经占全球近80%市场份额,是全球烧结钕铁硼磁体的产业中心。2010年,中国铁硼磁体产量已经超过世界总产量的80%。随着中国对稀土出口限制管理日趋严格,未来中国高性能钕铁硼永磁材料产量将继续扩大,占全球总产量比例有望继续提升。目前,中国钕铁硼永磁材料生产企业已达120多家,国内有5家企业的生产规模已近千吨。而上百吨生产规模的企业有20余家,但所产磁体大部分都是中低档产品,绝大多数应用在性能要求不高的领域。所以,中国烧结钕铁硼产量虽处于世界前列,但所得利润却很有限。从世界范围来看,高性能钕铁硼永磁体发展前景看好,市场竞争力也较强。永磁材料是一种重要的基础功能材料,它的基本功能是提供稳定持久的磁通量,不需要消耗电能,是节约能源的重要手段之一。同时永磁材料使器械和设备结构简单,制造成本和维修保养成本降低[1]。因此,永磁材料的应用面越来越广,应用量越来越大。当今,永磁材料按磁性能的高低,大致可分为2类。一是一般永磁材料,如铝镍钴、铁氧体,磁性能较低,但价格低;二是稀土永磁材料,如钐系磁体(如SmCo5)及钕系磁体(Nd-Fe-B),磁性能较高,但价格贵[2]。随着电子器件的小型化、微型化的发展要求,高性能稀土永磁材料应用越来越广泛。钕铁硼的最大磁能积最高,由于不含贵重金属Sm和Co,价格较低,近年来发展迅速。也因为Nd-Fe-B系永磁材料的性能比传统的永磁材料的要高,称为创世界纪录的磁性材料。并且用金属铁代替稀土永磁一、二代所用的金属钴,以成本低、资源丰富的金属钕代替资源较少的稀土金属钐。再者永磁材料有矫顽力高、剩余磁感应强度高、最大磁能积高和稳定性高这四大优势。而随着当今世界的飞速发展的要求,永磁材料的研究就显得极为必然。 也因钕铁硼是重要的金属功能材料,作为第三代稀土型永磁材料,由于其良好的磁性能被科技人员称为“磁王”,利用其能量的转换

稀土发光材料的研究现状与应用(综述)

稀土发光材料的研究现状与应用 材化092 班…指导老师:…. (陕西科技大学材料科学与工程学院陕西西安710021) 摘要稀土元素包括元素周期表中的镧系元素(Ln)和钪(Sc)、钇(Y),共17个元素。由于稀土离子的4f电子在不同能级之间的跃迁产生的丰富的吸收和发射光谱,使其在发光材料中具有广泛的应用。稀土元素的特殊原子结构导致它们具有优异的发光特性,用于制造发光材料、电光源材料和激光材料,其合成的发光材料充分应用在照明、显示、医学、军事、安全保卫等领域中。稀土元素在我国的储量丰富,约占全世界的40%。本文综述了稀土发光材料的发光机理、发光特性、化学合成方法、主要应用领域以及稀土矿藏的开采方面存在的问题,并预测了今后深入研究的方向。 关键词稀土,发光材料, 应用 Current Research and Applications of rare earth luminescent materials Abstract Rare earth elements, including the lanthanides (Ln) and scandium (Sc) , yttrium (Y)of the periodic table, a total of 17 elements. a plenty of absorption and emission spectra in the light-emitting materials produced by the 4f electrons of rare earth ions transiting between different energy levels lead to a wide range of applications of rare earth luminescent materials. Special atomic structure of rare earth elements lead to their excellent luminescence properties, which is used in the manufacture of luminescent materials, the electric light materials and laser materials, 1 / 8

稀土功能材料研究现状

稀土功能材料研究现状 摘要:稀土元素被誉为二十一世纪新材料的宝库,因其在电、光、磁等方面具有独特性质,故在功能材料领域获得了广泛的应用。文章介绍了稀土磁性材料、稀土发光材料、稀土催化材料、稀土贮氢材料、稀土超导材料的研究及其应用进展。 关键词:稀土、功能材料、研究现状 引言 功能材料是以物理性能为主的工程材料的统称,即指在电、磁、声、光、热等方面具有特殊性质,或在其作用下表现出特殊功能的材料[1]。它是现代高新技术的先导和基础,对它的研究、开发和应用将促进国家的科技发展水平,提高国家的综合经济实力和在高科技领域的竞争力。 被称为新材料“宝库”的稀土元素具有独特的4f电子结构,大的原子磁距,很强的自旋轨道藕合等特性,与其它元素形成稀土配合物时,配位数可在3—12之间变化,并且稀土化合物的晶体结构也是多样化的。稀土元素具有独特的光学、电学及磁学物理化学性质,使其在功能材料领域获得了广泛的应用。因此,无论是稀土金属还是其化合物都有良好的应用价值。本文着重介绍了在工农业生产和科学技术领域中有广泛应用的不同类型的稀土材料。 1、传统领域中的稀土材料 1.1稀土在农轻工中的应用 早在20世纪五六十年代,稀土就在农业、纺织业、石油化工业等传统领域得到了广泛的应用。稀土在农业的应用时我国科学独立自主开发的成果,先后被列入国家“六五”和“七五”科技攻关计划。稀土元素作为微量元素用于农业主要有2个优点:一是作为植物的生长、生理调节剂,使农作物具有高产量、优品质和抗逆性3大特性;二是稀土属低毒、非致癌物质、合理使用稀土对人畜无害,对环境无污染[2]。如添加稀土元素的硝酸盐化合物作为微量元素化合物施用于农作物可

荧光材料文献综述

一、荧光材料的种类与特性 总的说来,荧光材料分有机荧光材料和无机荧光材料。 有机荧光材料又有有机小分子发光材料和有机高分子光学材料之分。有机小分子荧光材料种类繁多,它们多带有共轭杂环及各种生色团,结构易于调整,通过引入烯键、苯环等不饱和基团及各种生色团来改变其共轭长度,从而使化合物光电性质发生变化。如恶二唑及其衍生物类,三唑及其衍生物类,罗丹明及其衍生物类,香豆素类衍生物,1,8-萘酰亚胺类衍生物,吡唑啉衍生物,三苯胺类衍生物,卟啉类化合物,咔唑、吡嗪、噻唑类衍生物,苝类衍生物等。它们广泛应用于光学电子器件、DNA诊断、光化学传感器、染料、荧光增白剂、荧光涂料、激光染料[7]、有机电致发光器件(ELD)等方面。但是小分子发光材料在固态下易发生荧光猝灭现象,一般掺杂方法制成的器件又容易聚集结晶,器件寿命下降。因此众多的科研工作者一方面致力于小分子的研究,另一方面寻找性能更好的发光材料,高分子发光材料就应运而生了。 有机高分子光学材料通常分为三类:(1) 侧链型:小分子发光基团挂接在高分子侧链上,(2) 全共轭主链型:整个分子均为一个大的共轭高分子体系,(3) 部分共轭主链型:发光中心在主链上,但发光中心之间相互隔开没有形成一个共轭体系。目前所研究的高分子发光材料主要是共轭聚合物,如聚苯、聚噻吩、聚芴、聚三苯基胺及其衍生物等。还有聚三苯基胺,聚咔唑,聚吡咯,聚卟啉[8]及其衍生物、共聚物等,目前研究得也比较多。 常见的无机荧光材料有硫化物系荧光材料、铝酸盐系荧光材料、氧化

物系荧光材料及稀土荧光材料等。 碱土金属硫化物体系是一类用途广泛的发光基质材料[8211 ] 。二价铕掺杂的CaS 及SrS 可以被蓝光有效激发而发射出红光,因而可用作蓝光L ED 晶片的白光L ED 的红色成分,可制造较低色温的白光L ED ,其显色性明显得到改善,目前使用的红粉硫化物体系主要是(Ca1-X ,SrX ) S : Eu2+ 体系,在蓝区宽带激发,红区宽带发射。通过改变Ca2+ 的掺杂量,可使发射峰在609~647 nm 间移动。共掺杂Er3 + , Tb3 + ,Ce3 +等可增强红光发射。 铝酸盐系荧光材料中SrAl2O4, CaAl2O4, BaAl2O4为常用的发光基质。例如,Sr3A12O6 是一种新型红色荧光粉,它的激发峰位于460~470nm 范围内,是与主峰为465nm 的蓝光L ED 晶片相匹配的红色荧光材料。刘阁等[31 ] 利用水热沉淀法合成了Sr3A12O6 。通过对其纯相粉末的荧光性质的研究,发现该荧光粉样品的最大激发峰位于459nm 波长处且在415nm 波长处有一小的激发峰。而样品的发射带落在615~683nm 的波长范围内, 其中最大发射峰的波长位于655nm 处, 表明在459nm 波长的光激发下,样品能够发出红色光。 氧化物荧光材料在荧光粉中的应用较多。如,以ZnO 作为基质合成的红色荧光材料稳定性很好。红色荧光材料ZnO : Eu ,Li 和ZnO :Li + 的最大激发峰范围都在340~370nm 范围内,与365~370nm 紫光L ED 晶片的发射峰大部分相交,因而适用于三基色白光L ED 制造。 稀土离子因其具有特殊的电子结构和成键特征,故能表现出独特的荧光性质,而通过与配体的作用,又可以在很大程度上增强它的荧光强度,因此稀土配合物的研究为荧光材料分子的设计提供了广阔的前景。近些年

稀土永磁材料

稀土永磁材料 李世东材卓121 1209010103 摘要:稀土永磁材料具有高的磁能积、良好的稳定性、不易受温度、外界磁场和冲击的影响,它广泛用于雷达、航天技术、卫星通信、计算机、自动控制,旋转机械设备、交通运输、磁分离、石油化工、医疗卫生、电动玩具、办公设备、以及各种仪器仪表等方面。稀土钕铁硼永磁材料产业本身是个新兴产业,新的应用领域在不断涌现,特别是以信息产业为代表的知识经济发展,给稀上永磁等功能材料不断带来新的用途。除了在上述等方面的广泛应用外,汽车中的发电机、电动机和音响系统、风力发电、节能电梯、变频空调等应用已经开始,这将极大地带动钕铁硼永磁材料产业的发展。 关键词:稀土永磁材料制备特性分类应用 Abstract:Rare earth permanent magnetic material with high magnetic energy product, good stability, less susceptible to temperature, the influence of external magnetic field and impact. It is widely used in radar, space technology, satellite communication, computer, automatic control, rotation machinery and equipment, transportation, magnetic separation, petroleum chemical industry, medical and health, electric toys, office equipment, and a variety of instrumentation, such as aspects. Rare earth neodymium iron boron permanent magnetic material industry is a new industry, new application areas are emerging, especially in the information industry as the representative of the knowledge economy development, to dilute the permanent magnet and other functional materials continue to bring new uses. In addition to a wide range of applications in the automotive, motor and audio systems, electric motors and sound systems, wind power, energy saving, energy saving, such as the application has begun, which will greatly promote the development of the permanent magnet material industry. Key word:Rare earth permanent magnetic materialPreparation CharacteristicClassificationApplication 引言:永磁材料作为一种重要的功能材料,已被广泛应用于能源、交通、机械、医疗、计算机、家电、航天等领域,深入国民经济的方方面面,其产量与用量已成为衡量一个国家综合国力与国民经济发展水平的重要标志。稀土永磁的出现是永磁材料领域中的一个巨大进步,尤其是NdFeB稀土永磁材料的高性能使得高新技术产业中的磁器件高效化,小型化,轻型化成为可能。相信随着稀土永磁材料应用的扩展,定会迎来一个稀土永磁高新技术应用的新时代。 1.定义 稀土永磁材料是将钐、钕混合稀土金属与过渡金属(如钴、铁等)组成的合金,用粉末冶金方法压型烧结,经磁场充磁后制得的一种磁性材料。 稀土永磁分钐钴(SmCo)永磁体和钕铁硼(NdFeB)永磁体。其中SmCo磁体的磁能积在15--30MGOe之间,NdFeB系磁体的磁能积在27--50MGOe之间,被称

永磁材料基本知识

永磁材料基本知识 2006年08月26日星期六 08:56 1、什么是永磁材料的磁性能,它包括哪些指标? 永磁材料的主要磁性能指标是:剩磁(Jr, Br)、矫顽力(bHc)、内禀矫顽力(jHc)、磁能积(BH)m。我们通常所说的永磁材料的磁性能,指的就是这四项。永磁材料的其它磁性能指标还有:居里温度(Tc)、可工作温度(Tw)、剩磁及内禀矫顽力的温度系数(Brθ, jHcθ)、回复导磁率(μrec.)、退磁曲线方形度( Hk/ jHc)、高温减磁性能以及磁性能的均一性等。 除磁性能外,永磁材料的物理性能还包括密度、电导率、热导率、热膨胀系数等;机械性能则包括维氏硬度、抗压(拉)强度、冲击韧性等。此外,永磁材料的性能指标中还有重要的一项,就是表面状态及其耐腐蚀性能。 2、什么叫磁场强度(H)? 1820年,丹麦科学家奥斯特(H. C. Oersted)发现通有电流的导线可以使其附近的磁针发生偏转,从而揭示了电与磁的基本关系,诞生了电磁学。实践表明:通有电流的无限长导线在其周围所产生的磁场强弱与电流的大小成正比,与离开导线的距离成反比。定义载有1安培电流的无限长导线在距离导线1/2π米远处的磁场强度为1A/m(安/米,国际单位制SI);在CGS单位制(厘米-克-秒)中,为纪念奥斯特对电磁学的贡献,定义载有1安培电流的无限长导线在距离导线0.2厘米远处磁场强度为1Oe(奥斯特),1Oe=1/(4π×103) A/m。磁场强度通常用H表示。 3、什么叫磁极化强度(J),什么叫磁化强度(M),二者有何区别? 现代磁学研究表明:一切磁现象都起源于电流。磁性材料也不例外,其铁磁现象是起源于材料内部原子的核外电子运动形成的微电流,亦称分子电流。这些微电流的集合效应使得材料对外呈现各种各样的宏观磁特性。因为每一个微电流都产生磁效应,所以把一个单位微电流称为一个磁偶极子。定义在真空中每单位外磁场对一个磁偶极子产生的最大力矩为磁偶极矩pm,每单位材料体积内磁偶极矩的矢量和为磁极化强度J,其单位为T(特斯拉,在CGS单位制中,J的单位为Gs,1T=10000Gs)。 定义一个磁偶极子的磁矩为pm/μ0,μ0为真空磁导率,每单位材料体积内磁矩的矢量和为磁化强度M,其SI单位为A/m,CGS单位为Gs(高斯)。 M与J的关系为:J=μ0 M,在CGS单位制中,μ0=1,故磁极化强度与磁化强度的值相等;在SI单位制中,μ0=4π×10-7 H/m (亨/米)。 4、什么叫磁感应强度(B),什么叫磁通密度(B),B与H,J,M之间存在什么样的关系? 理论与实践均表明,对任何介质施加一磁场H时(该磁场可由外部电流或外部永磁体提供,亦可由永磁体对永磁介质本身提供,由永磁体对永磁介质本身提供的磁场又称退磁场---关于退磁场的概念,见9 Q),介质内部的磁场强度并不等于H,而是表现为H与介质的磁极化强度J之和。由于介质内部的磁场强度是由磁场H通过介质的感应而表现出来的,为与H区别,称之为介质的磁感应强度,记为B: B=μ0 H+J (SI单位制)(1-1) B=H+4πM (CGS单位制) 磁感应强度B的单位为T,CGS单位为Gs(1T=104Gs)。

稀土功能材料项目计划书

稀土功能材料项目计划书 第一章项目概述 一、项目承办单位基本情况 (一)公司名称 xxx集团 (二)公司简介 在本着“质量第一,信誉至上”的经营宗旨,高瞻远瞩的经营方针,不断创新,全面提升产品品牌特色及服务内涵,强化公司形象,立志成为全国知名的产品供应商。公司坚持诚信为本、铸就品牌,优质服务、赢得市场的经营理念,秉承以人为本,宾客至上服务理念,将一整套针对用户使用过程中完善的服务方案。本公司奉行“客户至上,质量保障”的服务宗旨,树立“一切为客户着想” 的经营理念,以高效、优质、优惠的专业精神服务于新老客户。 公司能源计量是企业实现科学管理的基础性工作,没有完善而准确的计量器具配置,就不能为企业能源消费的各个环节提供可靠的数据,能源计量工作也是评价一个企业管理水平的一项重要标志;项目承办单位依据ISO10012-1标准建立了完善的计量检测体系,并通过审核认证;随后又根

据国家质检总局、国家发改委《关于加强能源计量工作的实施意见》以及 xx省质监局《关于加强全省能源计量工作的通知》的文件精神,依据国家《用能单位能源计量器具配备和管理通则》(GB17176-2006)的要求配备 了计量器具并实行量化管理;项目承办单位已经建立了“能源量化管理体系”并通过了当地质量技术监督局组织的评审认证,该体系的建立,进一 步强化了项目承办单位对能源计量仪器(设备)的管理力度,实现了以量 化管理促节能,提高了能源计量数据的真实性、准确性,凭借着不断完善 的能源量化体系,实现了对各计量数据进行日统计、周分析、月汇总、年 总结,通过能源计量数据的有效采集、处理、分析、控制,真实反映了项 目承办单位能源消费的实际状态,为节能降耗、保护环境、提高企业的市 场竞争力,做出了积极的贡献,从而大大提高了项目承办单位的能源综合 管理水平。公司在管理模式、组织结构、激励制度、科技创新等方面严格 按照科技型现代企业要求执行,并根据公司所具优势定位于高技术附加值 产品的研制、生产和营销,以新产品开拓市场,以优质服务参与竞争。强 调产品开发和市场营销的科技型企业的组织框架已经建立,主要岗位已配 备专业学科人员,包括科技奖励政策在内的企业各方面管理制度运作效果 良好。管理制度的先进性和创新性,极大地激发和调动了广大员工的工作 热情,吸引了较多适用人才,并通过科研开发、生产经营得以释放,因此,项目承办单位较好的经济效益和社会效益。

稀土发光材料的研究和应用.

稀土发光材料的研究和应用 摘要:介绍了稀土发光材料的发光特性与发光机理。综述了我国在稀土发光材料的化学合成方法。总结了稀土发光材料的应用。最后对我国存在问题和发展前景进行了叙述。关键字:稀土发光材料;发光特性;发光机理;合成;应用;问题和展望。 Abstract:Introduces the luminescence properties of rare earth luminescent material and luminescence mechanism. Rare-earth luminescence materials in China, the paper summarized the chemical synthesis method. The application of rare earth luminescence materials is summarized. Finally, the existing problems and development prospect of the narrative in our country. Keywords:Rare earth luminescent material; Luminescence properties; Light-emitting mechanism; Synthesis; Application; Problems and its prospect. 化学元素周期表中镧系元素———镧(La)、铈(Ce)、镨(Pr)、钕(Nd)、钷(Pm)、钐(Sm)、铕(Eu)、钆(Gd)、铽(Tb)、镝(Dy)、钬(Ho)、铒(Er)、铥(Tm)、镱(Yb)、镥(Lu),以及与镧系的15个元素密切相关的两个元素——钪(Sc)和钇(Y)共17种元素称为稀土元素。稀土化合物包含至少一种稀土元素的化合物。它是一种重要的战略资源,特别是高新技术工业的重要原料,如军事装备方面一些精确打击武器、一些汽车零部件和高科技产品,都依赖用稀土金属制造的组件。据了解,中国是唯一能有效提供全部17种稀土金属的国家,且储量远远超过世界其他国家的总和,是名副其实的“稀土大国”。由于稀土元素的离子具有特别的电子层结构和丰富的能级数量,使它成为了一个巨大的发光材料宝库。在人类开发的各种发光材料中,稀土元素发挥着重要作用,稀土发光几乎覆盖了整个固体发光的范畴。稀土发光材料具有发光谱带窄,色纯度高,色彩鲜艳;光吸收能力强,转换效率高;发射波长分布区域宽;荧光寿命从纳秒跨越到毫秒达6个数量级;物理和化学性质稳定,耐高温,可承受大功率电子束、高能辐射和强紫外光的作用等。目前稀土材料已广泛用于照明、显示、信息、显像、医学放射学图像和辐射场的探测等领域,并形成很大的工业生产和消费市场规模;同时也正在向着其他新型技术领域扩展,成为人类生活中不可缺少的重要组成部分。本文将介绍掺稀土离子发光材料的发光机理、节能灯、白光LED用荧光粉、PDP显示用荧光粉,以及对在上转换发光、生物荧光标记和下转换提升太阳能效率等方面的应用前景进行总结和展望。

稀土发光材料的发光机理及其应用

万方数据

万方数据

万方数据

万方数据

万方数据

稀土发光材料的发光机理及其应用 作者:谢国亚, 张友, XIE Guoya, ZHANG You 作者单位:谢国亚,XIE Guoya(重庆邮电大学移通学院,重庆,401520), 张友,ZHANG You(重庆邮电大学数理学院,重庆,400065) 刊名: 压电与声光 英文刊名:Piezoelectrics & Acoustooptics 年,卷(期):2012,34(1) 被引用次数:2次 参考文献(19条) 1.周贤菊;赵亮;罗斌过渡金属敏化稀土化合物近红外发光性能研究进展[期刊论文]-重庆邮电大学学报(自然科学版) 2007(06) 2.段昌奎;王广川稀土光谱参量的第一性原理研究[期刊论文]-重庆邮电大学学报(自然科学版) 2011(01) 3.周世杰;张喜燕;姜峰轻稀土掺杂对TbFeCo材料磁光性能的影响[期刊论文]-重庆工学院学报 2004(05) 4.CARNALL W T;GOODMAN G;RAJNAK K A systematic analysis of the spectra of the lanthanides doped into single crystal LaF3 1989(07) 5.LIU Guokui;BERNARD J Spectroscopic properties of rare earths in optical materials 2005 6.DUAN Changkui;TANNER P A What use are crystal field parameters? A chemist's viewpoint[外文期刊] 2010(19) 7.蒋大鹏;赵成久;侯凤勤白光发光二极管的制备技术及主要特性[期刊论文]-发光学报 2003(04) 8.黄京根节能灯用稀土三基色荧光粉 1990(05) 9.VERSTEGEN J M P J A survey of a group of phosphors,based on hexagonal aluminate and gallate host lattices 1974(12) 10.PAN Yuexiao;WU Mingmei;SU Qiang Tailored photoluminescence of YAG:Ce phosphor through various methods 2004(05) 11.KIM J S;JEON P E;CHOI J C Warm-whitelight emitting diode utilizing a single-phase full-color Ba3MgSi2O8:Eu2+,Mn2+ phosphor[外文期刊] 2004(15) 12.苏锵;梁宏斌;王静稀土发光材料的进展与新兴技术产业[期刊论文]-稀土信息 2010(09) 13.SIVAKUMAR S;BOYER J C;BOVERO E Upconversion of 980 nm light into white light from SolGel derived thin film made with new combinations of LaF3:Ln3+ nanoparticles[外文期刊] 2009(16) 14.WANG Jiwei;TANNER P A Upconversion for white light generation by a single compound[外文期刊] 2010(03) 15.QUIRINO W G;LEGNANI C;CREMONA M White OLED using β-diketones rare earth binuclear complex as emitting layer[外文期刊] 2006(1/2) 16.BUNZLI J C G;PIGUET C Taking advantage of luminescent lanthanide ions 2005 17.WANG Leyu;LI Yadong Controlled synthesis and luminescence of lanthanide doped NaYF4 nanocrystals[外文期刊] 2007(04) 18.LINDA A;BRYAN V E;MICHAEL F Downcoversion for solar cell in YF3:Pr3+,Yb3+ 2010(05) 19.TENG Yu;ZHOU Jiajia;LIU Jianrong Efficient broadband near-infrared quantum cutting for solar cells 2010(09) 引证文献(2条) 1.杨志平.梁晓双.赵引红.侯春彩.王灿.董宏岩橙红色荧光粉Ca3Y2(Si3O9)2:Eu3+的制备及发光性能[期刊论文]-硅酸盐学报 2013(12) 2.严回.孙晓刚.王栋.吕萍.郑长征C24H16N7O9Sm 的晶体合成、结构与性质研究[期刊论文]-江苏师范大学学报(自然科学版) 2013(3) 本文链接:https://www.doczj.com/doc/4014518032.html,/Periodical_ydysg201201028.aspx

2020年稀土永磁材料企业三年发展战略规划

2020年稀土永磁材料企业三年发展战略规划 2020年9月

目录 一、公司总体发展战略 (3) 二、公司具体发展目标 (3) 1、创建全球一流的稀土永磁材料技术研发平台 (3) 2、打造行业领先的自动化、信息化的智能制造平台 (4) 3、拓展全球化市场营销平台 (4) 三、实现发展目标拟采取的措施 (5) 1、加强研发力度,推进产品性能、工艺技术及装备水平全面提升 (5) (1)加大基础材料研发投入 (5) (2)关键设备持续研发与工艺创新并举 (5) (3)开发更加环保高效的表面防护技术 (6) 2、通过推广制造自动化、信息化、智能化提升精益生产管理水平 (6) (1)加快自动化工厂建设 (6) (2)完善数据信息平台 (6) (3)实施在线生产管控 (6) 3、继续加强公司质量管控和品牌推广,拓展营销网络的全球化布局 (7) (1)加强公司质量管控和品牌推广 (7) (2)继续完善市场营销体系建设 (7) 4、加强人才体系建设,大力培养和引进高端人才 (7) (1)继续加强和完善公司内部人才培养机制 (8) (2)加快外部优秀人才引进 (8) (3)制定和实施有利于人才成长的激励政策 (8)

一、公司总体发展战略 公司以“清洁世界,磁引未来”为使命;以“做永磁行业创新引领者”为愿景;倡导“安全、奋斗、创新、诚信、责任”核心价值观。 公司以自主技术研发创新为核心,依托包头稀土全产业链,深耕高性能稀土永磁材料领域,巩固质量及品牌优势,弘扬工匠精神,打造“百年天和”,努力发展成为稀土永磁材料行业全球领导者。 二、公司具体发展目标 公司秉承“精确定位、发挥优势、夯实基础、稳固发展”的方针,持续立体创新、诚信经营、艰苦创业、团结拼搏,致力于创建“技术研发平台”、打造“智能制造平台”、拓展“全球市场营销平台”。 1、创建全球一流的稀土永磁材料技术研发平台 稀土永磁材料作为战略新兴产业基础性功能材料,技术研发尤为重要,自发明以来其性能伴随着行业技术水平的提高不断提升。公司具有较强的自主研发能力,公司的研发中心被内蒙古自治区授予“钕铁硼永磁材料工程技术研究中心”及“企业技术中心”,结合自主研发的中试生产线,能够对稀土永磁材料的基础特性、晶相、工艺特点、耐温防腐以及应用特性等方面进行研究。未来,公司将持续加大研发投入,充分发挥自主核心技术工艺研发、关键生产设备研制等方面的优势;进一步扩大科研合作,通过多种方式引进世界级顶尖的磁学专

磁性材料综述

铁氧体磁芯与粉末磁芯综述

摘要 软磁材料在工业中的应用始于19世纪末。随着电力工及电讯技术的兴起,开始使用低碳钢制造电机和变压器,在电话线路中的电感线圈的磁芯中使用了细小的铁粉、氧化铁、细铁丝等。到20世纪初,研制出了硅钢片代替低碳钢,提高了变压器的效率,降低了损耗。到20年代,无线电技术的兴起,促进了高导磁材料的发展,出现了坡莫合金及坡莫合金磁粉芯等。 从40年代到60年代,是科学技术飞速发展的时期,雷达、电视广播、集成电路的发明等,对软磁材料的要求也更高,生产出了软磁合金薄带及软磁铁氧体材料。进入70年代,随着电讯、自动控制、计算机等行业的发展,研制出了磁头用软磁合金,除了传统的晶态软磁合金外,又兴起了另一类材料—非晶态软磁合金。

目录 一、组成与分类 (1) 二、材料特性 (3) 三、磁芯材料的基本参数 (4) 四、主要性能指标 (7) 五、磁芯的形状 (8) 六、主要应用 (9)

一、组成与分类[1] 1.铁氧体磁芯 铁氧体是一种暗灰色或者黑色的陶瓷材料。铁氧体的化合物是MeFe2O4,这里Me代表一种或几种二价的金属元素,例如,锰、锌、镍、钴、铜、铁或镁。这些化合物在特定的温度范围内表现出良好的磁性能,但是如果超出某个温度值,磁性将失去,这个温度称为居里温度(T c)。铁氧体材料非常容易磁化,并且具有相当高的电阻率。这些材料不需要像硅钢片那样分层隔离就能用在高频的应用场合。 高频铁氧体磁性材料主要可分为两大类:锰锌(MnZn)铁氧体材料和镍锌(NiZn)铁氧体材料。比较而言,NiZn材料的电阻率较高,一般认为在高频应用场合下具有较低的涡流损耗。但是最近的研究表明,如果颗粒的尺寸足够小而且均匀,在几兆赫兹范围内MnZn 材料显示出较NiZn材料更为优越的特性,例如,TDK公司的H7F 材料以及MAGNETICS公司的K材料就是采用这种技术,适用于兆赫兹工作频率下工作的新型铁氧体材料。磁芯形状种类丰富,有E、I、U、EC、ETD形、方形(RM、EP、PQ)、罐形(PC、RS、DS)及圆形等。 1

稀土永磁材料及其应用发展现状

稀土永磁材料及其应用发展现状 稀土永磁钕铁硼材料最重要的应用领域之一是支撑现代电子信息产业的重要基础材料,与人们的生活息息相关,小到手表、照相机、录音机、CD机、VCD机、计算机硬盘、光盘驱动器,大到汽车、发电机、医疗仪器等,永磁材料无所不在。正是由于广泛应用了稀土永磁材料,众多电子产品的尺寸进一步缩小,性能大幅度改善。 一、全球稀土永磁产业近况 近年来,由于发达国家生产成本高,而国际市场磁体价格却不断下降,在这些国家继续生产磁体已难以为继,因此以美、欧为代表的西方发达国家磁材企业纷纷进行了产业调整,使钕铁硼产业的国际格局发生了重大变化。 烧结磁体方面,2000年美国的Ugimag公司被卖给了麦格昆磁,2003年麦格昆磁进行了产业调整将其关掉,将磁材生产转移到中国来。21世纪初,英国的摩根集团收购了德国西门子下属的真空冶炼公司(Vacuumschmelze或VAC)和美国的坩埚公司,但是在2003年6月份,摩根集团关闭了美国的坩埚公司(Crucible)。2005年摩根集团把德国真空冶炼公司卖给了美国的JPMorgan。目前,美国的稀土产业已从昔日的辉煌到今日的全部没落。在欧洲只有两家烧结钕铁硼的生产厂家,一家是在德国的真空冶炼公司,一个是在芬兰的Neorem 公司。2003年6月,日立金属购买了住友金属下住友特金的股份,成为全球最大的钕铁硼生产企业,并于2004年4月1日更名为NEOMAX,并停止了日立金属在美国的磁体生产。2007年4月1日NEMOMAX在日本退市,成为日立金属的全资子公司。日本还有两家企业,一家是TDK,这是一家老牌磁性材料生产企业;还有一家就是信越化工。NEMOAX、TDK和Neorem在中国已建立磁体后加工基地。德国VAC与中科三环合作,2005年在北京成立了烧结钕铁硼合资企业。除了欧洲和日本两地外,其余的烧结钕铁硼磁体生产企业全部集中在中国。 自1990年以来,全球烧结钕铁硼磁体产量增长迅猛,年均增长率保持在25%左右。进入二十一世纪,尽管日、美、欧等发达国家稀土永磁产业的发展止步不前,但由于中国稀土永磁产业的超常发展,使得全球稀土永磁产业依然保持了迅猛增长的态势。2005年,全球烧结钕铁硼产量为42300吨,中国的产量为33000吨,占世界总产量的78%,保持了强劲的增长态势。日本烧结钕铁硼磁体原地踏步,处于维持状态。美国烧结钕铁硼磁体2004年后全部消亡。 粘结磁体方面,全球的生产能力大部分集中在日本企业。有代表性的两家企业,一家是精工爱普生,他们的磁材生产已经全部转到上海爱普生磁性器件有限公司;另一家是日本大同公司。在计算机硬盘驱动器(HDD)的主轴电机应用方面,大同和上海爱普生两家企业就占据了整个市场份额的90%以上。2002年底,中科三环参股了上海爱普生磁性器件有限公司,2004年3月进一步扩大股权,目前中科三环已持有该公司70%的股权,成为其第一大股东。安泰科技2003年3月收购了台湾的海恩公司,其深圳的海恩美格也是一个科技水平很高的粘结磁体工厂,加上国内成长起来的成都银河,粘结磁体企业除日本的大同外,其余基本在中国。 全球粘结钕铁硼磁体产量年均增长率为18%,基本保持了一个稳定增长的态势。2005年,虽然全球粘结钕铁硼磁体产量比2004年略有下降(1%左右),但中国的粘结钕铁硼产量保持了11%的增长。中国粘结钕铁硼磁体产量已超过全球产量的40%,带动了全球产业的发

稀土永磁电机发展综述

稀土永磁电机发展综述 发布日期:2012-10-12 浏览次数:691 核心提示:1引言电机是以磁场为媒介进行机械能和电能相互转换的电磁装置。为在电机内建立进行机电能量转换所必需的气隙磁场,可以有两种方法 1 引言 电机是以磁场为媒介进行机械能和电能相互转换的电磁装置。为在电机内建立进行机电能量转换所必需的气隙磁场,可以有两种方法。一种是在电机绕组内通电流产生,既需要有专门的绕组和相应的装置,又需要不断供给能量以维持电流流动,例如普通的直流电机和同步电机;另一种是由永磁体来产生磁场,既可简化电机结构,又可节约能量,这就是永磁电机。 2 永磁电机的发展概况 永磁电机的发展同永磁材料的发展密切相关。我国是世界上最早发现永磁材料的磁特性并把它应用于实践的国家,两千多年前,我国利用永磁材料的磁特性制成了指南针,在航海、军事等领域发挥了巨大的作用,成为我国古代四大发明之一。 19世纪20年代出现的世界上第一台电机就是由永磁体产生励磁磁场的永磁电机。但当时所用的永磁材料是天然磁铁矿石(Fe3O4),磁能密度很低,用它制成的电机体积庞大,不久被电励磁电机所取代。 随着各种电机迅速发展的需要和电流充磁器的发明,人们对永磁材料的机理、构成和制造技术进行了深入研究,相继发现了碳钢、钨钢(最大磁能积约2.7 kJ/m3)、钴钢(最大磁能积约7.2 kJ/m3)等多种永磁材料。特别是20世纪30年代出现的铝镍钴永磁(最大磁能积可达85 kJ/m3)和50年代出现的铁氧体永磁(最大磁能积现可达40 kJ/m3),磁性能有了很大提高,各种微型和小型电机又纷纷使用永磁体励磁。永磁电机的功率小至数毫瓦,大至几十千瓦,在军事、工农业生产和日常生活中得到广泛应用,产量急剧增加。相应地,这段时期在永磁电机的设计理论、计算方法、充磁和制造技术等方面也都取得了突破性进展,形成了以永磁体工作图图解法为代表的一套分析研究方法。 但是,铝镍钴永磁的矫顽力偏低(36~160 kA/m),铁氧体永磁的剩磁密度不高(0. 2~0.44 T),限制了它们在电机中的应用范围。一直到20世纪60年代和80年代,稀土钴永磁和钕铁硼永磁(二者统称稀土永磁)相继问世,它们的高剩磁密度、高矫顽力、高磁能积和线性退磁曲线的优异磁性能特别适合于制造电机,从而使永磁电机的发展进入一个新的历史时期。 稀土永磁材料的发展大致分为三个阶段。1967年美国K.J.Strnat教授发现的钐钴永磁为第一代稀土永磁,其化学式可表示成RCo5,简称1:5型稀土永磁,产品的最大磁能积超过199 kJ/m3(25MG·Oe)。1973年又出现了磁性能更好的第二代稀土永磁,其化学式为R2Co17,,简称2:17型稀土永磁,产品的最大磁能积达到258.6 kJ/m3(32. 5MG·Oe)。1983年日本住友特种金属公司和美国通用汽车公司各自研制成功钕铁硼(NdFeB)永磁,称为第三代稀土永磁。由于钕铁硼永磁的磁性能高于其他永磁材料,价格又低于稀土钴永磁材料,在稀土矿中钕的含量是钐的十几倍,而且不含战略物质——钴,因而引起了国内外磁学界和电机界的极大关注,纷纷投入大量人力物力进行研究开发。目前正在研究新的更高性能的永磁材料,如钐铁氮永磁、纳米复合稀土永磁等,希望能有新的更大的突破。 与此相对应,稀土永磁电机的研究和开发大致可以分成三个阶段。

稀土发光材料的研究进展

前言 当稀土元素被用作发光材料的基质成分,或是被用作激活剂、共激活剂、敏化剂或掺杂剂时,这类材料一般统称为稀土发光材料或稀土荧光材料。我国丰富的稀土资源,约占世界已探明储量的80%以上。稀土元素具有许多独特的物理化学性质,被广泛地用于各个领域,成为发展尖端技术不可缺少的特殊材料。稀土离子由于独特的电子层结构使得稀土离子掺杂的发光材料具有其它发光材料所不具有的许多优异性能,可以说稀土发光材料的研究开发相对于传统发光材料来说犹如一场革命。稀土无机发光材料方面,稀土发光材料与传统的发光材料相比具有明显的优势。就长余辉发光材料来说,稀土长余辉发光材料的发光亮度是传统发光材料的几十倍,余辉时间高达几千分钟。由于稀土发光材料所具有如此优异的性能使得发光材料的研究主要是围绕稀土发光材料而进行的。 由于稀土元素具有外层电子结构相同、内层4f 电子能级相近的电子层构型,含稀土的化合物表现出许多独特的理化性质,因而在光、电、磁领域得到广泛的应用,被誉为新材料的宝库。在稀土功能材料的发展中,尤其以稀土发光材料格外引人注目。稀土因其特殊的电子层结构,而具有一般元素所无法比拟的光谱性质,稀土发光几乎覆盖了整个固体发光的范畴,只要谈到发光,几乎离不开稀土。稀土元素的原子具有未充满的受到外界屏蔽的4f5d 电子组态,因此有丰富的电子能级和长寿命激发态,能级跃迁通道多达20 余万个,可以产生多种多样的辐射吸收和发射,构成广泛的发光和激光材料。随着稀土分离、提纯技术的进步,以及相关技术的促进,稀土发光材料的研究和应用将得到显著的发展。进入二十一世纪后,随着一些高新技术的发展和兴起,稀土发光材料科学和技术又步入一个新的活跃期,它为今后占主导地位的平板显示、第四代新照明光源、现代医疗电子设备、更先进的光纤通信等高新技术的可持续发展和源头创新提供可靠的依据和保证。所以,充分综合利用我国稀土资源库,发展稀土发光材料是将我国稀土资源优势转化为经济和技术优势的具体的重要途径。 纳米稀土发光材料是指基质粒子尺寸在1~100 纳米的发光材料。纳米粒子本身具有量子尺寸效应、小尺寸效应、表面效应和宏观量子隧道效应等。受这些结构特性的影响,纳米稀土发光材料表现出许多奇特的物理和化学和和特性,从

稀土发光材料的特点及应用介绍

稀土发光材料的特点及应用介绍 专业:有机化学姓名:杨娟学号:201002121343 发光是物体把吸收的能量转化为光辐射的过程。当物质受到诸如光照、外加电场或电子束轰击等的激发后,吸收外界能量,处于激发状态,它在跃迁回到基态的过程中,吸收的能量会通过光或热的形式释放出来。如果这部分能量是以光的电磁波形式辐射出来,即为发光。 所谓的稀土元素,是指镧系元素加上同属IIIB族的钪Sc和钇Y,共17种元素。这些元素具有电子结构相同,而内层4f电子能级相近的电子层构型、电价高、半径大、极化力强、化学性质活泼及能水解等性质,故其应用十分广泛。 1稀土发光材料的发光特性 稀土是一个巨大的发光材料宝库,稀土元素无论被用作发光(荧光)材料的基质成分,还是被用作激活剂,共激活剂,敏化剂或掺杂剂,所制成的发光材料,一般统称为稀土发光材料或稀土荧光材料。 物质发光现象大致分为两类:一类是物质受热,产生热辐射而发光,另一类是物体受激发吸收能量而跃迁至激发态(非稳定态)在返回到基态的过程中,以光的形式放出能量。 因为稀土元素原子的电子构型中存在4f轨道,当4f电子从高的能级以辐射驰骋的方式跃迁至低能级时就发出不同波长的光。稀土元素原子具有丰富的电子能级,为多种能级跃迁创造了条件,从而获得多种发光性能。 稀土发光材料优点是发光谱带窄,色纯度高色,彩鲜艳;吸收激发能量的能力强,转换效率高;发射光谱范围宽,从紫外到红外;荧光寿命从纳秒跨越到毫秒6个数量级,磷光最长达十多个小时;材料的物理化学性能稳定,能承受大功率的电子束,高能射线和强紫外光的作用等。今天,稀土发光材料已广泛应用于显示显像,新光源,X射线增感屏,核物理探测等领域,并向其它高技术领域扩展。 2稀土发光材料的合成方法 稀土发光材料的合成方法包括水热合成法、高温固相合成法、微波合成法、溶胶——凝胶法、微波辐射法、燃烧合成法以及共沉淀法。 2. 1 水热合成法

相关主题
文本预览
相关文档 最新文档