当前位置:文档之家› 重点讲解电感在电路中的作用详解

重点讲解电感在电路中的作用详解

重点讲解电感在电路中的作用详解
重点讲解电感在电路中的作用详解

重点讲解电感在电路中的作用详解尽管业内不少人都认为,模拟和数字技术很快将争夺电源调节器件控制电路的主导权,但实际情况是,在反馈回路控制方面,这两种技术看起来正愉快地共存着。

的确,许多电源管理供应商都提供了不同的方案。一些数字控制最初的可编程优势现在甚至在采用模拟反馈回路的控制器和稳压器中也有了。当然,数字电源还是有一些吸引人之处。

本文主要讨论脉冲宽度调制(PWM)、脉冲密度调制(PDM)和脉冲频率调制(PFM)开关稳压器和控制

器IC。其中一些集成了控制实际开关的一个或多个晶体管的驱动器,另一些则没有。还有一些甚至集成了开关FET,如果它们提供合适的负荷的话。因此,数字还是模拟的问题取决于稳压器的控制回路如何闭合。

图1显示了两种最常见的PWM开关拓朴布局的变化,降压和升压(buck/boost)转换器。在同步配置中,第二只晶体管将取代二极管。在某种意义上来讲,脉冲宽度调制的采用使得这些转换器“准数字化”,至少可与基于一个串联旁路元件的723型线性稳压器相比。

电感在在电路中的作用及使用方法

电感在电路中的作用与使用方法 一、电感器的定义。 电感的定义: 电感是导线内通过交流电流时,在导线的内部及其周围产生交变磁通,导线的磁通量与生产此磁通的电流之比。 当电感中通过直流电流时,其周围只呈现固定的磁力线,不随时间而变化;可是当在线圈中通过交流电流时,其周围将呈现出随时间而变化的磁力线。根据法拉弟电磁感应定律---磁生电来分析,变化的磁力线在线圈两端会产生感应电势,此感应电势相当于一个“新电源”。当形成闭合回路时,此感应电势就要产生感应电流。由楞次定律知道感应电流所产生的磁力线总量要力图阻止原来磁力线的变化的。由于原来磁力线变化来源于外加交变电源的变化,故从客观效果看,电感线圈有阻止交流电路中电流变化的特性。电感线圈有与力学中的惯性相类似的特性,在电学上取名为“自感应”,通常在拉开闸刀开关或接通闸刀开关的瞬间,会发生火花,这就是自感现象产生很高的感应电势所造成的。 总之,当电感线圈接到交流电源上时,线圈内部的磁力线将随电流的交变而时刻在变化着,致使线圈不断产生电磁感应。这种因线圈本身电流的变化而产生的电动势,称为“自感电动势”。 由此可见,电感量只是一个与线圈的圈数、大小形状和介质有关的一个参量,它是电感线圈惯性的量度而与外加电流无关。 电感的具体作用: 1、在DCDC转换的时候,电源输入和DCDC芯片之间常接着一个22uh的功率电感, 一,扼流:在低频电路用来阻止低频交流电;脉动直流电到纯直流电路;它常用在整流电路输出端两个滤波电容的中间,扼流圈与电容组成Π式滤波电路。在高频电路:是防止高频电流流向低频端,在老式再生式收音机中的高频扼流圈。得到应用。 二,滤波:和上述理论相同;也是阻止整流后的脉动直流电流流向纯直流电路由扼流圈(为简化电路,降低成本,用纯电阻替带扼流圈)两个电容(电解电容)组成派式滤波电路。利用电容充放电作用和扼流圈通直流电,阻挡交流电特性来 完成平滑直流电而得到纯正的直流电。

§5-5 纯电感正弦交流电路

单相交流电路讲授课 空凋01/02 1、掌握单相交流电的纯电感电路 重点:单相交流电的纯电感电路 难点:单相交流电的纯电感电路 措施:以理论的讲解、例题的演算,生活实例说明 《电工基础教学参考书》 习题册P 53-54

§5-5 纯电感正弦交流电路 1、含义:交流电路中只有电感线圈作负载的电路。 2、电流与电压的关系 在电感线圈两端加上交流电U L ,线圈中必定产生交流电流i ,因而线圈中将产生感生电动势,其大小: e L =-L t i ?? 则线圈两端的电压u L =- e L =-L t i ?? 通过线圈的电流i= t sin I m ω 在0-2 π 即第一个4 1 周期内: 电流从0→I m , t i ??>0且最大→0,电压e Lm →0。 在2 π -π即第二个4 1 周期内: 电流从I m →0,t i ??<0且0→最大负值,电压0→-e Lm 。 在π-2 3π即第三个4 1周期内: 电流从0→-I m ,t i ??<0且最大负值→0,电压-e Lm →0。 在 2 3π-2π即第四个4 1周期内: 电流从-I m →0, t i ??>0且0→最大,电压0→e Lm 。 结论: 在纯电感电路中,电感两端的电压超前电流90度,或电流滞

后电压90度. i= t sin I m ω u=U Lm sin(ωt+2 π ) 电流一电压最大值之间的关系: LI L :2L U I L L lm m ωωω== = U U I 或得两边同除于 设X L =ωL 代入上式:L L X U I = 在纯电感正弦交流电路中,电流和电压的最大值及有效值之间符合欧姆定律. 3、感抗: 1)、计算:X L =ωL=2πfL 2)、特点:“通直阻交” 3)、注意:I U X L L =只表示电压与电流的最大值或有效值之比。 i u x L L ≠ 不是瞬时值之比 4、电路的功率: 1)、瞬时功率 电压瞬时值u 和电流 瞬时值i 的乘积,称为瞬时功率。用P 表示。 即:

电感升压电路原理

电感式升压电路 一、DC/DC 升压原理 升压式DC/DC变换器主要用于输出电流较小的场合,只要采用1~2节电池便可获得3~12V工作电压,工作电流可达几十毫安至几百毫安,其转换效率可达70%-80%。 升压式DC/DC变换器的基本工作原理如图所示。电路中的VT为开关管,当脉冲振荡器对双稳态电路臵位(即Q端为1)时,VT导通,电感VT中流过电流并储存能量,直到电感电流在RS上的压降等于比较器设定的闽值电压时,双稳态电路复位,即Q端为0。此时VT截止,电感LT中储存的能量通过一极管VD1供给负载,同时对C进行充电。当负载电压要跌落时,电容C放电,这时输出端可获得高于输大端的稳定电压。输出的电压由分压器R1和 R2分压后输入误差放大器,并与基准电压一起去控制脉冲宽度,由此而获得所需要的电压,即V0=VR*(R1/R2+1) 式中:VR——基准电压。 降压式DC/DC变换器的输出电流较大,多为数百毫安至几安,因此适用于输出电流较大的场合。降压式DC/DC变换器基本工作原理电路如图所示。VT1为开关管,当VT1导通时,输入电压Vi通过电感L1向负载RL供电,与此同时也向电容C2充电。 在这个过程中,电容C2及电感L1中储存能量。当VT1截止时,由储存在电感L1中的能量继续向 RL供电,当输出电压要下降时,电容C2中的能量也向RL放电,维持输出电压不变。二极管VD1为续流二极管,以便构成电路回路。输出的电压Vo经R1和 R2组成的分压器分压,把输出电压的信号反馈至控制电路,由控制电路来控制开关管的导通及截止时间,使输出电压保持不变。 DC/DC升压稳压器原理 DC/DC升压有三种基本工作方式: 一种是电感电流处于连续工作模式,即电感上电流一直有电流; 一种是电感电流处于断续工作模式,即在开关截止末期电感上电流发生断流; 还有一种是电感电流处于临界连续模式,即在开关截止期间电感电流刚好变为“0”时,开关又导通给电感储能。 下面我们将主要介绍连续工作模式及断续工作模式的工作原理。 连续工作模式 当稳压器有一定负载时,电感电流处于连续工作模式。当开关导通时,如图1所示,电感和电容进行储能,电感电流不能突变, 电流线性增加,也给电容C1进行充电。当开关截止时,如图2所示,负载电流由电感和电容提供,电感电流不能突变,继续给负载 输出电流,给负载供电。电流IL和ID的电流变化和电容电压变化如图3所示。当开关管导通时:△IL=Vin*D/L1;当开关管截止时: △IL=Vout*(1-D)/L1;根据以上两个式子得出: Vout=Vin/(1-D) (D为占空比)

电感的作用及分类

电感是用绝缘导线(例如漆包线,沙包线等)绕制而成的电磁感应元件。属于常用元件。 一,电感的作用:通直流阻交流这是简单的说法,对交流信号进行隔离,滤波或与电容器,电阻器等组成谐振电路. 调谐与选频电感的作用:电感线圈与电容器并联可组成LC 调谐电路。即电路的固有振荡频率f0与非交流信号的频率f相等,则回路的感抗与容抗也相等,于是电磁能量就在电感、电容之间来回振荡,这就是L C回路的谐振现象。谐振时由于电路的感抗与容抗等值又反向,因此回路总电流的感抗最小,电流量最大(指f=f0的交流信号),所以L C谐振电路具有选择频率的作用,能将某一频率f的交流信号选择出来。 磁环电感的作用:磁环与连接电缆构成一个电感器(电缆中的导线在磁环上绕几圈作为电感线圈),它是电子电路中常用的抗干扰元件,对于高频噪声有很好的屏蔽作用,故被称为吸收磁环,由于通常使用铁氧体材料制成,所以又称铁氧体磁环(简称磁环)。在图中,上面为一体式磁环,下面为带安装夹的磁环。磁环在不同的频率下有不同的阻抗特牲。一般在低频时阻抗很小,当信号频率升高后磁环的阻抗急剧变大。可见电感的作用如此之大,大家都知道,信号频率越高,越容易辐射出去,而一般的信号线都是没有屏蔽层的,这些信号线就成了很好的天线,接收周围环境中各种杂乱的高频信号,而这些信号叠加在原来传输的信号上,甚至会改变原来传输的有用信号,严重干扰电子设备的正常工作,因此降低电子设备的电磁干扰(E M)已经是必须考虑的问题。在磁环作用下,即使正常有用的信号顺利地通过,又能很好地抑制高频于扰信号,而且成本低廉。 电感的作用还有筛选信号、过滤噪声、稳定电流及抑制电磁波干扰等重要的作用。

正弦交流电路习习题解答

欢迎阅读 欢迎阅读 习 题 2.1 电流π10sin 100π3i t ?? =- ?? ? ,问它的三要素各为多少?在交流电路中,有两个负载,已知它们的 电压分别为1π60sin 3146u t ??=- ?? ? V ,2π80sin 3143u t ??=+ ?? ? V ,求总电压u 的瞬时值表达式,并说明u 、 u 1、u 2三者的相位关系。 解:(1)最大值为10(V ),角频率为100πrad/s ,初相角为-60°。 (2) 1U 则= m U 100=u 2.2 (1)i 1(2)i 1(3)i 1(4)i 1解:(1(2)I (3)=I (4)设+=1I I I 2.12=I 2.3 (1)u =t V (2)5i =-sin(314t – 60o) A 解:(1)U =10/0o (V) (2)m I =-5/-60o =5/180o -60o=5/120o (A) 2.4 已知工频正弦电压u ab 的最大值为311V ,初相位为–60°,其有效值为多少?写出其瞬时值 表达式;当t =0.0025s 时,U ab 的值为多少? 解:∵U U ab abm 2=

欢迎阅读 ∴有效值2203112 1 21=?== U U abm ab (V) 瞬时值表达式为 ()?-=60314sin 311t u ab (V) 当t =0.0025S 时,5.8012sin(31130025.0100sin 311-=-=??? ? ? -??=πππU ab (V) 2.5 题 解:( 所以U a 由图b 所以U a 2.6 (1(2(3解:(2=P U R == R U I (2)P (32.7 把L =51mH 的线圈(线圈电阻极小,可忽略不计),接在u t +60o) V 的交流电源上,试计算: (1)X L 。 (2)电路中的电流i 。 (3)画出电压、电流相量图。 解:(1)16105131423=??==-fL X L π(Ω)

电感升压电路中

BOOST升压电路中: 电感的作用:是将电能和磁场能相互转换的能量转换器件,当MOS开关管闭合后,电感将电能转换为磁场能储存起来,当MOS断开后电感将储存的磁场能转换为电场能,且这个能量在和输入电源电压叠加后通过二极管和电容的滤波后得到平滑的直流电压提供给负载,由于这个电压是输入电源电压和电感的磁砀能转换为电能的叠加后形成的,所以输出电压高于输入电压,既升压过程的完成; 肖特基二极管主要起隔离作用,即在MOS开关管闭合时,肖特基二极管的正极电压比负极电压低,此时二极管反偏截止,使此电感的储能过程不影响输出端电容对负载的正常供电;因在MOS管断开时,两种叠加后的能量通过二极向负载供电,此时二极管正向导通,要求其正向压降越小越好,尽量使更多的能量供给到负载端!! 電感升壓原理: 什么是电感型升压DC/DC转换器? 如图1所示为简化的电感型DC-DC转换器电路,闭合开关会引起通过电感的电流增加。打开开关会促使电流通过二极管流向输出电容。因储存来自电感的电流,多个开关周期以后输出电容的电压升高,结果输出电压高于输入电压。 决定电感型升压的DC-DC转换器输出电压的因素是什么? 在图2所示的实际电路中,带集成功率MOSFET的IC代替了机械开关,MOSFET的开、关由脉宽调制(PWM)电路控制。输出电压始终由PWM占空比决定,占空比为50%时,输出电压为输入电压的两倍。将电压提高一倍会使输入电流大小达到输出电流的两倍,对实际的有损耗电路,输入电流还要稍高。 电感值如何影响电感型升压转换器的性能? 因为电感值影响输入和输出纹波电压和电流,所以电感的选择是感性电压转换器设计的关键。等效串联电阻值低的电感,其功率转换效率最佳。要对电感饱和电流额定值进行选择,使其大于电路的稳态电感电流峰值。 电感型升压转换器IC电路输出二极管选择的原则是什么? 升压转换器要选快速肖特基整流二极管。与普通二极管相比,肖特基二极管正向压降小,使其功耗低并且效率高。肖特基二极管平均电流额定值应大于电路最大输出电压。

单一元件的正弦交流电路

单一元件的正弦交流电路交流电纯电阻电路公式(电压与电流的关系及电功率) 将一个电阻接到交流电源上,如右图所示。电压和电流的关系可以根据欧姆定律来确定。即: 上述公式表面,交流纯电阻电路的基本性质是电流瞬时值与电阻两端电压的瞬时值成正比。 电阻两端电压有效值U和电阻中流过的电流有效值I的关系可由欧姆定律得出: 在电阻大小一定时,电压增大,电流也增大。电压为零,电流也为零。即电流的正弦曲线与电压的正弦曲线波形起伏一致。所以在电阻负载电路中电压与电流是同相位的。 由于交流电路的电压和电流都随时间而变化,在任意瞬间,电压瞬时值u与电流瞬时值i的乘积为瞬时功率,用“p”表示:即: 由上述公式可以得知:电阻元件上瞬时功率由两部分组成,第一部分是常熟,第二部分是幅值为,并以2ω的角频率随时间按余弦规律变化的变量。 上右图波形图中虚线所示,p为功率随时间变化的波形。它在一个周期内总是大于零,表面电阻元件总是吸收电能,即消耗功率。 瞬时功率虽然能表面功率在一周期内的变化情况,但是其数值不便于测量和计算,其实际意义不大。人们通常所说的电路的功率都是指瞬时功率在一周期内的平均值,称为平均功率或有功功率,以大写字母“P”表示,经数学推算可得:

其单位为瓦塔,由上式可见,当电压和电流以有效值表示时,纯电阻电路中的平均功率的表示式具有和直流电路相同的形式。 从交流电纯电感电路中感抗/电压/电流/电功率的关系了解电感的作用 一个具有电感磁效应作用,其直流电阻值小到可以忽略的线圈,就可以看作是一个纯电感负载。如日光灯电路的整流器,整流滤波电路的扼流圈,感应熔炼炉的感应圈,电力系统中限制短路电流的电抗器等,都可以看作是电感元件。电感元件用符“”表示。 感抗与电流和电压的关系 当交流电通过线圈时,在线圈中产生自感电动势。根据电磁感应定律(楞次定律),自感电动势总是阻碍电路内电流的变化,形成对电流的“阻力”作用,这种“阻力”作用称为电感电抗,简称感抗。用符号X L表示,单位也是欧姆。 实验证明,线圈的电感L越大,交流电的频率f越高,则其感抗X L就越大,它们之间的关系为: 上述公式中: f:表示交流电的频率,单位Hz; L:表示自感系数;单位为亨利(H) X L:线圈的感抗,单位为欧姆(Ω) 上面的公式表明,当电感系数一定时,感抗与频率成正比,即电感元件具有通低频率阻高频率特性。 当f=0时,X L=0。这说明感抗对直流电不起阻碍作用。所有在直流电路中,可将线圈看成是短路。 如右图所示的纯电杆电路中,如果线圈两端加上正弦交流电压u,理论证明,在纯电感电路中线圈两端电压有效值U与线圈中电流有效值I之间的关系为:

电感式位移传感器应用电路设计

东北石油大学 课程设计 2015年7 月8日

任务书 课程传感器课程设计 题目电感式位移传感器应用电路设计 专业测控技术与仪器祖景瑞学号 2 主要容: 本设计要完成电感式位移传感器应用电路的设计,通过学习和掌握电感式传感器的原理、工作方式及应用来设计一个电路。电路要能够检测一定围位移的测量,并且能够通过LED进行数字显示。位移传感器又称为线性传感器,常用的有电感式位移传感器,电容式位移传感器,光电式位移传感器,超声波式位移传感器,霍尔式位移传感器等技术。 基本要求: 1、能够检测0~20cm 的位移; 2、电压输出为1~5V; 3、电流输出为4~20mA; 主要参考资料: [1]贾伯年,俞朴.传感器技术[M].:东南大学,2006:68-69. [2]王煜东. 传感器及应用[M].:机械工业,2005:5-9. [3] 唐文彦.传感器[M].:机械工业,2007: 48-50. [4] 志萍.传感器与检测技术[M].:高等教育,2002:80-90. 完成期限2015.7.4—2015.7.8 指导教师 专业负责人 2015年7 月1 日

摘要 测量位移的方法很多,现已形成多种位移传感器,而且有向小型化、数字化、智能化方向发展的趋势。位移传感器又称为线性传感器,常用的有电感式位移传感器,电容式位移传感器,光电式位移传感器,超声波式位移传感器,霍尔式位移传感器,磁致伸缩位移传感器以及基于光学的干涉测量法,光外差法,电镜法,激光三角测量法和光谱共焦位移传感器等技术。电感式位移传感器具有无滑动触点,工作时不受灰尘等非金属因素的影响,并且低功耗,长寿命,可使用在各种恶劣条件下。电感式位移传感器主要应用在自动化装备生产线对模拟量的智能控制方面。针对目前电感式位移传感器的应用现状,本文提出了一种电感式位移传感器的设计方法,具有控制及数据处理等功能,结构简单、成本低等优点,可以广泛应用于机械位移的测量与控制。 关键词:电感式传感器;自感式传感器;结构简单;成本低

boost升压电路

开关直流升压电路(即所谓的boost或者step-up电路)原理 2007-09-29 13:28 the boost converter,或者叫step-up converter,是一种开关直流升压电路,它可以是输出电压比输入电压高。 基本电路图见图一。 假定那个开关(三极管或者mos管)已经断开了很长时间,所有的元件都处于理想状态,电容电压等于输入电压。 下面要分充电和放电两个部分来说明这个电路 充电过程 在充电过程中,开关闭合(三极管导通),等效电路如图二,开关(三极管)处用导线代替。这时,输入电压流过电感。二极管防止电容对地放电。由于输入是直流电,所以电感上的电流以一定的比率线性增加,这个比率跟电感大小有关。随着电感电流增加,电感里储存了一些能量。

放电过程 如图,这是当开关断开(三极管截止)时的等效电路。当开关断开(三极管截止)时,由于电感的电流保持特性,流经电感的电流不会马上变为0,而是缓慢的由充电完毕时的值变为0。而原来的电路已断开,于是电感只能通过新电路放电,即电感开始给电容充电,电容两端电压升高,此时电压已经高于输入电压了。升压完毕。 说起来升压过程就是一个电感的能量传递过程。充电时,电感吸收能量,放电时电感放出能量。 如果电容量足够大,那么在输出端就可以在放电过程中保持一个持续的电流。如果这个通断的过程不断重复,就可以在电容两端得到高于输入电压的电压。 一些补充 1 AA电压低,反激升压电路制约功率和效率的瓶颈在开关管,整流管,及其他损耗

(含电感上). 1.电感不能用磁体太小的(无法存应有的能量),线径太细的(脉冲电流大,会有线损大). 2 整流管大都用肖特基,大家一样,无特色,在输出3.3V时,整流损耗约百分之 十. 3 开关管,关键在这儿了,放大量要足够进饱和,导通压降一定要小,是成功的关键.总共才一伏,管子上耗多了就没电出来了,因些管压降应选最大电流时不超过0.2--0.3V,单只做不到就多只并联....... 4 最大电流有多大呢?我们简单点就算1A吧,其实是不止的.由于效率低会超过1.5A,这是平均值,半周供电时为3A,实际电流波形为0至6A.所以咱建议要用两只号称5A实际3A的管子并起来才能勉强对付. 5 现成的芯片都没有集成上述那么大电流的管子,所以咱建议用土电路就够对付洋电路了. 以上是书本上没有直说的知识,但与书本知识可对照印证. 开关管导通时,电源经由电感-开关管形成回路,电流在电感中转化为磁能贮存;开关管关断时,电感中的磁能转化为电能在电感端左负右正,此电压叠加在电源正端,经由二极管-负载形成回路,完成升压功能。既然如此,提高转换效率就要从三个方面着手:1.尽可能降低开关管导通时回路的阻抗,使电能尽可能多的转化为磁能;2.尽可能降低负载回路的阻抗,使磁能尽可能多的转化为电能,同时回路的损耗最低;3.尽可能降低控制电路的消耗,因为对于转换来说,控制电路的消耗某种意义上是浪费掉的,不能转化为负载上的能量。

电感的作用及用途

电感器(电感线圈)和变压器均是用绝缘导线(例如漆包线、纱包线等)绕制而成的电磁感应元件,也是电子电路中常用的元器件之一,相关产品如共膜滤波器等。 一、自感与互感 (一)自感 当线圈中有电流通过时,线圈的周围就会产生磁场。当线圈中电流发生变化时,其周围的磁场也产生相应的变化,此变化的磁场可使线圈自身产生感应电动势(电动势用以表示有源元件理想电源的端电压),这就是自感。 (二)互感 两个电感线圈相互靠近时,一个电感线圈的磁场变化将影响另一个电感线圈,这种影响就是互感。互感的大小取决于电感线圈的自感与两个电感线圈耦合的程度。 二、电感器的作用与电路图形符号 (一)电感器的电路图形符号 电感器是用漆包线、纱包线或塑皮线等在绝缘骨架或磁心、铁心上绕制成的一组串联的同轴线匝,它在电路中用字母"L"表示,图6-1是其电路图形符号。 (二)电感器的作用 电感器的主要作用是对交流信号进行隔离、滤波或与电容器、电阻器等组成谐振电路。 三、变压器的作用及电路图形符号 (一)变压器的电路图形符号 变压器是利用电感器的电磁感应原理制成的部件。在电路中用字母"T"(旧标准为"B")表示,其电路图形符号如图6-12所示。 (二)变压器的作用 变压器是利用其一次(初级)、二次(次级)绕组之间圈数(匝数)比的不同来改变电压比或电流比,实现电能或信号的传输与分配。其主要有降低交流电压、提升交流电压、信号耦合、变换阻抗、隔离等作用。 (一)电感器的结构与特点 电感器一般由骨架、绕组、屏蔽罩、封装材料、磁心或铁心等组成。 1.骨架骨架泛指绕制线圈的支架。一些体积较大的固定式电感器或可调式电感器(如振荡线圈、阻流圈等),大多数是将漆包线(或纱包线)环绕在骨架上,再将磁心或铜心、铁心等装入骨架的内腔,以提高其电感量。 骨架通常是采用塑料、胶木、陶瓷制成,根据实际需要可以制成不同的形状。 小型电感器(例如色码电感器)一般不使用骨架,而是直接将漆包线绕在磁心上。 空心电感器(也称脱胎线圈或空心线圈,多用于高频电路中)不用磁心、骨架和屏蔽罩等,而是先在模具上绕好后再脱去模具,并将线圈各圈之间拉开一定距离。 2.绕组绕组是指具有规定功能的一组线圈,它是电感器的基本组成部分。 绕组有单层和多层之分。单层绕组又有密绕(绕制时导线一圈挨一圈)和间绕(绕制时每圈导线之间均隔一定的距离)两种形式;多层绕组有分层平绕、乱绕、蜂房式绕法等多种,如图6-5所示。 3.磁心与磁棒磁心与磁棒一般采用镍锌铁氧体(NX系列)或锰锌铁氧体(MX系列)等材料,它有"工"字形、柱形、帽形、"E"形、罐形等多种形状,如图6-6所示。 4.铁心铁心材料主要有硅钢片、坡莫合金等,其外形多为"E"型。 5.屏蔽罩为避免有些电感器在工作时产生的磁场影响其它电路及元器件正常工作,就为其增加了金属屏幕罩(例如半导体收音机的振荡线圈等)。采用屏蔽罩的电感器,会增加线圈的损耗,使Q值降低。 6.封装材料有些电感器(如色码电感器、色环电感器等)绕制好后,用封装材料将线

正弦交流电路习题解答

习 题 电流π10sin 100π3i t ??=- ?? ?,问它的三要素各为多少?在交流电路中,有两个负载,已知它们的电压分别为1π60sin 3146u t ??=- ???V ,2π80sin 3143u t ??=+ ?? ?V ,求总电压u 的瞬时值表达式,并说明u 、u 1、u 2三者的相位关系。 解:(1)最大值为10(V ),角频率为100πrad/s ,初相角为-60°。 (2)?-=30/601m U &(V )?=60/802m U &(V ) 则?=?+?-=+=1.23/10060/8030/6021m m m U U U &&&(V ) )1.23314sin(100?+=t u (V )u 滞后u 2,而超前u 1。 两个频率相同的正弦交流电流,它们的有效值是I 1=8A ,I 2=6A ,求在下面各种情况下,合成电流的有效值。 (1)i 1与i 2同相。 (2)i 1与i 2反相。 (3)i 1超前i 2 90o 角度。 (4)i 1滞后i 2 60o 角度。 解:(1)146821=+=+=I I I (A ) (2)6821+=-=I I I (A ) (3)1068222221=+=+=I I I (A ) (4)设?=0/81I &(A )则?=60/62 I &(A ) ?=?+?=+=3.25/2.1260/60/82 1I I I &&&(A ) 2.12=I (A ) 把下列正弦量的时间函数用相量表示。 (1)u =t V (2)5i =-sin(314t – 60o) A 解:(1)U &=10/0o (V) (2)m I &=-5/-60o =5/180o -60o=5/120o (A) 已知工频正弦电压u ab 的最大值为311V ,初相位为–60°,其有效值为多少?写出其瞬时值表达式;当t =时,U ab 的值为多少? 解:∵U U ab abm 2= ∴有效值2203112 121=?==U U abm ab (V) 瞬时值表达式为 ()?-=60314sin 311t u ab (V) 当t =时,5.80)12sin(31130025.0100sin 311-=-=??? ? ?-??=πππU ab (V) 题图所示正弦交流电路,已知u 1sin314t V ,u 2t –120o) V ,试用相量表示法求电压u a 和u b 。 题图 解:(1)由图a 知,21u u u a +=

DC-DC升压(BOOST)电路原理

DC-DC升压(BOOST)电路原理 BOOST升压电路中: 电感的作用:是将电能和磁场能相互转换的能量转换器件,当MOS开关管闭合后,电感将电能转换为磁场能储存起来,当MOS断开后电感将储存的磁场能转换为电场能,且这个能量在和输入电源电压叠加后通过二极管和电容的滤波后得到平滑的直流电压提供给负载,由于这个电压是输入电源电压和电感的磁砀能转换为电能的叠加后形成的,所以输出电压高于输入电压,既升压过程的完成; 肖特基二极管主要起隔离作用,即在MOS开关管闭合时,肖特基二极管的正极电压比负极电压低,此时二极管反偏截止,使此电感的储能过程不影响输出端电容对负载的正常供电;因在MOS管断开时,两种叠加后的能量通过二极向负载供电,此时二极管正向导通,要求其正向压降越小越好,尽量使更多的能量供给到负载端!!

在图2所示的实际电路中,带集成功率MOSFET的IC代替了机械开关,MOSFET的开、关由脉宽调制(PWM)电路控制。输出电压始终由PWM占空比决定,占空比为50%时,输出电压为输入电压的两倍。将电压提高一倍会使输入电流大小达到输出电流的两倍,对实际的有损耗电路,输入电流还要稍高。 电感值如何影响电感型升压转换器的性能? 因为电感值影响输入和输出纹波电压和电流,所以电感的选择是感性电压转换器设计的关键。等效串联电阻值低的电感,其功率转换效率最佳。要对电感饱和电流额定值进行选择,使其大于电路的稳态电感电流峰值。 电感型升压转换器IC电路输出二极管选择的原则是什么? 升压转换器要选快速肖特基整流二极管。与普通二极管相比,肖特基二极管正向压降小,使其功耗低并且效率高。肖特基二极管平均电流额定值应大于电路最大输出电压. 怎样选择电感型升压转换器IC电路的输入电容? 升压调节器的输入为三角形电压波形,因此要求输入电容必须减小输入纹波和噪声。纹波的幅度与输入电容值的大小成反比,也就是说,电容容量越大,纹波越小。如果转换器负载变化很小,并且输出电流小,使用小容量输入电容也很安全。如果转换器输入与源输出相差很小,也可选小体积电容。如果要求电路对输入电压源纹波干扰很小,就可能需要大容量电容,并(或)减小等效串联电阻(ESR)。

电感在电路中的作用与使用方法【干货】

电感在电路中的作用与使用方法 内容来源网络,由“深圳机械展(11万㎡,1100多家展商,超10万观众)”收集整理! 更多cnc加工中心、车铣磨钻床、线切割、数控刀具工具、工业机器人、非标自动化、数字化无人工厂、精密测量、3D打印、激光切割、钣金冲压折弯、精密零件加工等展示,就在深圳机械展. 一、电感器的定义。 1.1 电感的定义: 电感是导线内通过交流电流时,在导线的内部及其周围产生交变磁通,导线的磁通量与生产此磁通的电流之比。 当电感中通过直流电流时,其周围只呈现固定的磁力线,不随时间而变化;可是当在线圈中通过交流电流时,其周围将呈现出随时间而变化的磁力线。根据法拉弟电磁感应定律---磁生电来分析,变化的磁力线在线圈两端会产生感应电势,此感应电势相当于一个“新电源”。当形成闭合回路时,此感应电势就要产生感应电流。由楞次定律知道感应电流所产生的磁力线总量要力图阻止原来磁力线的变化的。由于原来磁力线变化来源于外加交变电源的变化,故从客观效果看,电感线圈有阻止交流电路中电流变化的特性。电感线圈有与力学中的惯性相类似的特性,在电学上取名为“自感应”,通常在拉开闸刀开关或接通闸刀开关的瞬间,会发生火花,这就是自感现象产生很高的感应电势所造成的。 总之,当电感线圈接到交流电源上时,线圈内部的磁力线将随电流的交变而时刻在变化着,致使线圈不断产生电磁感应。这种因线圈本身电流的变化而产生的电动势,称为“自感电动势”。

由此可见,电感量只是一个与线圈的圈数、大小形状和介质有关的一个参量,它是电感线圈惯性的量度而与外加电流无关。 电感的具体作用: 1、在DCDC转换的时候,电源输入和DCDC芯片之间常接着一个22uh的功率电感,一,扼流:在低频电路用来阻止低频交流电;脉动直流电到纯直流电路;它常用在整流电路输出端两个滤波电容的中间,扼流圈与电容组成Π式滤波电路。在高频电路:是防止高频电流流向低频端,在老式再生式收音机中的高频扼流圈。得到应用。二,滤波:和上述理论相同;也是阻止整流后的脉动直流电流流向纯直流电路由扼流圈(为简化电路,降低成本,用纯电阻替带扼流圈)两个电容(电解电容)组成派式滤波电路。利用电容充放电作用和扼流圈通直流电,阻挡交流电特性来 完成平滑直流电而得到纯正的直流电。 三,震荡:我们说整流是把交流电变成直流电,那么震荡就是把直流电变成交流电的反过程。我们把完成这一过程的电路叫作“震荡器”。 震荡器的波形:有正旋波,锯齿波,梯形波,方波,矩形波,尖峰波。。。 频率由几HZ-几十GHZ.在有线电,无线电领域应用非常广泛。 1.2 电感线圈与变压器 电感线圈:导线中有电流时,其周围即建立磁场。通常我们把导线绕成线圈,以增强线圈内部的磁场。电感线圈就是据此把导线(漆包线、纱包或裸导线)一圈靠一圈(导线间彼此互相绝缘)地绕在绝缘管(绝缘体、铁芯或磁芯)上制成的。一般情况,电感线圈只有一个绕组。

电阻,电容,电感,二极管,三极管,在电路中的作用

电阻,电容,电感,二极管,三极管,在电路中的作用 电阻 定义:导体对电流的阻碍作用就叫导体的电阻。 电阻(Resistor)是所有电子电路中使用最多的元件。电阻的主要物理特征是变电能为热能,也可说它是一个耗能元件,电流经过它就产生热能。电阻在电路中通常起分压分流的作用,对信号来说,交流与直流信号都可以通过电阻。 电阻都有一定的阻值,它代表这个电阻对电流流动阻挡力的大小。电阻的单位是欧姆,用符号“Ω”表示。欧姆是这样定义的:当在一个电阻器的两端加上1伏特的电压时,如果在这个电阻器中有1安培的电流通过,则这个电阻器的阻值为1欧姆。出了欧姆外,电阻的单位还有千欧(KΩ,兆欧(MΩ)等。 电阻器的电气性能指标通常有标称阻值,误差与额定功率等。 它与其它元件一起构成一些功能电路,如RC电路等。 电阻是一个线性元件。说它是线性元件,是因为通过实验发现,在一定条件下,流经一个电阻的电流与电阻两端的电压成正比——即它是符合欧姆定律:I=U/R

常见的碳膜电阻或金属膜电阻器在温度恒定,且电压和电流值限制在额定条件之内时,可用线性电阻器来模拟。如果电压或电流值超过规定值,电阻器将因过热而不遵从欧姆定律,甚至还会被烧毁。线性电阻的工作电压与电流的关系如图1所示。电阻的种类很多,通常分为碳膜电阻,金属电阻,线绕电阻等:它又包含固定电阻与可变电阻,光敏电阻,压敏电阻,热敏电阻等。但不管电阻是什么种类,它都有一个基本的表示字母“R”。 电阻的单位用欧姆(Ω)表示。它包括?Ω(欧姆),KΩ(千欧),MΩ(兆欧)。其换算关系为: 1MΩ=1000KΩ ,1KΩ=1000Ω。 电阻的阻值标法通常有色环法,数字法。色环法在一般的的电阻上比较常见。由于手机电路中的电阻一般比较小,很少被标上阻值,即使有,一般也采用数字法,即: 101——表示100Ω的电阻;102——表示1KΩ的电阻;103——表示10KΩ的电阻;104——表示100KΩ的电阻;105——表示1MΩ的电阻;106——表示10MΩ的电阻。 如果一个电阻上标为223,则这个电阻为22KΩ。电阻在手机机板上一般的外观示意图如图5所示,其两端为银白色,中间大部分为黑色。

正弦交流电路中的电感

正弦交流电路中的电感 1.电压与电流的关系 纯电感线圈电路如图3.10(a )所示。 (a ) (b ) 图3.10 纯电感电路中电流与电压关系 设电路正弦电流为 t I i m ωsin = 在电压、电流关联参考方向下,根据dt di L u L =,电感元件两端电压为 )2sin(2)(2πψωωψωω++=+==i i L t LI t L dt di L u 设 )sin(2u L L t U u ψω+= 比较电压和电流的关系式可见:电感两端电压u 和电流 i 也是同频率的正弦量,电压的相位超前电流 2 π,电压与电流在数值上满足关系式 2,π ψψω+==i u L LI U 表示电感电压、电流的波形如图3.10(b )所示。写成相量形式

2πψωψ+ ∠=∠i u L j U 或. .I L j U L ω= (3-15) 2.感抗的概念 由式(3-15)可知,令 I U L L ==ωL X L X 称为感抗,感抗表示线圈对交流电流阻碍作用的大小。当0=f 时0=L X ,表明线圈对直流电流相当于短路。这就是线圈本身所固有的“直流畅通,高频受阻”作用。L 的单位是H (亨利),L X 的单位是欧姆(Ω)。 电感元件的电压、电流相量图如图3.11所示。 图3.11 电感中电流与电压关系 3.功率 1)瞬时功率 设t I i ωsin 2=,则)2sin(2πω+= t U u L L 瞬时功率为 t I t U i u p L L L ωπωsin 2)2 sin(2?+== t I U t t I U L L ωωω2sin cos sin 2=?= (3-16) 2)平均功率 由式(3-16)可见,在0~2π之间,L p 为正值,表示电感吸收能量,在2 π~π之

一种非常实用的Boost升压电路原理详解

一种实用的BOOST电路 0 引言 在实际应用中经常会涉及到升压电路的设计,对于较大的功率输出,如70W以上的DC /DC升压电路,由于专用升压芯片内部开关管的限制,难于做到大功率升压变换,而且芯片的价格昂贵,在实际应用时受到很大限制。考虑到Boost升压结构外接开关管选择余地很大,选择合适的控制芯片,便可设计出大功率输出的DC/DC升压电路。 UC3S42是一种电流型脉宽调制电源芯片,价格低廉,广泛应用于电子信息设备的电源电路设计,常用作隔离回扫式开关电源的控制电路,根据UC3842的功能特点,结合Boos t拓扑结构,完全可设计成电流型控制的升压DC/DC电路,且外接元器件少,控制灵活,成本低,输出功率容易做到100W以上,具有其他专用芯片难以实现的功能。 1 UC3842芯片的特点 UC3842工作电压为16~30V,工作电流约15mA。芯片内有一个频率可设置的振荡器;一个能够源出和吸入大电流的图腾式输出结构,特别适用于MoSFET的驱动;一个固定温度补偿的基准电压和高增益误差放大器、电流传感器;具有锁存功能的逻辑电路和能提供逐个脉冲限流控制的PWM比较器,最大占空比可达100%。另外,具有内部保护功能,如滞后式欠压锁定、可控制的输出死区时间等。 由UC3842设计的DC/DC升压电路属于电流型控制,电路中直接用误差信号控制电感峰值电流,然后间接地控制PWM脉冲宽度。这种电流型控制电路的主要特点是: 1)输入电压的变化引起电感电流斜坡的变化,电感电流自动调整而不需要误差放大器输出变化,改善了瞬态电压调整率; 2)电流型控制检测电感电流和开关电流,并在逐个脉冲的基础上同误差放大器的输出比较,控制PWM脉宽,由于电感电流随误差信号的变化而变化,从而更容易设置控制环路,改善了线性调整率; 3)简化了限流电路,在保证电源工作可靠性的同时,电流限制使电感和开关管更有效地工作; 4)电流型控制电路中需要对电感电流的斜坡进行补偿,因为,平均电感电流大小是决定输出大小的因素,在占空比不同的情况下,峰值电感电流的变化不能与平均电感电流变化相对应,特别是占空比,50%的不稳定性,存在难以校正的峰值电流与平均电流的误差,即使占空比<50%,也可能发生高频次谐波振荡,因而需要斜坡补偿,使峰值电感电流与平均电感电流变化相一致,但是,同步不失真的斜坡补偿技术实现上有一定的难度。

电源电路中电感的作用

请问这个电源部分的电感作用是什么?如何选取? 这里的电感作用是什么?如何选取?在一个电路上看到电感标的是“742792093”有没有和这个一样但比较常用的电感?型号是什么? 3_540.gif (4.44 KB) 答: 加电感是为了模拟地和数字地等电位,用一般的磁珠即可。其实也可以直接用0欧姆的电阻连通,但是电感可以滤波。 在电感线圈不变的情况下,负载电阻愈小,输出电压的交流分量愈小。只有在RL>>ωL时才 能获得较好的滤波效果。L愈大,滤波效果愈好。 关于这里用电感还是磁珠,一般认为:在信号电路中,可以用磁珠;在功率电流中,应该用电感。对于用电感还是磁珠,关键在于干扰的频率高低,如果干扰在高频范围,则用磁珠比较好,如果在低频则磁珠就无能为力了。一般磁珠对500MHz干扰的滤波效果最好。因此在这里建议用电感。 或直接短接,一点接,在ad/da电路中要用到。 该电感一般就是用磁珠,通常是用于模拟电源的滤波。如果用0欧姆的电阻代替磁珠,那么和导线是一样的,都不能起到滤波的作用。不过,如果数字电源本身就比较干净,电路间又没有相互干扰的话,是可以用0欧姆的电阻或导线代替电感的。

这是一个派型滤波电路,用来为模拟部分提供干净的电源,用磁珠即可,比较关心的参数是100MHz时的阻抗值,直流等效电阻,最大通过电流量,没有电感量!你提到的742792093,应该是wurth的产品,具体参数:2200欧姆@100MHz,DC resistor 0.6欧姆,最大通过200mA电流! 这个电感我个人认为有两个作用: 1,滤波作用 2,当数字电路工作在高频时,电源的脉动比较大,如果和模拟电源一起使用时就会给模拟电源造成干扰,电感在这里还可以因数字电路的电源的di/dt的变化量,使模拟电源和数字电源都比较的稳定,互不影响

§纯电感正弦交流电路

纯电感正弦交流电路 1、含义:交流电路中只有电感线圈作负载的电路。 2、电流与电压的关系 在电感线圈两端加上交流电U L ,线圈中必定 产生交流电流i ,因而线圈中将产生感生电动势, 其大小: e L =-L t i ?? 则线圈两端的电压u L =- e L =-L t i ?? 通过线圈的电流i= t sin I m ω 在0-2π即第一个41周期内: 电流从0→I m , t i ??>0且最大→0,电压e Lm →0。 在2π -π即第二个41周期内: 电流从I m →0, t i ??<0且0→最大负值,电压0→-e Lm 。 在π-23π即第三个4 1周期内: 电流从0→-I m ,t i ??<0且最大负值→0,电压-e Lm →0。 在23π-2π即第四个4 1周期内: 电流从-I m →0,t i ??>0且0→最大,电压0→e Lm 。 结论: 在纯电感电路中,电感两端的电压超前电流90度,或电流滞

后电压90度. i= t sin I m ω u=U Lm sin(ωt+2 π) 电流一电压最大值之间的关系: LI L :2L U I L L lm m ωωω===U U I 或得两边同除于 设X L =ωL 代入上式:L L X U I = 在纯电感正弦交流电路中,电流和电压的最大值及有效值之间符合欧姆定律. 3、感抗: 1)、计算:X L =ωL=2πfL 2)、特点:“通直阻交” 3)、注意:I U X L L = 只表示电压与电流的最大值或有效值之比。 i u x L L ≠不是瞬时值之比 4、电路的功率: 1)、瞬时功率 电压瞬时值u 和电流 瞬时值i 的乘积,称为瞬时功率。用P 表示。 即:

电感式升压降压的原理

这不是什么高手大作,只是个扫盲帖,适用于不了解电感特性,却又对升器器感兴趣的同志们.高手免入.不知道要发这个贴子到哪个版块,版主们帮忙处理下. 为了节省篇幅,很多原理性的知识我点到为止,以空间换时间,有兴趣深入了解的可以查阅相关资料和提问. 废话不多直,我直接开始了.要了解电感式升压/降压的原理(我今天只讲升压),首先必须要了解电感的一些特性:电磁转换与磁储能.其它所有参数都是由这两个特性引出来的. 先看看下面的图: 电感回路通电瞬间(原文件名:1.JPG) 相信有初中文化是坛友们都知道,一个电池对一个线圈通电,这是个电磁铁.不论你是否科盲,你一定会奇怪,这有什么值得分析的呢?有!我们要分析它通电和断电的瞬间发生了什么. 线圈(以后叫作"电感"了)有一个特性---电磁转换,电可以变成磁,磁也可以变回电.当通电瞬间,电会变为 磁并以磁的形式储存在电感内.而断电瞬磁会变成电,从电感中释放出来. 现在我们看看下图,断电瞬间发生了什么: 断电瞬间(原文件名:2.JPG) 前面我说过了,电感内的磁能会在电感断电时重新变回电,然而问题来了:此时回路已经断开,电流无处可以,磁如何能转换成电流呢?很简单,电感两端会出现高压!电压有多高呢?无穷高,直到击穿任何阻挡电流前进 的介质为止. 这里我们了解了电感的第二个特性----升压特性.当回路断开时,电感内的能量会以无穷高电压的形式变换回电,电压能升多高,仅取决于介质变的击穿电压.

现在可以小结一下了: 下面是正压发生器,你不停地扳动开关,从输入处可以得到无穷高的正电压.电压到底升到多高,取决于你在二极管的另一端接了什么东西让电流有处可去.如果什么也不接,电流就无处可去,于是电压会升到足够高,将开关击穿,能量以热的形式消耗掉. 正压发生器原理图(原文件名:3.JPG) 下面是负压发生器,你不停地扳动开关,从输入处可以得到无穷高的负电压. 负压发生器原理图(原文件名:4.JPG) 上面说的都是理论,现在来点实际的电子线路图,看看正/负压发生器的"最小系统"到底什么样子:

相关主题
文本预览
相关文档 最新文档