当前位置:文档之家› 铁磁谐振过电压现象和消除办法是什么

铁磁谐振过电压现象和消除办法是什么

铁磁谐振过电压现象和消除办法是什么

铁磁谐振过电压现象和消除办法是什么?

答:现象:三相电压不平衡,一或两相电压升高超过线电压。消除办法:改变系统参数。

(1)断开充电断路器,改变运行方式。

(2)投入母线上的线路,改变运行方式。

(3)投入母线,改变接线方式。

(4)投入母线上的备用变压器或所用变压器。

(5)将TV开口三角侧短接。

(6)投、切电容器或电抗器。

铁磁谐振的规程

电力系统铁磁谐振过电压防护规程 电力系统中存在着许多储能元件,当系统进行操作或发生故障时,变压器、互感器等含铁芯元件的非线性电感元件与系统中电容串联可能引起铁磁谐振,对电力系统安全运行构成危害。在中性点不接地的非直接接地系统中,铁磁式电压互感器引起的铁磁谐振过电压是常见的,是造成事故较多的一种内部过电压。这种过电压轻则使电压互感器一次熔丝熔断,重则烧毁电压互感器,甚至炸毁瓷绝缘子及避雷器造成系统停运。在一定的电源作用下会产生串联谐振现象,导致系统中出现严重的谐振过电压。1 电压互感器引起铁磁谐振的原因分析在中性点不接地系统中,为了监视对地绝缘,母线上常接有Y接线的电磁式电压互感器,如图1所示,图中u0为电源电势,C为线路等设备的对地电容,L为电压互感器激磁电感,R0为中性点串联消谐电阻。在正常运行状态下电压互感器励磁感抗很大,其数值范围在兆殴级以上且各相对称。C数值视线路长短而定,线路愈长容抗愈小,即以1 km线路而言,其每相对地电容约0.004μF ,故其容抗小于1 MΩ,所以整个网络对地仍呈容性且基本对称,电网中性点的位移电压很小,接近地电位。但电压互感器的励磁电感随通过的电流大小而变化,其U-I特性如图2所示。 由图2可见,曲线的起始一段接近直线,其电感相应地保持常数。当激磁电流过大时,铁芯饱和,则L值随之大大降低。正常运行时铁芯工作在直线范围,当系统中出现某些波动,如电压互感器突然合闸的巨大涌流、线路瞬间单相弧光接地等,使电压互感器发生三相不同程度的饱和,以至破坏了电网的对称,电网中性点就出现较高的位移电压,造成工频谐振或激发分频谐振。2 铁磁谐振的特点对于铁磁谐振电路,在相同的电源电势作用下,回路可能不只有一种稳定的工作状态。电路到底稳定在哪种工作状态,要看外界冲击引起的过渡过程的情况。TV的非线性铁磁特性是产生铁磁谐振的根本原因,但铁磁元件的饱和效应本身,也限制了过电压的幅值。此外回路损耗也使谐振过电压受到阻尼和限制。当回路电阻大于一定的数值时,就不会出现强烈的铁磁谐振过电压。串联谐振电路,产生铁磁谐振过电压的的必要条件是ω0 = 1/L0C<ω。因此铁磁谐振可在很大的范围内发生。维持谐振振荡和抵偿回路电阻损耗的能量均由工频电源供给。为使工频能量转化为其它谐振频率的能量,其转化过程必须是周期性,且有节律的,即…1/2(1,2,3…)倍频率的谐振。铁磁谐振对TV的损坏,铁磁谐振(分频)一般应具备如下三个条件。铁磁式电压互感器(TV)的非线性效应,是产生铁磁谐振的主要原因。TV感抗为容抗的100倍以内,即参数匹配在谐振范围。要有激发条件,如投入和断开空载母线、TV突然合闸、单相接地突然消失、外界对系统的干扰或系统操作产生的过电压等。由前面分析可知,事故中具备了3个条件,才导致了此次事故。当良站10 kV系统发生单相接地时,故障点流过电容电流,未接地的两相B、C相电压升高31/2,对系统产生扰动,在这一瞬间电压突变过程中,TV高压线圈的非接地两相的励磁电流就要突然增大,甚至饱和,由此构成相间串联谐振。饱和后的TV励磁电感变小,系统网络对地阻抗趋于感性,此时若系统网络的对地电感与对地电容相匹配,就形成共振回路,激发各种铁磁谐振过电压。尤其是分频铁磁谐振可导致相电压低频摆动,励磁感抗成倍下降,产生过电压,过电压幅值可达到近2~3.5Ue以上,但此过电压达不到避雷器的动作电压1.7 kV,

浅析铁磁谐振现象产生的原因和消除措施

浅析铁磁谐振现象产生的原因和消除措施 摘要:高压系统谐振过电压是电力系统常见的故障现象之一,其实质是电磁式电压互感器励磁特性饱和,在特定的运行条件下激发铁磁谐振,从而电力设备和系统安全运行带来危害。文章从故障实例入手,分析了铁磁谐振产生的机理、类型以及铁磁谐振的特性,并提出多种消除谐振的措施。 关键词:铁磁谐振;过电压;产生条件;影响因素;消除措施 高压系统谐振过电压是电力系统常见的故障现象之一,其实质是电磁式电压互感器(以下简称TV)励磁特性饱和,在特定的运行条件下激发铁磁谐振。由于谐振时会产生很高的过电压,危及电力设备和系统安全运行,因此必须采取有效的消除和防护措施。 电力系统的铁磁谐振可分两大类:一类是在66 kV及以下中性点不接地系统中,由于对地容抗与电磁式电压互感器励磁感抗的不利组合,在系统电压大扰动(如遭雷击、单相接地故障消失过程以及开关操作等)作用下而激发产生的铁磁谐振现象;另一类是发生在220 kV(或110 kV)变电站空载母线上,当用220 kV、110 kV带断口均压电容的主开关或母联开关对带电磁式电压互感器的空母线充电,或切除带有电磁式电压互感器的空母线时,操作暂态过程使连接在空母线上的电磁式电压互感器组中的一相、两相或三相激发产生的铁磁谐振现象。 1故障实例 佛子岭水电站地处山区,高压线路架设于崇山峻岭之中,雷雨季节遭受雷击几率较高,铁磁谐振过电压现象时有发生。 2007年7月某日,雷击后,该站发生35 kVⅡ段母线电压一相降低,另两相升高(超过线电压)现象,发“单相接地”信号并熔断2TV高压保险。35 kV系统接线图如图1所示。其时,35 kVⅠ、Ⅱ段母线并列运行,两回出线空载。1TV 与2TV的型号分别为:YDJJ-35、JDJJ2-35。 2008年某日,110 kV母线停电操作过程中,当拉开最后一台高压开关时,母线电压瞬时升高,二次保护回路电压继电器线圈烧毁,如图2所示。TV型号是JCC6-110,高压开关型号是SW4-110Ⅱ,双断口带有均压电容器。 以上两起故障是典型的铁磁谐振过电压现象,下面我们来简单分析一下故障的成因。 2铁磁谐振产生过程及其特点 2.1铁磁谐振现象的基本概念

电压互感器的铁磁谐振及其消谐措施

五、关于电压互感器的铁磁谐振及其消谐措施。 1、谐振条件 在中点不接地系统中,由于接地保护的需要,三相电压互感器的中点是直接接地的,因此电 压互感器与电网线路对地电容并联而形成谐振回路,电磁式电压互感器的电感是非线性的,这种 谐振回路为非线性谐振回路,或称铁磁谐振回路,如图5-1。 通常,在正常运行时,电压互感器的感抗X L 远大于电网对地电容的容抗X C ,即X L 与X C 不会形成谐振,但由于某些原因,例如单相接地故障、线路合闸、雷电冲击等等,使电压互感器 的电感量发生变化,如果X L 与X C 匹配合适则将产生谐振。 由于电网中点不接地,正常运行时互感器中点N '和电源中点对地同电位,即中点不发生位 移,当发生谐振时,互感器一相、两相或三相绕组电压升高,各相对地电位发生变动,但因电源 电势由发电机的正序电势所固定,E A 、E B 、E C 保持不变,在电网这一部分对地电压的变动则表 现为电源中点发生位移,而出现零序电压,这就是说,谐振的发生是由于中点位移而引起的。 假定当A 相电压下降,B 、C 相电压升高,则A 相显容性,而B 、C 相显感性,等值电路图 如图5-2所示。 图5-1 电压互感器接线图 图5-2 不对称阻抗产生的中点位移电压

如图,三相中各阻抗不对称,电源中点产生位移,在一定条件下将产生谐振。 根据图5-1,解出中点位移电压如下式: C B A C C B B A A NN Y Y Y Y E Y E Y E U ++++-=????/ (1) 'c j Y A ω=, '1L j Y Y c B ω-== 代入得: ''2)1(/L c L c E U A NN ωωωω-'+'-=? ? (2) 由(2)式可看出,当'2L c ωω= '时则U 0无穷大,即要发生谐振,这也意味着只有当电压互感器的感抗与线路容抗在一定比例下,谐振才会产生。有人(HA.Peterson )对此曾做了专门的模 拟试验,得到了谐振范围的曲线,如图5-3b 所示。模拟试验用互感器的V-A 特性如图5-3 a 。 5-3 a 非线性电感的伏安特性曲线 U —试验电源相电压 U ?—非线性电感额定电压 I*—电流标幺值

10kV PT铁磁谐振的产生及消谐措施

10kV PT铁磁谐振的产生及消谐措施 [摘要] 10kV PT铁磁谐振是谐振中一种非线性谐振,常常表现为谐振过电压,它会破坏电气设备的绝缘,甚至会烧毁电气设备,严重威胁着电力系统的安全、稳定运行。本文深入分析了10kV PT铁磁谐振过电压的产生原因,并针对性提出了具体的防范措施。 关键词:PT;铁磁谐振;消谐措施 0前言 10kV PT铁磁谐振是谐振中一种非线性谐振,它可以是基波谐振,高次或分次谐波谐振。其表现形式可能是单相、两相或三相对地电压升高,或产生高值零序电压分量,出现虚幻接地现象,或者在电压互感器中出现过电流。其危害轻则引起高压保险烧毁,重则引起PT爆炸、开关柜烧毁,造成母线停电事故,甚至还会使小容量的异步电动机发生反转现象。它不仅影响对用户的供电,而且可能造成主设备损坏,严重威胁着系统的安全运行。 1 10kV PT铁磁谐振产生的原因 产生铁磁谐振过电压的主要原因,是由于PT的铁芯饱和而引起的串联谐振所致。由于10kV系统中性点不接地,星形接线的PT高压绕组,就成为系统三相对地放电的唯一金属通道。系统单相接地有两个过渡过程,一是接地时;二是接地消失时。电网单相接地时电流的分布如图1所示。 图110kV PT接法单相接地时的电流分布 当系统发生单相接地时,PT中性点对地有相电压产生,非接地相的电压升高到线电压,故障点会流过电容电流,其对地电容C0上充以与线电压相应的电荷。在接地故障期间,此电荷产生的电容电流以接地点为通路,在电源-导线-大地间流通,等值电路见图2。由于PT的励磁阻抗很大,其中流过的电流很小。当系统接地故障消逝后,相当于把导线电荷以接地点通往大地的电流通路切断了,此时非接地相将由原来的线电压瞬间恢复到正常的相电压水平。因此,非接地相积累的电荷只有通过PT对地放电,此时三相对地电容(零序电容)3C0中存储的电荷,将对三相PT及零序PT高压绕组电感放电。现场测试和理论分析表明,这个暂态过程所产生的电流比正常电流大很多倍,其频率低,幅值大,一般称为超低频振荡电流。尽管当中性点经零序PT接地后,由于零序PT的电

电磁式电压互感器的铁磁谐振

电磁式电压互感器的铁磁谐振#1 电磁式电压互感器的铁磁谐振 作者:中山市泰峰电气有限公司徐世超来源:输配电产品应用变压器及仪器仪表卷总第80期摘要:电磁式电压互感器和电容式电压互感器都能满足对电网的计量和保护作用。从性价比分折此两种互感器的优劣,提出呈容性SF6绝缘电磁式电压互感器为高压电压互感器的最佳选择,呈容性树脂绝缘电磁式电压互感器为中 压电压互感器的最佳选择之一。 关键词:电磁式电容式电压互感器电磁谐振呈容性的电磁式电压互感器 1电磁式电压互感器(以下简称PT) 1.1原理 一次、二次线圈通过铁芯电磁感应,将高电压变换成标准低电压(100;100/3;V),供计量及保护用。PT入端 阻抗为电抗(感抗性质)。 电网的所有元件中,入端阻抗为容抗(XC)性质的有:输电线对地电容;耦合电容器;断路器断口的并联电容及电容式电压互感器(以下简称CVT)。入端阻抗为感抗(XL)性质的有:PT、变压器及电抗器。 当电网正常操作(断路器投切)出现的操作过电压或大气过电压时,电网会因铁磁谐振(电网中容抗与感抗相等)而烧毁电网的某些元件(例:PT)。由于变压器和电抗器在工作电压及过电压时其产品处于铁芯饱和状态,产品的入端阻抗值基本不变,而PT在电网电压改变时自身的感抗值可能会与电网的容抗值相等发生铁磁谐振烧毁PT。 所以,在电网中所有的元件中,仅要求PT应避免铁磁谐振的发生。 1.2结构 按电压等级不同,主绝缘介质为:油纸绝缘;SF6气体绝缘;环氧树脂绝缘。 1.3特点 PT准确度不受外界因素(环境及运行温度、电源频率、环境污染)的影响,其误差值是稳定的;一次与二次变换是瞬间发生的,无暂态响应问题(PT为电抗元件,不是储能元件);存在铁磁谐振问题(PT的入端阻抗可能会因电 网过电压使其与电网容抗相等)可能烧坏PT。 2电容式电压互感器 2.1原理 电网的一次高电压经电容分压器抽取较低电压值(例:15~20kV),其等值阻抗为容抗(XC)性质,与电磁单元(中间变压器和补偿电抗器)的阻抗为感抗性质(XL)相等。即达到CVT的理想工作状态(二次回路XC≈XL)时,互感器内阻最小,CVT误差随负荷变化最小;CVT输出容量最大,此时是CVT的正常工作状态。 2.2结构 按电容分压器与电磁单元连接方式分为○1叠装式电容式电压互感器:电容分压器叠装在电磁单元之上,中间变压器的一次高压线由电容分压器内部引线到电磁单元,中压接线封闭在产品内部。结构紧凑。○2分装式电容式电压互感器:电容分压器和电磁单元分开安装,电磁单元有外露套管与电容分压器的中压端子在外部接线。 电容分压器为充油式电容器;电磁单元为变压器油绝缘。 2.4优点 ⑴电容式电压互感器是经电容分压器与电网连接,不存在非线性电感,与电网不发生铁磁谐振。 ⑵承受高电压的电容分压器内部电场分布较均匀,具有耐受雷电冲击能力强的特点。 ⑶超高压(>500kV)电容式电压互感器的价格比电磁式电压互感器便宜,因为,电容式电压互感器随电压等级增加,其电磁单元基本不变,仅增加电容分压器的价格(增加电容分压器节数的价格)。而电磁式电压互感器随电压等级增加,其绝缘结构随之复杂,使其价格按比例增加。 ⑷可兼作耦合电容器使用,用于载波通讯(由于目前移动通讯成本很低,用电容式电压互感器作此用途己较 少了)。 2.5缺点: ⑴电容式电压互感器内部可能发生低频谐振

铁磁谐振过电压

解释一: 电压互感器铁磁谐振过电压可分两种:一种是中性点不稳定过电压;另一种是中性点位移过电压。前者多在正常运行的中性点不接地的电网中产生, 例如投入空母线时的过电压;后者均在定相的过程中产生, 这主要是由于定相的方法不当引起的。 经过检修的某些线路、电缆等在恢复送电时, 新建的线路、电缆、变压器等在投入运行时, 以及两部分电网首次并联运行时, 必须事先检查相位, 进行定相, 以免造成严重的设备损坏和人身事故。在110千伏以下中性点不接地(包括中性点经消弧线圈接地)的电网中, 定相通常是利用电压互感器进行的。 利用一台电压互感器, 直接在高压电网中定相时产生的过电压, 主要是由基波谐振引起的, 特性比较稳定, 因此称为中性点位移过电压;利用两台外接的或母线上原有的中性点直接接地的电压互感器, 而在其低压侧定相时产生的过电压, 是由基波、高次谐波或分次谐波谐振所引起,同时具有不稳定的特点, 故称为中性点不稳定过电压。后者在国内外的电力系统中发生较多,即过去所谓的中性点位移过电压和现在的电压互感器铁芯饱和过电压。 一、中性点不稳定过电压 中性点不稳定过电压,不仅可以在定相的过程中发生, 而且在在我国3~220千伏运行的电网中, 也曾普遍发生, 是新建的和经过检修后投入运行的电气设备损坏的重要原因之一,同时也是电压互感器烧毁及其高压保险频繁熔断的主要原因。

1.产生的条件 试验研究结果表明, 当发生此种过电压时, 中性点出现显著的位移, 相电压变动并升高, 而线电压保持不变。因此可以判定此种过电压是零序回路出现的一种谐振现象。此种过电压对相间电容与三相对称的负荷没有影响。只要同时符合以下四个条件, 便可能产生此种过电压。 (1)电源变压器为三角形接线或中性点不接地的星形接线, 以及中性点不接地的电网(注:这里指电源侧中性点不接地) (2)单台或多台电压互感器的中性点直接接地, 同时零序电压线圈接近开路状态(注:这里指电压互感器中性点直接接地) (3)母线或电网各相的对地电容与电压互感器各相的对地电感相匹配, 且初始感抗必须大于容抗 (4)因电压或励磁涌流的冲击, 使电压互感器的铁芯三相发生不同程度的饱和。当电源投入、单相接地故障清除〔切除或自动消除)时, 以及瞬间的传递过电压发生时, 均可激发起此种过电压。 以上四个条件, 可以直观地用下图表示出来

电压互感器铁磁谐振实验

电压互感器铁磁谐振实验 实际电力系统产生铁磁谐振,是由于某种外因使电压互感器的铁心趋于饱和,激磁电感急剧下降所致,在实验室中要模拟这种情况是困难的。三相对地导纳之间的大小和星座(容性、感性)差别较大而使三者之和较时,就可以使中写道位移电压上升,从而模拟铁磁谐振。为此,用改变对地电容的方法使参数不平衡,就可以产生铁磁谐振现象。实验步骤如下:(1)按小接地电流系统实验接线,每相接一只电容器(1μF),接入星形—星形—开口三角电压互感器2TV,加上电源,测量正常运行是各相对地电压、中性点对地电压及开口三角电压填入表格中。 (2)断开电源,将A相原接的一只电容断开,模拟线路在电源端完全断线,使系统各相对地参数不平衡,A相对地导纳为感性,B、C相为容性。合上电压后测量各相对地电压、中性点对地电压及开口三角电压填入表格中,与正常运行时的电压值对比,观察电压互感器铁磁谐振时各量的变化。 (3)花痴一次侧三个相电压、三相对地电压和中性点位移电压矢量图并进行分析。(根据A相相电压、A相对地电压和中性点位移电压值即可计算出矢量U AN和U ad的角度)。(4)在A相无电容而B、C相接一只电容的情况下,将电压互感器2TV开口三角绕组上并接200W的白炽灯泡,合上电源后测量各有关电压,分析这一措施为什么能抑制铁磁谐振的。 (5)将200W灯泡改为100W,并分析不同并接电阻值的影响。 (6)在A相无电容而B、C相接一只电容的情况下,将2TV开口三角绕组短接,在高压侧中性点串接一台零序电压互感器一次绕组(可采用1TV的一台单相380/100V互感器,但需将原一、二次侧接线断开再接线),除测量上述有关电压外,测量零序电压互感器二次侧电压U20。说明零序电压互感器对一直铁磁谐振的作用。 (7)在A相无电容而B、C相接一只电容的情况下,电压互感器原边中性点经500—1000欧电阻接地(用滑线电阻更好),合上电源后测量各有关电压,分析这一措施对抑制铁磁谐振的作用。 (8)对上述几项消谐措施进行分析比较。 表1 一次电压测量值(V)

铁磁谐振过电压

铁磁谐振过电压 摘要:铁磁谐振过电压是一种常见的内部过电压,多发生在 中性点不直接接地的配电网中,但在中性点直接接地的高压电网中,这种事故也常有发生。分析了电力系统铁磁谐振的产生机理,介绍了一些典型的铁磁谐振过电压,以及几种消除铁磁谐振的措施及原理,最后对铁磁谐振的当前研究现状进行了评价,提出今后进一步的研究方向。 关键词:电力系统;铁磁谐振;过电压;消谐措施 Abstract:Ferroresonance is an internal overvoltage,which always occurs in ne utral isolated distribution network, and sometimes also occurs in high voltages netw ork. The research developments on ferroresonance are analyzed, including their fundamental principles, characteristics and some typical example s. It also introduces several treatments of ferroresonance eliminating and its principl e. Finally the further research trends are proposed. Key words:power system; ferroresonance; overvoltage; treatment of resonance eliminating 在电力系统中包含有很多电感元件和电容元件。在开关操作或发生故障时,这些电感和电容元件可能形成不同自振频率的振荡回路,在外加电源作用下产生谐振现象,引起谐振过电压。谐振往往在电网某一局部造成过电压,从而危及电气设备的绝缘,甚至产生过电流而烧毁设备,还有可能影响过电压保护装置的正常工作条件。在不同电压等级、不同结构的系统中可以产生不同类型的谐振过电压。通常认为系统中的电阻和电容元件为线性参数,电感元件则一般有三类不同的特性参数。对应三种电感参数,在一定的电容参数和其它条件的配

电压互感器铁磁谐振的发生原因及防范措施

电力系统中存在着许多储能元件,当系统进行操作或发生故障时,变压器、互感器等含铁芯元件的非线性电感元件与系统中电容串联可能引起铁磁谐振,对电力系统安全运行构成危害。在中性点不接地的非直接接地系统中,铁磁式电压互感器引起的铁磁谐振过电压是常见的,是造成事故较多的一种内部过电压。这种过电压轻则使电压互感器一次熔丝熔断,重则烧毁电压互感器,甚至炸毁瓷绝缘子及避雷器造成系统停运。在一定的电源作用下会产生串联谐振现象,导致系统中出现严重的谐振过电压。 1、电压互感器引起铁磁谐振的发生原因分析 在中性点不接地系统中,为了监视对地绝缘,母线上常接有Y接线的电磁式电压互感器,如图1所示,图中u0为电源电势,C为线路等设备的对地电容,L为电压互感器激磁电感,R0为中性点串联消谐电阻。 在正常运行状态下电压互感器励磁感抗很大,其数值范围在兆殴级以上且各相对称。C数值视线路长短而定,线路愈长容抗愈小,即以1 km线路而言,其每相对地电容约0.004μF ,故其容抗小于1 MΩ,所以整个网络对地仍呈容性且基本对称,电网中性点的位移电压很小,接近地电位。但电压互感器的励磁电感随通过的电流大小而变化,其U-I特性如图2所示。

由图2可见,曲线的起始一段接近直线,其电感相应地保持常数。当激磁电流过大时,铁芯饱和,则L值随之大大降低。正常运行时铁芯工作在直线范围,当系统中出现某些波动,如电压互感器突然合闸的巨大涌流、线路瞬间单相弧光接地等,使电压互感器发生三相不同程度的饱和,以至破坏了电网的对称,电网中性点就出现较高的位移电压,造成工频谐振或激发分频谐振。 2、铁磁谐振的特点 对于铁磁谐振电路,在相同的电源电势作用下,回路可能不只有一种稳定的工作状态。电路到底稳定在哪种工作状态,要看外界冲击引起的过渡过程的情况。 TV的非线性铁磁特性是产生铁磁谐振的根本原因,但铁磁元件的饱和效应本身,也限制了过电压的幅值。此外回路损耗也使谐振过电压受到阻尼和限制。当回路电阻大于一定的数值时,就不会出现强烈的铁磁谐振过电压。 串联谐振电路,产生铁磁谐振过电压的的必要条件是ω0 = 1/L0C<ω。因此铁磁谐振可在很大的范围内发生。 维持谐振振荡和抵偿回路电阻损耗的能量均由工频电源供给。为使工频能量转化为其它谐振频率的能量,其转化过程必须是周期性,且有节律的,即…1/2(1,2,3…)倍频率的谐振。 铁磁谐振对TV的损坏,铁磁谐振(分频)一般应具备如下三个条件。 1、电磁式电压互感器(TV)的非线性效应,是产生铁磁谐振的主要原因。 2、TV感抗为容抗的100倍以内,即参数匹配在谐振范围。 3、要有激发条件,如投入和断开空载母线、TV突然合闸、单相接地突然消失、外界对系统的干扰或系统操作产生的过电压等。 由前面分析可知,事故中具备了3个条件,才导致了此次事故。当良站10 kV系统发生单相接地时,故障点流过电容电流,未接地的两相B、C相电压升高31/2,对系统产生扰动,在这一瞬间电压突变过程中,TV高压线圈的非接地两相的励磁电流就要突然增大,甚至饱和,由此构成相间串联谐振。饱和后的TV励磁电感变小,系统网络对地阻抗趋于感性,此时若系统网络的对地电感与对地电容相匹配,就形成共振回路,激发各种铁磁谐振过电压。尤其是分频铁磁谐振可导致相电压低频摆动,励磁感抗成倍下降,产生过电压,过电压幅值可达到近2~3.5Ue以上,但此过电压达不到避雷器的动作电压1.7 kV,故母线避雷器并未动作。同时,感抗下降会使励磁回路严重饱和,励磁电流急剧加大,电流大大超过额定值,据

铁磁谐振对电压互感器的危害及防范措施

铁磁谐振对电压互感器的危害及防范措施 【摘要】通过电力系统中实际案例说明分析了产生铁磁谐振的原因和产生的条件,总结了运行中经验教训,提出防止铁磁谐振的措施,最后问题得到圆满解决。 【关键词】铁磁谐振;电压互感器;接地 1.事故发生 大连西咀热力有限公司在2005年10月9日6:10 电气后台机报10kV系统接地,6:17分主母10kVII段PT发生爆炸起火,导致电厂供电2#联络线的213乙开关跳闸,全厂停电。事故后检查发现厂外10kV系统发生间歇性单相弧光接地,两相对地电压突然升高,使得中性点发生位移,电磁式电压互感器励磁电流突然增大而发生饱和,产生了严重的铁磁谐振过电压,过电压引起TV柜相间放电击穿,发生电弧短路,并对外壳放电,引起三相短路接地故障,从而烧坏TV 柜。由于厂区内10kV高压设备众多,经常出现设备在运行中发生单相接地事故,通过录波仪记录曾多次检测到开口三角电压不稳定,超过100V。 2.电压互感器产生磁谐振的原因 产生铁磁谐振的必要条件是电压互感器的感抗XL大于与之并联的线路对地容抗Xc,即XL>Xc,两者并联后为一等值电容,系统网络的对地阻抗呈现容性,电网中性点的位移基本接近于零。当有一个激发条件时,电压互感器中性点电压发生位移,相电压升高,位移电压可以是工频,也可以是谐波频率,主要有分频和高频,在过电压的作用下,电压互感器三相铁芯将出现不同程度的饱和,饱和后的电压互感器励磁电感变小,系统网络的对地阻抗趋于感性。当系统网络的对地感抗与对地容抗相互匹配时,就产生了铁磁谐振。其主要特点为: (1)谐振回路中铁心电感为非线性的,电感量随电流增大、铁心饱和而趋于平稳。 (2)铁磁谐振需要一定的激发条件,使电压、电流幅值从正常工作状态转移到谐振状态。如电源电压暂时升高、系统受到较强烈的电流冲击等。 (3)铁磁谐振存在自保持现象。激发因素消失后,铁磁谐振过电压仍然可以继续长期存在。 (4)铁磁谐振过电压一般非常高,过电压幅值主要取决于铁心电感的饱和程度。 在中性点不接地系统中,发生如下情况可能激发铁磁谐振:

电磁式电压互感器谐振过电压分析及抑制措施

电磁式电压互感器谐振分析及抑制措施研究 (江建明四川省电力工业调整试验所610072) 电力系统接地系统为直接接地系统和不接地系统。直接接地系统易发生并联谐振,不接地系统在单相接地时易发生串联谐振,有并联电容器的断路器易发生串联谐振。长期以来,电力系统谐振过电压严重威胁着电网的安全。特别是对中性点不接地系统,铁磁谐振所占的比例较大。随着电网的日益发展,中性点直接接地系统的铁磁谐振问题越来越严重,出现的概率也越来越大。近年,在四川发生过多次铁磁谐振引起过电压的案例,应引起高度重视。本文将介绍产生铁磁谐振的机理、原因、现象以及应采取的措施。 1.产生铁磁谐振的原因 铁磁谐振存在三种情况:直接接地系统对地电容引发的铁磁谐振;不接地系统的单相接地引起的铁磁谐振;断路器端口并联的电容形成的铁磁谐振。 电力系统中许多元件是属于电感性的,如电力变压器、互感器、发电机、消弧线圈为电感元件,而线路各导线对地和导线间既存在纵向电感又存在横向电容,这些元件组成复杂的LC震荡回路,在一定的能量作用下特定参数配合的回路就会出现谐振现象。由于铁芯电感的磁通和电流之间的非线性关系,电压升高导致铁芯电感饱和,极易使电压互感器发生铁磁谐振。在中性点不接地系统中,如果不考虑线路的有功损耗和相间电容,仅考虑电压互感器电感与线路的对地电容C,当C大到一定值且电压互感器不饱和时,感抗X L大于容抗X C;而

当电压互感器上电压上升到一定数值时,电压互感器的铁芯饱和,感抗X L小于容抗X C,这样就构成了谐振条件,下列几种激发条件可以造成铁磁谐振: (1)当投入电力系统的电力线路长度发生变化时,线路对地电容与线路电阻发生改变。如空载线路投切操作,对空母线充电,尤其是短母线进行倒母线时,易产生对地电容引起的并联谐振。 (2)当系统运行状态突变,在暂态激发条件下,TV铁芯饱和,其电感量L处于非线性变化。如有线路瞬间接地,雷电感应侵入电网,尤其系统出现单相接地,易产生串联谐振。 (3)直接因突然投入系统的电容变化而引起谐振。如补偿电容器的投入,断路器断口打开时的并联电容易产生并联谐振。 (4)由于线路分合或运行状态突变时,会产生多次或分次谐波,从而使ω发生变化。如拉合刀闸、跌落式熔断器动作等,可能引起并联或串联谐振。 2.产生铁磁谐振的机理 由于电压互感器的中性点位移现象,常常在中性点不接地绝缘系统中引起铁磁谐振过电压。在正常运行条件下,励磁电感三相相等,三相负荷相等,电网的中性点电位为零。当线路中出现瞬时单相故障时,其它两相电压升高,三相电压互感器两相电压升高而饱和,其励磁电感相应减小,电网中性点出现位移电压,当三相总导纳之和为零时,便会发生串联谐振,中性点电压将急剧上升。由于铁芯的磁饱和会引起电流、电压波形的畸变,即产生了谐波,使上述谐振回路还会

电力系统的铁磁谐振

电力系统的铁磁谐振 工作电力设备的进程中,绝缘长期受着多种要素如电场、温度以及机械振动的作用逐步变得残次,这劣化包括整体的和有些的,使得缺陷由此发作。区分电力设备是不是有出色绝缘强度的最有用直接的方法便是工频交流耐压试验,它也是预防性试验傍边的一项至关首要的内容。阻频特性和相频特性统称为LC并联电路的频率特性。它说明了LC并联电路具有区别不同频率信号的能力,即具有选频特性。品质因数Q,它表征了LC并联电路选频特性的好坏。 铁磁谐振是由铁心电感元件,如发电机、变压器、电压互感器、电抗器、消弧线圈等和系统的电容元件,如输电线路、电容补偿器等形成共谐条件,激发持续的铁磁谐振,使系统产生谐振过电压。电力系统的铁磁谐振可分二大类:一类是在66kV及以下中性点绝缘的电网中,由于对地容抗与电磁式电压互感器励磁感抗的不利组合,在系统电压大扰动(如遭雷击、单相接地故障消失过程以及开关操作等)作用下而激发产生的铁磁谐振现象;另一类是发生在220kV(或110kV)变电站空载母线上,当用220kV、110kV带断口均压电容的主开关或母联开关对带电磁式电压互感器的空母线充电过程中,或切除(含保护整组传动联跳)带有电磁式电压互感器的空母线时,操作暂态过程使连接在空母线上的电磁式电压互感器组中的一相、两相或三相激发产生的铁磁谐振现象,即串联谐振,简单地讲就是由高压断路器电

容与母线电压互感器的电感耦合产生谐振由于谐振波仅局限于变电站空载母线范围内,也称其为变电站空母线谐振。 铁磁谐振三种形式 1.基波谐振:一相对地电压降低,另两相对地电压升高超过线电压;或两相电压降低、一相电压升高超过线电压、有接地信号发出。 2.分次谐波:三相对地电压同时升高、低频变动 3.高次谐波:三相对地电压同时升高超过线电压 电力系统中许多元件是属于电感性的或电容性的,如电力变压器、互感器、发电机、消弧线圈为电感元件,补偿用的并或串联电容器组、高压设备的寄生电容为电容元件,而线路各导线对地和导线间既存在纵向电感又存在横向电容,这些元件组成复杂的LC 震荡回路,在一定的能源作用下,特定参数配合的回路就会出现谐振现象。由于铁芯电感的磁通和电流之间的非线性关系,电压升高导致铁芯电感饱,极容易使电压互感器发生铁磁谐振。在中性点不接地系统中,如果不考虑线路的有功损耗和相间电容,仅考虑电压互感器电感L 与线路的对地电容Co ,当C大到一定值,且电压互感器不饱和时,感抗XL大于容抗XCo。而当电压互感器上电压上升到一定数值时,电压互感器的铁芯饱和,感抗XL小于容抗XCo,这样就构成了谐振条件,下列几种激发条件可以造成铁磁谐振:

防止中性点不接地系统铁磁谐振的措施

变电站中性点不接地系统中,电压互感器常因铁磁谐振而烧毁或熔断熔丝。人们对此做了大量的分析研究,采取了不少措施防止谐振发生,然而由于系统结构的复杂性和运行方式的灵活,造成运行参数具有随机性。同时也因现存的各种消谐措施的局限性,使得只能在某些情况下消除谐振。电压互感器(TV)饱和引起的铁磁谐振仍然是威胁电力系统安全运行的重要原因。因此,有必要在分析中性点不接地系统铁磁谐振机理的基础上探讨消谐措施,以便在实际工作中有针对性地预防、消除中性点不接地系统铁磁谐振。 1中性点不接地系统铁磁谐振的机理及特点 1.1铁磁谐振的产生 中性点不接地系统中TV接入系统的接线图如图1所示 当出现激发条件时,TV中暂态励磁电流急剧所不同,网络中性点出现零序电压,三相TV中产生零序电流,经电源形成回路,简化等值电路如图2所示。

当Ln与3 C0在某频率下参数值匹配时,得以流通,从而在3 C0上建立与各相电源电压叠加,产生过电压,维持TV饱和,从而形成持续一段时间的铁磁谐振。 1.2铁磁谐振的特点 根据Peterson的研究[1],当TV饱和时,励磁电抗Xm与系统正序容抗无关,只和系统对地的零序容抗X0有关,且当X0/Xm<0.01时,不发生谐振;随着(X0/Xm)的增大,依次发生1/2分频、基频、三倍频谐振,相应地,发生谐振所需的外加电压也逐渐增大。由于运行中的一般都是额定相电压(0.58 Ur,Ur为额定线电压),因此1/2分频时较多发生基波谐振,高次谐波的谐振较少。分频谐振的频率并非严格等于1/2次,分频谐振时,铁心高度饱和,励磁电流剧增数十甚至一百倍,导致TV烧毁或保护用熔断器熔断。 2消除铁磁谐振的措施 消谐应从两方面着手,即改变电感电容参数和消耗谐振能量。人们据此制订了多种消谐措施。 2.1TV开口三角两端接电阻器R△ R△相当于接到电源变压器的中性点上,故其电阻R△越小,越能抑制谐振的发生。若R△=0,即将开口三角两端短接,相当于电网中性点直接接地,谐振就不会发生。消除分频谐振时R△要最小。使用该措施时应注意:a)系统中每台TV开口三角均接电阻器时措施方有效。 b)经验表明,对于6~10 k V电网,当TV饱 和特性较好时此措施比较有效。 c)经验表明,装设于互感器开口三角绕组的阻尼电阻一般对35 kV和66 k V系统效果较好,可固定投入,也可用零序电压继电器将电阻器短时投入,1 min后自动切除[2]。 d)R△采用白炽灯泡时,由于谐振经常在单相接地消失后产生,白炽灯泡因发热而使其电阻显著增大,所以此时不起消谐作用。 e)当电压等级越高或TV饱和特性越差时,要求的R△越小。因而发生持续稳定的单相接地故障时,R△的额定功率不易满足要求。 f)当系统电容三相不对称(如断线),或TV一次非全相熔断器烧断时,在对称状态下可以抑制的谐振,在不对称时仍有可能谐振,此时需减小R△才能抑制谐振。这是因为:电容不对称时,除了网络会有较大的不对称电压外,由于电容的减小导致容抗增大而易进入谐振区;TV一次非全相熔断器烧断时,它的并联电感有所减少,但由于二次侧电压降低,R△反应到一次侧的电阻增大得较快,从而降低了电阻器的阻尼效果。 g)由于R△是接在开口三角两端,因此这一负载必定同时加在三角绕组和一次绕组上,这就要求TV要有足够的容量,尤其是在间歇性弧光接地时,由于R△的接入,将使流过一次绕组的电流显著增大,增加了TV烧损的可能性。 h)为了使TV不因电压升高而进入饱和状态,应根据TV的容量选择电阻的额定功率。 i)现在许多二次侧消谐装置实质是对在开口三角两端接入电阻器的改进,其原理多是首先鉴别高频、基频、分频谐振,然后用电子电路实现不同的消谐措施以达到消谐目的。然而,在实际应用中,由于原理及装置的可靠性欠佳,这些装置的运行情况并不理想。二次侧电子消谐装置仍有待从理论、制造上加以完善。 2.2TV一次侧中性点经电阻器R0接地 该措施除了能限制TV中的电流,特别是限制断续弧光接地时流过TV的高幅值电流外,亦能减少每相TV上的电压(相当于改善TV的伏安特性)。使用该方法时应注意: a)电阻器R0的电阻R0不能太小,也不能太大,否则单相接地时,开口三角电压太低,影响接地指示灵敏度及保护装置的正确动作。根据文献[2]推荐,R0>0.06 Xm。 b)若网络中必须有多台高压侧中性点接地的TV同时运行,则必须每台TV均在中性点安装消谐电阻器方有效。 c)电阻器的额定功率须较大,一般采用额定功率相当大的非线性电阻器与线性电阻器串联。非线性电阻器在低电压下电阻较大,还能阻止谐振发展。d)该措施与TV开口三角绕组并接R△并非完全等价,对于系统三相电容严重不对称或TV一次非全相熔断器烧断等异常情况均可有效消谐。 e)当系统发生单相接地故障时,R0上将有超过几千伏的高压,此时不能使用中性点绝缘较低的TV。若35 kV系统使用的TV中性点绝缘水平为低压级(500 V),则TV绝缘有可能承受不了过电压。 2.3TV一次侧中性点经零序TV接地

三相抗谐振电压互感器

三相抗谐振电压互感器JSZK1-10,JSZK2-10,JSZK2-10F 为改进型抗铁磁谐振三相电压互感器,提高了抗谐振防烧毁的能力,同时提高了计量精度,降低铁损。产品为半浇注式,体积小,气候适应性强,抗分频、工频谐振,不会过励烧毁。互感器采用芯式结构,使用优质冷轧硅钢片叠装成方型, 2、额定绝缘水平:12/42/75kV; 3、当系统发生单相接地时,可长期无损伤地承受系统单相接地时产生的高电压; 4、由于产品中性点采取消谐措施,安装时中性点直接接地; 使用条件: (1)海拔高度不超过1000米; (2)周围气温最大变化不超过-5℃~+40℃; (3)相对湿度不大于80%的地方; (4)安装环境中无腐蚀性的气体、蒸气或沉降物; (5)无导电尘埃(炭末、金属末等)的地方; (6)不可能发生火灾和危险的地方; (7)无强烈的震动或撞击的地方; 三相抗谐振电压互感器JSZK1-10,JSZK2-10,JSZK2-10F 为三相五柱式电压互感器之后,为消除因电力系统不同程度接地后而导致互感器发生铁磁谐振大量烧毁而设计的抗铁磁谐振的改进型产品,适用于交流 50Hz、额定电压10kV户外装置的电力系统中作电压、电能测量及继电保护用. 本型电压互感器为改进型抗铁磁谐振三相电压互感器,提高了抗谐振防烧毁的能力,同时提高了计量精度,降低铁损。产品采用三相三柱铁芯,零序回路采用独立铁芯。一次绕组为非全绝缘(故只能做感应耐压试验),一、二次绕组均用环氧树脂浇注绝缘,套装在铁芯柱上,组成三相一体结构,吊装在钢桶中。接线原

1、本型互感器能在120%额定电压下长期工作; 2、额定绝缘水平:12/42/75kV; 3、当系统发生单相接地时,可长期无损伤地承受系统单相接地时产生的高电压; 4、由于产品中性点采取消谐措施,安装时中性点直接接地; 使用条件: (1)、户外装置; (2)、环境温度:-30℃~+40℃; (3)、海拔高度不超过1000米; (4)、不可能发生火灾和危险的地方; (5)、无强烈的震动或撞击的地方;

什么叫铁磁谐振过电压,它怎么防治

系统的中性点不接地系统,当系统遭到一定程度的冲击扰动,从而激发起铁磁共振现象。由于对地电容和互感器的参数不同,可能产生三种频率的共振:基波共振、高次谐波共振和分频谐波共振。各种共振的表现形式如下: 基波共振。系统二相对地电压升高,一相对地电压降低。中性点对地电压(可由互感器辅助绕组测得电压)略高于相电压,类似单相接地,或者是二相对地电压降低,一相对地电压升高,中性点有电压,以前者为常见。 分频谐波共振,三相电压同时升高,中性点有电压,这时电压互感器一次电流可达正常额定电流的30~50倍以致更高。中性点电压频率大多数低于1/2工频。 高次谐波共振,三相电压同时升高,中性点有较高电压,频率主要是三次谐波。 在正常运行条件下,励磁电感L1=L2=L3=L0,故各相对地导纳Y1=Y2=Y3=Y0,三相对地负荷是平衡的,电网的中性点处于零电位,即不发生位移现象。 但是,当电网发生冲击扰动时,如开关突然合闸,或线路中发生瞬间弧光接地现象等,都可能使一相或两相对地电压瞬间升高。如果由于扰动导致A相对地电压瞬间升高,这使得A相互感器的励磁电流突然增大而发生饱和,其等值励磁电感L1相应减小,以致Y1≠Y0,这样,三相对地负荷变成不平衡了,中性点就发生位移电压。如果有关参数配合得当,

对地三相回路中的自振频率接近于电源频率,这就产生了严重的串联谐振现象,中性点的位移电压(零序电压)急剧上升。 三相导线的对地电压UA、UB、UC等于各相电源电势与移位电压的向量和,当移位电压较低时向量迭加的结果可能使一相对地电压升高,另外两相则降低;也可能使两相对地电压升高,另一相降低。一般以后者为常见,这就是基波谐振的表现形式。 电压互感器的一组二次侧绕组往往接成开口三角形式,当线路发生单相接地时,电力网的零序电压(即中性点位移电压)就按比例关系感应至开口三角绕组的两端,使信号装臵发出接地指示。显然在发生上述铁磁谐振现象时,位移电压同样会反映至开口三角绕组的两端,从而发生虚幻接地信号,造成值班人员的错觉。 由模拟试验中得出,分次谐波谐振时过电压并不高,而电压互感器电流极大,可达额定电流的30~50倍,所以常常使电压互感器因过热而爆炸。基波谐振时过电流并不大,而过电压较高。高次谐波谐振时,一般电流不大,过电压很高,经常使设备绝缘损坏。 三次谐波电压的产生可以认为是由电压互感器的激磁饱和所引起的。如中性点绝缘的电源对三相非线性电感供电。由于未构成三次谐波电流的通路,故各相中出现三次谐波电

220kV空母线铁磁谐振过电压事故分析

220kV空母线铁磁谐振过电压事故分析 发表时间:2016-08-25T10:28:40.327Z 来源:《电力设备》2016年第12期作者:解晓东 [导读] 我国频发的铁磁谐振事故,已经引起社会和电力企业广泛关注,对发电厂电力系统逐步进行完善。 解晓东 (国网鞍山供电公司) 摘要:随着我国电力行业不断的发展,人们生活水平得到了极大的改善,对电力系统中空母线安全使用等方面关注力度越来越大。如何在快速变化的新时期,对220kv空母线铁磁谐振过电压事故进行有效控制,减少电力事故产生的频率,提升电力企业整体水平,为城市建设和人们生活提供更优质的服务,是我国电力部门面临的一个重要课题,同时,也能推动电力领域稳定可持续发展。 关键词:220kV;空母线;铁磁谐振;事故分析 近几年,我国频发的铁磁谐振事故,已经引起社会和电力企业广泛关注,对发电厂电力系统逐步进行完善,保障整体能够高质量、高效率的进行。而220kV空母线铁磁谐振事故是在电力系统非正常运行的情况下,如空母线在和中性点直接接地电源系统之间仅仅是通过断路器进行微弱连接时,容易产生谐振,严重时容易产生电力系统事故,造成经济方面的损失,也在一定程度上威胁市民的人身安全,不利于国家经济和城市建设快速的发展。本文就220kV空母线铁磁谐振过电压事故发生现象、产生空母线铁磁谐振过电压事故原因进行分析、有效解决发生谐振情况的有效措施以及消除谐振措施的可行性分析等方面进行了分析。 一、事故发生现象 本文就某发电厂发生220kV空母线铁磁谐振过电压事故进行了分析,主要发生现象为:母线电压表指示针满刻度,即为330kV,并出现刺眼的弧光,然后还有异常的响动,空母线伴随着强烈的抖动,将母线侧面刀闸拉开时,电压表指示针回零,随之声音也有减弱趋势,抖动幅度变小,轻度的铁磁谐振事故对电力系统设施有一定的影响,但是程度不重,次日进行各项指标调试的时候,项目测试均在合理使用范围内,对发电厂内整体设施没有太大影响,还可以继续使用,正常发电[1]。 二、空母线铁磁谐振过电压事故原因分析 产生220kV空母线铁磁谐振过电压事故的原因有:第一,中性点没有直接接地系统线路,就容易产生并联电路,当发电运行系统发突发情况时,就容易产生并联谐振;第二,电力持续振荡时,就会产生基波谐振,基波谐振拼读的强弱对电压互感器有不同程度的伤害。铁磁谐振现象的产生轻则会影响相关电力系统中机器,但是程度很小,不需要进行更换,还可以继续使用,但是如果影响过大可能会引起电力系统中互感器爆炸,造成不可估量的经济损失。 对220kV空母线铁磁谐振过电事故进行全面、系统的分析,然后迅速找到发生事故的原因,及时采取有效的补救措施。铁磁谐振是电力系统自激振荡的一种形式,主要就是由电力系统中的变压器和电压互感器等铁磁设备达到饱和状态从而引起持续性的一种现象。发电厂产生铁磁谐振现象的原因主要是由于断路器断口与电磁电压互感器二者不适应组合产生的,铁磁谐振一旦发生,就会产生比较高的过电压,根据相关有效数据得知,发生铁磁谐振会产生超过标准额定电流的70倍左右,由此可见,发生铁磁谐振可以在很短的时间内对电力系统中的互感器设备产生冲击,进而损坏机器设备,不仅影响了发电厂正常运行的工作效率,还对该供电区域正常建设和生活有消极作用 [2]。 三、解决发生谐振情况的有效措施 现在我国各大发电厂都事先制订了应急方案,对日程运行过程中产生的铁磁谐振事故,及时采取相应措施,降低事故对发电厂经济影响,尽量缩短事故的发生时间,以免电流过大对机器设备整体造成不可修复的损伤,保证发电系统的安全性能。所以,发电厂在对可疑现象进行检查的时候,要事先确认是否为铁磁谐振事故,观察220kV空载母线三相电压表是否出现大幅度升高现象。如果不是,再进行调查分析,如果确认为铁磁谐振事故,电力工作人员就必须立刻切断向母线充电的电源断路器等设施,可以通过远程控制拉开断路器两侧的隔离刀闸,快速的破坏谐振产生条件,即可对谐振进行有效的控制,减轻事故发生后果[3]。 相关电力部门也对铁磁谐振现象给予了高度重视,积极提出了多种措施对事故进行防治,首先,对新建的或者是要进行大规模扩建的发电厂、变电所等单位,电力系统可以适当采用电容式电压互感器,其能够很大程度上降低铁磁谐振的影响,但是成本费用要高于传统的电磁式互感器,不适合对原有电磁式互感器其进行大批更换;而对于传统发电厂使用的电磁式互感器要进行定其的检查和维修,技术人员对伏安特性等功能进行试验,保证使用性能在设备使用范围之内,对于性能不好的设备进行更换或者是及时养护;发电所可以适当的安装自动消谐装置,对于产生的谐振进行自动消除。同时,我国电力行业也应该不断进行创新,对发电厂的电力系统进行完善和优化,强化电力工作人员安全责任意识,从根本上减少空母线铁磁谐振现象的发生[4]。 四、消除谐振措施的可行性分析 我国针对各个地方发电厂发生消磁谐振产生原因、有效防范措施以及事后处理工作等方面进行了详细的分析,对发电厂的应急措施从有效性、可行性、经济性三角度进行考虑。 消谐措施主要目的就是从本质上避免营造产生铁磁谐振的条件,降低铁磁谐振事故的发生频率,或者是利用外界因素改变谐振产生条件,保证电力系统正常运行,为城市建设和人们生活提供强有力的保证,也减少对机器设备的损伤,推动电力行业高效率的稳定发展[5]。我国最常用的消谐方案为改变正常操作发电程序,在停止母线环节时,先停上面的压动器,充电时也按这个步骤进行,虽然有效的避免了产生谐振的条件,但是也违反了母线断、充电的运行程序,增加了不必要的人工操作,可能会引操作失误,而且在运用这种方法时,必须有工作人员进行严格监督控制,对信息化、专业化发电站的建设有一定的影响。 对于新建或者大规模扩建改造的发电厂,可以使用新型的电容式电压互感器,代替传统的电磁式互感器,但是前期投入成本费用消耗较大,负载能力相对来说较差。 可以在220kV母线上投一段空线路,实施起来也比较方便,但是不是所有发电厂都适合这种方法,要结合实际情况进行。 可以在开口三角回路中接入微型电脑消谐装置,自动消除不同频率的谐振,能够对谐振频率等方面进行分析,为优化消谐设置提供强

相关主题
文本预览
相关文档 最新文档