当前位置:文档之家› 第十八章动态优化模型

第十八章动态优化模型

第十八章动态优化模型
第十八章动态优化模型

第十八章 动态优化模型

动态过程的另一类问题是所谓的动态优化问题,这类问题一般要归结为求最优控制函数使某个泛函达到极值。当控制函数可以事先确定为某种特殊的函数形式时,问题又简化为求普通函数的极值。求解泛函极值问题的方法主要有变分法和最优控制理论方法。

§1 变分法简介

变分法是研究泛函极值问题的一种经典数学方法,有着广泛的应用。下面先介绍变分法的基本概念和基本结果,然后介绍动态系统最优控制问题求解的必要条件和最大值原理。

1.1 变分法的基本概念 1.1.1 泛函

设S 为一函数集合,若对于每一个函数S t x ∈)(有一个实数J 与之对应,则称J 是对应在S 上的泛函,记作))((t x J 。S 称为J 的容许函数集。 通俗地说,泛函就是“函数的函数”。

例如对于xy 平面上过定点),(11y x A 和),(22y x B 的每一条光滑曲线)(x y ,绕x 轴旋转得一旋转体,旋转体的侧面积是曲线)(x y 的泛函))((x y J 。由微积分知识不难写出

dx x y x y x y J x x )('1)(2))((2

12?+=π (1)

容许函数集可表示为

})( ,)(],,[)(|)({2211211y x y y x y x x C x y x y S ==∈= (2)

最简单的一类泛函表为

?=2

1

),,())((t t dt x

x t F t x J (3) 被积函数F 包含自变量t ,未知函数x 及导数x 。(1)式是最简泛函。

1.1.2 泛函的极值

泛函))((t x J 在S t x ∈)(0取得极小值是指,对于任意一个与)(0t x 接近的

S t x ∈)(,都有))(())((0t x J t x J ≥。所谓接近,可以用距离ε<))(),((0t x t x d 来度量,而距离定义为

|})()(||,)()({|max ))(),((0002

1t x t x

t x t x t x t x d t t t --=≤≤ 泛函的极大值可以类似地定义。)(0t x 称为泛函的极值函数或极值曲线。 1.1.3 泛函的变分

如同函数的微分是增量的线性主部一样,泛函的变分是泛函增量的线性主部。作为泛函的自变量,函数)(t x 在)(0t x 的增量记为

)()()(0t x t x t x -=δ

也称函数的变分。由它引起的泛函的增量记作 ))(())()((00t x J t x t x J J -+=?δ 如果J ?可以表为

))(),(())(),((00t x t x r t x t x L J δδ+=?

219 / 12

其中L 为x δ的线性项,而r 是x δ的高阶项,则L 称为泛函在)(0t x 的变分,记作

))((0t x J δ。用变动的)(t x 代替)(0t x ,就有))((t x J δ。

泛函变分的一个重要形式是它可以表为对参数α的导数:

0))()(())((=+??

=ααδα

δt x t x J t x J (4)

这是因为当变分存在时,增量

)),(()),(())(())((x t x r x t x L t x J x t x J J αδαδαδ+=-+=? 根据L 和r 的性质有

)),(()),((x t x L x t x L δααδ=

0)

),((lim

)

),((lim

00

==→→x x

x t x r x t x r δαδαδα

αδαα

所以

α

αδαδααα)

()(lim )(00x J x x J x x J -+=+??→=

)(),(),(),(lim 0

x J x x L x x r x x L δδα

αδαδα==+=→

1.1.4 极值与变分

利用变分的表达式(4)可以得到泛函极值与变分的关系: 若))((t x J 在)(0t x 达到极值(极大或极小),则

0))((0=t x J δ (5) 这是因为对任意给定的x δ,)(0x x J αδ+是变量α的函数,该函数在0=α处达到极值。根据函数极值的必要条件知

0)(00=+??

=ααδα

x x J 于是由(4)式直接得到(5)式。

1.1.5. 变分法的基本引理

引理 ],[)(21x x C x ∈?,],[)(211

x x C x ∈?η,0)()(21==x x ηη,有

?

≡2

1

0)()(x x dx x x η?,

则],[ ,0)( 21x x x x ∈≡?。

1.2 无约束条件的泛函极值 求泛函

?

=

f

t t dt t x

t x t F J 0

))(),(,( (6) 的极值,一般是用泛函极值的必要条件去寻找一条曲线)(t x ,使给定的二阶连续可微函数F 沿该曲线的积分达到极值。常称这条曲线为极值曲线(或轨线),记为)(*

t x 。

1.2.1 端点固定的情况

设容许曲线)(t x 满足边界条件

00)(x t x =,f f x t x =)( (7)

且二次可微。

首先计算(6)式的变分:

0))()((=+??

=ααδαδt x t x J J ?=++??

=f t t dt t x t x

t x t x t F 00))()(),()(,(ααδαδα

?

+=

f

t t x x dt x x

x t F x x x t F 0

]),,(),,([ δδ (8) 对上式右端第二项做分布积分,并利用0)()(0==f t x t x δδ,有

??

-=f

f

t t x t t x xdt x

x t F dt

d

dt x x

x t F 0

),,(),,(δδ , 再代回到(8)式,并利用泛函取极值的必要条件,有

?=-

=

f

t t x x xdt F dt

d F J 0

0][δδ 因为x δ的任意性,及0)()(0==f t x t x δδ,所以由基本引理得到著名的欧拉方程

0=-

x x F dt

d

F

(9) 它是这类最简泛函取极值的必要条件。

(9)式又可记作

0=---x F x F F F x x x x x t x (10) 通常这是)(t x 的二阶微分方程,其通解的两个任意常数由(7)式中的两个端点条件确

定。

1.2.2 最简泛函的几种特殊情形

(i) F 不依赖于x ,即),(x t F F = 这时0≡x F ,欧拉方程为0),(=x t F x ,这个方程以隐函数形式给出)(t x ,但它一般不满足边界条件,因此,变分问题无解。

(ii) F 不依赖x ,即),(x

t F F = 欧拉方程为

0),(=x

t F dt

d

x 将上式积分一次,便得首次积分1),(c x

t F x = ,由此可求出),(1c t x ?= ,积分后得到可能的极值曲线族

()dt c t x ?=1,?

(iii) F 只依赖于x

,即)(x F F = 这时0,0,0===x x x t x F F F ,欧拉方程为

0=x x F x

由此可设0=x 或0=x x F ,如果0=x

,则得到含有两个参数的直线族21c t c x +=。另外若0=x x F 有一个或几个实根时,则除了上面的直线族外,又得到含有一个参数c 的直线族c kt x +=,它包含于上面含有两个参数的直线族 21c t c x += 中,于是,在

221 / 12

)(x

F F =情况下,极值曲线必然是直线族。 (iv )F 只依赖于x 和x

,即),(x x F F = 这时有0=x t F ,故欧拉方程为

0=--x x x x x F x F x F

此方程具有首次积分为

1c F x F x =-

事实上,注意到F 不依赖于t ,于是有

0)()(=-=--+=-x x x x x x x F dt

d

F x F dt d x F x x F x F F x F dt d 。

例1 (最速降线问题)最速降线问题是历史上变分法开始发展的第一个问题。它是

约翰·贝努里(J. Bernoulli )于1696年提出的。问题的提法是这样的:设A 和B 是铅直平面上不在同一铅直线上的两点,在所有连结A 和B 的平面曲线中,求一曲线,当质点仅受重力作用,且初速为零,沿此曲线从A 滑行至B 时,使所需时间最短。

解 将A 点取为坐标原点,x 轴水平向右,y 轴垂直向下,B 点为),(22y x B 。根据能量守恒定律,质点在曲线)(x y 上任一点处的速度

dt

ds

满足(s 为弧长) mgy dt ds m =??

?

??2

21

将dx x y ds )('12+=代入上式得

dx gy

y dt 2'12

+=

于是质点滑行时间应表为)(x y 的泛函

dx gy

y x y J x ?

+=20

2

2'1))(( 端点条件为 22)(,0)0(y x y y ==

最速降线满足欧拉方程,因为

y

y y y F 2

'1)',(+=

不含自变量x ,所以方程(10)可写作

0''''''=--y F y F F y y yy y

等价于

0)'('=-y F y F dx

d

作一次积分得

12

)'1(c y y =+

令 ,2

ctg

y =则方程化为

)cos 1(2

2sin '112121θθ-==+=

c c y c y 又因

θθθθθ

θd c ctg d c y dy dx )cos 1(22

2cos 2sin '11-===

积分之,得

21

)sin (2

c c x +-=

θθ 由边界条件0)0(=y ,可知02=c ,故得

??????

?-=-=).cos 1(2

)sin (2

11θθθc y c x 这是摆线(圆滚线)的参数方程,其中常数1c 可利用另一边界条件22(y x y =)来确定。

例2 最小旋转面问题

dx x y x y x y J x x )('1)(2))((2

1

2?+=π

})( ,)(],,[|{2211211y x y y x y x x C y y S ==∈=

解 因 '12

y y F +=不包含x ,故有首次积分

12

2''

1'''1'c y y y

y y y F y F y =+-+=-

化简得 2

1'1y c y +=

令sht y =',代入上式, cht c t sh c y 1211=+=

由于 dt c sht

shtdt c y dy dx 11'===

积分之,得 21c t c x +=

消去t ,就得到1

2

1c c x ch c y -= 。

这是悬链线方程。

1.2.3 最简泛函的推广

最简泛函取极值的必要条件可以推广到其它情况。 (ⅰ)含多个函数的泛函 使泛函

223 / 12

?=2

1

)',,',,())(),((x x dx z z y y x F x z x y J

取极值且满足固定边界条件

.)(,)(,)(,)(22112211z x z z x z y x y y x y ==== 的极值曲线)(),(x z z x y y ==必满足欧拉方程组

???

???

?=-=-00''z z y y F dx d F F dx

d F (ii )含高阶导数的泛函

使泛函 ?

=

2

1

)",',,())((x x dx y y y x F x y J

取极值且满足固定边界条件

11)(y x y =,221122')(',')('y x y y x y y x y ===,)(

的极值曲线)(x y y =必满足微分方程

0"22

'=+-y y y F dx

d F dx d F (iii ) 含多元函数的泛函

设D y x c y x z ∈∈),(,),(2

,使泛函 ??=

D

y x

dxdy z z

z y x F y x z J ),,,,()),((

取极值且在区域D 的边界线l 上取已知值的极值函数),(y x z z =必满足方程 0=??

-??-

y x z z z F y

F x F 上式称为奥式方程。

1.2.4 端点变动的情况(横截条件)

设容许曲线)(t x 在0t 固定,在另一端点f t t =时不固定,是沿着给定的曲线

)(t x ψ=上变动。于是端点条件表示为

?

??==)()()(0

0t t x x t x ψ

这里t 是变动的,不妨用参数形式表示为

f f dt t t α+=

寻找端点变动情况的必要条件,可仿照前面端点固定情况进行推导,即有 0),,(00

=+++??=

=?

αααδαδα

δdt x x

x x t F J f

f dt t t f t t t t x t t x x dt F x F xdt F dt

d

F f f f

==++-

=

?

δδ 0

)( (11)

再对(11)式做如下分析:

(i )对每一个固定的f t ,)(t x 都满足欧拉方程,即(11)式右端的第一项积分为零;

(ii )为考察(11)式的第二、第三项,建立f dt 与f

t t x =δ之间的关系,因为

)()()(f f f f f f dt t dt t x dt t x αψααδα+=+++ 对α求导并令0=α得

f f t t f f dt t x dt t x

f

)()(ψδ =+= 即

f f f t t dt t x t x f

)]()([ -==ψδ (12)

把(12)代入(11)并利用f dt 的任意性,得

0])([=-+=f t t x F x F ψ (13)

(13)式就是确定欧拉方程通解中另一常数的定解条件,称为横截条件。

横截条件有两种常见的特殊情况:

(i )当)(t x ψ=是垂直横轴的直线时,f t 固定,)(f t x 自由,并称)(f t x 为自由端点。此时(11)式中0=f dt 及f

t t x =δ的任意性,便得自由端点的横截条件

0==f

t t x F

(14)

(ii )当)(t x ψ=是平行横轴的直线时,f t 自由,)(f t x 固定,并称)(f t x 为平动

端点。此时0=ψ ,(13)式的横截条件变为

0=-=f

t t x F x F

(15)

注意,横截条件与欧拉方程联立才能构成泛函极值的必要条件。

1.3 有约束条件的泛函极值 在最优控制系统中,常常要涉及到有约束条件泛函的极值问题,其典型形式是对动态系统

))(),(,()(t u t x t f t x = (16)

寻求最优性能指标(目标函数)

?

+

=f

t t f f dt t u t x t F t x t t u J 0

))(),(,())(,())((? (17)

其中)(t u 是控制策略,)(t x 是轨线,0t 固定,f t 及)(f t x 自由,n R t x ∈)(,m

R

t u ∈)((不受限,充满m

R 空间),F f ,,?连续可微。

下面推导取得目标函数极值的最优控制策略)(*

t u 和最优轨线)(*

t x 的必要条件。 采用拉格朗日乘子法,化条件极值为无条件极值,即考虑

?-++=f

t t T f f dt x

u x t f t u x t F t x t u x J 0

)]),,()((),,([))(,(),,(1 λ?λ (18) 的无条件极值,首先定义(16)式和(17)式的哈密顿(Hamilton )函数为

),,()(),,(),,,(u x t f t u x t F u x t H T

λλ+= (19)

将其代入(18)式,得到泛函

225 / 12

?-+=f

t t T f f dt x

u x t H t x t u x J 0

]),,,([))(,(),,(1 λλ?λ (20) 下面先对其求变分

))()(,({1f f f f t x t x dt t J αδα?α

δ++??

=

0})]()(),,,([0

=+++-++++?

αααδαδλλαδλλαδαδdt x x

u u x x t H T dt t t f f []f f f f t t T T f t t T f t T f t x T

f x

dt u x t H dt dt t x ==-++=)()(),,,()()()()( λλ??δ dt x x

H H u H x T T T u T x T t t f

])()()()([0

δλδλδλδδλ--+++? )()]([]),,,([)(f f f t x T f t t t T f t x t u x t F dt ?δ?++==

??+--+++=f

f f t t T t t f T t t T T u T x T dt x x t dt x H H u H x 0

)()(])()()()[(λδδλδλδλδδλ 注意到)(f t t t x x

f

δδ≠=,f f f t t dt t x

t x x f )()( -==δδ,因而 f

f

f

t t x T f t t t T f t x u x t H dt J ==-++=)()]([]),,,([)(1λ?δλ?δ

?

+-+++

f

t t u T T x T dt H u x H H x 0

])()()()()[(δδλλδλ

再令01=J δ,由δλδδδ,,),(,u x t x dt f f 的任意性,便得

(i )*

*

,λx 必满足正则方程:

① 状态方程 ),,(u x t f H x

==λ ② 协态方程 x

H -=λ 。 (ii )哈密顿函数),,,(*

*

λu x t H 作为u 的函数,也必满足 0=u H 并由此方程求得*

u 。

(iii )求*

**,,u x λ时,必利用边界条件

① 00)(x t x =, (用于确定*

x )

)()(f

t x f t ?λ=, (用于确定*λ)

③ f

f t t t u x t H =-=)

,,,(λ?, (确定f t )

1.4 最大(小)值原理 如果受控系统

),,(u x t f x

= ,00)(x t x = 其控制策略)(t u 的全体构成有界集U ,求U t u ∈)(,使性能指标 ?

+

=f

t t f f dt u x t F t x t t u J 0

),,())(,())((?

达到最大(小)值。

最大(小)值原理:如果),,(u x t f ,))(,(f f t x t ?和),,(u x t F 都是连续可微的,

那么最优控制策略)(*

t u 和相应的最优轨线)(*

t x 由下列的必要条件决定:

(i )最优轨线)(*

t x ,协态向量)(*

t λ由下列的必要条件决定:

),,(u x t f dt dx

=,U t u ∈)(, x

H

dt d ??-

=λ. (ii )哈密顿函数

),,()(),,(),,,(*

**

*

*

u x t f t u x t F u x t H T

λλ+= 作为)(t u 的函数,最优策略)(*

t u 必须使

),,,(max ),,,(*

*

*

*

*

λλu x t H u x t H U

u ∈=

或使

),,,(min ),,,(*

*

*

*

*

λλu x t H u x t H U

u ∈=(最小值原理)

(iii )满足相应的边界条件

① 若两端点固定,则正则方程的边界条件为 0)0(x x =,f f x t x =)(。

② 若始端固定,终端f t 也固定,而)(f t x 自由,则正则方程的边界条件为 0)0(x x =,))(,()()(f f t x f t x t t f ?λ=。

③ 若始端固定,终端)(,f f t x t 都自由,则正则方程的边界条件为 0)0(x x =,))(,()()(f f t x f t x t t f ?λ=, 0))(,())(),(),(,(=+f f t f f f f t x t t t u t x t H f ?λ。

§2 生产设备的最大经济效益

某工厂购买了一台新设备投入到生产中。一方面该设备随着运行时间的推移其磨损程度愈来愈大,因此其转卖价将随着使用设备的时间增加而减小;另一方面生产设备总是要进行日常保养,花费一定的保养费,保养可以减缓设备的磨损程度,提高设备的转卖价。那么,怎样确定最优保养费和设备转卖时间,才能使这台设备的经济效益最大。 2.1 问题分析与假设

(i )设备的转卖价是时间t 的函数,记为)(t x 。)(t x 的大小与设备的磨损程度和保养费的多少密切相关。记初始转卖价0)0(x x =。

(ii )设备随其运行时间的推移,磨损程度越来越大。t 时刻设备的磨损程度可以用t 时刻转卖价的损失值来刻画,常称其为磨损函数或废弃函数,记为)(t m 。

(iii )保养设备可以减缓设备的磨损速度,提高转卖价。如果)(t u 是单位时间的保养费,)(t g 是t 时刻的保养效益系数(每用一元保养费所增加的转卖价),那么单位时间的保养效益为)()(t u t g 。另外,保养费不能过大(如单位时间保养费超过单位时间产值时,保养失去了意义),只能在有界函数集中选取,记有界函数集为W ,则W t u ∈)(。 (iv )设单位时间的产值与转卖价的比值记为p ,则)(t px 表示在t 时刻单位时间的产值,即t 时刻的生产率。

(v )转卖价)(t x 及单位时间的保养费)(t u 都是时间t 的连续可微函数。为了统一

227 / 12

标准,采用它们的贴现值。对于贴现值的计算,例如转卖价)(t x 的贴现值计算,如果它的贴现因子为δ(经过单位时间的单位费用贴现),那么由

??

?

??==1)()()

(111t x t x dt t dx δ

解得

)

(11)(t t e

t x --=δ

令01=t ,便得t 时刻单位费用的贴现(称贴现系数)为t

e

δ-,所以设备在t 时刻转卖价

)(t x 的贴现为t e t x δ-)(。仿此计算,)(t u 的贴现为t e t u δ-)(,单位时间产值的贴现为t e t px δ-)(。

(vi )欲确定的转卖时间f t 和转卖价)(f t x 都是自由的。

2.2 模型构造

根据以上的分析与假设可知:考察的对象是设备在生产中的磨损—保养系统;转卖价体现了磨损和保养的综合指标,可以选作系统的状态变量;在生产中设备磨损的不可控性强,其微弱的可控性也是通过保养体现,加之保养本身具有较强的可控性,所以选单位时间的保养费)(t u 作为控制策略。这样,生产设备的最大经济效益模型可以构成为在设备磨损—保养系统的(转卖价)状态方程

???

??=+-=0

)0()()()()

(x x t u t g t m dt t dx (21)

之下,在满足U t u ≤≤)(0的函数集W 中寻求最优控制策略)(*

t u ,使系统的经济效益

这一性能指标

?---+=f

f

t t t f dt e t u t px e

t x t u J 0

)]()([)())((δδ (22)

为最大,其中)(,f f t x t 都是自由的。

2.3 模型求解

首先写出问题的哈密顿函数 )]()()([)]()([t m t g t m e

t u t px H t

+-+-=-λδ (23)

再由协态方程及边界条件求出)(t λ,即由

??

???==-=-=--f

f t t x f t

x e

t pe

H dt t d δδ?λλ)()()(

解得

t t e p

e

p

t f

δδδ

δ

λ--+

-

=)1()(

下面利用最大值原理求)(*

t u 。先将(23)式改变为

)(])([)()(t u e t g t m e t px H t t δδλλ---+-=

优化调度的数学模型

1)目标函数 假设系统可运行的机组数为n,总负荷为d P,以电厂内所有机组的总煤耗量最小为目标,建立如下的数学模型: 其中:——机组序号; ——第i台机组的煤耗量; ——n 台机组的总煤耗; ——第i台机组的负荷; ——第i台机组的煤耗量与负荷的函数关系。 2)约束条件 约束条件包括功率平衡约束和机组出力约束。 (1)功率平衡约束: (2)机组出力约束: 其中:——n台机组的总负荷; ——第i台机组的负荷下限和负荷上限。

假设系统可运行的机组数为,总负荷为,以调度周期为一昼夜来考虑,分为h个时段。 1)目标函数 机组优化组合的目标函数如下: 式中——机组序号; ——n 台机组的总煤耗; ——机组i运行状态的变量,仅取0、1 两个值,表示停机,表示运行。 ——第i台机组在t时刻的负荷; ——第i台机组在t时刻的煤耗量与负荷的函数关系; ——机组的启动耗量。 2)约束条件 考虑机组运行的实际情况,本文确定的机组约束条件包括功率平衡约束、机组出力约束、最小停机时间约束、最小运行时间约束以及功率响应速度约束。 (1)功率平衡约束: 式中——机组序号; ——第i台机组在t时刻的负荷;

——n台机组的总负荷。 (2)机组出力约束: 式中——机组的启停状态,0 表示停机,1 表示运行。 ——第i台机组的负荷下限和负荷上限。 (3)最小停机时间约束: 式中——机组i的最小停机时间。 (4)最小运行时间约束: 式中——机组i的最小运行时间。 (5)功率响应速度约束: 式中——机组i每分钟输出功率的允许最大下降速率和最大上升速率。 由于是在火电厂内部进行优化组合,可不考虑网损和系统的旋转热备用约束(这两项通常是电网调度中需要考虑的)。因此,机组优化组合从数学角度上讲就是在(5)~(9)的约束条件下求式(4)的最小值。 3)机组启停耗量能耗Si 的确定 通常情况下,对Si的处理采用如下的方法:机组的启动耗量包括汽机和锅炉两部分,由于汽机的热容量很小,其启动耗量一般可近似当

基于动态规划的面试时间优化模型概述

2015年天津商业大学数学建模竞赛 承诺书 我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、 电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨 论与赛题有关的问题。 我们明白,抄袭不人的成果是违反竞赛规则的, 假如引用不人的成 果或其他公开的资料(包括网上查到的资料),必须按照规定的参考 文献的表述方式在正文引用处和参考文献中明确列出。 我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。 如有违反竞赛规则的行为,我们将受到严肃处理。 我们参赛选择的题号是(从A/B中选择一项填写): B 参赛队员 (打印并签名) :1. 叶恒扬 2. 施艺敏 3. 张一鸣 日期: 2015 年 4 月 27 日

基于动态规划的面试时刻优化模型 摘要 现代信息社会中,求职面试差不多成为就业的一个重要环节。科学有效的组织和安排不管对面试者依旧对组织单位、用人单位差不多上省时省力、节略成本的。因此如何紧凑、高效、省时地安排面试者按顺序完成面试具有重要研究意义。 本文综合运用运筹学、统计学、经济学、平面设计、计算机软件等知识,通过建立数学模型来求解面试的最短时刻,进一步规划最优的面试流程。 针对问题一,通过分析给定的面试时期顺序和不同意插队等特性,为满足面试时刻最短,建立了求解最短时刻的0-1非线性规划模型(见公式(1)),然后利用Lingo11.0程序(见附录1),求解出最短面试时刻为100分钟,最佳安排顺序为:3 → →,同学最早9:40 → 4→ 1 5 2 一起离开。接着利用AutoCAD2007分不绘制出同学和面试官的面试过程时刻图(见图1~2)。在此基础上,利用Excel2007制作出同学的

智能公交动态调度优化模型

Abstract An intelligent bus dispatching system can better meet people's travel needs.The optimized algorithm takes advantage of advanced technology and equipments.However,in recent years the development of Chinese intelligent bus dispatching systems is not satisfactory with an.excessive attention to advanced technology but less to practicality.Dynamic scheduling has yet to be fully exploited.In this paper,intelligent transportation scheduling systems and scheduling characteristics are analyzed. The information about dynamic transportation and vehicle locations is acquired and merged.An optimization model for intelligent dispatching of buses is proposed on basis of real data.This model is under the support of GPS positioning,communications,computers and other technologies,where intelligent algorithms are used in bus operation and dispatching and both passengers satisfaction and company profit are considered.The method of collecting data automatically and the algorithm of this model are presented.This model is shown to be able to significantly improve the rate of bus full loading,shorten the waiting time of passengers,and reduce the total vehicle trips,with an evident effect of optimized dispatching. Keywords intelligent transportation;optional model;dynamic dispatching;intelligent bus;Matlab software 0引言 伴随经济社会的发展,中国城市交通问题日益突出。交 通问题的出现,严重影响了城市的生产生活,而且从长远来看,影响了城市功能的发挥,制约了城市的健康发展。国际上城市交通发展的经验证明,解决城市交通问题,关键是要树立城市公共交通在城市交通体系中的主导地位,大力优先发展公共交通,建立先进的公共交通系统APTS (Advanced Public Traffic System )[1],实现公交调度智能化,提高道路通行 能力和公交运营管理水平。 近年来,由于科学技术的进步和政府对公交投入力度的加大,中国智能公共交通调度系统初现端倪,已经有杭州、上海、北京等地安装了电子站牌,车载GPS 定位设备,实现了车辆的实时跟踪、定位,公交车与调度室的双向通讯,以及电子站牌上实时显示下班车位置信息等功能。青岛、贵阳、石家庄等城市在实现公交系统智能化管理方面,已经有了一系列有益的探索[2]。但是,这些系统普遍存在先进的系统与静态、原始的调度方法共存现象,未能充分利用智能系统提供的动态 智能公交动态调度优化模型 摘要 利用先进的技术和设备实现公交的优化调度,充分满足人们的出行需要,是智能公交系统发展的目标。然而近年来中国智 能公交发展在一定程度上出现过于追求先进性、忽略实用性、运营效果不理想、动态调度尚待充分开发等问题。结合中国智能公交系统现状,通过对智能公交调度系统和调度特点深入分析,在GPS 定位、通信、计算机等技术的支持下,将动态交通状态信息与车辆定位信息有效融合,将智能化算法引入到公交运营调度中,建立了基于实时动态数据,兼顾乘客满意度和企业效益的动态调度优化模型。并且阐述了模型数据的自动采集方法、模型Matlab 程式化的解法。结果表明,该模型可以显著提高公交车辆满载率、缩短乘客等车时间和减少车辆总班次,优化调度效果明显。 关键词智能交通;优化模型;动态调度;智能公交;Matlab 软件 中图分类号U494.22,TP29文献标识码A 文章编号1000-7857(2009)17-0069-04 李志强,周建立,张毅 河南科技大学车辆和动力工程学院,河南洛阳471003 An Optimization Model for Dynamic Intelligent Dispatching of Buses 收稿日期:2009-05-11 基金项目:河南教育厅自然科学基金项目(200510464028);河南科技大学科研基金项目(2004ZY030,2006ZY027)作者简介:李志强,经济师,研究方向为智能交通,电子信箱:liqiangsqjt@https://www.doczj.com/doc/3f9467550.html, LI Zhiqiang,ZHOU Jianli,ZHANG Yi Vehicle &Motive Power Engineering College,Henan University of Science and Technology,Luoyang 471003,Henan Province,China

运输优化模型参考

运输问题 摘要 本文根据运输公司提供的提货点到各个客户点的路程数据,利用线性规划的优化方法与动态优化模型——最短路径问题进行求解,得到相关问题的模型。 针对问题一 ,我们采用Dijkstra 算法,将问题转化为线性规划模型求解得出当运送员在给第二个客户卸货完成的时,若要他先给客户10送货,此时尽可能短的行使路线为: 109832V V V V V →→→→,总行程85公里。 针对问题二,我们首先利用prim 算法求解得到一棵最小生成树: 再采用Dijkstra 算法求得客户2返回提货点的最短线路为12V V →故可得到一条理想的回路是:121098436751V V V V V V V V V V V →→→→→→→→→→ 后来考虑到模型的推广性,将问题看作是哈密顿回路的问题,建立相应的线性规划模型求解,最终找到一条满足条件的较理想的的货车送货的行车路线: 121098436751V V V V V V V V V V V →→→→→→→→→→。 针对问题三,我们首先直接利用问题二得一辆车的最优回路,以货车容量为限定条件,建立相应的规划模型并设计一个简单的寻路算法,最终可为公司确定合理的一号运输方案:两辆车全程总和为295公里(见正文);然后建立线性规划模型得出二号运输方案:两辆车全程总和为290公里(见正文);最后再进一步优化所建的线性规划模型,为运输公司 针对问题四,我们首先用Dijkstra 算法确定提货点到每个客户点间的最短路线,然后结合一些限定条件建立一个目标模型,设计一个较好的解决方案进行求解可得到一种很理 该方案得到运输总费用是645元。 关键字:Dijkstra 算法, prim 算法, 哈密顿回路 问题重述

运用动态规划模型解决最短路径问题

运用动态规划模型解决物流配送中的最短路径问题 王嘉俊 (盐城师范学院数学科学学院09(1)班) 摘要:随着现代社会的高速发展,物流配送成为了连接各个生产基地的枢纽,运输的成本问题也成为了企业发展的关键。运费不但与运量有关,而且与运输行走的线路相关。传统的运输问题没有考虑交通网络,在已知运价的条件下仅求出最优调运方案,没有求出最优行走路径。文中提出“网络上的物流配送问题“,在未知运价,运量确定的情况下,将运输过程在每阶段中选取最优策略,最后找到整个过程的总体最优目标,节省企业开支。 关键词:动态规划,数学模型,物流配送,最优路径 1 引言 物流配送是现代化物流系统的一个重要环节。它是指按用户的订货要求, 在配送中心进行分货、配货, 并将配好的货物及时送交收货人的活动。在物流配送业务中, 合理选择配送径路, 对加快配送速度、提高服务质量、降低配送成本及增加经济效益都有较大影响。物流配送最短径路是指物品由供给地向需求地的移动过程中, 所经过的距离最短(或运输的时间最少, 或运输费用最低) , 因此, 选定最短径路是提高物品时空价值的重要环节。[1] 经典的Dijkstra 算法和Floyd 算法思路清楚,方法简便,但随着配送点数的增加,计算的复杂性以配送点数的平方增加,并具有一定的主观性。我国学者用模糊偏好解试图改善经典方法[]5,取得了较好的效果。遗憾的是,模糊偏好解本身就不完全是客观的。文献[]6详细分析了经典方法的利弊之后,提出将邻接矩阵上三角和下三角复制从而使每条边成为双通路径,既适用于有向图也适用于无向图, 但复杂性增加了。为了避免上述方法存在的不足,本文以动态规划为理论,选择合理的最优值函数,用于解决物流配送最短路径问题。 动态规划是解决多阶段决策过程最优化问题的一种数学方法。1951年美国数学家Bellman(贝尔曼)等人根据一类多阶段决策问题的特性,提出了解决这类问题的“最优性原理”,并研究了许多实际问题,从而创建了最优化问题的一种新方法——动态规划。 动态规划在工程技术、管理、经济、工业生产、军事及现代控制工程等方面都有广泛的应用,而且由于动态规划方法有其独特之处,在解决某些实际问题时,显得更加方便有效。由于决策过程的时间参数有离散的和连续的情况,故决

水库优化调度

水库调度研究现状及发展趋势 摘要:实施梯级水电站群联合优化运行是统筹流域上下游各电站流量、水头间的关系,从而实现科学利用水能资源的重要手段,符合建设资源节约型、环境友好型社会的要求,是实现节能减排目标的重要途径,对贯彻落实科学发展观,促进流域又好又快发展具有重要意义。本文拟介绍水库调度研究现状及发展趋势,对工程实际具有重要的理论意义。 关键词:水库;优化调度;研究形状;发展趋势 随着水电发展的规划推进落实,大型流域梯级水库群将逐步形成,其联合调度运行必将获得巨大的电力补偿效益和水文补偿效益,同时在实际工程中也会不断涌现新的现象和问题。在新形势下综合考虑梯级上下游电站之间复杂的水力、电力联系,开展梯级水库群联合调度新的优化理论与方法应用研究,统筹协调梯级水库群上下游电站各部门的利益及用水需求,结合工程实际探索梯级水库群联合优化调度的多目标优化及决策方法,实现流域水能资源的高效利用、提高流域梯级水库群的联合运行管理水平乃至达到流域梯级整体综合效益的最大化,对缓解能源短缺、落实科学发展观、贯彻国家“节能 减排”战略以及履行减排承诺均具有重要的理论指导意义和工程实用价值[1]。 1 水库调度研究现状 水库调度研究,按其采用的基本理论性质划分,可分为常规调度(或传统方法)和优 化调度[2]。常规调度,一般指采用时历法和统计法进行水库调度;优化调度则是一种以 一定的最优准则为依据,以水库电站为中心建立目标函数,结合系统实际,考虑其应满足的各种约束条件,然后用最优化方法求解由目标函数和约束条件组成的系统方程组, 使目标函数取得极值的水库控制运用方式 [3]。 常规调度 常规调度主要是利用径流调节理论和水能计算方法来确定满足水库既定任务的蓄泄过程,制定调度图或调度规则,以指导水库运行。它以实测资料为依据,方法比较简单直观,可以汇入调度和决策人员的经验和判断能力等,所以是目前水库电站规划设计阶段以及中小水库运行调度中通常采用的方法。但常规方法只能从事先拟定的极其有限的方案中选择较好的方案,调度结果一般只是可行解,而不是最优解,且该方法难以处理多目标、多约束和复杂水利系统的调度问题。 优化调度 为了充分利用有限的水资源,国内外从上世纪50年代起兴起了水库优化调度研究。其核心有两点:一是根据某种准则建立优化调度模型,二是寻找求解模型的优化方法。 1946年美国学者Masse最早引入优化概念解决水库调度问题。1955年美国人Little[4]采

公交车调度的优化模型

公交车调度的优化模型 摘要 公共交通是城市交通的重要组成部分,做好公交车的调度对于完善城市交通环境、改进市民出行状况、提高公交公司的经济和社会效益,都具有重要意义。本文就是通过对我国一座特大城市某条公交线路的一个工作日两个运行方向各站上下车的乘客数量统计进行分析,建立公交车调度方案的优化模型,使公交公司在满足一定的社会效益和获得最大经济效益前提下,给出了理想公交车调度方案。 对于问题一,模型I 中建立了最大客容量,发车车次数的数学模型,运用决策方法给出了各时间段最大客容量数,在满足客车载满率及载完各时段所有乘客情形下,得出每天最少车次数为460次,最少车辆数为54辆,并给出了整分发车时刻表(见表6、表7)。 对于问题二,模型II 进行了满意度分析。满意度包含公交公司的满意度A i 和乘客的满意度i B ,通过分析得到公交公司的满意度公式(7)和乘客的满意度公式(12),然后求出当公交车最大载客量为120时,公交公司和乘客的满意度为:上行方向:11A =0.9686,B 0.7165=,下行方向:2A2=0.9563,B 0.7138=。再算出当公交车最大载客量分别为100、50时对应的公交公司和乘客的满意度,最后通过二次拟合得出乘客和公交公司满意度对应的关系式为: 上行方向:21111.8709 2.10170.4361B A A =-++ 10.41020.9686A ≤≤ 下行方向:22222.2995 2.63450.2974B A A =-++ 20.41060.9563A ≤≤ 使双方满意度之和达到最大,同时双方满意度之差最小,得到上下行的最优满意度分别为()110.8599,0.8599A B ==,()220.8610,0.8610A B ==,此时公交车调度

交巡警服务平台的设置与调度的优化模型

湖南工业大学 课程设计 资料袋 学院(系、部)2011~2012 学年第 2 学期 课程名称图论及其应用指导教师职称 学生姓名ake555 专业班级学号 题目交巡警服务平台的设置与调度的优化模型 成绩起止日期2013 年6月16 日~2013 年 6 月21 日 目录清单

课程设计任务书 2012—2013学年第2学期 学院专业班级 课程名称:图论及其应用 设计题目:交警服务平台和调度设计问题 完成期限:自2013 年 6 月16 日至2013 年 6 月21 日共 1 周

指导教师(签字):年月日系(教研室)主任(签字):年月日

图论及其应用课程设计说明书 2013年6 月21 日 目录

一、问题描述 (5) 二、模型假设 (6) 三、符号说明 (6) 四、模型建立与求解 (6) 五、模型评价 (15) 六、体会心得 (16) 七、参考文献 (16) 八、附件 (16) 交巡警服务平台的设置与调度的优化模型 一问题描述 随着人们社会经济的迅猛发展,人们生活的质量的提高,安全意识以深入人心,作为社会秩序的维护者警察对社会稳定起着巨大的作用

.警察肩负着刑事执法、治安管理、交通管理、服务群众四大职能。为了更有效地贯彻实施这些职能,需要在市区的一些交通要道和重要部位设置交巡警服务平台。每个交巡警服务平台的职能和警力配备基本相同。由于警务资源是有限的,如何根据城市的实际情况与需求合理地设置交巡警服务平台、分配各平台的管辖范围、调度警务资源是警务部门面临的一个实际课题。 试就某市设置交巡警服务平台的相关情况,建立数学模型分析研究下面的问题:问题一:附件1中的附图1给出了该市中心城区A的交通网络和现有的20个交巡警服务平台的设置情况示意图,相关的数据信息见附件2。要求为各交巡警服务平台分配管辖范围,使其在所管辖的范围内出现突发事件时,尽量能在3分钟内有交巡警(警车的时速为60km/h)到达事发地。 问题二:对于重大突发事件,需要调度全区20个交巡警服务平台的警力资源,对进出该区的13条交通要道实现快速全封锁。实际中一个平台的警力最多封锁一个路口,通过求解给出该区交巡警服务平台警力合理的调度方案。 问题三:根据现有交巡警服务平台的工作量不均衡和有些地方出警时间过长的实际情况,拟在该区内再增加2至5个平台,通过分析计算需要增加平台的具体个数和位置。 问题四:针对全市(主城六区A,B,C,D,E,F)的具体情况,按照设置交巡警服务平台的原则和任务,分析研究该市现有交巡警服务平台设置方案(参见附件)的合理性。如果有明显不合理的地方,给出解决方案。 问题五:如果该市地点P(第32个节点)处发生了重大刑事案件,在案发3分钟后接到报警,犯罪嫌疑人已驾车逃跑。为了快速搜捕嫌疑犯,请给出调度全市交巡警服务平台警力资源的最佳围堵方案。 二模型假设 1.出警时道路恒畅通(无交通事故、交通堵塞等发生),警车行驶正常;2.在整个路途中,转弯处不需要花费时间; 3.假设逃犯驾车逃跑的车速与警车车速相当 三符号说明

公交车调度方案的优化模型

第三篇公交车调度方案的优化模型 2001年 B题公交车调度Array公共交通是城市交通的重要组成部分,作好公交车的调度对 于完善城市交通环境、改进市民出行状况、提高公交公司的经济 和社会效益,都具有重要意义。下面考虑一条公交线路上公交车 的调度问题,其数据来自我国一座特大城市某条公交线路的客流 调查和运营资料。 该条公交线路上行方向共14站,下行方向共13站,表3-1 给出的是典型的一个工作日两个运行方向各站上下车的乘客数量统计。公交公司配给该线路同一型号的大客车,每辆标准载客100人,据统计客车在该线路上运行的平均速度为20公里/小时。运营调度要求,乘客候车时间一般不要超过10分钟,早高峰时一般不要超过5分钟,车辆满载率不应超过120%,一般也不要低于50%。 试根据这些资料和要求,为该线路设计一个便于操作的全天(工作日)的公交车调度方案,包括两个起点站的发车时刻表;一共需要多少辆车;这个方案以怎样的程度照顾到了乘客和公交公司双方的利益;等等。 如何将这个调度问题抽象成一个明确、完整的数学模型,指出求解模型的方法;根据实际问题 的要求,如果要设计更好的调度方案,应如何采集运营数据。

公交车调度方案的优化模型* 摘要:本文建立了公交车调度方案的优化模型,使公交公司在满足一定的社会效益和获得最大经济效益的前提下,给出了理想发车时刻表和最少车辆数。并提供了关于采集运营数据的较好建议。 在模型Ⅰ中,对问题1建立了求最大客容量、车次数、发车时间间隔等模型,运用决策方法给出了各时段最大客容量数,再与车辆最大载客量比较,得出载完该时组乘客的最少车次数462次,从便于操作和发车密度考虑,给出了整分发车时刻表和需要的最少车辆数61辆。模型Ⅱ建立模糊分析模型,结合层次分析求得模型Ⅰ带给公司和乘客双方日满意度为(0.941,0.811)根据双方满意度范围和程度,找出同时达到双方最优日满意度(0.8807,0.8807),且此时结果为474次50辆;从日共需车辆最少考虑,结果为484次45辆。对问题2,建立了综合效益目标模型及线性规划法求解。对问题3,数据采集方法是遵照前门进中门出的规律,运用两个自动记录机对上下车乘客数记录和自动报站机(加报时间信息)作录音结合,给出准确的各项数据,返站后结合日期储存到公司总调度室。 关键词:公交调度;模糊优化法;层次分析;满意度 3.1 问题的重述 3.1.1 问题的基本背景 公交公司制定公交车调度方案,要考虑公交车、车站和乘客三方面因素。我国某特大城市某条公交线路情况,一个工作日两个运营方向各个站上下车的乘客数量统计见表3-1。 3.1.2 运营及调度要求 ⑴公交线路上行方向共14站,下行方向共13站; ⑵公交公司配给该线路同一型号的大客车,每辆标准载客100人,据统计客车在该线路上运营的平均速度为20公里/小时。车辆满载率不应超过120%,一般也不低于50%; ⑶乘客候车时间一般不要超过10分钟,早高峰时一般不要超过5分钟。 3.1.3 要求的具体问题 ⑴试根据这些资料和要求,为该线路设计一个便于操作的全天(工作日)的公交车调度方案,包括两个起点站的发车时刻表;一共需要多少辆车;这个方案以怎样的程度照顾到了乘客和公交公司双方的利益,等等; ⑵如何将这个调度问题抽象成一个明确完整的数学模型,并指出求解方法; ⑶据实际问题的要求,如果要设计好更好的调度方案,应如何采集运营数据。 3.2 问题的分析 本问题的难点是同时考虑到完善城市交通环境、改进市民出行状况、提高公交公司的经济和社会效益等诸多因素。如果仅考虑提高公交公司的经济效益,则只要提高公交车的满载率,运用数据分析法可方便地给出它的最佳调度方案;如果仅考虑方便乘客出行,只要增加车辆数的次数,运用统计方法同样可以方便地给出它的最佳调度方案,显然这两种方案是对立的。于是我们将此题分成两个方面,分别考虑到:⑴公交公司的经济效益,记为公司的满意度;⑵乘客的等待时间和乘车的舒适度,记为乘客的满意度。

第十八章动态优化模型

第十八章 动态优化模型 动态过程的另一类问题是所谓的动态优化问题,这类问题一般要归结为求最优控制函数使某个泛函达到极值。当控制函数可以事先确定为某种特殊的函数形式时,问题又简化为求普通函数的极值。求解泛函极值问题的方法主要有变分法和最优控制理论方法。 §1 变分法简介 变分法是研究泛函极值问题的一种经典数学方法,有着广泛的应用。下面先介绍变分法的基本概念和基本结果,然后介绍动态系统最优控制问题求解的必要条件和最大值原理。 1.1 变分法的基本概念 1.1.1 泛函 设S 为一函数集合,若对于每一个函数S t x ∈)(有一个实数J 与之对应,则称J 是对应在S 上的泛函,记作))((t x J 。S 称为J 的容许函数集。 通俗地说,泛函就是“函数的函数”。 例如对于xy 平面上过定点),(11y x A 和),(22y x B 的每一条光滑曲线)(x y ,绕x 轴旋转得一旋转体,旋转体的侧面积是曲线)(x y 的泛函))((x y J 。由微积分知识不难写出 dx x y x y x y J x x )('1)(2))((2 12?+=π (1) 容许函数集可表示为 })( ,)(],,[)(|)({2211211y x y y x y x x C x y x y S ==∈= (2) 最简单的一类泛函表为 ?=2 1 ),,())((t t dt x x t F t x J (3) 被积函数F 包含自变量t ,未知函数x 及导数x 。(1)式是最简泛函。 1.1.2 泛函的极值 泛函))((t x J 在S t x ∈)(0取得极小值是指,对于任意一个与)(0t x 接近的 S t x ∈)(,都有))(())((0t x J t x J ≥。所谓接近,可以用距离ε<))(),((0t x t x d 来度量,而距离定义为 |})()(||,)()({|max ))(),((0002 1t x t x t x t x t x t x d t t t --=≤≤ 泛函的极大值可以类似地定义。)(0t x 称为泛函的极值函数或极值曲线。 1.1.3 泛函的变分 如同函数的微分是增量的线性主部一样,泛函的变分是泛函增量的线性主部。作为泛函的自变量,函数)(t x 在)(0t x 的增量记为 )()()(0t x t x t x -=δ 也称函数的变分。由它引起的泛函的增量记作 ))(())()((00t x J t x t x J J -+=?δ 如果J ?可以表为 ))(),(())(),((00t x t x r t x t x L J δδ+=?

优化调度概述

1.概述 1.1 调度问题的提出 敏捷制造作为21世纪企业的先进制造模式,综合了JIT、并行工程、精良制造等多种先进制造模式的哲理,其目的是要以最低成本制造出顾客满意的产品,即是完全面向顾客的。在这种模式下如何进行组织管理,包括如何组织动态联盟、如何重构车间和单元、如何安排生产计划、如何进行调度都是我们面临的问题。其中车间作业调度与控制技术是实现生产高效率、高柔性和高可靠性的关键,有效实用的调度方法和优化技术的研究与应用已成为先进制造技术实践的基础。 调度问题主要集中在车间的计划与调度方面,许多学者作了大量研究,出了不少的研究成果。制造系统的生产调度是针对一项可分解的工作(如产品制造),探讨在在尽可能满足约束条件(如交货期、工艺路线、资源情况)的前提下,通过下达生产指令,安排其组成部分(操作)使用哪些资源、其加工时间及加工的先后顺序,以获得产品制造时间或成本的最优化。在理论研究中,生产调度问题常被称为排序问题或资源分配问题。 1.2 调度问题的分类 生产调度系统的分类方法很多,主要有以下几种: (1) 根据加工系统的复杂度,可分为单机、多台并行机、flow shop和job shop。 单机调度问题是所有的操作任务都在单台机器上完成,为此存在任务的优化排队问题,对于单机调度比较有代表性的请见文[9][10][l1];多台并行机的调度问题更复杂,因而优化问题更突出,文[8][11]][13]研究了多台并行机的调度;flow shop型问题假设所有作业都在同样的设备上加工,并有一致的加工操作和加工顺序,文[12][13][14]研究了flow shop问题;job shop是最一般的调度类型、并不限制作业的操作的加工设备,并允许一个作业加工具有不同的加工路径。对于job shop型问题的研究,文献很多,综述文章可参见Lawler等[15]。 (2) 根据性能指标,分为基于调度费用和调度性能的指标两大类。 (3) 根据生产环境的特点,可将调度问题分为确定性调度和随机性调度问题。 (4) 根据作业的加工特点,可将调度问题分为静态调度和动态调度。 静态调度是指所有待安排加工的工作均处于待加工状态,因而进行—次调度后、各作业的加工被确定、在以后的加工过程中就不再改变;动态调度是指作业依次进入待加工状态、各种作业不断进入系统接受加工、同时完成加工的作业又不断离开,还要考虑作业环境中不断出现的动态扰动、如作业的加工超时、设备的损坏等。因此动态调度要根据系统中作业、设备等的状况,不断地进行调度。实际调度的类型往往是job shop型,且是动态的。 1.3 生产调度的环境特征 一般的调度问题都是对于具体生产环境中复杂的、动态的、多目标的调度问题的一种抽象和

对动态优化设计的认识及其应用-

东北大学 研究生考试试卷 考试科目:对动态优化设计的认识及其应用 课程编号: 阅卷人: 考试日期:2012.06 姓名:黄孙进 学号:1100487 注意事项 1.考前研究生将上述项目填写清楚 2.字迹要清楚,保持卷面清洁 3.交卷时请将本试卷和题签一起上交 东北大学研究生

对动态优化设计的认识及其应用 摘要 本文主要阐述了动态优化设计的概念、内容方法;介绍了动态优化设计相关理论;以及以系统体积、重量最小和传动构件的扭转振动加速度最大值最小为目标函数,以传动构件的扭转振动加速度均方根值为动态性能约束,建立时变外载荷下系统的动态优化设计模型,采用混合离散变量优化方法进行优化,即风力发电机齿轮传动系统动态优化设计方法。 关键词:动态优化设计;风力发电机;齿轮传动;

摘要 (i) 第一章动态优化设计的认识 (1) 1.1引言 (1) 1.2动态优化设计的目标、内容及方法 (1) 1.3动态优化设计的相关理论 (4) 1.3.1有关动态优化设计内容方面的理论基础 (5) 1.3.2有关动态设计手段方面的理论基础 (7) 第二章风力发电机齿轮传动系统动态优化设计方法 (10) 2.1风力发电机齿轮传动系统结构 (10) 2.2齿轮传动系统动态优化设计模型目标函数 (10) 2.3齿轮传动系统动态优化设计模型设计变 (11) 2.4风电齿轮传动系统优化结果比较 (11) 2.5风力发电机齿轮动态优化设计结论 (14) 参考文献 (15)

第一章动态优化设计的认识 1.1引言 现代机械产品正在向高速、高精度、轻量化的方向发展,产品结构日趋复杂,产品更新换代的速度日益加快,对产品或设备的结构系统的静态和动态特性要求越来越高。如何提高系统的性能越来越受到人们的重视。对产品进行动态优化设计是提高产品性能的主要手段,在产品设计中起着非常重要的作用。现代机械动态优化设计是在产品的研究和开发过程中,对机械产品的运动学与动力学及与此相关的动态可靠性、安全性、疲劳强度和工作寿命等问题,进行分析和计算,以保证所研究和开发的设备具有优良的结构性能及其它相关性能。动态优化设计在现代机械产品设计中占有十分重要的地位,这是因为绝大多数现代机械设备都处在连续运转过程中,而且由于这些机械的工作速度越来越高,结构越来越复杂,尺寸越来越大(对微型机械来说,尺寸越来越小),精度越来越高,功能越来越齐全,对其工作的可靠性、安全性和工作连续 性的要求也越来越高。在这种情况下,产品动 态设计已成为现代机械研究开发不可缺少的和 至关重要的环节,对保证产品的工作可靠性、 安全性、工作耐久性。本文将概要论述通过学 习机械设备的动力学与动态分析这门课程对动 态优化设计的认识,并运用ANSYS对简单结构 进行了模态分析和静力学分析。 1.2动态优化设计的目标、内容及方法 现代机械产品动态优化设计是一项涉及现代动态分析、计算机技术、产品结构动力学理论、设计方法学等众多学科领域的新的学科分支,其基本思想是对按功能要求设计的结构或要改进的机械结构进行动力学建模,并做动特性分析。根

人力资源调度的优化模型

人力资源调度的优化模型 摘要 本文主要研究人力资源调度的最优化问题。人力资源调度问题中所要处理的数据之间的关系是比较繁琐的,所以如何有效地设置决策变量,找出相互关系是我们建立模型的突破口。上述模型属于多元函数的条件极值问题的范围,然而许多实际问题归结出的这种形式的优化模型,起决策变量个数n和约束条件m一般比较大,并且最优解往往在可行域的边界上取到,这样就不能简单地用微分法求解,数学规划是解决这类问题的有效方法。 根据所给的“PE公司”技术人员结构及工资情况表、不同项目和各种人员的收费标准表格,为了在满足客户对专业技术人员结构要求的前提下,使“PE公司”每天的直接收益最大,我们首先对不同项目的不同技术人员的分配个数进行假设,从而得到了“PE公司”每天总收入I和每天总支出C,所以每天的直接收益C =,这就是公司每天直接收益的目标函数。在此基础上我们建立 I U- 了基于Matlab软件上的线性规划方法一和基于Lindo6.0软件上的整数线性规划方法二来求解这个模型。首先我们Matlab软件运行这个函数,得到求得的值恰好是整数,满足题意,在题目的约束条件下得到的最大公司效益是27150元,此时的人员分布如下表所示: 项目 A B C D 技术人员 高级工程师 1 5 2 1 工程师 6 3 6 2 助理工程师 2 5 2 1 技术员 1 3 1 0 因为对题中的数据稍做改动时得出的答案就会出现小数的现象,为了更好的解决该问题,我们又引入了一个很好地能处理整数的软件Lindo6.0,得到了各个有效的数据。并在模型扩展中运用已建立的程序对所得的结果进行灵敏度分析,即讨论在收费标准不变的情况下技术人员结构对公司收益的影响以及在技术人员结构不变的情况下收费标准对公司收益的影响,并且进一步分析在怎样的范围内最优解保持不变,并联系社会实际进行了一定的分析。最后在适当简化模型的同时,对模型进行了改进和推广,预示了高素质人才在现代社会中将发挥着越来越重要的作用。 关键词:人力资源调度;决策变量;可行域;灵敏度分析;博弈论

数学建模案例分析--最优化方法建模6动态规划模型举例

§6 动态规划模型举例 以上讨论的优化问题属于静态的,即不必考虑时间的变化,建立的模型——线性规划、非线性规划、整数规划等,都属于静态规划。多阶段决策属于动态优化问题,即在每个阶段(通常以时间或空间为标志)根据过程的演变情况确定一个决策,使全过程的某个指标达到最优。例如: (1)化工生产过程中包含一系列的过程设备,如反应器、蒸馏塔、吸收器等,前一设备的输出为后一设备的输入。因此,应该如何控制生产过程中各个设备的输入和输出,使总产量最大。 (2)发射一枚导弹去击中运动的目标,由于目标的行动是不断改变的,因此应当如何根据目标运动的情况,不断地决定导弹飞行的方向和速度,使之最快地命中目标。 (3)汽车刚买来时故障少、耗油低,出车时间长,处理价值和经济效益高。随着使用时间的增加则变得故障多,油耗高,维修费用增加,经济效益差。使用时间俞长,处理价值也俞低。另外,每次更新都要付出更新费用。因此,应当如何决定它每年的使用时间,使总的效益最佳。 动态规划模型是解决这类问题的有力工具,下面介绍相关的基本概念及其数学描述。 (1)阶段 整个问题的解决可分为若干个相互联系的阶段依次进行。通常按时间或空间划分阶段,描述阶段的变量称为阶段变量,记为k 。 (2)状态 状态表示每个阶段开始时所处的自然状况或客观条件,它描述了研究过程的状况。各阶段的状态通常用状态变量描述。常用k x 表示第k 阶段的状态变量。n 个阶段的决策过程有1+n 个状态。用动态规划方法解决多阶段决策问题时,要求整个过程具有无后效性。即:如果某阶段的状态给定,则此阶段以后过程的发展不受以前状态的影响,未来状态只依赖于当前状态。 (3)决策 某一阶段的状态确定后,可以作出各种选择从而演变到下一阶段某一状态,这种选择手段称为决策。描述决策的变量称为决策变量。决策变量限制的取值范围称为允许决策集合。用)(k k x u 表示第k 阶段处于状态k x 时的决策变量,它是k x 的函数,用)(k k x D 表示k x 的允许决策集合。 (4)策略 一个由每个阶段的决策按顺序排列组成的集合称为策略。由第k 阶段的状态k x 开始到终止状态的后部子过程的策略记为)}(,),(),({)(11n n k k k k k k x u x u x u x p Λ++=。在实际问题中,可供选择的策略有一定范围,称为允许策略集合。其中达到最优效果的策略称为最优策略。 (5)状态转移方程 如果第k 个阶段状态变量为k x ,作出的决策为k u ,那么第1+k 阶段的状态变量1+k x 也被完全确定。用状态转移方程表示这种演变规律,写作(1k k T x =+k x ,)k u (6)最优值函数 指标函数是系统执行某一策略所产生结果的数量表示,是用来衡量策略优劣的数量指标,它定义在全过程和所有后部子过程上。指标函数的最优值称为最优值函数。 下面的方程在动态规划逆序求解中起着本质的作用。

电力系统优化调度模型与算法研究

作者姓名:翟桥柱 论文题目:电力系统优化调度模型与算法研究 作者简介:翟桥柱,男,1972年6月出生,1999年9月师从于西安交通大学系统工程研究所管晓宏教授,于2005年12月获博士学位。 中文摘要 电力系统优化调度是有巨大潜在经济效益的一类优化问题。它的主要目标是在确保电力正常供应的前提下合理利用发电资源,减少能源消耗和环境污染,降低发电总成本,提高发电厂在电力市场中的竞争力。随着主要发电用燃料——煤、石油和天然气等资源的日渐消耗和世界范围内电力市场化改革的推进,如何进一步提高电力系统优化调度水平成为迫切需要研究的一个课题。 Lagrange松弛法是目前公认的求解电力系统优化调度问题最有效的方法之一。本文主要研究了Lagrange松弛法框架下一些多年遗留问题以及电力市场环境下与调度有关的一些新问题。具体包括以下几个方面: 对电力系统优化调度问题进行了概述,特别分析了电力市场环境下对调度问题的新要求,介绍了我国电力系统优化调度现状。 Lagrange松弛框架下的同构振荡是一个多年未获解决的难题,同构振荡是指在松弛法框架下,乘子每次修正后,相同机组对应的子问题的解始终保持同步变化。虽然从对偶问题角度看,同构振荡是自然的,但由于受系统负载需求的制约,在可行解和最优解中相同机组的开关状态及生产情况一般不同,所以同构振荡会使构造可行解变得异常困难。本文通过分析同构振荡产生的根源,指出只有通过合理的途径将对偶优化中的相同子问题化为不同才能从根本上消除同构振荡。由于正是系统负载需求约束导致相同机组的解可能不同,所以本文提出采用增广Lagrange函数引入对负载需求约束的惩罚项,且在解子问题时提出了序贯求解算法以克服可分性被破坏后给求解带来的困难,理论分析和实例测试均表明这是一种能彻底克服同构振荡的有效算法,同时这种方法还可以解决相同机组市场竞标中的公平性问题。(参见:Qiaozhu Zhai, Xiaohong Guan, Jian Cui. Unit Commitment with Identical Units: Successive Subproblems Solving Method Based on Lagrangian Relaxation [J]. IEEE Transactions on Power Systems, Vol.17, No. 4, pp.1250-1257. 2002. X.H. Guan, Q.Z. Zhai, F. Lai. New Lagrangian Relaxation Based Algorithm for Resource Scheduling with Homogeneous Subproblems[J]. Journal of Optimization Theory and Applications, Vol. 113, No.1, pp.65-82, 2002.) 电力系统优化调度中机组的爬升约束会给求解带来极大困难,引起困难的根本原因在于离散量与连续量的密切耦合,本文通过深入分析提出了一种新的状态定义及阶段划分方法,基于新的状态定义实现了离散量与连续量的解耦,以此为基础设计了一种双动态规划算法,在低层用连续动态规划求解最优的连续决策,在高层用离散动态规划求解最优的离散决策,其中离散决策费用与低层的最优连续决策有关。双动态规划法可以迅速获得具有爬升约束机组子问题的最优解,理论分析及数值计算均表明了算法的有效性,从而彻底改变了长期以来

数学建模 四大模型总结

四类基本模型 1 优化模型 1.1 数学规划模型 线性规划、整数线性规划、非线性规划、多目标规划、动态规划。 1.2 微分方程组模型 阻滞增长模型、SARS 传播模型。 1.3 图论与网络优化问题 最短路径问题、网络最大流问题、最小费用最大流问题、最小生成树问题(MST)、旅行商问题(TSP)、图的着色问题。 1.4 概率模型 决策模型、随机存储模型、随机人口模型、报童问题、Markov 链模型。 1.5 组合优化经典问题 ● 多维背包问题(MKP) 背包问题:n 个物品,对物品i ,体积为i w ,背包容量为W 。如何将尽可能多的物品装入背包。 多维背包问题:n 个物品,对物品i ,价值为i p ,体积为i w ,背包容量为W 。如何选取物品装入背包,是背包中物品的总价值最大。 多维背包问题在实际中的应用有:资源分配、货物装载和存储分配等问题。该问题属于NP 难问题。 ● 二维指派问题(QAP) 工作指派问题:n 个工作可以由n 个工人分别完成。工人i 完成工作j 的时间为ij d 。如何安排使总工作时间最小。 二维指派问题(常以机器布局问题为例):n 台机器要布置在n 个地方,机器i 与k 之间的物流量为ik f ,位置j 与l 之间的距离为jl d ,如何布置使费用最小。 二维指派问题在实际中的应用有:校园建筑物的布局、医院科室的安排、成组技术中加工中心的组成问题等。 ● 旅行商问题(TSP) 旅行商问题:有n 个城市,城市i 与j 之间的距离为ij d ,找一条经过n 个城市的巡回(每个城市经过且只经过一次,最后回到出发点),使得总路程最小。 ● 车辆路径问题(VRP) 车辆路径问题(也称车辆计划):已知n 个客户的位置坐标和货物需求,在

相关主题
文本预览
相关文档 最新文档