当前位置:文档之家› 交流调速控制系统

交流调速控制系统

直流电机调速控制系统设计

成绩 电气控制与PLC 课程设计说明书 直流电机调速控制系统设计 . Translate DC motor speed Control system design 学生姓名王杰 学号20130503213 学院班级信电工程学院13自动化 专业名称电气工程及其自动化 指导教师肖理庆 2016年6月14日

目录 1 直流电机调速控制系统模型 0 1.1 直流调速系统的主导调速方法 0 因此,降压调速是直流电机调速系统的主导调速方法。 0 1.2 直流电机调速控制的传递函数 0 1.2.1 电流与电压的传递函数 (1) 1.2.2 电动势与电流的传递函数 (1) 由已学可知,单轴系统的运用方程为: (1) 1.3 直流调速系统的控制方法选择 (2) 1.3.1 开环直流调速系统 (3) 1.3.2 单闭环直流调速系统 (3) 由前述分析可知,开环系统不能满足较高的调速指标要求,因此必须采取闭环控制系统。图1-4所示的是,转速反馈单闭环调速系统,其是一种结构相对复杂的反馈控制系统。转速控制是动态性能的控制,相比开环系统,速度闭环控制的控制精度及控制稳定性要好得多,但缺乏对于静态电流I的有效控制,故这类系统被称之为“有静差”调速系统。 (3) 1.3.3 双闭环直流调速系统 (4) 图1-4 双闭环控制直流调速控制系统 (4) 1.3.3.1 转速调节器(ASR) (4) 1.3.3.1 电流调节器(ACR) (4) 1.4 直流电机的可逆运行 (5) 1.2 ×××××× (7) 1.2.1 电流与电压的传递函数 (7) .. 7 3 PLC在直流调速系统中的应用 (8) 2 ××××× (9) 2.1 ×××××× (9) 2.1.1 ×××× (9) 3 ××××× (11) 3.1 ×××××× (11) 3.1.1 ×××× (11) 参考文献 (12) 附录 (13) 附录1 (13) 附录2 (13)

转速开环恒压频比控制的交流异步电动机调速系统典型例子

课题:转速开环恒压频比控制的交速 姓名:谢海波 学号:P091812925 专业班级:电气工程及其自动化(3)班 西北民族大学电气工程学院 转速开环恒压频比控制的交流异步电动机调速系统

摘要:转速开环恒压频比控制是交流电动机变频调速最基本的控制方式,一般变频调速装置都有这项功能,恒压频比的转速开环工作方式能满足大多数场合交流电动机调速控制的要求,并且使用方便,是通用变频器的基本模式。采用恒压频比控制,在基频以下的调速过程中的转差率基本不变,所以电动机的机械特性较硬,电动机有较好的调速性能。异步电动机的变压变频调速系统一般简称为变频调速系统。由于在调速时转差功率不随转速而变化,调速范围宽,无论高速还是低速时效率都较高,在采取一定的技术措施后能实现高动态性能,可与直流调速系统媲美。因此现在它的应用面很广,目前交流异步电动机的调速系统已经广泛应用于数控机床、风机、泵类、传送带、给料系统、空调器等设备的电力源和动力源,并起到了节省电能,提高设备自动化,提高产品质量的良好效果.下文在详细分析交流异步电动机变频调速的原理基础上,应用MATLAB/SIMULINK仿真软件,实现了转速开环恒压频比控制的交流异步电动机调速系统的仿真,并且详细分析了仿真结果。 关键词:异步电动机;变频调速;MATLAB 仿真 1.仿真系统说明 本文对交流系统进行建模仿真,可以更加熟悉交流调速系统的结构,掌握各种调速系统的优缺点,选择合理的方案,解决实际中的问题。在进行电动机调速时,常须考虑的一个重 要因素,就是希望保持电动机中每极磁通量为额定值不变。如果磁通太弱,没有充分利用 电机的铁芯,是一种浪费;如果过分增大磁通,又会使铁心饱和,从而导致过大的励磁电流,严重时会因绕组过热而损坏电机。对于直流电机,励磁系统是独立的,只要对电枢反应有恰 当的补偿,保持不变是很容易做到的。在交流异步电机中,磁通由定子和转子磁动势合成产生,要保持磁通恒定就要费一些周折。 2.变频调速控制方式和原理 转速开环恒压频比控制是交流电动机变频调速最基本的控制方式,一般变频调速装置都带有这项功能,在异步电动机调速时,总希望保持主磁通为额定值。由异步电机定子每相电动势有效值可知,如果略去定子阻抗下降,有 (1) 由(1)式知,若定子端电压不变,随着升高,将减小。又由转矩公式 知,在相同的情况下,减小会导致电动机输出转矩下降,严重时会使电动机堵转。因此, 在变频调速过程中应该同时改变定子电压和频率,以保持主磁通不变。而如何按比例改变电压和频率,要分基频以下和基频以上两种情况。 2.1基频以下调速 恒定压频比调速要求;当相对较高时,可忽略定子电阻那么最大实用转

直流电动机脉宽调速控制系统的设计

课题名称直流电动机脉宽调速系统设计及实现 专业电气工程及其自动化 班级电气①班 学生姓名夏禹 学号 46 指导教师吴生彪

一:设计原理 1.系统设计原理 脉宽调制技术是利用数字输出对模拟电路进行控制的一种有效技术,尤其是在对电机的转速控制方面,可大大节省能量,PWM 控制技术的理论基础为:冲量相等而形状不同的窄脉冲加在具有惯性的环节上时,其效果基本相同,使输出端得到一系列幅值相等而宽度不相等的脉冲,用这些脉冲来代替正弦波或其他所需要的波形。按一定的规则对各脉冲的宽度进行调制,既可改变逆变电路输出电压的大小,也可改变输出频率。 直流电动机的转速n 和其他参量的关系可表示为 a a a e U I R n C -= Φ ∑ (1) 式中 Ua ——电枢供电电压(V ); Ia ——电枢电流(A ); Ф——励磁磁通(Wb ); Ra ——电枢回路总电阻(Ω); CE ——电势系数, ,p 为电磁对数,a 为电枢并联支路数,N 为导体数。 由式(1)可以看出,式中Ua 、Ra 、Ф三个参量都可以成为变量,只要改变其中一个参量,就可以改变电动机的转速,所以直流电动机有三种基本调速方法:(1)改变电枢回路总电阻Ra ;;(2)改变电枢供电电压Ua ;(3)改变励磁磁通Ф 下图为PMW 直流电机设计框图

基本原理 脉冲宽度调制(PWM)是一种对模拟信号电平进行数字编码的方法。通过高分辨率计数器的使用,方波的占空比被调制用来对一个具体模拟信号的电平进行编码。PWM信号仍然是数字的,因为在给定的任何时刻,满幅值的直流供电要么完全有(ON),要么完全无(OFF)。电压或电流源是以一种通(ON)或断(OFF)的重复脉冲序列被加到模拟负载上去的。通的时候即是直流供电被加到负载上的时候,断的时候即是供电被断开的时候。只要带宽足够,任何模拟值都可以使用PWM进行编码。简而言之,就是用改变电机电枢(定子)电压的接通和断开的时间比(占空比)来控制马达的速度,在脉宽调速系统中,当电机通电时,其速度增加;电机断电时,其速度减低。只要按照一定的规律改变通、断电的时间,即可使电机的速度达到并保持一稳定值。 3.直流电机PWM调速基本原理 PWM方式是在大功率开关晶体管的基极上,加上脉冲宽度可调的方波电压,控制开关管的导通时间t,改变占空比,达到控制目的。图1是直流PWM系统原理框图。这是一个双闭环系统,有电流环和速度环。在此系统中有两个调节器,分别调节转速和电流,二者之间实行串级连接,即以转速调节器的输出作为电流调节器的输入,再用电流调节器的输出作为PWM的控制电压。核心部分是脉冲功率放大器和脉宽调制器。控制部分采用SG1525(脉宽调制芯片SG1525具有欠压锁定、故障关闭和软起动等功能,因而在中小功率电源和电机调速等方面应用较广泛。SG1525是电压型控制芯片,利用电压反馈的方法控制PWM信号的占空比,整个电路成为双极点系统的控制问题,简化了补偿网络的设计。)集成控制器产生两路互补的PWM脉冲波形,通过调节这两路波形的宽度来控制H电路中的GTR 通断时间,便能够实现对电机速度的控制。为了获得良好的动、静态品质,调节器采用PI调节器并对系统进行了校正。检测部分中,采用了霍尔片式电流检测装置对电流环进行检测,转速还则是采用了测速电机进行检测,能达到比较理想的检测效果。

DEH调速控制系统

DEH在运行中通过对主汽门、调门阀位的控制实现对汽轮机转速的控制以及当汽轮机出现异常时进行危急遮断保护。 一.DEH调速控制系统: 1.1DEH调速控制的原理 DEH就是一个将电信号转变为现实阀位信号的东西,使用EH油为介质,当需要开大阀门时,伺服阀打到B位置,增加进入油动机的EH油,油动机中活塞上移带着阀门阀杆上移,将阀门打开,当需要关小阀门时,伺服阀打到A位置,减少油动机的EH,活塞下移带着阀杆一起下移阀门关小。 如图所示: 1.2在运行中如何实现阀位控制: 当目标转速经过计算器算出一个阀位的给定值和实际值有了偏差,发出一个信号到调节器,调节器根据这个偏差来选择是增加进油或是排油,再把信号放大到伺服阀能够感应到的信号,再到油动机动作,阀门开度改变,阀门上的位置传感器将新的位置和目标值比较,得无偏差,一次动作结束。 如图所示: 1.3 DEH实际转速控制步骤: 当汽机挂闸且具备冲转条件时,运行人员发出指令,此时中压主汽门和高压调门全开,高压主气门和中压调门调门保持关闭。运行人员在DEH画面中设定目标转速和升速率,转速的给定值按照事先设定的升速率向目标值爬升,此时是实际值跟随目标值。转速PID在偏差的作用下输出增加,开启中压调阀,实际转速随之上升,当转速与目标值相等时,程序停止升速自动保持当前转速,等运行人员发出新的目标值。转速到达600rpm后,高压主气阀参与控制,按TV(高压主汽门):IV(中压调门)=1:3(此时利用的是高压主汽门上的预启阀来控制的),当转速达到2890~2910rpm时,程序进入保持状态,表示进入TV/IV切换阶段,运行人员发出TV/IV切换命令,切换结束后,GV,IV控制汽轮机升速到3000转。 二.DEH危急遮断的功能 2.1危急遮断的原理

电机调速控制系统设计

一、问题描述 针对电机调速控制系统,设计计算机可实现的PID 控制器,利用simulink 平台实验研究,确定最佳的离散周期并给出实验结果分析和与连续PID 控制器的比较。离散控制器输出连续的受控过程时加零阶保持器。 有余力的同学可尝试设计最小拍无波纹控制器。 二、理论方法分析 离散控制系统所特有的一个参数就是采样周期。可以说离散控制系统的采样周期的选择的基本原则是活的最高的体统性能性价比。 由于采样周期的选择是众多因素的折中考虑,所以一般中有一些近似的计算公式和经验数值可以利用。 在PID 整定完的系统中,对于输入阶跃响应信号可以用两种方法计算出采样周期; ⑴考虑系统阶跃响应的上升时间r t ,则有采样周期24 r s r t T t ≤≤;r t 表示系统的反映速度。 ⑵知道系统是有自平衡的过程,采用过程时间常数 95T ,95T 定义为阶跃响应)(t y 从0变到95%)(∞y 的时间,它综合反映了过程的自平衡能力,其经验公式为 95 9517.007.0T T T s ≤≤。 三、实验设计与实现 搭建Simulink 图后,观测输出波形,发现,上升至95%所需时间约为0.268s

因为959517.007.0T T T s ≤≤。故取Ts 为0.02. 再搭建离散控制系统Simulink 图 四、实验结果与分析 PID 控制器与离散控制比较。见下图:

比较后发现:利用离散控制系统设计的系统性能指标能够达到PID所要求的水平。 五、结论与讨论 利用离散控制系统设计方法设计的离散控制系统与PID整定法设计的连续控制系统性能基本接近。 但在某些场合,特别是现代的工业过程控制中,利用数字电子元件设计的系统有诸多优势:例如方便与计算机相连,便于历史、实时数据存储和传输等 事后感: 由于这部分理论知识学习的不扎实,实验过程中似有“云里雾里”之感…… 参考文献: [1] 杨平等编著,自动控制原理实验与实践. 北京:中国电力出版社,2005 [2] 杨平等编著,自动控制原理理论篇. 北京:中国电力出版社,2009

交流电机调压调速系统(matlab)正文

1 设计任务 1、了解并熟悉双闭环三相异步电机调压调速原理及组成。 2、学习 SIMULINK,熟悉相关的模块功能。 3、进一步理解交流调压系统中电流环和转速环的作用。 2 设计要求 1、利用SIMULINK建立闭环调速系统仿真模型。 2、调试完成调压模块仿真、开环系统仿真、闭环系统仿真。 3 设计设备 1、计算机一台 2、MATLAB仿真软件 4 设计原理 调压调速即通过调节通入异步电动机的三相交流电压大小来调节转子转速的方法。理论依据来自异步电动机的机械特性方程式: 其中,p为电机的极对数; 为定子电源角速度; w 1 为定子电源相电压; U 1 R ’为折算到定子侧的每相转子电阻; 2 为每相定子电阻; R 1 L 为每相定子漏感; 11 L 为折算到定子侧的每相转子漏感; 12 S为转差率。 图1 异步电动机在不同电压的机械特性

由电机原理可知,当转差率s 基本保持不变时,电动机的电磁转矩与定子电压的平方成正比。因此,改变定子电压就可以得到不同的人为机械特性,从而达到调节电动机转速的目的。 4.1 调压电路 改变加在定子上的电压是通过交流调压器实现的。目前广泛采用的交流调压器由晶闸管等器件组成。它是将三个双向晶闸管分别接到三相交流电源与三相定子绕组之间通过调整晶闸管导通角的大小来调节加到定子绕组两端的端电压。这里采用三相全波星型联接的调压电路。 图2 调压电路原理图 4.2 开环调压调速 开环系统的主电路由触发电路、调压电路、电机组成。原理图如下: Ua Ub Uc T2 T3 T5 T4 T6 R R R N T1

图3 开环调压系统原理图 AT为触发装置,用于调节控制角的大小来控制晶闸管的导通角,控制晶闸管输出电压来调节加在定子绕组上的电压大小。

PWM控制电机调速系统

摘要:提出一个基于PWM控制的直流电机控制系统,从硬件电路和软件设计两方面进行系统设计,介绍了调速系统的整体设计思路、硬件电路和控制算法。下位机采用MPC82G516实现硬件PWM的输出,从而控制电机的电枢电压,并显示电机调速结果。上位机采用LABVIEW软件,实现实时跟踪与显示。最后对控制系统进行实验,并对数据进行分析,结果表明该系统调速时间短,稳定性能好,具有较好的控制效果。 随着计算机控制技术的发展,微处理器已经广泛使用于直流传动系统,实现了全数字化控制。电机采用微处理器控制的电压、电流、转矩、转速、转角等,实现全数字直流调速,控制精度、可靠性、稳定性、电机的性能得到提高。目前,PWM 调速成为电机调速的新方式,并凭借开关频率高、低速运行稳定、动态 [1-6][5-6]性能优良、效率高等优点,在电机调速中被普遍运用。但很多文献提到的 PWM 信号,多采用软件 PWM调速,即通过单片机的中断实现,缺点是占系统资源,易受系统中断影响和干扰,造成系统不稳定。本文将针对这一点,设计一种基于硬件 PWM 控制,调速时间更短的电机调速系统,并具有较好的稳定性能。 一、电机控制系统的整体设计 1.1 系统整体设计原理图 系统整体设计如图1所示,主要原理框图包括:LCD显示、按盘输入、测速模块、PWM调速模块四部分。电路原理图如图2所示: 图 1

图2 1.2 PWM信号 PWM信号的产生采用硬件PWM信号,即不采用中断实现PWM信号,而是利用单片机MPC82G516的PCA模式,PCA设置成PWM模式直接产生PWM信号。频率取决于PCA定时器的时钟源,占空比取决于模块捕获寄存器CCAPNL与扩展的第9位ECAPNL的值。由于使用9位比较,输出占空比可以真正实现0%到100%可调,占空比计算公式为: 占空比=1-{ ECAPnH,[CCAPnH]}/256 在电源电压 Ud 不变的情况下,电枢端电压的平均值取决于占空比η 的大小。通过改变η 的值可以改变电枢端电压的平均值,从而达到调速的目的。 1.3 测速模块 测速模块采用自带霍尔传感器并具有整形功能的直流电机调速板 J1,该模块能实现电机正反转、测速、调速功能,并自带整形芯片,调试效果较好。通过霍尔传感器把测速脉冲信号送单片机 P3.2,由单片机 P1.0送到测速模块第 5 脚,控制电机正反转。PWM 信号由 P1.2 送到测速模块第 3 脚,实现电机的调速。 1.4 I/O接口电路 输入模块采用 4 个按键 S1、S2、S3、S4,接在单片机 P1.4、P1.5、P1.6、P1.7,分别实现启动、加速、扩展功能、减速功能。电机正反转控制由 P1.0 送到测速模块第 1 脚。输出显示模块采用 LCD1602,是一种内置 8192 个 16*16

交流异步电动机变频调速系统设计样本

中南大学 《工程训练》 ——设计报告 设计题目:异步电机变频调速 指引教师:黎群辉 设计人:冯露 学号: 专业班级:自动化0906班 设计日期:9月

交流异步电动机变频调速系统设计 摘要 近年来,交流电机变频调速及其有关技术研究己成为当代电气传动领域一种重要课题,并且随着新电力电子器件和微解决器推出以及交流电机控制理论发展,交流变频调速技术还将会获得巨大进步。 本文对变频调速理论,逆变技术,SPWM产生原理进行了研究,在此基本上设计了一种新型数字化三相SPWM变频调速系统,以8051控制专用集成芯片 SA4828为控制核心,采用IGBT作为主功率器件,同步采用EXB840构成IGBT驱动电路,整流电路采用二极管,可使功率因数接近1,并且只用一级可控功率环节,电路构造比较简朴。 V控制,同步,软件程序使得参数输入和变频器运营方式变本文在控制上采用恒 f 化极为以便,新型集成元件采用也使得它开发周期短。 此外,本文对SA4828三相SPWM波发生器使用和编程进行了详细简介,完毕了整个系统控制某些软硬件设计。 V控制,SA4828波形发生器 核心字:变频调速,正弦脉宽调制, f

目录 摘要................................................ 错误!未定义书签。 1.1 研究目与意义 (1) 1.2本次设计方案简介 (2) 1.2.1 变频器主电路方案选定 (2) 1.2.2 系统原理框图及各某些简介 (3) 1.2.3 选用电动机原始参数 (4) 2交流异步电动机变频调速原理及办法 (5) 2.1 异步电机变频调速原理 (5) 2.2 变频调速控制方式及选定 (6) V比恒定控制 (6) 2.2.1 f 2.2.2 其他控制方式................................ 错误!未定义书签。3变频器主电路设计. (13) 3.1 主电路工作原理 (13) 3.2 主电路各某些设计 (13) 3.3. 采用EXB840IGBT驱动电路 (15) 4控制回路设计 (16) 4.1 驱动电路设计 (16) 4.2 保护电路......................................... 错误!未定义书签。 4.2.1 过、欠压保护电路设计........................ 错误!未定义书签。 4.2.2 过流保护设计................................ 错误!未定义书签。 4.3 控制系统实现 (19) 5变频器软件设计....................................... 错误!未定义书签。 5.1 流程图 (22)

基于PLC的电机调速控制系统

控制系统课程设计 项目名称:以西门子S7-200为核心的电机速度监控 系统 学生姓名 / 学号: 卢泽涛 1307300108 吴钟森 1307300105 夏杰东 1307300107 指导老师:黄峥 班级电气133 专业名称电气工程及其自动化 提交日期 2016 年 12月 15 日 答辩日期 2016 年 12月 15日

一、系统整体功能说明及软硬件选型 1、通过PLC控制变频器,实现远程方式控制控制鼠笼式异步电动机的正反转及速度。 2、将编码器中与转速相对应的输出电压采集到PLC中。 3、通过PLC编写PID控制程序,控制电机的转速。 4、应用触摸屏组态软件设计控制系统的界面,与PLC进行动态连接,可在界面中控制电机的转速,显示变频器的频率、电机的正反转状态、实际转速等。 5、设置电机的正常转速范围(上、下限),当电机转速超出正常范围时,停机并报警,并可复位报警信号。 6、软硬件选型说明表如下: 二、 I/O点与输入输出设备对应关系表 PLC与变频器对应接线表

组态软件与PLC通信关系表 另外,变频器U、V、W端口分别接电机A、B、C三相,如图: 三、系统的原理图,包括主电路和控制电路。

四、软硬件相关设置的说明 1、软件相关设置:MCGS组态软件与西门子s7-200PLC连接相关设置如下: 2、欧姆龙变频器参数设置:n01=08;n02=01;n03=02;n32=0.4

五、程序功能的详细说明 1、MCGS组态设计,设计的界面以及功能如下: (1)电机运转前必须先输入转速(例如800 r/min)然后点击正转或反转按钮,为了安全,在电机转向切换时,先按停止,待电机停下再进行转向变换。 (2)该组态设置了电机转速报警,大于上限值(例如|1200| r/min)时停机报警。 (3)该组态可精准转换编码器转速对应频率。 (4)PID控制参数于PLC程序中编好,采用效果最好的一组。 (5)各参数设置详见上文第四硬件设置部分。 2、西门子s7-200PLC原程序详细说明如下:(见下页)

交流电动机调速系统的分类

交流电动机调速系统的分类 1.同步电动机调速系统 同步电动机只能依靠改变频率来进行调速,而根据频率控制方式的不同,可把同步电动机调速系统分为他控式和自控式两种类型。 如果用独立的变频装置作为同步电动机的变频电源进行调速,则称之为他控式同步电动机调速系统,大多用于类似永磁同步电动机的小容量场合。 采用频率闭环方式的同步电动机调速系统称为自控式同步电动机调速系统,它是用电动机轴上安装的位置检测器来控制变频装置触发脉冲,使同步电动机工作在自同步状态。自控式同步电动机调速系统又可细分为负载换向自控式同步电动机调速系统和交一交变频供电的自控式同步电动机调速系统。 负载换向自控式同步电动机调速系统叉称为x换向器电机,它的主电路采用交一直-交电流型变流器,利用同步电动机电流超前电压的特点,使逆变器的晶闸管工作在自然换向状态。这种系统又被称为LCI(Load Commutated Inve11er),它的容量已达到数万千伏安,电压达万伏以上。 交一交变频同步电动机调速系统的逆变器由晶闸管组成,采用交一交循环变流结构和矢量控制技术,具有优良的动态性能,广泛地用于轧钢机主传动系统中。交一交变频同步电动机调速系统的容量很大,但调频范围只能限制在工频的三分之一左右。 2.异步电动机调速系统 在异步电动机中,从定子传入转子的电磁功率可以分成两部分:一部分是拖动负载的有效功率;另一部分是转差功率,与转差率成正比,它的去向是调速系统效率高低的标志。就转差功率的处理方式的不同,异步电动机调速系统可分成三大类。 (1)转差功率消耗型调速系统。这种调速系统全部转差功率都被消耗掉,用增加转差功率的消耗来换取转速的降低,因而效率也随之降低。降电压调速、电磁转差离合器调速及绕线异步电动机转子串电阻调速这三种方法都属于这一类。 (2)转差功率回馈型调速系统。这种调速系统的大部分转差功率通过变流装置回馈给电网或者加以利用,转速越低回馈的功率越多,但是增设的装置也要多消耗一部分功率。绕线异步电动机转子双馈调速即属于这一类。 (3)转差功率不变型调速系统。在这种调速系统中,转差功率仍旧消耗在转子里,但小论转速高低,转差功率基本不变。如变极对数调速、变频调速两种调速方法即属于这一类。 2.异步电动机转差回馈型调速系统 双馈调速足指将电能分别馈入异步电动机的定子绕组和转子绕组,通常将定子绕组接入工频电源,将转子绕组接到频率、幅值、相位和相序都可以调节的变频电源。如果改变转子绕组电源的频率、幅值、相位和相序,就可以调节异步电机的转矩、转速、转向及和定子侧的无功功率。这种双馈调速的异步电动机可以超同步或亚同步运行,不但可以工作在电动状态,而且可以工作在发电状态。 因为交一交变流器采用晶闸管自然换向方式,结构简单,可靠性高,而且交,交变流器能够直接进行能量转换,效率高,所以,在双馈调速方式中采用交.交变流器作为转子绕组的变频电源是比较合适的。 绕线式异步电动机串级调速系统是从定子侧馈入电能,从转子侧馈出电能的系统。从广义上说,它也是双馈调速系统的一种。 在双馈调速中,所用变频器的功率仅占电动机总功率的一小部分,可以大大降低变频器的容量,从而降低了调速系统的成本,此外,双馈电机还可以调节功率因数,由于具有这些优点,双馈电机特别适合应用于大功率的风机、水泵类负载的调速场合;双馈调速方式在风力、

电机调速控制设计

系统设计专题之电机调速控制设计 学院:自动化与电气工程学院 班级:******** 姓名:***** 学号:******* 日期:*******

1CPLD系统简介 1.1CPLD简介 CPLD(Complex Programmable Logic Device)复杂可编程逻辑器件,是从PAL 和GAL器件发展出来的器件,相对而言规模大,结构复杂,属于大规模集成电路范围。是一种用户根据各自需要而自行构造逻辑功能的数字集成电路。其基本设计方法是借助集成开发软件平台,用原理图、硬件描述语言等方法,生成相应的目标文件,通过下载电缆(“在系统”编程)将代码传送到目标芯片中,实现设计的数字系统。 1.2CPLD系统的基本构架 主要包括有处理器、外围电路及接口和外部设备三大部分其中外围电路一般包括有时钟、复位电路、。程序存储器、数据存储器和电源模块等部件组成。外部设备一般应配有USB、显示器、键盘和其他等设备及接口电路。在一片CPLD 微处理器基础上增加电源电路、时钟电路和存储器电路,就构成了一个CPLD核心控制模块。其中操作系统和应用程序都可以固化在ROM中。 1.3CPLD系统的特点 采用32位EPM3032A微处理器和实时操作系统组成的CPLD控制系统,与传统基于单片机的控制系统和基于PC的控制方式相比,具有以下突出优点:性能方面:采用32位RISC结构微处理器,主频从30MHz到1200MHz以上,接近PC机的水平,但体积更小,能够真正地“嵌入”到设备中。 实时性方面:CPLD机控制器内嵌实时操作系统(RTOS),能够完全保证控制系统的强实时性。 人机交互方面:CPLD控制器可支持大屏幕的液晶显示器,提供功能强大的图形用户界面,这些方面的性能也接近于PC,优于单片机。 系统升级方面:CPLD控制器可为控制系统专门设计,其功能专一,成本较低,而且开放的用户程序接口(API)保证了系统能够快速升级和更新。 1.4CPLD技术的应用领域 CPLD技术可应用在:工业控制;交通管理;信息家电;家庭智能管理;网络及电子商务;环境监测;机器人等领域。 在工业和服务领域中,大量CPLD技术也已经应用于工业控制、数控机床、智能工具、工业机器人、服务机器人等各个行业,正在逐渐改变着传统的工业生产和服务方式。例如,飞机的电子设备、城市地铁购票系统等都可应用CPLD系统来实现。

基于MATLAB-SIMULINK的交流电动机调速系统仿真毕业设计

毕业论文声明 本人郑重声明: 1.此毕业论文是本人在指导教师指导下独立进行研究取得的成果。除了特别加以标注地方外,本文不包含他人或其它机构已经发表或撰写过的研究成果。对本文研究做出重要贡献的个人与集体均已在文中作了明确标明。本人完全意识到本声明的法律结果由本人承担。 2.本人完全了解学校、学院有关保留、使用学位论文的规定,同意学校与学院保留并向国家有关部门或机构送交此论文的复印件和电子版,允许此文被查阅和借阅。本人授权大学学院可以将此文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本文。 3.若在大学学院毕业论文审查小组复审中,发现本文有抄袭,一切后果均由本人承担,与毕业论文指导老师无关。 4.本人所呈交的毕业论文,是在指导老师的指导下独立进行研究所取得的成果。论文中凡引用他人已经发布或未发表的成果、数据、观点等,均已明确注明出处。论文中已经注明引用的内容外,不包含任何其他个人或集体已经发表或撰写过的研究成果。对本文的研究成果做出重要贡献的个人和集体,均已在论文中已明确的方式标明。 学位论文作者(签名): 年月

关于毕业论文使用授权的声明 本人在指导老师的指导下所完成的论文及相关的资料(包括图纸、实验记录、原始数据、实物照片、图片、录音带、设计手稿等),知识产权归属华北电力大学。本人完全了解大学有关保存,使用毕业论文的规定。同意学校保存或向国家有关部门或机构送交论文的纸质版或电子版,允许论文被查阅或借阅。本人授权大学可以将本毕业论文的全部或部分内容编入有关数据库进行检索,可以采用任何复制手段保存或编汇本毕业论文。如果发表相关成果,一定征得指导教师同意,且第一署名单位为大学。本人毕业后使用毕业论文或与该论文直接相关的学术论文或成果时,第一署名单位仍然为大学。本人完全了解大学关于收集、保存、使用学位论文的规定,同意如下各项内容: 按照学校要求提交学位论文的印刷本和电子版本;学校有权保存学位论文的印刷本和电子版,并采用影印、缩印、扫描、数字化或其它手段保存或汇编本学位论文;学校有权提供目录检索以及提供本学位论文全文或者部分的阅览服务;学校有权按有关规定向国家有关部门或者机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权大学可以将本学位论文的全部或部分内容编入学校有关数据库和收录到《中国学位论文全文数据库》进行信息服务。在不以赢利为目的的前提下,学校可以适当复制论文的部分或全部内容用于学术活动。 论文作者签名:日期: 指导教师签名:日期:

(交流电机变频调速系统设计)

机电传动与控制课程综合训练三 一、综合训练项目任务书 综合训练项目:交流电机变频调速系统 目的和要求:加强对交流变频调速系统及变频器的理解;应用交流变频调速系统及变频器解决交流电机变频调速问题。提高分析和解决实际工程问题的能力。促成“富于探索精神,具有较强的自学能力、开拓创新意识和敏锐的观察事物以及分析处理事物的能力”的目标实现。 成果形式:交流电机变频调速系统设计说明书。 相关参数:参看《机电传动控制》(第五版),冯清秀等编著,华中科技大学出版社,P291~316。 一、综合训练项目设计内容 1.变频调速系统 1.1 三相交流异步电动机的结构和工作原理 三相交流异步电动机是把电能转换成机械能的设备。一般电动机主要由两部分组成:固定部分称为定子,旋转部分称为转子。三相交流异步电动机的工作原理是建立在电磁感应定律、全电流定律、电路定律和电磁力定律等基础上的。当磁极沿顺时针方向旋转,磁极的磁力线切割转子导条,导条中就感应出电动势。电动势的方向由右手定则来确定。因为运动是相对的,假如磁极不动,转子导条沿逆时针方向旋转,则导条中同样也能感应出电动势来。在电动势的作用下,闭合的导条中就产生电流。该电流与旋转磁极的磁场相互作用,而使转子导条受到电磁力,电磁力的方向可用左手定则确定。由电磁力进而产生电磁转矩,转子就转动起来。 1.2 变频调速原理 变频器可以分为四个部分,如图1.1所示。 通用变频器由主电路和控制回路组成。给异步电动机提供调压调频电源的电力变换部分,称为主电路。主电路包括整流器、中间直流环节(又称平波回路)、逆变器。

图1.1 变频器简化结构图 ⑴整流器。它的作用是把工频电源变换成直流电源。 ⑵平波回路(中间直流环节)。由于逆变器的负载为异步电动机,属于感性负载。无论电动机处于电动状态还是发电状态,起始功率因数总不会等于1。因此,在中间直流环节和电动机之间总会有无功功率的交换,这种无功能量要靠中间直流环节的储能元件—电容器或电感器来缓冲,所以中间直流环节实际上是中间储能环节。 ⑶逆变器。与整流器的作用相反,逆变器是将直流功率变换为所要求频率的交流功率。逆变器的结构形式是利用6个半导体开关器件组成的三相桥式逆变器电路。通过有规律的控制逆变器中主开关的导通和断开,可以得到任意频率的三相交流输出波形。 ⑷控制回路。控制回路常由运算电路,检测电路,控制信号的输入、输出电路,驱动电路和制动电路等构成。其主要任务是完成对逆变器的开关控制,对整流器的电压控制,以及完成各种保护功能。控制方式有模拟控制或数字控制。 2.系统的控制模型 本系统的结构如图1.2所示。

《交流调速系统》课后习题答案

《交流调速系统》课后习题答案 第 5 章 闭环控制的异步电动机变压调速系统 5-1 异步电动机从定子传入转子的电磁功率m P 中,有一部分是与转差成正比的转差功率s P ,根据对s P 处理方式的不同,可把交流调速系统分成哪几类?并举例说明。 答:从能量转换的角度上看,转差功率是否增大,是消耗掉还是得到回收,是评价调速系统 效率高低的标志。从这点出发,可以把异步电机的调速系统分成三类 。 1)转差功率消耗型调速系统:这种类型的全部转差功率都转换成热能消耗在转子回路中,降电压调速、转差离合器调速、转子串电阻调速都属于这一类。在三类异步电机调速系统中,这类系统的效率最低,而且越到低速时效率越低,它是以增加转差功率的消耗来换取转速的降低的(恒转矩负载时)。可是这类系统结构简单,设备成本最低,所以还有一定的应用价值。 2)转差功率馈送型调速系统:在这类系统中,除转子铜损外,大部分转差功率在转子侧通 过变流装置馈出或馈入,转速越低,能馈送的功率越多,绕线电机串级调速或双馈电机调速属于这一类。无论是馈出还是馈入的转差功率,扣除变流装置本身的损耗后,最终都转化成 有用的功率,因此这类系统的效率较高,但要增加一些设备。 3)转差功率不变型调速系统:在这类系统中,转差功率只有转子铜损,而且无论转速高低,转差功率基本不变,因此效率更高,变极对数调速、变压变频调速属于此类。其中变极对数 调速是有级的,应用场合有限。只有变压变频调速应用最广,可以构成高动态性能的交流调速系统,取代直流调速;但在定子电路中须配备与电动机容量相当的变压变频器,相比之下,设备成本最高。 5-2 有一台三相四极异步电动机,其额定容量为5.5kW ,频率为50Hz ,在某一情况下运行,自定子方面输入的功率为6.32kW ,定子铜损耗为341W ,转子铜损耗为237.5W ,铁心损耗为167.5W ,机械损耗为45W ,附加损耗为29W ,试绘出该电动机的功率流程图,注明各项功率或损耗的值,并计算在这一运行情况下该电动机的效率、转差率和转速。 解:87.032 .65.5==η,因为rpm 1500250606010=?==p f n , 由已知条件得电磁功率为kw 8115.5=m P ,所以有041.08115 .52375.0== s 所以rp m 1439)041.01(150000=-=-=sn n n

用单片机控制的电机交流调速系统设计

用单片机控制的电机交流调速系统设计 文摘单片机控制的变频调速系统设计思想是用转差频率进行控制。通过改变程序来达到控制转速的目的。由于设计中电动机功率不大,所以整流器采用不可控电路,电容器滤波;逆变器采用电力晶体管三相逆变器。系统的总体结构主要由主回路,驱动电路,光电隔离电路,HEF4752大规模集成电路,保护电路,Intel系列单片机,Intel8253定时/记数器,Intel8255可编程接口芯片,Intel8279通用键盘/显示器,I/O接口芯片,CD4527比例分频器和测速发电机等组成。回路中有了检测保护电路就可以使整个系统运行的可靠性有了保障。 关键词MCS-51单片机;HEF4752;8253定时器;晶闸管;整流器;三相异步电动机

Exchange the speed of adjusting to design systematically with the electrical machinery that the one-chip computer controls Zhoumingqiang information and Electrical Engineering School, panzhihua university, Panzhihua 617000 Abstract Frequency conversion that one-chip computer control transfer speed systematic design philosophy with transfer to difference frequency control. Achieve the goal of controlling rotational speed through changing the procedure . Because the motor is not big in power in the design, the rectifier can not adopt controlledly the circuit, the condenser strains waves; Going against the becoming device adopts three phases of the electric transistor to go against the becoming device. The systematic ensemble architecture is by the main return circuit mainly, drive the circuit, the photo electricity isolates the circuit, HEF4752 large scale integrated circuit, protects the circuit, the Intel series one-chip computer, Intel8253 timing /count device of,Intel8255 programmable interface chip,Intel8279 keyboard not in common use / display, I/O interface chip, CD4527 proportion frequency division device and tests the speed such composition as the generator ,etc.. Have the dependability that can make the whole system operate of measuring and protecting the circuit to have guarantee in the return circuit [keywords] MCS-51;HEF4752;time/counter of l8253;selenium;rectifier;three phase eletromotor of asynchronism

用单片机控制的电机交流调速系统设计毕业论文设计

(此文档为word格式,下载后您可任意编辑修改!) 用单片机控制的电机交流调速系统设计 摘要 单片机控制的变频调速系统设计思想是用转差频率进行控制。通过改变程序来达到控制转速的目的。由于设计中电动机功率不大,所以整流器采用不可控电路,电容器滤波;逆变器采用电力晶体管三相逆变器。系统的总体结构主要由主回路,驱动电路,光电隔离电路,HEF4752大规模集成电路,保护电路,Intel系列单片机,Intel8253定时记数器,Intel8255可编程接口芯片,Intel8279通用键盘显示器,IO接口芯片,CD4527比例分频器和测速发电机等组成。回路中有了检测保护电路就可以使整个系统运行的可靠性有了保障。非传统的CMOS变革了存储器技术。直到现在,我们仍然依靠DRAM 作为主要的存储体。不幸的是,随着芯片的缩小,只有芯片外围速度上的增长——处理器芯片和它相关的缓存速度每两年增加一倍。这就是存储器代沟并且是人们焦虑的根源。存储技术的一个可能突破是,使用一种非传统的CMOS管,在计算机整体性能上将导致一个很大的进步,将解决大存储器的需求,即缓存不能解决的问题。 关键词:MCS-51单片机;HEF4752;8253定时器;晶闸管;整流器

Exchange the speed of adjusting to design systematically with the electrical machinery that the one-chip computer controls ABSTRACT Frequency conversion that one-chip computer control transfer speed systematic design philosophy with transfer to difference frequency control. Achieve the goal of controlling rotational speed through changing the procedure . Because the motor is not big in power in the design, the rectifier can not adopt controlledly the circuit, the condenser strains waves; Going against the becoming device adopts three phases of the electric transistor to go against the becoming device. The systematic ensemble architecture is by the main return circuit mainly, drive the circuit, the photo electricity isolates the circuit, HEF4752 large scale integrated circuit, protects the circuit, the Intel series one-chip computer, Intel8253 timing count device of,Intel8255 programmable interface chip,Intel8279 keyboard not in common use display, IO interface chip, CD4527 proportion frequency division device and tests the speed such composition as the generator ,etc.. Have the dependability that can make the whole system operate of measuring and protecting the circuit to the return circuit.Unconventional CMOS could revolutionalize memory technology. Up to now, we DRAMs for main memory. Unfortunately, these are only increasing in speed marginally as shrinkage continues, whereas processor chips and their associated cache memory continue to double in speed every two years. The result is a growing gap in speed between the processor and the main memory. This is the memory gap and is a current source of anxiety. A breakthrough in memory technology, possibly using some form of unconventional CMOS, could lead to a major advance in overall performance on problems with large memory requirements, that is, problems which fail to fit into the cache.

相关主题
文本预览
相关文档 最新文档