当前位置:文档之家› 软磁材料

软磁材料

软磁材料
软磁材料

软磁材料基本知识

一、软磁材料的发展及种类

1.软磁材料的发展

软磁材料在工业中的应用始于十九世纪末。随着电力工及电讯技术的兴起,开始使用低碳钢制造电机和变压器,在电话线路中的电感线圈的磁芯中使用了细小的铁粉、氧化铁、细铁丝等。到二十世纪初,研制出了硅钢片代替低碳钢,提高了变压器的效率,降低了损耗。直至现在硅钢片在电力工业用软磁材料中仍居首位。到二十年代,无线电技术的兴起,促进了高导磁材料的发展,出现了坡莫合金及坡莫合金磁粉芯等。从四十年代到六十年代,是科学技术飞速发展的时期,雷达、电视广播、集成电路的发明等,对软磁材料的要求也更高,生产出了软磁合金薄带及软磁铁氧体材料。进入七十年代,随着电讯、自动控制、计算机等行业的发展,研制出了磁头用软磁合金,除了传统的晶态软磁合金外,又兴起了另一类材料—非晶态软磁合金。

2.常用软磁磁芯的种类

铁、钴、镍三种铁磁性元素是构成磁性材料的基本组元。

按(主要成分, 磁性特点, 结构特点) 制品形态分类:

1). 合金类:硅钢片、坡莫合金、非晶及纳米晶合金

2). 粉芯类:磁粉芯,包括:铁粉芯、铁硅铝粉芯、高磁通量粉芯(High Flux)、坡莫合金粉芯(MPP)

3). 铁氧体类:算是特殊的粉芯类, 包括:锰锌系、镍锌系

常用软磁材料的分类及其特性(Soft Magnetic Materials)

二、软磁材料的分类介绍

(一). 合金类

1.硅钢

硅钢是一种合金,在纯铁中加入少量的硅(一般在 4.5%以下)形成的铁硅系合金称为硅钢,该类铁芯具有最高的饱和磁感应强度值为20000 高斯;由于它们具有较好的磁电性能,又易于大批生产,价格便宜,机械应力影响小等优点,在电力电子行业中获得极为广泛的应用,如电力变压器、配电变压器、电流互感器等铁芯。是软磁材料中产量和使用量最大的材料。也是电源变压器用磁性材料中用量最大的材料。特别是在低频、大功率下最为适用。常用的有冷轧硅钢薄板DG3、冷轧无取向电工钢带DW、冷轧取向电工钢带DQ,适用于各类电子系统、家用电器中的中、小功率低频变压器和扼流圈、电抗器、电感器铁芯,这类合金韧性好,可以冲片、切割等加工,铁芯有叠片式及卷绕式。但高频下损耗急剧增加,一般使用频率不超过400Hz。从应用角度看,对硅钢的选择要考虑两方面的因素:磁性和成本。对小型电机、电抗器和继电器,可选纯铁或低硅钢片;对于大型电机,可选高硅热轧硅钢片、单取向或无取向冷轧硅钢片;对变压器常选用单取向冷轧硅钢片。在工频下使用时,常用带材的厚度为0.2~0.35 毫米;在400Hz 下使用时,常选0.1 毫米厚度为宜。厚度越薄,价格越高。

2.坡莫合金

坡莫合金常指铁镍系合金,镍含量在30~90%范围内。是应用非常广泛的软磁合金。通过适 当的工艺,可以有效地控制磁性能,比如超过十万的初始磁导率、超过一百万的最大磁导率、低到千分之二奥斯特的矫顽力、接近1 或接近零的矩形系数,具有面心立方晶体结构的坡莫合金具有很好的塑性,可以加工成 1 微米的超薄带及各种使用形态。常用的合金有1J50、1J79、1J85 等。1J50 的饱和磁感应强度比硅钢稍低一些,但磁导率比硅钢高几十倍,铁损也比硅钢低2~3 倍。做成较高频率(400~8000Hz)的变压器,空载电流小,适合制作100 瓦以下小型较高频率变压器。1J79 具有好的综合性能,适用于高频低电压变压器,漏电保护开关铁芯、共模电感铁芯及电流互感器铁芯。1J85 的初始磁导率可达十万以上,适合于作弱信号的低频或高频输入输出变压器、共模电感及高精度电流互感器等。

3.非晶合金(Amorphous alloys)

硅钢和坡莫合金软磁材料都是晶态材料,原子在三维空间做规则排列,形成周期性的点阵 结构,存在着晶粒、晶界、位错、间隙原子、磁晶各向异性等缺陷,对软磁性能不利。从磁性物理学上来说,原子不规则排列、不存在周期性和晶粒晶界的非晶态结构对获得优异软磁性能是十分理想的。非晶态金属与合金是70 年代问世的一个新型材料领域。它的制备技术完全不同于传统的方法,而是采用了冷却速度大约为每秒一百万度的超急冷凝固技术,从钢液到薄带成品一次成型,比一般冷轧金属薄带制造工艺减少了许多中间工序,这种新工艺被人们称之为对传统冶金工艺的一项革命。由于超急冷凝固,合金凝固时原子来不及有序排列结晶,得到的固态合金是长程无序结构,没有晶态合金的晶粒、晶界存在,称之为非晶合金,被称为是冶金材料学的一项革命。这种非晶合金具有许多独特的性能,如优异的磁性、耐蚀性、耐磨性、高的强度、硬度和韧性,高的电阻率和机电耦合性能等。

由于它的性能优异、工艺简单,从80 年代开始成为国内外材料科学界的研究开发重点。目前美、日、德国已具有完善的生产规模,并且大量的非晶合金产品逐渐取代硅钢和坡莫合金及铁氧体涌向市场。

常用的非晶合金的种类有:铁基、铁镍基、钴基非晶合金以及铁基纳米晶合金。

目前,非晶软磁合金所达到的最好单项性能水平为:

初始磁导率μ0 = 14 × 104 钴基非晶

最大磁导率μm = 220 × 104 钴基非晶

矫顽力Hc = 0.001 Oe 钴基非晶

矩形比Br/Bs = 0.995 钴基非晶

饱和磁化强度4πMs = 18300 Gs 铁基非晶

电阻率ρ = 270 微欧厘米

常用的非晶合金的种类有:铁基、铁镍基、钴基非晶合金以及铁基纳米晶合金。其国家牌号及性能特点见表及图所示,为便于对比,也列出晶态合金硅钢片、坡莫合金1J79 及铁氧体的相应性能。这几类材料各有不同的特点,在不同的方面得到应用。

牌号基本成分和特征

1K101 Fe-Si-B 系快淬软磁铁基合金

1K102 Fe-Si-B-C 系快淬软磁铁基合金

1K103 Fe-Si-B-Ni 系快淬软磁铁基合金

1K104 Fe-Si-B-Ni Mo 系快淬软磁铁基合金

1K105 Fe-Si-B-Cr(及其他元素)系快淬软磁铁基合金

1K106 高频低损耗Fe-Si-B 系快淬软磁铁基合金

1K107 高频低损耗Fe-Nb-Cu-Si-B 系快淬软磁铁基纳米晶合金

1K201 高脉冲磁导率快淬软磁钴基合金

1K202 高剩磁比快淬软磁钴基合金

1K203 高磁感低损耗快淬软磁钴基合金

1K204 高频低损耗快淬软磁钴基合金

1K205 高起始磁导率快淬软磁钴基合金

1K206 淬态高磁导率软磁钴基合金

1). 铁基非晶合金(Fe-based amorphous alloys)

铁基非晶合金是由80%Fe及20%Si,B类金属元素所构成,它具有高饱和磁感应强度(1.54T),铁基非晶合金与硅钢的损耗比较,磁导率、激磁电流和铁损等各方面都优于硅钢片的特点,特别是铁损低(为取向硅钢片的1/3-1/5),代替硅钢做配电变压器可节能60-70%。铁基非晶合金的带材厚度为0.03 毫米左右,广泛应用于配电变压器、大功率开关电源、脉冲变压器、磁放大器、中频变压器及逆变器铁芯, 适合于10kHz 以下频率使用。

2).铁镍基非晶合金(Fe-Ni based-amorphous alloy)

铁镍基非晶合金是由40%Ni、40%Fe 及20%Si,B类金属元素所构成,它具有中等饱和磁感应强度 〔0.8T〕、较高的初始磁导率和很高的最大磁导率以及高的机械强度和优良的韧性。在中、低频率下具有低的铁损。空气中热处理不发生氧化,经磁场退火后可得到很好的矩形回线。价格比1J79 便宜30-50%。铁镍基非晶合金的应用范围与中镍坡莫合金相对应, 但铁损和高的机械强度远比晶态合金优越;广泛用于漏电开关、精密电流互感器铁芯、磁屏蔽等。铁镍基非晶合金是国内开发最早,也是目前国内非晶合金中应用量最大的非晶品种,年产量近200 吨左右。空气中热处理不发生氧化铁镍基非晶合金(1K503)获得国家发明专利和美国专利权。

3).钴基非晶合金(Co based-amorphous alloy)

钴基非晶合金是由80%Co及20%Si,B类金属元素所构成,在所有的非晶合金中具有最高的导磁率,同时具有较低的饱和磁感应强度、低矫顽力、低损耗、优异的耐磨性和耐蚀性,良好的温度稳定性和时效稳定性,耐冲击振动。

一般用在要求严格的军工电源中的变压器、电感等,替代坡莫合金和铁氧体,但价格高。

4.微晶(纳米晶)合金(Nanocrystalline alloy)

属于特殊的非晶合金,铁基纳米晶合金是由铁元素为主,加入少量的Nb、Cu、Si、B 元素所构成的合金经快速凝固工艺所形成的一种非晶态材料,这种非晶态材料经热处理后可获得直径为10-20 纳米的微晶,弥散分布在非晶态的基体上,被称为微晶、纳米晶材料或纳米晶材料. 纳米晶材料具有优异的综合磁性能: 高饱和磁感(1.2T)、高初始磁导率(8 万)、低Hc(0.32A/M), 高磁感下的高频损耗低(P0.5T/20kHz=30 W/kg),电阻率为80 微欧厘米,比坡莫合金(50-60 微欧厘米)高, 经纵向或横向磁场处理,可得到高Br(0.9)或低Br 值(1000Gs). 是目前市场上综合性能最好的材料; 适用频率范围:50Hz-100kHz,最佳频率范围:20kHz-50kHz. 广泛应用于大功率开关电源、逆变电源、磁放大器、高频变压器、高频变换器、高频扼流圈铁芯、电流互感器铁芯、漏电保护开关、共模电感铁芯.

有关非晶合金与微晶合金的说明:

C1 :非晶合金

物质就其原子排列方式来说,可以划分为晶体和非晶体两类。有些物质里面的原子排列是整齐有序的,就象阅兵式上的士兵,这叫做晶体,比如食盐、钻石、普通的钢铁就是这样。也有些物质的原子排列是混乱的,就象一堆钢球的混乱堆积,这叫做非晶体,比如液体、气体、玻璃、塑料等。对于金属材料来说,通常情况下,金属及合金在从液体凝固成固体(例如炼钢后的钢水凝固成钢锭)时,原子总是从液体的混乱排列转变成整齐的排列,即成为晶体。因为只有这样,其结构才最稳定。但是,如果金属或合金的凝固速度非常快(例如用每秒高达一百万度的冷却速率将铁-硼合金熔体凝固),原子来不及整齐排列便被冻结住了,最终的原子排列方式类似于液体,是混乱的,这就是非晶合金。因为非晶合金原子的混乱排列情况类似于玻璃,所以又称为金属玻璃。在下面的示意图中,左图为晶体的原子排列,右图为非晶体内部原子排列。

什么样的物质能够制造成非晶呢?从理论上说,任何物质主要它的液体冷却足够快,原子来不及整齐排列就凝固,那么原子在液态时的混乱排列被迅速冻结,就可以形成非晶。但是,不同的物质形成非晶所需要的冷却速度大不相同。例如,普通的玻璃只要慢慢冷却下来,得到的玻璃就是非晶态的。而单一的金属则需要每秒高达一亿度以上的冷却速度才能形成非晶态。由于目前工艺水平的限制,实际生产中难以达到如此高的冷却速度,也就是说,普通的单一的金属难以从生产上制成非晶。

为了获得非晶态的金属,一般将金属与其它物质混合。当原子尺寸和性质不同的几种物质搭配混合后,就形成了合金。这些合金具有两个重要性质: A 、合金的成分一般在冶金学上的所谓 “ 共晶 ” 点附近,它们的熔点远低于纯金属,例如 FeSiB 合金的熔点一般为 1200 度以下,而纯铁的熔点为 1538 度; B 、由于原子的种类多了,合金在液体时它们的原子更加难以移动,在冷却时更加难以整齐排列,也就是说更加容易被 “ 冻结 ” 成非晶。有了上面的两个重要条件,合金才可能比较容易地形成非晶。例如,铁和硼的合金只需要每秒一百万度的冷却速度就可以形成非晶。实际上,目前所有的实用非晶合金都是两种或更多种元素组成的合金,例如 Fe-Si-B , FeNiPB , CoZr , ZrTiCuNi 等。 迄今为止,国内外非晶合金开发最多的是作为软磁材料的一类。它们在化学成分上的一个共同点是:由两类元素组成:一类是铁磁性元素(铁、钴、镍或者他们的组合),它们用来产生磁性;另一类是硅、硼、碳等,它们称为类金属,也叫做玻璃化元素,有了它们,合金的熔点比纯金属降低了很多,才容易形成非晶。

C2 :纳米晶合金

在上面所说的非晶合金中,原子的排列是宏观上混乱无序的。正是由于这种特殊结构,使得非晶合金具有一些独特的性质,其中优良的磁性能就是典型的例子。所以,以前的非晶合金在使用时,必须保证它们处于非晶态。下面将提到,一般的非晶合金存在着发生晶化的可能性,一旦在晶化温度以上退火,材料内部的原子排列就变成了有序的,也就是说成为晶体,而且晶粒组织很粗大,这时非晶合金原有的磁性能就会丧失。因此,一般的非晶合金都要在非晶状态下使用。 但是,自从八十年代末,日本的吉泽克仁等发现,含有 Cu 和 Nb 的铁基非晶合金在晶化温度以上退火时,会形成非常细小的晶粒组织,晶粒尺寸仅有 10 - 20 纳米。这时材料磁性能不仅不恶化,反而非常优良。这种非晶合金经过特殊的晶化退火而形成的晶态材料称为纳米晶合金(以前也曾称为超微晶合金)。铁基纳米晶合金的磁性能几乎能够和非晶合金中最好的钴基非晶合金相比,但是却不含有昂贵的钴,所以被广泛应用于高频变压器铁芯,替代铁氧体和坡莫合金等。

普通非晶合金晶化后的组织 含 CuNb 的铁基非晶合金化后的纳米晶组织

(二)粉芯类

磁粉芯是由铁磁性粉粒与绝缘介质混合压制而成的一种软磁材料。由于铁磁性颗粒很小(高频下使用的为0.5~5 微米),又被非磁性电绝缘膜物质隔开,因此,一方面可以隔绝涡流,材料适用于较高频率;另一方面由于颗粒之间的间隙效应,导致材料具有低导磁率及恒导磁特性;又由于颗粒尺寸小,基本上不发生集肤现象,磁导率随频率的变化也就较为稳定。主要用于高频电感。磁粉芯的磁电性能主要取决于粉粒材料的导磁率、粉粒的大小和形状、它们的填充系数、绝缘介质的含量、成型压力及热处理工艺等。

常用的磁粉芯有铁粉芯、坡莫合金粉芯及铁硅铝粉芯三种。

磁芯的有效磁导率μe 及电感的计算公式为: μe = DL/4N2S × 109 其中: D 为磁芯平均直径(cm),L 为电感量(享), N 为绕线匝数,S 为磁芯有效截面积(cm2)。

1). 铁粉芯

常用铁粉芯是由碳基铁磁粉及树脂碳基铁磁粉构成。在粉芯中价格最低。饱和磁感应强度

值在1.4T 左右;磁导率范围从22~100; 初始磁导率μi 随频率的变化稳定性好;直流电流叠加性能好;但高频下损耗高。铁粉芯初始磁导率随直流磁场强度、频变率的化而变化。

2). 铁硅铝粉芯(Kool Mμ Cores)

铁硅铝粉芯由9%Al, 5%Si, 85%Fe 粉构成。主要是替代铁粉芯,损耗比铁粉芯低80%,可在8KHz 以上频率下使用;饱和磁感在1.05T 左右;导磁率从26~125;磁致伸缩系数接近零,在不同的频率下工作时无噪声产生;比MPP 有更高的DC 偏压能力;具有最佳的性能价格比。主要应用于交流电感、输出电感、线路滤波器、功率因素校正电路等。有时也替代有气隙铁氧体作变压器铁芯使用。

3). 高磁通量粉芯(High Flux)。

高磁通粉芯HF 是由50%Ni, 50%Fe 粉构成。主要特点是: 饱和磁感应强度值在15000Gs 左右; 磁导率范围从14~160; 在粉末磁芯中具有最高的磁感应强度,最高的直流偏压能力;磁芯体积小。主要应用于线路滤波器、交流电感、输出电感、功率因素校正电路等, 在DC 电路中常用,高DC 偏压、高直流电和低交流电上用得多。价格低于MPP。

(4). 坡莫合金粉芯

坡莫合金粉芯主要有钼坡莫合金粉芯(MPP)

MPP 是由81%Ni, 2%Mo, 及Fe 粉构成。主要特点是: 饱和磁感应强度值在7500Gs 左右; 磁导率范围大,从14~550; 在粉末磁芯中具有最低的损耗;温度稳定性极佳,广泛用于太空设备、露天设备等;磁致伸缩系数接近零,在不同的频率下工作时无噪声产生。主要应用于300KHz 以下的高品质因素Q 滤波器、感应负载线圈、谐振电路、在对温度稳定性要求高的LC 电路上常用、输出电感、功率因素补偿电路等, 在AC 电路中常用, 粉芯中价格最贵。

磁粉芯结构示意图

(三)铁氧体

20世纪40年代二次世界大战中发明了雷达,要求使用能在中高频和高频领域中工作的软磁材料(指矫顽力小,容易磁化的磁性材料),从而发明了锰锌软磁铁氧体和镍锌软磁铁氧体。由于软磁铁氧体在高频下具有高磁导率、高电阻率、低损耗等特点,并且具有批量生产容易、性能稳定、机械加工性能高,可利用模具制成各种形状的磁心,特别是成本低等特点,而迅速推广应用于通信、传感、音像设备、开关电源和磁头工业等方面。

从20世纪40年代到现在,随着技术的进步,软磁铁氧体也在不断地发展。其主要的方向一是改变软磁铁氧体的成分。如今,锰锌铁氧体已派生出锰镁锌铁氧体和锰铜锌铁氧体,镍锌铁氧体已派生出镍铜锌铁氧体。另外除了基本的氧化物外,还添加CaO、SiO2、Nb2O5、

ZrO2、Ta2O5等氧化物,以提高铁氧体的性

能;一是改变生产工艺,使粉体细化,从而

减少损失和提高工作频率。经过几十多年的

发展完善,如今软磁氧体材料已成为一类应

用广泛、种类繁多的功能材料。

目前,工业生产的软磁铁氧体材料从成

分上分主要有:Mn-Zn、Ni-Zn系等尖晶

石和平面型六角晶系两大类(也有分为三类

的)。从应用角度讲,它又可分为高磁导率

(μi)、高频大功率(又称功率铁氧体)

和抗电磁干扰的(EMI)铁氧体等几类。

2.8.1 软磁铁氧体材料的种类及性能特点

2.8.1.1 锰锌系软磁铁氧体材料

锰锌系软磁铁氧体主要是具有尖晶石结构的mMnFe2O4·nZnFe2O4与少量Fe3O4组成的单相固溶体,用锰锌系铁氧体磁性材料做成的电感磁芯及磁性器件,应用频率从数百赫兹到几千兆赫兹,是最重要的软磁铁氧体材料,其产量占了软磁铁氧体磁性材料总产量的60%以上,因此,锰锌铁氧体的发展更为引人注意。主要应用器件见表2-36。

锰锌铁氧体材料主要分为高频低功耗铁氧体(又称功率铁氧体)和高磁导率即高μi铁氧体两类。

(1) 功率铁氧体

功率铁氧体的主要特征是在高频(几百千赫)高磁感应(几千高斯)的条件下,仍旧保持很低的功耗,而且其功耗随磁芯的温升而下降,在80℃左右达到最低点,从而可以形成良性循环。功率铁氧体的主要用途是以各种开关电源变压器和彩电回扫变压器为代表的功率型电感器件,用途十分广泛,是目前产量最大的软磁铁氧体。

70年代初,日本、欧洲厂商为适应开关电源市场的需要,开发出第一代功率铁氧体,典型牌号为TDK的H35、FDK 的H45及飞利浦的3C85。这类材料由于功耗较大,且使用时温升显著,故一般只用于20kHz左右的民用开关电源。80年代初,经改进的第二代功率铁氧体被开发出来,其最大特点是呈现负温度系数功耗(20~80℃,随温度升高,功耗呈下降趋势),能有效防止温升造成的电磁性能下降,且综合指标较好,代表性的产品有TDK的PC30、FDK的N49、西门子的N27。 80年代中后期,为适应高频开关电源的发展,国外又开发出高频功耗大幅降低、实用频率一般可达100~500kHz的第三代材料,如TDK的PC40、FDK的H63B、西门子的N67、飞利浦的3F3,这类材料特别适用于频率为数百KHz的开关电源,现在被广泛应用于工业类的开关电源中。进入90年代后,由于信息技术对器件小型化、片式化的要求,第四代功率铁氧体又开发成功,向着高频、低耗方向发展,代表牌号有TDK的PC50、日立的SB-1M、西门子

我国新发布的“软磁铁氧体材料分类”行业标准,把功率铁氧体材料分为PW1~PW5五类,其适用工作频率也逐步提高。如适用频率为15~100kHz的PW1材料;适用频率为25~200kHz的PW2材料;适用频率为100~300kHz的PW3材料;适用频率为300~1MkHz的PW4材料;适用频率为1~3MHz的PW5材料。目前,国内的企业已能生产相当于PW1~PW3材料,PW4材料只有部分企业小批量试生产,PW5材料有待于进一步开发和生产。

日本TDK的功率铁氧体材料无论是质量还是产量均处于国际领先地位。据说TDK公司目前有10多名博士从事锰锌铁氧体的开发工作,PC30等牌号已基本不再生产,转向从我国及东南亚进口,集中精力研发PC45-50等高档产品。我国的情况正好相反,1999年的统计数字表明,全行业PC40的产量很小,主要是B档和C档,即PC30及以下的产品(表2-37)。2000年以后情况有所改观,不少单位加大技术创新力度,积极实施PC40批量生产技术攻关,A档产品不断增加,C档产品有所减少,四川、江苏、浙江的一些企事业单位先后完成了PC40、PC44、PC50的研制工作,有的通过了PC44、PC50的设计定型鉴定,有的开始规模化生产PC40等高档产品。表2-38中列出了部分国内外功率铁氧体产品的性能指标。

(2) 高磁导率铁氧体

磁导率是衡量软磁铁氧体材料性能的主要基本参数之一,通常将初始磁导率(μi)大于5000的Mn-Zn铁氧体材料称为高磁导率铁氧体,高磁导率铁氧体的主要特性是磁导率特别高,一般均达到10000以上,从而可使磁芯体积缩小很多,适应元器件向小型化、轻量化放行发展的需要。另外为了满足使用要求,这类高磁导率小磁芯的表面质量必须很好,平滑圆整,没有毛刺,而且在其表面上必须涂覆一层均匀、致密、绝缘、美观的有机涂层,这是一个技术难点。高磁导率铁氧体在电子工业和电子技术中是一种急需和应用广泛的功能材料,可以做通讯设备、测控仪器、家用电器及新型节能灯具中的宽频带变压器、微型低频变压器、小型环行脉冲变压器和微型电感元件等更新换代的电子产品。

TDK、西门子、菲利浦、TOKIN及美国SPANG磁性分公司等是世界上高μi软磁铁氧体材料研究开发和规模化生产的先行者。TDK在生产H5C2的基础上又先后开发出了H5C3、K5D和H5E等系列高磁导率铁氧体材料;TOKIN推出了12001H、18000H材料;西门子上市了T42、T46高磁导率材料。据磁性行业协会的统计,1999年我国生产的称得上高μi (8000~10000)即A档的产量很少(表2-39)。2000年后情况则有所改观,山东及浙江、江苏、四川、北京等地一些企事业单位近几年来先后完成了μi为10000~15000材料的研制,并通过了设计定型鉴定,部分厂家实现了μi=10000及以上的高导锰锌铁氧体材料的批量生产。四川等地一些企业研发的R15K高导锰锌铁氧体项目获得了国家中小企业科

真正意义上的高μi软磁铁氧体材料,其μi值应在10000以上,这样才能满足通讯、计算机等IT产业和电子整机对各种器件超小型化、微型化的需求。近年来,高μi铁氧体的水平还在不断提高,目前国内外技术创新的奋斗目标是规模化生产高μi=15000~18000的锰锌铁氧体以及更为实用的具有宽频、宽温特性的高磁导率铁氧体材料。

2.8.1.2 镍锌系软磁铁氧体材料

Ni-Zn系软磁铁氧体材

料是另一类产量大、应用广泛

的高频软磁材料。当应用频率

在1MHz以下时其性能不如Mn

-Zn系铁氧体,而在1MHz以

上时,由于它具有多孔性及高

电阻率,其性能大大优于Mn

-Zn铁氧体,非常适宜在高频

中使用。

用镍锌软磁铁氧体材料

做成的铁氧体宽频带器件,使

用频率可以做到很宽,其下限

频率可做到几千赫兹,上限频

率可达几千兆赫兹,大大扩展

了软磁材料的频率使用范围,

主要功能是在宽频带范围内

实现射频信号的能量传输和阻抗变换。由于它们具有频带宽、体积小、重量轻等特点而被广泛应用在雷达、电视、通讯、仪器仪表、自动控制、电子对抗等领域。

世界上现已工业化生产镍锌铁氧体的国家中,目前,日本TDK、FDK、德国西门子、美国Stealword等公司的产品技术水平被公认为是世界上最高的,射频宽带Ni-Zn(磁芯)的工作频率可达0.1MHz~1.5GHz,品种规格上千种。而

国内起步较晚,仅有少数厂家在开发低

噪声滤波器和铁氧体吸收与抑制元件,

但与国外的差距较大,尚未系列化、标

准化。表2-41中列出了TDK公司部分

镍锌铁氧体的性能指标?

目前,随着信息网络技术的飞速发

展,在有线电视系统和闭路电视系统的

基础上迅速发展起来的光纤同轴电缆

混合(HFC)网络系统,作为综合信息

宽带网络,具有显著的优势。

HFC网络系统的改造和建设,需要各种射频宽带铁氧体器件,而射频宽带铁氧体材料(磁芯)系列是制造上述铁氧体器件的关键磁性材料。HFC的发展,大大刺激了对射频宽带铁氧体材料及器件的需求。Ni-Zn软磁铁氧体材料除广泛用于HFC宽带网络外,还大量用于抗电磁干扰。使用镍锌系软磁铁氧体材料制成的滤波器、铁氧体抑制器是其中最有效、简单、经济的办法之一。因此,在各种电子、电子线路中使用大量各种特性和各种形状的EMI软磁铁氧体磁芯,以满足抗电磁干扰和电磁兼容的要求。抗电磁干扰产品和电磁兼容产品发展的方向是各类磁芯向高磁导率、高频化、高速、小型化和片式高组装密度化发展。如今用Ni-Zn等软磁材料做成的铁氧体桨料和导体桨料交替叠层厚膜印刷和

软磁材料技术发展与产业概况

软磁材料技术发展与产业概括 一、软磁材料技术基础 定义:能够迅速响应外磁场的变化,当磁化发生在矫顽力H c不大于100A/m (1.25Oe),这样的材料称为软磁体。 技术要求:能低损耗地获得高磁感应强度,即低损耗(P=涡流损耗Phv&磁损耗Pev)、高饱和磁感应强度(Ms),既容易受外加磁场磁化,也容易退磁,即高磁导率(μa)、高稳定性。低损耗可以保证能量转换效率高,器件不容易发热;高饱和磁感应强度可以保证提供磁场强度大,最高的Fe-0.35Co合金拥有2.45T的饱和磁化强度,纯铁的有2.15T;容易磁化和退磁可以保证器件灵敏度。 材料分类: 1.金属软磁,以硅钢片、坡莫合金、仙台合金等为代表,包括Fe系、Fe-Si系、 Fe-Al系、Fe-Ni系、Fe-Si-Al系、Fe-Co系、Fe-Cr系等 2.晶体软磁,又称铁氧体软磁材料,以Mn-Zn系、Ni-Zn系和Mg-Zn系为代表 的各种软磁铁氧体 3.非晶、纳米晶软磁材料,简称Finemet,有Fe基和Co 基两种非晶软磁材料;按制品形态分类: i.合金类,主要有硅钢片坡莫合金、非晶及纳米晶合金; ii.粉芯类,又称磁粉芯,包括:铁粉芯、铁硅铝粉芯、高磁通量粉芯(High Flux)、坡莫合金粉芯(MPP); iii.铁氧体类:算是特殊的粉芯类,包括:锰锌系、镍锌系 常用软磁材料特性:

二、软磁材料的应用介绍 软磁材料在工业中的应用始于十九世纪末。随着电力工及电讯技术的兴起,开始使用低碳钢制造电机和变压器,在电话线路中的电感线圈的磁芯中使用了细小的铁粉、氧化铁、细铁丝等。到二十世纪初,研制出了硅钢片代替低碳钢,提高了变压器的效率,降低了损耗。直至现在硅钢片在电力工业用软磁材料中仍居首位。无线电技术的兴起,促进了高导磁材料的发展,出现了坡莫合金及坡莫

常见软磁材料

一). 粉芯类 1. 磁粉芯 磁粉芯是由铁磁性粉粒与绝缘介质混合压制而成的一种软磁材料。由于铁磁性颗粒很小(高频下使用的为0.5~5微米),又被非磁性电绝缘膜物质隔开,因此,一方面可以隔绝涡流,材料适用于较高频率;另一方面由于颗粒之间的间隙效应,导致材料具有低导磁率及恒导磁特性;又由于颗粒尺寸小,基本上不发生集肤现象,磁导率随频率的变化也就较为稳定。主要用于高频电感。磁粉芯的磁电性能主要取决于粉粒材料的导磁率、粉粒的大小和形状、它们的填充系数、绝缘介质的含量、成型压力及热处理工艺等。 常用的磁粉芯有铁粉芯、坡莫合金粉芯及铁硅铝粉芯三种。 磁芯的有效磁导率me及电感的计算公式为: me = DL/4N2S ′ 109 其中: D为磁芯平均直径(cm),L为电感量(享),N为绕线匝数,S为磁芯有效截面积(cm2)。 (1). 铁粉芯 常用铁粉芯是由碳基铁磁粉及树脂碳基铁磁粉构成。在粉芯中价格最低。饱和磁感应强度值在1.4T左右;磁导率范围从22~100; 初始磁导率mi随频率的变化稳定性好;直流电流叠加性能好;但高频下损耗高。 (2). 坡莫合金粉芯 坡莫合金粉芯主要有钼坡莫合金粉芯(MPP)及高磁通量粉芯(High Flux)。 MPP是由81%Ni, 2%Mo, 及Fe粉构成。主要特点是: 饱和磁感应强度值在7500Gs左右;磁导率范围大,从14~550; 在粉末磁芯中具有最低的损耗;温度稳定性极佳,广泛用于太空设备、露天设备等;磁致伸缩系数接近零,在不同的频率下工作时无噪声产生。主要应用于300KHz以下的高品质因素Q滤波器、感应负载线圈、谐振电路、在对温度稳定性要求高的LC电路上常用、输出电感、功率因素补偿电路等, 在AC电路中常用,粉芯中价格最贵。 高磁通粉芯HF是由50%Ni, 50%Fe粉构成。主要特点是: 饱和磁感应强度值在15000Gs左右;磁导率范围从14~160; 在粉末磁芯中具有最高的磁感应强度,最高的直流偏压能力;磁芯体积小。主要应用于线路滤波器、交流电感、输出电感、功率因素校正电路等, 在DC 电路中常用,高DC偏压、高直流电和低交流电上用得多。价格低于MPP。 (3). 铁硅铝粉芯 (Kool Mm Cores) 铁硅铝粉芯由9%Al, 5%Si, 85%Fe粉构成。主要是替代铁粉芯,损耗比铁粉芯低80%,可在8KHz以上频率下使用;饱和磁感在1.05T左右;导磁率从26~125;磁致伸缩系数接近零,

软包装材料详解

OPP:定向聚丙烯(薄膜),拉伸性聚丙烯,是聚丙烯的一种。 OPP主要产品: 1>OPP胶带:以聚丙烯薄膜为基材,具有高抗拉伸力、质轻、无毒无味、环保、使用范围广等优点 2>OPP瓶:重量轻、成本低、透明度改善、耐热性佳,适合用于热灌装。近年,双向聚丙烯(OPP)透明瓶成为了PET瓶的代选 BOPP:双向拉伸聚丙烯薄膜,也是聚丙烯的一种. 常用的BOPP薄膜包括:普通型双向拉伸聚丙烯薄膜、热封型双向拉伸聚丙烯薄膜、香烟包装膜、双向拉伸聚丙烯珠光膜、双向拉伸聚丙烯金属化膜、消光膜等。各种薄膜的主要用途如下: 1>普通型BOPP薄膜 用途:主要用于印刷、制袋、作胶粘带以及与其它基材的复合。 2>BOPP热封膜 用途:主要用于印刷、制袋等。 3>BOPP香烟包装膜 用途:用于高速香烟包装。 4>BOPP珠光膜 用途:用于印刷后的食品及生活用品包装。 5>BOPP金属化膜 用途:用作真空镀金属、辐射、防伪的基材,食品包装。 6>BOPP消光膜 用途:用于肥皂、食品、香烟、化妆品、医药产品等的包装盒 7>BOPP防雾膜 产品用途:用于蔬菜、水果、寿司、鲜花等包装。 双向拉伸聚丙烯为聚丙烯中的一种(缩写为BOPP),主要由于制造方法的不同区别于另一种流延聚丙烯,它主要的特点是:结晶度高,抗张强度、冲击强度、刚性韧性、阻湿性、透明性和耐寒性都有提高。真空镀铝流延聚丙烯(缩写为VMCPP),是批在高真空状态下,颜色越纯铝的蒸汽沉淀附着到作为基材的流延聚丙烯薄膜上形成,这种膜在原来基膜的基础上,性能更为优越,特别是在阻隔性能方面。 CPP薄膜[1]即流延聚丙烯薄膜cast polypropylene,也称未拉伸聚丙烯薄膜,按用途不同可分为通用CPP(General CPP,简称GCPP)薄膜、镀铝级CPP(Metalize CPP,简称MCPP)薄膜和蒸煮级CPP(Retort CPP,简称RCPP)薄膜等。 CPP是塑胶工业中通过流延挤塑工艺生产的聚丙烯(PP)薄膜。该类薄膜与BOPP(双向聚丙烯)薄膜不同,属非取向薄膜。严格地说,CPP薄膜仅在纵向(MD)方向存在某种取向,主要是由于工艺性质所致。通过在冷铸辊上快速冷却,在薄膜上形成优异的清晰度和光洁度。CPP薄膜的主要特性包括: -与LLDPE、LDPE、HDPE、PET、PVG等其他薄膜相比,成本更低,产量更高。 -比PE薄膜挺度更高。 -水气和异味阻隔性优良。 -多功能,可作为复合材料基膜。 -可进行金属化处理。

第四章 软磁材料

第四章 软磁材料 在前面磁场分析中可以看到,在线圈中加入磁芯后,将磁通限制在低磁阻的磁芯内,用较小激励电流,产生比没有磁芯时大得多的磁通,这就大大减少了电磁元件的体积。因此,加磁芯的基本目的是为链合或耦合两个或多个磁单元的磁通,提供容易通过的路径,将磁源和磁“负载”连接起来,作为磁通“汇流条”。同时减少磁元件的体积。 在实际变压器中,磁源是初级线圈-安匝和伏/匝。磁负载是次级线圈(绕组)。初级线圈匝链的磁通与每个次级线圈匝链,并适当调节匝比得到不同的电压。在变压器磁芯中存储能量越小越好。如果存储能量,和其它寄生元件一样,有时将引起电压尖峰。在下面将看到,使用高磁导率材料磁芯,能量存储最小。 在一个电感中,磁芯提供一个线圈和磁芯串联的非磁气隙之间磁通链合路径。实际上,几乎所有的能量存储在气隙中。高磁导率磁芯或磁合金象皮莫合金,不能够存储大量的能量。 反激变压器实际上是一个带有初级和次级线圈的电感,并且有一个气隙存储能量。和一个简单电感一样,磁芯提供初级和气隙之间磁通的链合。磁芯还提供气隙和次级线圈之间的链合,以传递能量到次级电路。象变压器一样,通过调节匝比得到不同的输出电压。 4.1 磁性材料的磁化 物质的磁化需要外磁场。相对外磁场而言,被磁化的物质称为磁介质。将铁磁物质放 到磁场中,磁感应强度显著增大。磁场使得铁磁物质呈现 磁性的现象称为铁磁物质的 磁化。铁磁物质之所以能被磁化,是因为这类物质不同于非磁物质,在其内部有许多自发磁化的小区域—磁畴。 在没有外磁场作用时,这些磁畴排列的方向是杂乱无章的(图4.1(a)),小磁畴间的磁场是相互抵消的,对外不呈现磁性。如给磁性材料加外磁场,例如将铁磁材料放在一个载流线圈中,在电流产生的外磁场作用下,材料中的磁畴顺着磁场方向转动,加强了材料内的磁场。随着外磁场加强,转到外磁场方向的磁畴就越来越多,与外磁场同向的磁感 应强度就越强(4.1(b))。这就是说材料被磁化了。 4.2 磁材料的磁化曲线 4.2.1 磁性物质磁化过程和初始磁化曲线 如将完全无磁状态的铁磁物质进行磁化,磁场强度从零逐渐增加,测量铁磁物质的磁通密度,得到磁通密度和磁场强度之间关系,并用B-H 曲线表示,该曲线称为磁化曲线,如图4.2(e)曲线C 所示。没有磁化的磁介质中的磁畴完全是杂乱无章的,所以对外界不表现磁性(图4.2(a))。当磁介质置于磁场中,外磁场较弱时,随着磁场强度的增加,与外磁场方向相差不大的部分磁畴逐渐转向外磁场方向(图4.2(b )),磁感应B 随外磁场增加而增加(图4.2(e )中oa 段)。如果将外磁场H 逐渐减少到零时,B 仍能沿ao 回到零,即磁畴发生了“弹性”转动, (a) (b) 图 4.1 铁磁物质的未磁化(a)和 被磁化(b)时的磁畴排列

磁性材料行业的发展前景

磁性材料行业的发展前景 磁性材料主要包括永磁材料、软磁材料、信磁材料、特磁材料等,覆盖很多高新技术领域。在稀土永磁材料技术、永磁铁氧体技术、非晶软磁材料技术、软磁铁氧体技术、微波铁氧体器件技术、磁性材料专用设备技术等领域,全球已经形成庞大的产业群。其中,仅永磁材料的年度市场销售额就已经超过100亿美元。 磁性材料可用于哪些产品呢?首先,在通讯行业,全球数十亿部手机都需要大量的铁氧体微波器件、铁氧体软磁器件和永磁元件。全球数以千万计的程控交换机也需要大量高技术磁芯等元件。此外,国外无绳电话安装数量已经占固定电话总量的一半以上。这类电话需要大量软磁铁氧体元件。而且,可视电话也在快速普及。它也需要大量磁性元件。第二,在IT行业,硬盘驱动器、CD-ROM驱动器、DVD-ROM驱动器、显示器、打印机、多媒体音响、笔记本电脑等也需要使用大量钕铁硼、铁氧体软磁、永磁材料等元件。第三,在汽车行业,全球汽车年产量约5500万辆。按每辆汽车使用铁氧体永磁电机41只计算,汽车行业每年需要电机约22.55亿只。此外,全球汽车扬声器需求量也数以亿计。总之,汽车行业每年需要消耗大量的磁性材料。第四,在照明设备、彩电、电动自行车、吸尘器、电动玩具、电动厨房用具等行业,磁性材料的需求量也很大。例如,在照明行业,LED灯具的产量很大,它需要消耗大量的铁氧体软磁材料。总之,全球每年都有数以百亿计的电子、电气产品需要使用磁性材料,在很多领域,甚至需要技术含量极高的核心磁性器件。 总之,磁性材料能覆盖大量的电子、电气产品,是材料行业的基础、骨干工业部门之一。随着我国电子、电气工业的快速崛起,我国已经成为全球最大的磁性材料生产、消费国。在不久的将来,全球一半以上的磁性材料都将用于供应中国市场。很多高技术磁性材料、元件也将主要由中国企业生产、采购。磁性材料也将成为我国国民经济中的支柱产业之一。 磁性材料行业的专利部署 作为基础材料、元件,磁性材料产品能覆盖大量的电子、电气产业。因此,保护磁性材料和工艺的专利能延及大量电子、电气产品。使用侵权磁性材料或者元件的电子、电气产品制造商,乃至这类产品的销售商也会侵犯磁性材料、工艺专利。例如,在稀土永磁材料NdFeB领域,美国Magnequench国际公司曾对一大批下游企业,如微软、东芝、飞利浦、宏基、沃尔玛超市等数十家大企业提起专利侵权诉讼。由于美国、日本、欧洲、韩国、台湾地区一大批著名企业先后被告专利侵权,该案在电子行业曾产生较大影响,促进了企业在磁性材料领域的专利部署活动。检索显示,我国磁性材料行业的专利申请量较大,相关发明专利文献主要分布在如下领域:

软包装材料及其性能

软包装材料及其性能 This model paper was revised by the Standardization Office on December 10, 2020

软包装材料及其性能 一. 聚乙烯PE 低密度聚乙烯LDPE:密度 g/m2 中密度聚乙烯MDPE:密度~ g/m2 高密度聚乙烯HDPE:密度~ g/m2 1.低密度聚乙烯-LDPE 一般用作复合膜的热封层,热封性能好,耐撕裂、耐低温、阻湿性好,抗冲击,具有较宽的热封范围,是常用的热封材料,但阻氧性差,透明度较低、易拉伸变型、强度差。 2. 高密度聚乙烯– HDPE 高密度聚乙烯的密度比低密度聚乙烯高一些,薄膜呈乳白色、半透明、质地刚硬一些,其强度、硬度、耐溶剂性、阻气性和阻湿性等都比低密度聚乙烯优越,并不易破损,强度为LDPE的2倍。但其表面光泽性较差。 HDPE的熔融温度更高,在120℃左右,因此可以耐沸水。 用途:可煮袋包装、可消毒医用包、购物包装袋、家庭垃圾袋等。 3.线性低密度聚乙烯LLDPE LLDPE的刚性、冲击强度、撕裂强度和耐应力开裂等方面都优于低密度聚乙烯。和LDPE相比,LLDPE的加工更困难,热封温度更高,热封的温度范围也更窄。但是LLDPE更强韧、更挺,更加不透明,而且一般情况下对水分和气体的阻隔性稍好。LLDPE被广泛用

作LDPE的替代物,但是使用厚度更低,因此可以提供整体成本的节约:同样也作为共混物和LDPE共用,利用了两种材料的最佳性能。 用途:拉伸薄膜、收缩膜、购物袋、包装袋。 4.茂金属聚乙烯 -MLLDPE 茂金属作为催化剂合成的线性低密度聚乙烯,与传统的齐格勒纳催化剂得到的聚乙烯相比,链长均一,分子量分布窄,因而其热封性能、拉伸强度、抗冲击性、热粘性等特别好。用MLLDPE可以减薄厚度、降低成本。 二.聚丙烯– PP 1.双向拉伸聚丙烯-BOPP 具有非常好的透明性,耐热性一般,密度低,价格便宜,印刷适性好,广泛用在复合袋的外层,在包装材料中它的用量很大。 缺点:静电强、阻氧性较差,收缩率偏大。 用途:糖果、饼干、休闲和快餐食品等包装 2.消光BOPP 消光BOPP的表层为消光(粗化)层,使外观的质感象纸张,手感舒适。 (1).有遮光作用,光泽度低。 (2).消光表层滑爽性好,膜卷不易粘结。 (3).拉伸强度比通用膜略低。

磁导率

磁导率表示物质磁化性能的一个物理量,是物质中磁感应强度B与磁场强度H之比,又成为绝对磁导率。物质的绝对磁导率和真空磁导率(设为μ0=4*3.14*0.0000001H/m)比值称为相对磁导率,也就是我们一般意义上的磁导率。对于顺磁质μr>1,对于抗磁质μr<1,但它们都与1相差很小(例如铜的μr与1之差的绝对值是0.94×10-5)。然而铁磁质的μr可以大至几万。 非铁磁性物质的μ近似等于μ0。而铁磁性物质的磁导率很高,μ>>μ0。铁磁性材料的相对磁导率μr=μ/μ0如铸铁为200~400;硅钢片为7000~10000;镍锌铁氧体为10~1000;镍铁合金为2000;锰锌铁氧体为300~5000;坡莫合金为20000~200000。空气的相对磁导率为1.00000004;铂为1.00026;汞、银、铜、碳(金刚石)、铅等均为抗磁性物质,其相对磁导率都小于1,分别为0.999971、0.999974、0.99990、0.999979、0.999982。 所以,铜虽然具有抗磁性,但相对磁导率也有0.99990;纯铁为顺磁性物质,其相对磁导率会达到400以上。所以用铜裹住铁并不能阻断磁力,而且是远远不能。在某些特殊情况下,铜的抗磁性就会表现出来,如规格很小的烧结钕铁硼磁体D3*0.8电镀镍铜镍后,磁通量会降低7-8%(当然,这个损失还包括倒角和镍层屏蔽导致的磁损)。 直截了当地讲,磁场无处不在,是不能阻断的。只不过各种物质导磁性有所差异,如空气、材料、铜、铝、橡胶、塑料等相对磁导率近似为1,它们对磁不感兴趣;而铁磁性材料如铸铁、铸钢、硅钢片、铁氧体、坡莫合金等材料具有良好的导磁性

磁性材料特性

磁性材料 一.磁性材料的基本特性 1. 磁性材料的磁化曲线 磁性材料是由铁磁性物质或亚铁磁性物质组成的,在外加磁场H 作用下,必有相应的磁化强度M 或磁感应强度B,它们随磁场强度H 的变化曲线称为磁化曲线(M~H或B~H 曲线)。磁化曲线一般来说是非线性的,具有2个特点:磁饱和现象及磁滞现象。即当磁场强度H足够大时,磁化强度M达到一个确定的饱和值Ms,继续增大H,Ms保持不变;以及当材料的M值达到饱和后,外磁场H降低为零时,M并不恢复为零,而是沿MsMr曲线变化。材料的工作状态相当于M~H曲线或B~H曲线上的某一点,该点常称为工作点。 2. 软磁材料的常用磁性能参数 饱和磁感应强度Bs:其大小取决于材料的成分,它所对应的物理状态是材料内部的磁化矢量整齐排列。 剩余磁感应强度Br:是磁滞回线上的特征参数,H回到0时的B值。 矩形比:Br∕Bs 矫顽力Hc:是表示材料磁化难易程度的量,取决于材料的成分及缺陷(杂质、应力等)。

磁导率μ:是磁滞回线上任何点所对应的B与H的比值,与器件工作状态密切相关。 初始磁导率μi、最大磁导率μm、微分磁导率μd、振幅磁导率μa、有效磁导率μe、脉冲磁导率μp。 居里温度T c:铁磁物质的磁化强度随温度升高而下降,达到某一温度时,自发磁化消失,转变为顺磁性,该临界温度为居里温度。它确定了磁性器件工作的上限温度。 损耗P:磁滞损耗P h及涡流损耗Pe P = Ph + Pe = af + bf2+ c Pe f2 t2 / ∝,ρ降低, 磁滞损耗Ph的方法是降低矫顽力Hc;降低涡流损耗Pe 的方法是减薄磁性材料的厚度t 及提高材料的电阻率ρ。在自由静止空气中磁芯的损耗与磁芯的温升关系为: 总功率耗散(mW)/表面积(cm2) 3. 软磁材料的磁性参数与器件的电气参数之间的转换 在设计软磁器件时,首先要根据电路的要求确定器件的电压~电流特性。器件的电压~电流特性与磁芯的几何形状及磁化状态密切相关。设计者必须熟悉材料的磁化过程并拿握材料的磁性参数与器件电气参数的转换关系。设计软磁器件通常包括三个步骤:正确选用磁性材料;合理确定磁芯的几何形状及尺寸;根据磁性参数要求,模拟磁芯的工作状态得到相应的电气参数。 二、软磁材料的发展及种类 1.软磁材料的发展 软磁材料在工业中的应用始于19世纪末。随着电力工及电讯技术的兴起,开始使用低碳

高性能软磁材料的研究进展 (1)

收稿日期:2012-08- 01 基金项目:国家自然科学基金资助项目( 51071034);教育部留学归国创新团队项目;吉林省留学回国人员创新创业基金第33卷第5期 长春工业大学学报(自然科学版) V ol.33No.52012年10月 Journal of Changchun University  of Techonology(Natural Science Edition) Oct.2012高性能软磁材料的研究进展 赵占奎, 邓 娜, 昝 朝, 王明罡 (长春工业大学先进结构材料教育部重点实验室,吉林长春 130012 )摘 要:综述了软磁材料的研究现状,以及作者近年来在非晶、纳米晶以及软磁复合材料等高性能软磁材料方面的研究进展。基于放电等离子烧结技术,进行了Fe基非晶软磁材料的大尺寸工程化制备研究,成功制备致密大尺寸具有优异软磁性能的Fe76Si9B10P5非晶磁环。通 过放电等离子烧结的加热速率控制放电脉冲强度,在低于Fe76Si9B10P5非晶玻璃转变温度以下,一步法实现Fe76Si9B10P5非晶合金的块体致密化与纳米晶化,实验结果表明,大的SPS脉冲电流促进纳米晶化形核过程,使晶化后的晶粒更加细小均匀。重点介绍了微胞结构软磁复合材料的制备原理、结构特点以及优异的电磁性能。最后展望了高性能软磁材料的应用前景以及重要研究方向。 关键词:软磁材料;非晶;纳米晶;软磁复合材料 中图分类号:TM 271.2 文献标志码:A 文章编号:1674-1374(2012)05-0521- 08Progress in research of high performance soft mag netic materialsZHAO Zhan-kui, DENG Na, ZAN Zhao, WANG Ming-gang (Key Laboratory of Advanced Structural Materials,Ministry  of Education,Changchun University  of Technology,Changchun 130012,China)Abstract:The environmental and energy  problem more and more get the attention of the countries allover the world,energy conservation and emission reduction has become the focus of attention of thecommon humanity.Magnetic materials in the national economy is an important base materials,inrecent years,appeared by electric drives and electronic control device of products of drive,automaticcontrol and function of trend,the key is one of the core materials soft magnetic materials.Softmagnetic materials in various devices play energy transfer and conversion function coupling.Improvethe efficiency and reduce the soft magnetic ferrite core material loss in energy saving andenvironmental pollution control has the great significance.This paper briefly introduces the currentresearch status of soft magnetic materials and the progress in research of high p erformance magneticmaterials such as the amorphous,nanocrystalline and soft magnetic composite by author in recenty ears.Key  words:soft magnetic materials;amorphous;nanocrystalline;soft magnetic composite.

国内软包装行业的发展现状及趋势预测(DOC)

国内软包装行业的发展现状及趋势预测 摘要:针对近些年软包装业的飞速发展,为了更加准确的把握软包装业发展现状,本文按照总—分的结构,分别从印刷设备、薄膜基材、油墨及其复合粘合剂的发展状况对整个产业链做一个简单的介绍。 关键词:软包装,凹版印刷机,水性油墨,溶剂型粘合剂,水性粘合剂 Development Status and Trend of the DomesticFlexible Packaging Industry Forecast LutongWang 1, HuaWei Duan2 (1.Shantou YaLi Environmental Packing Printing Co.,Ltd,Shantou 515098, Guangdong, P.R. China ; 2.Guangdong ZhuanLi Color Printing Co.,Ltd,Shantou 515064,Guangdong,P.R.China,) Abstract:In recent years with the rapid development of soft–packing industry, in order to more accurately grasp the status of the soft–packing industry, in thi s paper, according to the structure of the total - points, respectively from the printing equipment, thin film materials, printing ink and composite adhesive de velopment to do a simple introduction to the whole industrial chain. Keywords:soft–packing,gravure printing machine, water-based inks, solvent-ba sed adhesives, water-based adhesive 引言 软包装是指在充填或取出内装物后,容器形状可发生变化的包装。在包装产业中,软包装以绚丽的色彩、丰富的功能、形式多样的表现力,成为货架销售最主要的包装形态之一。近些年来,国内软包装行业的进步极大地促进了食品、日化、制药等行业的发展,这些行业的发展反过来又进一步拉动了对软包装市场的需求,使软包装行业获得了巨大的市场动力。随着新型包装材料的发展和加工工艺的改善,软包装正在向越来越多的领域延伸。本文从软包装的印刷设备、薄膜基材、油墨、复合粘合剂等几个方面分别介绍。 一、国内软包装行业发展概述 我国的软包装应用始于20世纪70年代。1972年,广东罐头厂在全国率先引进了一套瑞典利乐公司的复合纸砖形无菌包装生产线,用来包装甘蔗汁、果汁等液体饮料。20世纪80年代初,国内企业相继引进了瑞典、美国等国家无菌包

非晶软磁合金材料及其产业现状与发展前景分析

非晶软磁合金材料及其产业现状与发展前景 纳米(超微晶)软磁合金材料 铁基纳米晶合金由铁、硅、硼和少量的铜、钼、铌等组成,其中铜和铌是获得纳米晶结构必不可少的元素。它们首先被制成非晶带材,然后经过适当退火,形成微晶和非晶的混合组织。这种材料虽然便宜,但磁性能极好,几乎能够和非晶合金中最好的钴基非晶合金相媲美,但是却不含有昂贵的钴,是工业和民用中高频变压器、互感器、电感的理想材料,也是坡莫合金和铁氧体的换代产品。 非晶软磁合金材料的优点 优良的磁性:与传统的金属磁性材料相比,由于非晶合金原子排列无序,没有晶体的各向异性,而且电阻率高,因此具有高的导磁率是铁氧体的10倍以上、低的损耗(是硅钢片的1/5-1/10,是铁氧体损耗的1/2~1/5),是优良的软磁材料,代替硅钢、坡莫合金和铁氧体等作为变压器铁心、互感器、传感器等,可以大大提高变压器效率、缩小体积、减轻重量、降低能耗。非晶合金的磁性能实际上是迄今为止非晶合金最主要的应用领域。 非晶合金的制造是在炼钢之后直接喷带,只需一步就制造出了薄带成品,节约了大量宝贵的能源,同时无污染物排放,对环境保护非常有利。正是由于非晶合金制造过程节能,同时它的磁性能优良,降低变压器使用过程中的损耗,因此被称为绿色材料和二十一世纪的材料。 非晶软磁合金材料的应用领域 电力电子技术领域: 大功率中、高频变压器 逆变电源变压器 大功率开关电源变压器 通讯技术: 程控交换机电源 数据交换接口部件 脉冲变压器 UPS电源滤波和存储电源、功率因素校正扼流圈、标准扼流圈 抗电磁干扰部件: 交流电源、可控硅、EMI差模、共模电感、输出滤波电感 开关电源: 磁饱和电抗器 磁放大器 尖峰抑制器 扼流圈 传感器: 电流电压互感器 零序电流互感器 漏电开关互感器 防盗感应标签 目前非晶软磁合金材料的产品,应用场合主要包括:互感器铁心、大功率逆变电源变压器和电抗器铁心、各种形式的开关电源变压器和电感铁心、各种传感器铁心等。 在低频电磁元件中,铁基非晶合金被大量应用,在电力配电变压器中的应用已取得良好效果,成为现在生产量最大的非晶合金。在中、高频领域可以代替钴基非晶合金和铁镍高导磁合金。 纳米晶合金的最大应用是电力互感器铁心。电力互感器是专门测量输变电线路上电流和电能的特种变压器。 从目前国内外应用以及今后发展来看,非晶合金的大量使用还是在电力系统:a、配电变压器铁心。铁基非晶合金铁心具有高饱和磁感应强度、低矫顽力、低损耗(相当于硅钢片的1/3~1/5)、低激磁电流、良好的温度稳定性,使非晶合金变压器运行过程中的空载损失远低于硅钢变压器。这种情况尤其适用于空载时间长、用电效率低的农村电网。

软磁材料基本概念

软磁材料基本概念 ◆软磁材料: 所谓软磁材料,特指那些矫顽力小、容易磁化和退磁的磁性材料。所谓的软,指这些材料容易磁化,在磁性上表现“软”。软磁材料的用途非常广泛。因为它们容易磁化和退磁,而且具有很高的导磁率,可以起到很好的聚集磁力线的作用,所以软磁材料被广泛用来作为磁力线的通路,即用作导磁材料,例如变压器、传感器的铁芯,磁屏蔽罩,特殊磁路的轭铁等。 这里,介绍几种常用的软磁材料和用它们做成的常见元器件。 ◆常用软磁材料: ◇硅钢片: 硅钢是含硅量在3%左右、其它主要是铁的硅铁合金。硅钢片大量用于中低频变压器和电机铁芯,尤其是工频变压器。硅钢的特点是具有常用软磁材料中最高的饱和磁感应强度(2.0T以上),因此作为变压器铁芯使用时可以在很高的工作点工作(如工作磁感值1.5T)。但是,硅钢在常用的软磁材料中铁损也是最大的,为了防止铁芯因损耗太大而发热,它的使用频率不高,一般只能工作在20KHz以下。 硅钢通常是薄片状的,这是为了在制造变压器铁芯时减小铁芯的涡流损失。目前硅钢片主要分热轧和冷轧两大类。 所谓热轧硅钢,是把硅钢板坯在850度以上加热后轧制,然后再进行退火。由于轧制温度高,所轧制出来的硅钢片都是各向同性的,也就是说硅钢片的磁性在各个方向上相同。这种各向同性的硅钢也叫做无取向硅钢。无取向硅钢大量应用在电机中的定子或者转子。因为要制造电机定子和转子,就要在大的硅钢片上冲压出圆形的零件。这时总是希望硅钢片沿圆周方向磁性一致,所以要用无取向硅钢。 为了获得更好的磁性能,后来人们发明了冷轧硅钢片,即在较低温度下轧制,再退火。冷轧取向硅钢片是其中的代表。冷轧取向硅钢片首先对板坯进行冷轧,使得材料内部产生很多结构缺陷。在随后的退火过程中,材料发生结构上的变化(称为再结晶),这种变化会使硅钢片在某个方向上磁性能非常好,也就是说磁性能和方向有关,因此被称为取向硅钢。在最终使用时,让铁芯中的磁力线沿磁性能最好的方向通过,这样便可以最大限度地发挥硅钢片的磁性能潜力。例如,在变压器中,铁芯材料的磁力线是沿一个方向通过的,如果把硅钢片适当裁剪,然后卷绕成铁芯,使得铁芯周长方向恰好是硅钢片磁性能最好的方向,那么铁芯的导磁率就会很高,容易磁化,能量损耗小,最终提高了变压器效率。 我国对硅钢片的编号是:热轧硅钢片D(如D31指含硅3.1%的热轧硅钢);冷轧硅钢片DT;高磁感取向硅钢片Q和QG。这些材料的磁性能可以从相关的书籍和手册中得到。 ◇坡莫合金: 坡莫合金指铁镍合金,其含镍量的范围很广,在35%-90%之间。坡莫合金的最大特点是具有很高的弱磁场导磁率。它们的饱和磁感应强度一般在0.6--1.0T之间。 最简单的坡莫合金是铁镍两种元素组成的合金,通过适当的轧制和热处理,它们能够具备高导磁率,同时也可以合理搭配铁和镍的含量,获得比较高的饱和磁感应强度。但是,这种坡莫合金的电阻率低,力学性能不好,所以实际应用并不很多。 目前大量应用的坡莫合金是在铁镍的基础上添加一些其它元素,例如钼、铜等。添加这些元素的目的是增加材料的电阻率,以减小做成铁芯后的涡流损失。同时,添加元素也可以提高材料的硬度,这尤其有利于作为磁头等有磨损的应用。

软磁材料技术发展与产业概况

软磁材料技术发展与产业概括 —、软磁材料技术基础 定义:能够迅速响应外磁场的变化,当磁化发生在矫顽力H e不大于100A/m (1.250e),这样的材料称为软磁体。 技术要求:能低损耗地获得高磁感应强度,即低损耗(卩=涡流损耗Phv&磁损耗Pev)、高饱和磁感应强度(Ms),既容易受外加磁场磁化,也容易退磁,即高磁导率(由)、咼稳定性。低损耗可以保证能量转换效率咼,器件不容易发热;咼饱和磁感应强度可以保证提供磁场强度大,最高的F&0.35CO合金拥有2.45T的 饱和磁化强度,纯铁的有2.15T;容易磁化和退磁可以保证器件灵敏度。 材料分类: 1.金属软磁,以硅钢片、坡莫合金、仙台合金等为代表,包括Fe系、F&Si系、 F&AI 系、F&Ni 系、F&S-AI 系、F&Co系、F&Cr系等 2.晶体软磁,又称铁氧体软磁材料,以Mn-Zn系、Ni-Zn系和Mg-Zn系为代表的各种 软磁铁氧体 3.非晶、纳米晶软磁材料,简称Fin emet,有Fe基和Co基两种非晶软磁材料;按制品形态分类: i.合金类,主要有硅钢片坡莫合金、非晶及纳米晶合金; ii.粉芯类,又称磁粉芯,包括:铁粉芯、铁硅铝粉芯、高磁通量粉芯(High FluX)、坡莫合金粉芯(MPP); iii.铁氧体类:算是特殊的粉芯类,包括:锰锌系、镍锌系 常用软磁材料特性:

二、软磁材料的应用介绍 软磁材料在工业中的应用始于十九世纪末。随着电力工及电讯技术的兴起, 开始使用低碳钢制造电机和变压器,在电话线路中的电感线圈的磁芯中使用了细小的铁粉、氧化铁、细铁丝等。到二十世纪初,研制出了硅钢片代替低碳钢,提高了变压器的效率,降低了损耗。直至现在硅钢片在电力工业用软磁材料中仍居首位。无线电技术的兴起,促进了高导磁材料的发展,出现了坡莫合金及坡莫

软磁材料

软磁材料基本知识 一、软磁材料的发展及种类 1.软磁材料的发展 软磁材料在工业中的应用始于十九世纪末。随着电力工及电讯技术的兴起,开始使用低碳钢制造电机和变压器,在电话线路中的电感线圈的磁芯中使用了细小的铁粉、氧化铁、细铁丝等。到二十世纪初,研制出了硅钢片代替低碳钢,提高了变压器的效率,降低了损耗。直至现在硅钢片在电力工业用软磁材料中仍居首位。到二十年代,无线电技术的兴起,促进了高导磁材料的发展,出现了坡莫合金及坡莫合金磁粉芯等。从四十年代到六十年代,是科学技术飞速发展的时期,雷达、电视广播、集成电路的发明等,对软磁材料的要求也更高,生产出了软磁合金薄带及软磁铁氧体材料。进入七十年代,随着电讯、自动控制、计算机等行业的发展,研制出了磁头用软磁合金,除了传统的晶态软磁合金外,又兴起了另一类材料—非晶态软磁合金。 2.常用软磁磁芯的种类 铁、钴、镍三种铁磁性元素是构成磁性材料的基本组元。 按(主要成分, 磁性特点, 结构特点) 制品形态分类: 1). 合金类:硅钢片、坡莫合金、非晶及纳米晶合金 2). 粉芯类:磁粉芯,包括:铁粉芯、铁硅铝粉芯、高磁通量粉芯(High Flux)、坡莫合金粉芯(MPP) 3). 铁氧体类:算是特殊的粉芯类, 包括:锰锌系、镍锌系 常用软磁材料的分类及其特性(Soft Magnetic Materials)

二、软磁材料的分类介绍 (一). 合金类 1.硅钢 硅钢是一种合金,在纯铁中加入少量的硅(一般在 4.5%以下)形成的铁硅系合金称为硅钢,该类铁芯具有最高的饱和磁感应强度值为20000 高斯;由于它们具有较好的磁电性能,又易于大批生产,价格便宜,机械应力影响小等优点,在电力电子行业中获得极为广泛的应用,如电力变压器、配电变压器、电流互感器等铁芯。是软磁材料中产量和使用量最大的材料。也是电源变压器用磁性材料中用量最大的材料。特别是在低频、大功率下最为适用。常用的有冷轧硅钢薄板DG3、冷轧无取向电工钢带DW、冷轧取向电工钢带DQ,适用于各类电子系统、家用电器中的中、小功率低频变压器和扼流圈、电抗器、电感器铁芯,这类合金韧性好,可以冲片、切割等加工,铁芯有叠片式及卷绕式。但高频下损耗急剧增加,一般使用频率不超过400Hz。从应用角度看,对硅钢的选择要考虑两方面的因素:磁性和成本。对小型电机、电抗器和继电器,可选纯铁或低硅钢片;对于大型电机,可选高硅热轧硅钢片、单取向或无取向冷轧硅钢片;对变压器常选用单取向冷轧硅钢片。在工频下使用时,常用带材的厚度为0.2~0.35 毫米;在400Hz 下使用时,常选0.1 毫米厚度为宜。厚度越薄,价格越高。 2.坡莫合金 坡莫合金常指铁镍系合金,镍含量在30~90%范围内。是应用非常广泛的软磁合金。通过适 当的工艺,可以有效地控制磁性能,比如超过十万的初始磁导率、超过一百万的最大磁导率、低到千分之二奥斯特的矫顽力、接近1 或接近零的矩形系数,具有面心立方晶体结构的坡莫合金具有很好的塑性,可以加工成 1 微米的超薄带及各种使用形态。常用的合金有1J50、1J79、1J85 等。1J50 的饱和磁感应强度比硅钢稍低一些,但磁导率比硅钢高几十倍,铁损也比硅钢低2~3 倍。做成较高频率(400~8000Hz)的变压器,空载电流小,适合制作100 瓦以下小型较高频率变压器。1J79 具有好的综合性能,适用于高频低电压变压器,漏电保护开关铁芯、共模电感铁芯及电流互感器铁芯。1J85 的初始磁导率可达十万以上,适合于作弱信号的低频或高频输入输出变压器、共模电感及高精度电流互感器等。 3.非晶合金(Amorphous alloys) 硅钢和坡莫合金软磁材料都是晶态材料,原子在三维空间做规则排列,形成周期性的点阵 结构,存在着晶粒、晶界、位错、间隙原子、磁晶各向异性等缺陷,对软磁性能不利。从磁性物理学上来说,原子不规则排列、不存在周期性和晶粒晶界的非晶态结构对获得优异软磁性能是十分理想的。非晶态金属与合金是70 年代问世的一个新型材料领域。它的制备技术完全不同于传统的方法,而是采用了冷却速度大约为每秒一百万度的超急冷凝固技术,从钢液到薄带成品一次成型,比一般冷轧金属薄带制造工艺减少了许多中间工序,这种新工艺被人们称之为对传统冶金工艺的一项革命。由于超急冷凝固,合金凝固时原子来不及有序排列结晶,得到的固态合金是长程无序结构,没有晶态合金的晶粒、晶界存在,称之为非晶合金,被称为是冶金材料学的一项革命。这种非晶合金具有许多独特的性能,如优异的磁性、耐蚀性、耐磨性、高的强度、硬度和韧性,高的电阻率和机电耦合性能等。 由于它的性能优异、工艺简单,从80 年代开始成为国内外材料科学界的研究开发重点。目前美、日、德国已具有完善的生产规模,并且大量的非晶合金产品逐渐取代硅钢和坡莫合金及铁氧体涌向市场。 常用的非晶合金的种类有:铁基、铁镍基、钴基非晶合金以及铁基纳米晶合金。 目前,非晶软磁合金所达到的最好单项性能水平为: 初始磁导率μ0 = 14 × 104 钴基非晶 最大磁导率μm = 220 × 104 钴基非晶 矫顽力Hc = 0.001 Oe 钴基非晶 矩形比Br/Bs = 0.995 钴基非晶 饱和磁化强度4πMs = 18300 Gs 铁基非晶 电阻率ρ = 270 微欧厘米 常用的非晶合金的种类有:铁基、铁镍基、钴基非晶合金以及铁基纳米晶合金。其国家牌号及性能特点见表及图所示,为便于对比,也列出晶态合金硅钢片、坡莫合金1J79 及铁氧体的相应性能。这几类材料各有不同的特点,在不同的方面得到应用。 牌号基本成分和特征 1K101 Fe-Si-B 系快淬软磁铁基合金 1K102 Fe-Si-B-C 系快淬软磁铁基合金 1K103 Fe-Si-B-Ni 系快淬软磁铁基合金 1K104 Fe-Si-B-Ni Mo 系快淬软磁铁基合金 1K105 Fe-Si-B-Cr(及其他元素)系快淬软磁铁基合金 1K106 高频低损耗Fe-Si-B 系快淬软磁铁基合金 1K107 高频低损耗Fe-Nb-Cu-Si-B 系快淬软磁铁基纳米晶合金 1K201 高脉冲磁导率快淬软磁钴基合金 1K202 高剩磁比快淬软磁钴基合金 1K203 高磁感低损耗快淬软磁钴基合金 1K204 高频低损耗快淬软磁钴基合金 1K205 高起始磁导率快淬软磁钴基合金 1K206 淬态高磁导率软磁钴基合金

塑料软包装材料的分类介绍

塑料软包装材料的分类介绍 (1)单层薄膜——要求具有透明、无毒、不渗透性,具有良好的热封制袋性、耐热耐寒性、机械强度、耐油脂性、耐化学性、防粘连性。可用挤出吹膜法、挤出流延法、压延法、溶剂流延法等多种方法制得。单层薄膜的热封性能不但同树脂的相对分子质量分布、分子歧化度有关,还与制膜时工艺条件,如温度、冷却速度、吹胀比等有关。 (2)铝箔——99.5%纯度的电解铝熔融后用压延机压制成箔,作软塑包装的基材非常理想。它具有良好的气体阻隔性、水蒸汽阻隔性、遮光性、导热性、屏蔽性,25。4μ以上的铝箔无针孔,不渗透性好。 (3)真空蒸镀铝膜——在高真空度下,把低沸点的金属,如铝,熔融气化并堆积在冷却鼓上的塑料薄膜上,形成一层具有良好金属光泽的镀铝膜。镀铝厚度400~600?,可大大提高基材的阻氧性、阻湿性。基材要经电晕处理,用溶胶涂布。 (4)硅镀膜——上世纪80年代开发的具有极高阻隔性能的透明包装材料,又称陶瓷镀膜。不管多高温度湿度下,性能不会变化,适合于制高温蒸煮包装袋。镀层有两种:一为硅氧化物SiOx,X越小阻隔性越好;二为Al2O3。镀膜方法有物理蒸镀法(physical vapor deposition, PVD)和化学蒸镀法 (chemical vapor deposition, CVD )。 (5)涂胶(干式/湿式)复合膜——单层薄膜都有一定优点,也有固有的缺点,往往难以满足多种包装性能要求,多层不同基材复合,即能互相取长补短,发挥综合优势。 湿式复合膜方法:一种基材上涂胶后同另一基材薄膜压贴复合,然后干燥固化。如果是非多孔材料,涂胶干燥可能不良,则复合膜的质量下降。 干式复合膜方法:在基材上涂布粘合剂,先让胶干燥,然后才压贴复合,使不同基

软磁材料的种类、特点及应用

软磁材料的种类、特点及应用 一软磁材料的发展 软磁材料在工业中的应用始于19世纪末。随着电力工及电讯技术的兴起,开始使用低碳钢制造电机和变压器,在电话线路中的电感线圈的磁芯中使用了细小的铁粉、氧化铁、细铁丝等。到20世纪初,研制出了硅钢片代替低碳钢,提高了变压器的效率,降低了损耗。直至现在硅钢片在电力工业用软磁材料中仍居首位。到20年代,无线电技术的兴起,促进了高导磁材料的发展,出现了坡莫合金及坡莫合金磁粉芯等。从40年代到60年代,是科学技术飞速发展的时期,雷达、电视广播、集成电路的发明等,对软磁材料的要求也更高,生产出了软磁合金薄带及软磁铁氧体材料。进入70年代,随着电讯、自动控制、计算机等行业的发展,研制出了磁头用软磁合金,除了传统的晶态软磁合金外,又兴起了另一类材料—非晶态软磁合金。 二常用软磁磁芯的种类 铁、钴、镍三种铁磁性元素是构成磁性材料的基本组元。 按(主要成分、磁性特点、结构特点)制品形态分类: (1) 粉芯类:磁粉芯,包括:铁粉芯、铁硅铝粉芯、高磁通量粉芯(High Flux)、坡莫合金粉芯(MPP)、铁氧体磁芯 (2) 带绕铁芯:硅钢片、坡莫合金、非晶及纳米晶合金 三常用软磁磁芯的特点及应用 (一) 粉芯类 1. 磁粉芯 磁粉芯是由铁磁性粉粒与绝缘介质混合压制而成的一种软磁材料。由于铁磁性颗粒很小(高频下使用的为0.5~5 微米),又被非磁性电绝缘膜物质隔开,因此,一方面可以隔绝涡流,材料适用于较高频率;另一方面由于颗粒之间的间隙效应,导致材料具有低导磁率及恒导磁特性;又由于颗粒尺寸小,基本上不发生集肤现象,磁导率随频率的变化也就较为稳定。主要用于高频电感。磁粉芯的磁电性能主要取决于粉粒材料的导磁率、粉粒的大小和形状、它们的填充系数、绝缘介质的含量、成型压力及热处理工艺等。 常用的磁粉芯有铁粉芯、坡莫合金粉芯及铁硅铝粉芯三种。 磁芯的有效磁导率μe及电感的计算公式为:μe = DL/4N2S × 109 其中:D 为磁芯平均直径(cm),L为电感量(享),N 为绕线匝数,S为磁芯有效截面积(cm2)。 (1) 铁粉芯 常用铁粉芯是由碳基铁磁粉及树脂碳基铁磁粉构成。在粉芯中价格最低。饱和磁感应强度值在1.4T左右;磁导率范围从22~100;初始磁导率μi随频率的变化稳定性好;直流电流叠加性能好;但高频下损耗高。 (2). 坡莫合金粉芯 坡莫合金粉芯主要有钼坡莫合金粉芯(MPP)及高磁通量粉芯(High Flux)。 MPP 是由81%Ni、2%Mo及Fe粉构成。主要特点是:饱和磁感应强度值在7500Gs左右;

相关主题
文本预览
相关文档 最新文档