当前位置:文档之家› 声学参数理论

声学参数理论

声学参数理论
声学参数理论

1.A 计权声压级

声压有效值定义为一定时间间隔中,瞬时声压对时间的均方根值,用p e表示:

将声压有效值p e与基准量p0之比的对数乘以20 便可以得到声压pe的声压级,用L p表示:

A 计权声压级(简称 A 声级)用以模拟55dB以下低强度噪声特性,对 1000Hz 以下的低中频段衰减,其结果与人对声音的感知相近。

2.响度

响度(Loudness)是基于人耳对声音频谱掩蔽特性的反映人耳对声音强弱感知程度的心理声学参数,单位为宋(sone),规定1000Hz纯音的声压级为40dB时的响度为1宋。国际标准 ISO532 规定了 A、B 两种计算稳态噪声响度的计算方法:

a)Stevens方法(ISO532A):

详细内容参见标准 ISO532-A-1975 和。其数学表达式为:

b)Zwicker方法(ISO532B)(本文所采用方法):

Zwicker 法适用于自由声场或混响声场的计算,在通常情况下一般采用Zwicker 法的响度计算模型。 Zwicker 法以1/3倍频程频谱为依据,引入了特征频带和特征响

度的概念,首先计算每个特征频带特征响度,再由此来得到总响度值。

根据 Zwicker 的响度理论,通过激励E可以计算得到特征响度,其计算公式:

式中:E TQ为绝对听阈下的激励(安静状况下),E0为基准声强下的激励,被计算声音的特征频带声压级作为激励级E。

对特征响度在0-24 Bark域上积分,即可得到总响度:

注:

掩蔽效应是指由于一个声音的存在而使另一个声音听阈提高的现象。

人类的听觉系统具有滤波特性,即频率选择性。为了描述人耳的频率选择特性和掩蔽效应,Zwicker假设人的听觉系统将声音信号分量分成24个频带,当确定了一个声音的频率时,能够产生掩蔽效应的另外一个声音的频率范围称为“特征频带”,单位是Bark。在 Zwicker 模型中,特征频带Bark 数z和频率 f(Hz)的对应关系可近似表达为:

3.尖锐度

尖锐度(Sharpness)是描述高频成分在声音频谱中所占比例的物理量,主要反映人们主观上对高频段声音刺耳程度的感受,单位为 acum。规定中心频率为1000 Hz、带宽为160 Hz的60分贝窄带噪声的尖锐度为1 acum。

尖锐度的计算目前尚没有统一的标准,但国际上较为通用的计算模型有两种,分别是Zwicker模型和Aures模型。两种计算模型都能较为准确地计算尖锐度,但由Aures模型对响度有很大依赖,所以在已包含响度的情况下,通常采用Zwicker计算模型。

a)Zwicker尖锐度模型(本文所采用方法)

式中,k为加权系数,取;N为总响度;N'(z)为临界频带z上的特征响度;g(z)为Zwicker依据不同临界频带设置的响度计权函数,

b)Aures尖锐度模型

式中各符号的含义和a)中相同。

4.粗糙度

粗糙度(Roughness)是用来描述人对高频声音信号瞬时变化的感觉,主要针对调制频率范围在 15Hz~300Hz 的声音,符号为R,单位为asper,并规定调制比为1、声压级为 60dB 的 1000Hz 幅值调制纯音在调制频率为 70Hz 时的粗糙度为1 asper。

声音信号的粗糙度主要受到调制频率和调制比的影响,调制比越大,粗糙度也越大;而中心频率和声压级对声音信号的影响相对来说较小。

目前粗糙度常见的计算方法有以下两种:

a)Aures方法

式中k i为特征频带包络时间函数系数,为粗糙度谱密度,

为计权包络的有效值,是为考虑载波频率的影响而引入的计权因子。

b)Fastl方法(本文所采用方法)

Zwicker和Fastl对Aures提出的模型做了改进和修正,其计算公式为:

f mod为噪声的调制频率,?L E(z)为各特征频带内的激励级差(也即声音的掩蔽深

度),

N'max(z)和N'min(z)分别表示z特征频带域内特征响度的最大值和最小值。

5.抖动度

与粗糙度相似,抖动度(Fluctuation Strength)也是描述声音信号瞬时变化的物理量,针对的主要是调制频率在~20Hz 的低频声音信号,也是主要受到调制比和调制频率的影响,符号F,单位为 vacil,规定声压级为60dB调制比为1的1000Hz幅值调制纯音在调制频率为4Hz时的抖动度为1 vacil。

采用Fastl方法的抖晃度计算方法为:

式中,f mod为调制频率,?L E(z)为特征频带包络的最大与最小声级差。

6.突出率

突出率(Prominence ratio)是一种用于检测和评价噪声中显著音调的心理声学指标。ECMA-74国际标准对该指标进行了详细描述,起初用于对信息、通讯设备的噪声评价。符号用?L P表示,无单位比值。

1)引入临界频带的计算方法

以频率f0为中心的临界频带的宽度f的计算式如下:

式中, f1为临界频带下限,f2为临界频带上限,即

当f0≤500 Hz时:

当f0>500 Hz时:

2)计算中间临界频带的声压级L

中间临界频带即以目标音调噪声所对应频率f t为中心的临界频带,其宽度f、上限f、下限f 根据临界频带计算方法均由中心频率决定。

3)计算下临界频带的声压级L

下临界频带指频率小于且紧邻中间临界频带的临界频带,其上限f= f,下限f则由下式确定:

式中,常数C ,C ,C 取值依据下表:

Frequency range/

Hz

C /

Hz

C

C /

Hz

≤f t ≤

≤f t≤1600×10

f t >1600×106

4)计算上临界频带的声压级L

上临界频带的频率大于且紧邻中间临界频带,其下限f= f,上限f由下式确定:

式中,常数C ,C ,C 取值由下表确定:

Frequency range/

Hz

C /

Hz

C

C /

Hz

≤f t≤1600×10

f t >1600×105

5)计算突出率?L

当f t> Hz时,

当f t≤ Hz时,

噪音-建筑声学不可忽视的参数精讲

噪音-建筑声学不可忽视的参数 在公共建筑和高层建筑中,传统粘土砖墙因其自重过大、土地保护等问题基本已被轻质隔墙取代。但轻墙隔声比粘土砖墙差,所以解决轻质隔墙的隔声问题是应用的关键问题。理论和实践都证明,试图使用单一轻质材料,如加气混凝土板、膨胀珍珠岩、陶粒混凝土等构成单层墙,隔声性能不可能好。这是因为单层墙的隔声受质量定律的控制,即墙越厚重、单位面积质量越大,隔声越好。所以单一轻质材料做成单层墙,不可能克服既要轻又要隔声好的矛盾。 本文就建筑声学中一些基本概念,结合纸面石膏板的隔声及应用进行一些讨论。 一、建筑声学的基本概念 1)声音 物体的振动产生“声”,振动的传播形成“音”。人们通过听觉器官感受声音,声音是物理现象,不同的声音人们有不同的感受,相同声音的感受也会因人而异。美妙的音乐令人陶醉,清晰激昂的演讲令人鼓舞,但有时侯,邻居传来的音乐声使人难以入睡,他人之间的甜言蜜语也许令人烦恼。建筑声学不同于其他物理声学,主要研究目的在于如何使人们在建筑中获得良好的声音环境,涉及的问题不局限于声音本身,还包括心理感受、建筑学、结构学、材料学甚至群体行为学等多方面问题。 人耳的听觉下限是0dB,低于15dB的环境是极为安静的环境,安静的会使人不知所措。乡村的夜晚大多是25-30dB,除了细心才能够体会到的流水、风、小动物等自然声音以外,其他感觉一片宁静,这也是生活在喧嚣之中的城市人所追求的净土。城市的夜晚会因区域不同而有所不同。较为安静区域的室内一般在30-35dB,如果你住在繁华的闹市区或是交通干线附近,将不得不忍受40-50dB(甚至更高)的噪声, 如果碰巧邻居是一位不通情达理的人,夜深人静时蹦蹦跳跳、高声喧哗,也许更要饱受煎熬了。人们正常讲话的声音大约是60-70dB,大声呼喊可达100dB。在中式餐馆中,往往由于缺乏吸声处理,人声鼎沸,声音将达到70-80dB,有国外研究报道噪声中进餐会影响健康。人耳的听觉上限一般是120dB,超过120dB的声音会造成听觉器官的损伤,140dB的声音会使人失去听觉。高分贝喇叭、重型机械、喷气飞机引擎等都能够产生超过120dB的声音。人耳听觉非常敏感,正常人能够察觉1dB的声音变化,3dB的差异将感到明显不同。人耳存在掩蔽效应,当一个声音高于另一个声音10dB时,较小的声音因掩蔽而难于被听到和理解,由于掩蔽效应,在90-100dB的环境中,即使近距离讲话也会听不清。人耳有感知声音频率的能力,频率高的声音人们会有“高音”的感觉,频率低的声音人们会有“低音”的感觉,人耳正常的听觉频率范围是20-20KHz。人耳耳道类似一个2-3cm的小管,由于频率共振的原因,在2000-3000Hz的范围内声音被增强,这一频率在语言中的辅音中占主导地位,有利于听清语言和交流,但人耳最先老化的频率也在这个范围内。一般认为,500Hz以下为低频,500Hz-2000Hz为中频,2000Hz以上为高频。语言的频率范围主要集中在中频。人耳听觉敏感性由于频率的不同有所不同,频率越低或越高时敏感度变差,也就是说,同样大小的声音,中频听起来要比低频和高频的声音响。 2)频率特性 声音可以分解为若干(甚至无限多)频率分量的合成。为了测量和描述声音频率特性,人们使用频谱。频率的表示方法常用倍频程和1/3倍频程。倍频程的中心频率是31.5、63、125、

01.声学简介

声学简介 声学是研究媒质中机械波的产生、传播、接收和效应的物理学分支学科. 媒质包 括各种状态的物质,可以是弹性媒质也可以是非弹性媒质;机械波是指质点运动变化的传播 现象. 声学发展简史 声音是人类最早研究的物理现象之一,声学是经典物理学中历史最悠久,并且当前 仍处在前沿地位的物理学分支学科. 从上古起直到19世纪,人们都是把声音理解为可听声的同 义语. 中国先秦时就说“情发于声,声成文谓之音”,“音和乃成乐”. 声、音、乐三者不同,但都指可以听到的现象. 同时又说“凡响曰声”, 声引起的感觉(声觉)是响,但也称为声,这与现代对声的定义相同. 西方国家也是如此,英文的词源来源于希腊文,意思就是“听觉”. 世界上最早的声学研究工作主要在音乐方面. 《吕氏春秋》记载,黄帝令伶伦取竹 作律,增损长短成十二律;伏羲作琴,三分损益成十三音. 三分损益法就是把管(笛、箫) 加长三分之一或减短三分之一,这样听起来都很和谐,这是最早的声学定律. 传说在古希腊 时代,毕达哥拉斯也提出了相似的自然律,只不过是用弦做基础. 1957年在中国河南信阳出土了蟠螭文编钟,它是为纪念晋国于公元前525年与楚 作战而铸的. 其音阶完全符合自然律,音色清纯,可以用来演奏现代音乐. 1584年,明朝 朱载堉提出了平均律,与当代乐器制造中使用的乐律完全相同,但比西方早提出300年. 古代除了对声传播方式的认识外,对声本质的认识也与今天的完全相同. 在东西方,都认为声音是由物体运动产生的,在空气中以某种方式传到人耳,引起人的听觉. 这种 认识现在看起来很简单,但是从古代人们的知识水平来看,却很了不起. 例如,很长时期内,古代人们对日常遇到的光和热就没有正确的认识,一直到牛顿 的时代,人们对光的认识还有粒子说和波动说的争执,且粒子说占有优势. 至于热学,“热质”说的影响时间则更长,直到19世纪后期,恩格斯还对它进行过批判. 对声学的系统研究是从17世纪初伽利略研究单摆周期和物体振动开始的. 从那时 起直到19世纪,几乎所有杰出的物理学家和数学家都对研究物体的振动和声的产生原理作 过贡献,而声的传播问题则更早就受到了注意,几乎2000年前,中国和西方就都有人把声 的传播与水面波纹相类比. 1635年有人用远地枪声测声速,以后方法又不断改进,到1738年巴黎科学院利用 炮声进行测量,测得结果折合为0℃时声速为332米/秒,与目前最准确的数值331.45米/ 秒只差0.15%,这在当时“声学仪器”只有停表和人耳的情况下,的确是了不起的成绩. 牛顿在1687年出版的《自然哲学的数学原理》中推理:振动物体要推动邻近媒质,后者又推动它的邻近媒质等等,经过复杂而难懂的推导,求得声速应等于大气压与密度之比

声学基础试题

一、 名词解释(3分×4=12分) 自由振动――系统只在弹性力作用下的振动。 临界入射――入射角等于临界角时的声波斜入射。 声功率――单位时间内通过垂直于声传播方向的面积S 的平均声能量。 体应变――在外力作用下,介质体积的变化率。 二、 填空(1分×23=23分) 1、 对于强迫振动系统而言,当外力频率__等于___系统固有频率时,系统的 振动速度出现__共振现象__。 2、自由振动系统的固有频率 。 3、由于阻尼力的作用,使得衰减振动系统的固有频率__低于__自由振动系统的固有频率。 4、声波在两种流体分界面上产生反射、折射时,应满足边界条件。即分界面两侧介质内声场的__声压_________、____质点振动速度____在分界面上____连续_______。 5、声波在两种流体分界面上产生反射、折射时,声功率的反射系数与折射系数之和___1_____。 6、声波在两种流体分界面上产生临界斜入射的条件是___入射波速度v1小于折射波速度v2__,临界入射角为___12arcsin()v v θ=___。 7、一维情况下理想流体媒质中的三个基本方程分别为__运动方程_、 ____连续性方程__、____物态方程_____。 8、媒质的特性阻抗(即波阻抗)等于_媒质声波速度与媒质密度的乘积。 9、两个同相小球源的指向特性__sin(2)()2sin() k D k θ?=?__。 10、辐射声波波长为λ,间距为l 的n 个同相小球源组成的声柱的主声束的角宽度_2arcsin()nl λ θ=__。

11、均匀各向同性线弹性介质的正应力与正应变的关系___2ii ii T λθμε=+_;切应力与切应变的关系__jj jj T με=_。 12、根据质点振动特点,薄板中的兰姆波可分为___对称型_和____非对称型两类。 13、根据瑞利波和兰姆波的周期方程可知,瑞利波的速度与频率___无关__,是无频散波;而兰姆波相速度与频率___有关__,是__频散波_。 三、 判断并改错(2分×7=14分) 1、 在无限大介质中传播的波称为瑞利波。错误 沿无限大自由表面传播的波称为瑞利波。 2、 当考虑弹簧质量时,自由振动系统的固有频率增大。错误 当考虑弹簧质量时,自由振动系统的固有频率降低。 3、 对于强迫振动系统而言,当外力频率等于系统固有频率时,系统的振 动位移出现共振现象。 错误 对于强迫振动系统而言,当外力频率等于系统固有频率时,系统的振 动速度出现共振现象。 4、 衰减振动的衰减系数δ与系统所受的阻力系数Rm 、振子质量Mm 成反 比。错误 衰减振动的衰减系数δ与系统所受的阻力系数成正比,与振子质量成反比。 5、 声场对小球源的反作用力与小球源的辐射阻抗、表面质点振动速度的 关系为 r r F Z u =- 正确 6、 声波在两种流体分界面上发生反射、折射时,声强的反射系数与折射 系数之和等于1。 错误 声波在两种流体分界面上发生反射、折射时,声功率的反射系数与折射系数之和等于1。 或 声波在两种流体分界面上发生反射、折射时,声强的反射系数与折射系数之和不一定等于1。

声学基础及其原理

2 声学基础及其原理[13] 在我们的生活环境中会遇到声强从弱到强范围很宽的各种声音[5]。如此广阔范围的能量变化直接使用声功率和声压的数值很不方便,而用对数标度以突出其数量级的变化则相对明了些;另一方面人耳对声音的接收,并不是正比与强度的变化值,而更近于正比与其对数值,由于这两个原因,在声学中普遍使用对数标度来度量声压、声强、声功率,分别称为声压级、声强级和声功率级,单位用分贝(dB )来表示[1]。 2.1声压级 将待测声压的有效值P e 与参考声压P o 的比值取以10为底数的常用对数,再乘以20。即: L p =20lg o e P P (dB ) (2.1) 在空气中,参考声压P 0规定为2?10-5帕,这个数值是正常人耳对1000Hz 声音刚能够觉察到的最低声压值。式(2.1)也可以写为: L p =20lgp+94 (dB ) (2.2) 式中p 是指声压的有效值P e ,由于声学中所指的声压一般都是指其有效值,所以都用p 来表示声压有效值P e 。 人耳的感觉特性,从可听域的2?10-5帕的声压到痛域的20帕,两者相差100万倍,而用声压级表示则变化为0-120分贝的范围,使声音的量度大为简明。 2.2 声强级: 为待测声强I 与参考声强I 0的比值取以常用对数再乘以10,即: L I =10lg 0 I I (dB ) (2.3) 在空气中,参考声强I 0取以10-12W/m 2这样公式可以写为:

L I =10lg I+120 (dB ) (2.4) 2.3声功率 可以用“级”来表示,即声功率L W ,为: L W =10lg 0 W W (dB ) (2.5) 这里W 是指声功率的平均值W ,对于空气媒质参考声功率W 0=10-12W ,这样式子可以写为: L W =10lg W +120 (dB ) (2.6) 由声强与声功率的关系I=W/S ,S 为垂直声传播方向的面积,以及空气中 声强级近似的等于声压级,可得: L p =L I =10lg ????? ??01I S W =10lg ????????S I W W W 1000 (2.7) 将W 0=10-12W ,I 0=10-12W/m 2代入,可得: S L L L W I p lg 10-== (dB ) (2.8) 这就是空气中声强级、声压级与声功率级之间的关系,但应用条件必须是自由声场,即除了有源发声外,其它声源的声音和反射声的影响均可以忽略。在自由场和半自由场测量机器噪声声功率的方法的原理就是如此。 声压级、声强级、声功率级的定义中,在后两者对数前面都好似乘以常数10,而声压级对数前面乘以常数为20,这是因为声能量正比于声强和声功率的一次方,而对声压是平方的关系。如声压增加一倍,声压级和声强级增加6分贝,而声强增加一倍,声压级和声强级增加3分贝[5]。 对于一定的声源,其声功率级是不变的,而声压级和声强级都是随着测点的不同而变化的。 专门的研究表明,人耳对于不同频率的声音的主观感觉是不一样的,人耳对于声的响应不单纯是物理上的问题了。为了使人耳对频率的响应与客观声压级联系起来,采用响度级来定量的描述这种关系,它是以1000Hz 纯音作为基准,对听觉正常的人进行大量比较试听的方法来定出声音的响度级的,

声学设计指标资料

第一章声学设计的指标 1.室内噪声 根据《民用建筑隔声设计规范》GBJ118-88的要求,对照博物馆改造工程中主要功能房间的使用要求,各主要技术房间内的包括空调噪声在内的背景噪声不大于表1中规定的NR噪声评价曲线所规定的数值。为此应限制出风口处风速,在风路系统中加消声器,并注意防止同一空调系统不同房间之间的串声干扰问题。 表1 博物馆主要技术房间内噪声的容许评价标准

2.室内音质 演播厅、学术报告厅(兼音乐厅、非物质文化演出剧场)和数字电影院(兼小型报告厅)及文艺录音室等的室内声学,都必须有良好的声学条件。 2.1.混响时间 各功能房间混响时间的设计目标值见表2 表2 博物馆主要技术房间室内声学设计目标值 目前,室内音质设计的目标首先是控制室内的混响时间及其频率特性。混响时间的长短仍然是决定观众的现场听闻的主要因素,也对演员演奏的难易有重要影响。 在设计技术上,在传统方法的基础上,辅以计算机模拟分析技术,可估算混

响时间以外的其他声学参量。这里特别关注博物馆报告厅的音质设计:博物馆学术报告厅的容积约为4355m3,座席743座;每座容积仅5.9立方米。音乐厅模式时,容积约为5067m3。基本功能主要满足中、小型会议的需要,同时可兼顾音乐演出(重要功能)活动和非物质文化演出。 参照《剧场、电影院和多用途礼堂声学设计规范》GB/T 50356-2005的规定,观众厅的最佳混响时间的数值,大致在0.90--1.30秒的范围内。 从报告厅的主要功能考虑,选择博物馆报告厅的中频(500Hz)满场混响时间为1.1秒。有音乐反射罩(即音乐厅模式)时混响时间可达到1.30秒左右(考虑到报告厅的固有吸声量以及为防止声缺陷的出现所必须进行的少量吸声装修)。下一阶段的深化设计中,在不影响其他功能的前提下,仍然努力提高音乐厅模式的时混响时间。 混响时间的频率特性为中高频基本平直,低频的混响时间容许有一定的上升,见表3。 表3 混响时间频率特性(秒) 2.2.防止声缺陷 以上技术房间的设计,除混响时间的设计指标外,各听声场所应无诸如长延迟反射声、声聚焦及颤动回声等严重的声缺陷。 博物馆学术报告厅与舞台空间的混响感应尽可能一致。

现代声学理论基础 1415

大振幅声的三种基本效应 《现代声学理论基础》第14-15章读书报告在声学应用中大振幅声的三种基本效应,它们是辐射压力、声流和空化。这些效应虽然都是二阶量,但是产生的效果往往是惊人的。 比如辐射压力的存在,虽然辐射压力和声压比较时,显得微不足道,但是可以在比较大的声压级的作用下,利用声压在平面上产生的力,而完成从声能到动能的转化。在1939年,伍德(R.W.Wood)就在他的书《supersonics》中演示,在一油槽底的石英片做超声振动时,可在油面上激起喷泉,如载以重物,可托起150g的法码,可见在声压高时,辐射压力的可观。声压级在174dB(p=10000Pa),辐射压力可达1000Pa,即1000kg/m2,可以把重物拖起来。 由于大振幅声的这种特性,可以把一些噪声或者是机械产生的声音,有效地利用起来,并尽可能的将其转化为机械能,达到多余声音或者噪声的回收利用。 同样,比质点速度小得多的声流(也称为声风、石英风,总是旋转性的),对破坏附面层,加速传质传热,以及清除表面污垢、杂物都是非常有效地。气体或液体媒质中有强声波传播时,往往会引起一种非周期性的运动,这种现象称为声流。声流包括体声流(bulk streaming)和微声流(microstreaming);根据产生方式,体声流又可分为两大类:一类起源于自由空间中声波的衰减,此种声波通常与高雷诺数相关:另一类则因媒质与其接触的固体之间的摩擦引起,包括媒质中存在振动体或障碍物、声波沿波导传播、容器中存在驻波场等情况。体声流常简称为声流.微声流是指媒质中与微小空化泡相

联系的局部流动。 声流可加速热交换,超声清洗是最常见的一一种,超声清洗时,声流的法向速度分量阻止了清洗下来的脏物重新附到器壁上。在器壁上所产生的高速微射流能够除去或削弱边界污层,增加搅拌作用,加速可溶性污物溶解。声流可有效驱动微型超声马达及超声泵,可用来制冷。声流现象为媒质的粘滞系数测量提供了一种简捷的方法,通过测量粘滞系数,可无损的检测封闭容器内液体的性质及罐装食品的质量。 在生物医学方面,声流效应也有重要作用。肾结石粉碎中,声流是传递能量的重要途径。声流遇到硬界面时,高的速度梯度会产生很大的作用力。超声诊断或治疗中,尿液、胃液、血液、胆汁、羊水、水肿等体液中可能出现声流,声流产生的切应力可用于粉碎胆结石及杀死肿瘤细胞。 在液体中,高声强可产生空化气泡,而空化产生的气泡不断发展和溃灭。液体中空泡溃灭时产生的空蚀、噪声、振动和发光等现象。空化噪声是一种很强的水动力噪声,在有关工程中通常应尽量避免。比如在高速运转的核潜艇推进叶片上,由于高速的运转,会出现流体力学中的打空现象,气泡会附着在叶片表面,随着潜艇的不断前行,气泡会逐渐破裂,由此产生了声,这对潜艇等水中战斗设备的隐藏和保密是不利的。 但是声空化在其他领域的使用也有其不可比拟的优点,比如,声空化强化传热;生物学上,在超声外科、超声牙科及体外超声

建筑声学的作用

建筑声学是研究建筑中声学环境问题的科学。它主要研究室内音质和建筑环境的噪声控制。 18~19世纪,自然科学的发展推动了理论声学的发展。到19世纪末,古典理论声学发展到最高峰。20世纪初,美国赛宾提出了著名的混响理论,使建筑声学进入科学范畴。 建筑声学的基本任务是研究室内声波传输的物理条件和声学处理方法,以保证室内具有良好听闻条件;研究控制建筑物内部和外部一定空间内的噪声干扰和危害。 作为建筑声学组成部分的室内声学设计内容包括体型和容积的选择,最佳混响时间及其频率特性的选择和确定,吸声材料的组合布置和设计适当的反射面,以合理地组织近次反射声等。 建筑声学设计要考虑到两个方面,一方面要加强声音传播途径中有效的声反射,使声能在建筑空间内均匀分布和扩散,如在厅堂音质设计中应保证各处观众席都有适当的响度。另一方面要采用各种吸声材料和吸声结构,以控制混响时间和规定的频率特性,防止回声和声能集中等现象。设计阶段要进行声学模型试验,预测所采取的声学措施的效果。 处理室内音质一方面要了解室内空间体型、所选用的材料对声场的影响。还要考虑室内声场声学参数与主观听闻效果的关系,即音质的主观评价。可以说确定室内音质的好坏,最终还在于听众的主观感受。由于听众的个人感受和鉴赏力的不同,在主观评价方面的非一致性是这门学科的特点之一;因此,建筑声学测量作为研究。探索声学

参数与听众主观感觉的相关性,以及室内声信号主观感觉与室内音质标准相互关系的手段,也是室内声学的一个重要内容。 在大型厅堂建筑中,往往采用电声设备以增强自然声和提高直达声的均匀程度,还可以在电路中采用人工延迟、人工混响等措施以提高音质效果。室内扩声是大型厅堂音质设计必不可少的一个方面,因此,现代扩声技术已成为建筑声学和室内声学的一个组成部分。 即使有良好的室内音质设计,如果受到噪声的严重干扰,也将难以获得良好的室内听闻条件。为了保证建筑物的使用功能,保证人们正常生活和工作条件,也必须减弱噪声的影响。因此,控制建筑环境噪声,保证建筑物内部达到一定的安静标准,是建筑声学的另一个重要方面。 噪声干扰,除与噪声强度有关外,还与噪声的频谱持续时间、重复出现次数以及人的听觉特性、心理、生理等因素有关。控制噪声就是按照实际需要和可能,将噪声控制在某一适当范围内,其所容许的最高噪声标准称为容许噪声级,即噪声容许标准。对于不同用途的建筑物,有不同建筑噪声容许标准:如对工业建筑主要是为保护人体健康而制定的卫生标准;而对学习和生活环境则要保证达到一定的安静标准。对于文艺演出设施则要保证观众有一个良好欣赏环境。 由于建筑声学和室内声学同建筑空间的体积、形状和室内表面处理都有密切关系,因此建筑声学设计必须从建筑的观点确定方案。取得良好的声学功能和建筑艺术的高度统一的效果,这是科学家和建筑师进行合作的共同目标。

声学参数理论

1.A 计权声压级 声压有效值定义为一定时间间隔中,瞬时声压对时间的均方根值,用p e表示: 将声压有效值p e与基准量p0之比的对数乘以20 便可以得到声压pe的声压级,用L p表示: A 计权声压级(简称 A 声级)用以模拟55dB以下低强度噪声特性,对 1000Hz 以下的低中频段衰减,其结果与人对声音的感知相近。 2.响度 响度(Loudness)是基于人耳对声音频谱掩蔽特性的反映人耳对声音强弱感知程度的心理声学参数,单位为宋(sone),规定1000Hz纯音的声压级为40dB时的响度为1宋。国际标准 ISO532 规定了 A、B 两种计算稳态噪声响度的计算方法: a)Stevens方法(ISO532A): 详细内容参见标准 ISO532-A-1975 和。其数学表达式为: b)Zwicker方法(ISO532B)(本文所采用方法): Zwicker 法适用于自由声场或混响声场的计算,在通常情况下一般采用Zwicker 法的响度计算模型。 Zwicker 法以1/3倍频程频谱为依据,引入了特征频带和特征响

度的概念,首先计算每个特征频带特征响度,再由此来得到总响度值。 根据 Zwicker 的响度理论,通过激励E可以计算得到特征响度,其计算公式: 式中:E TQ为绝对听阈下的激励(安静状况下),E0为基准声强下的激励,被计算声音的特征频带声压级作为激励级E。 对特征响度在0-24 Bark域上积分,即可得到总响度: 注: 掩蔽效应是指由于一个声音的存在而使另一个声音听阈提高的现象。 人类的听觉系统具有滤波特性,即频率选择性。为了描述人耳的频率选择特性和掩蔽效应,Zwicker假设人的听觉系统将声音信号分量分成24个频带,当确定了一个声音的频率时,能够产生掩蔽效应的另外一个声音的频率范围称为“特征频带”,单位是Bark。在 Zwicker 模型中,特征频带Bark 数z和频率 f(Hz)的对应关系可近似表达为: 3.尖锐度 尖锐度(Sharpness)是描述高频成分在声音频谱中所占比例的物理量,主要反映人们主观上对高频段声音刺耳程度的感受,单位为 acum。规定中心频率为1000 Hz、带宽为160 Hz的60分贝窄带噪声的尖锐度为1 acum。 尖锐度的计算目前尚没有统一的标准,但国际上较为通用的计算模型有两种,分别是Zwicker模型和Aures模型。两种计算模型都能较为准确地计算尖锐度,但由Aures模型对响度有很大依赖,所以在已包含响度的情况下,通常采用Zwicker计算模型。 a)Zwicker尖锐度模型(本文所采用方法)

声学原理

声学原理 声波是由物体振动产生的,当振动在一定的频率和强度范围内时,人耳就可听到。振动发声的物体称为声源。 声源发声后要经过一定的介质才能向外传播,而声波是依靠介质的质点振动而向外传播声能,介质的质点只是振动而不移动,所以声音是一种波动。波是振动的传播是振动状态的传播,即振动方向、振动位相或振动能量的传播。波的传播并不是介质或物理量本身的向前运动。即声源的质点并不随声波前进,他只在原地运动,传递出的只是质点的运动状态。 由上所述,声音为一串串稀疏稠密交替变化的波,而疏和密就是空气压强的变化,再通过人的耳膜对空气压力的反映传入大脑,从而听到声音。声波是描述声音的物理现象,常用波形表示。声波具有一 切“波”的性质。所以产生声音的必要条件有两个:1、必须要有振动体或振动源。2、声波的传递必须依靠传播媒介。声波传播的空间称为声场。气体中的声波属于纵波,即波的前进方向与媒质质点的振动方向在一条直线上。同一时刻,同位相的振动传播到达点的集合叫做波阵面。波阵面是平面的波叫平面波,波阵面是球面的波叫球面波。 一般情况下,平面振动发出的波是平面波,点源振动发出的波是球面波。 人耳的听音范围是20Hz~20KHz。低于20Hz叫次声波,高于20KHz的叫超声波。 声波在振动一个周期内传播的距离叫做波长。用λ表示 声波一秒钟传播的距离叫“波速”用c表示 声波一秒钟振动的次数叫“频率”用 f表示 它们之间的关系:λ=c/f 相位:说明其声波在周期运动中所达到的精确位置,通常用圆周的度数来表示。 振动频率、振幅和传播速度相同而传播方向相反的两列波叠加合时,就产生驻波。驻波形成时,空间各处的介质或物理量只在原位置附近作振动,波停驻不前,而没有行波的感觉,所以称为驻波。 声波在传输过程中具有相互干涉作用。两个频率相同、振动方向相同且步调一致的声源发出的声波相互叠加时就会出现干涉现象。如果它们的相位相同,两波叠加后幅度增加声压加强;反之,它们的相位相反,两波叠加后幅度减小声压减弱,如果两波幅度一样,将完全抵消。由于声波的干涉作用,常使空间的声场出现固定的分布,形成波峰和波谷(从频响曲线上看似梳状滤波器的效果)。对于一般的节目素材,只要几个

中传通信与信息系统考研专业信息分享

中传通信与信息系统考研专业信息分享 1.声频技术方向 声音是传媒领域的重要基础媒介。声音制作是广播电视节目制作的重要组成部分,声音制作水平决定了制作出来的节目的整体质量。随着现代电子技术、计算机技术、网络技术等相关技术的突破和发展,声音制作可以借助的手段越来越多,同时出现的问题和课题也越来越多。声频技术是指在人的听觉频率范围内为人的听觉活动服务的技术,包括声音的产生、传输、接收、以及处理等问题。由于传媒领域所传播的声音以音乐、语言、和艺术效果声为主,所以声频技术具有技术和艺术相结合的特点,同时需要理性思维和感性思维。本研究方向的校内支持学科包括传播声学、录音艺术、实验语言学、演艺工程等。主要的研究领域包括: (1)电声器件和系统的理论与应用技术; (2)室内声环境与扩声技术; (3)声频测量理论和方法; (4)数字声频技术与音频信息检索; (5)声音质量的综合分析与评价方法; (6)声音录制与处理的艺术与技术; (7)听觉心理以及与视觉心理的交互作用; (8)音乐传播声学; (9)汉语语音信息处理与语音评测。 本方向的研究工作以基础研究和应用基础研究为主,注重声频技术领域内科学原理和前沿技术问题的探索研究。重点培养学生在科学研究中发现问题和解决问题的能力,养成优良的科学素质。为科研、教育、和工程技术等领域输送具有良好科学素质的研究型人才。 本方向的师资由教育部媒介音视频重点实验室(中国传媒大学)传播声学研究所、录音系、信息工程学院等从事声频技术研究的人员组成,具有较强的学科实力和科学研究的积累。所开设的专业基础课程包括理论声学、心理声学、建筑环境声学、音质评价的实验心理学方法、语音信息处理、数字音频技术、声频测量技术、传播声学进展等。 2. 数字电视技术方向 数字电视技术是现代广播电视和现代多媒体通信等领域重要的技术基础,“数字电视技术方向”是中国传媒大学通信与信息系统专业的特色优势学科。经过多年的建设,该学科在数字视频处理技术、数字电视制作与播出技术、数字高清晰度电视技术、数字视频测量和监测技术、数字视音频网络技术、视音频检索技术等方面具有较高的教学水平和科研实力。 数字电视技术方向研究的重点内容:(1)数字视频压缩编解码研究与应用、(2)数字电视制作与播出技术研究与应用、(3)数字电视图像质量评价研究与应用、(4)数字电视测量和监测技术研究与应用、(5)视音频检索和多媒体资源管理技术研究与应用、(6)数字电影和高清电视版权保护研究与应用、(8)数字视频网络技术研究与应用、(9)交互电视研究与应用、(10)立体电视技术研究。 本方向培养的学生应具有扎实的学科基础和专业基础知识,掌握数字电视广播和数字电视压缩编码等相关专业的基本理论与方法,具有软、硬件分析和设计能力,较强的创新与实践能力,能独立分析和解决实际问题,可在广播电视、多媒体通信、网络多媒体、移动多媒体、IPTV、信息产业以及其他国民经济部门从事系统设计、开发、研究、教学、管理等工作。

韩宝强声学研究教授

韩宝强,男,1956年生。1977年进入天津音乐学院作曲系学习作曲。1982年师从缪天瑞攻读民族音乐学律学方向硕士学位。1986年先后在中国艺术研究院、南京大学信息物理系、德国埃森大学音乐系攻读博士学位。1995年和2000年分别在德国Osnabrueck大学音乐系和美国斯坦福大学计算机音乐与声学研究中心(CCRMA)作高级访问学者。目前在中国音乐学院音乐科技系就职,任教授,博士生导师。研究方向为律学和音乐声学。 此次报告对以下问题进行全面的剖析: 乐器声学系统与空间音乐声学 一、乐器声学结构系统 任何乐器都可以从不同角度进行结构的分解。例如可以从演奏、制作工艺、零部件加工、乃至乐器修理等角度进行结构分解,都可以对乐器进行不同结构的分解。 以小提琴为例,演奏者将其分为琴身、琴马、琴弦和琴弓四个结构系统,因为演奏者经常要对这四个部件进行调整。而到了制琴者那里,则会从制作程序的角度对提琴结构进行分解,一般会分为背板、面板、侧板、琴头、指板等。其它部件,如琴弓、琴马、琴弦、弦钮、系弦板等,通常可以通过采购获得,故很少将其列入结构系统。 乐器声学系统(acoustic system of musical instruments),是从声学角度对乐器各部件加以区别的分类体系。 例如,单从演奏角度看,一把二胡可以分为琴弓、琴杆和琴筒三个部分,但从声学结构上却要分为5个系统: 1.振动系统 产生振动的物体,如弦乐器的琴弦、吹管乐器的簧片、空气漩流(就边棱音乐器而言),等等。 2.激励系统 能够激发振动的物体,如弦乐器的琴弓、扬琴的琴键,吹奏者和歌唱者胸腔中的气流等。 3.传导系统 将振动系统产生的振动传导至共鸣系统的装置,如京胡、二胡的琴马,筝、瑟的弦柱,琵琶、阮、古琴的弦枕、系弦板等。 4.共鸣系统 能够迅速扩散振动体振动能量的物体,如弦乐器的琴箱、歌唱者的胸腔、口腔等。有些乐器的共鸣体同时还具耦合作用,即对发声体的音高起调节作用,如一些吹管乐器的竹管、木琴和钟琴下面的共鸣管等。 5.调控系统 对乐器的音响和演奏性能加以控制的装置,如扬琴和古筝的调弦装置、吹管乐器的按孔和按键等。 以二胡为例: 琴弦是振动系统。琴弓是激励系统。琴马是传导系统。琴筒是共鸣系统。 琴杆、弦轴、千斤等属于调控系统 在乐器声学系统中,振动系统和激励系统是所有乐器发声的必备条件,即使再简单的乐器也不可缺少这两个结构,否则根本无法发声。此外,其它三个声学系统在一些乐器中并不同时存在,譬如许多打击乐器就没有共鸣系统和传导系统,例如:锣、镲、编钟、编磬等。 大部分管乐器没有传导系统。 有些乐器,单从外形上看并没有调控装置,譬如锣、大鼓等,但是演奏者可以通过演奏技巧来调控声音的强弱、长短、甚至可以调整高低。当然,这需要演奏者具备一定的技巧才能做

心理声学原理

心理声学原理 时间:2016年10月22日星期六来源:百度 心理声学模型是对人听感的统计性质的数学表述模型,它解释人各种听感的生理原理。心理声学模型可以在主观听感劣化不多的条件下,大大降低数字音频信号传输的带宽。它主要基于人的听觉器官的生理结构和感知模式,通过对数字音频信号的相应处理,去除不可闻的信号成分及引入不可闻的畸变,达到普通熵编码无法达到的压缩比率。 由于人耳听觉系统复杂,人类迄今为止对它的机理和听觉特性的某些问题总是还不能从生理解剖角度完全解释清楚。所以,对人耳听觉特性的研究仅限于在心理声学和语言声学内进行。人耳对不同强度和不同频率声音的一定听觉范围称为声域。在人耳的声域范围内,声音听觉心理的主观感受主要有响度、音高、音色等特征和掩蔽效应、高频定位等特性。其中响度、音度、音色可以在主观上用来描述具有振幅、频率和相位三个物理是的任何复杂的声音,故又称为声音“三要素”;而对于多种音源场合的人的耳掩蔽效应等特性尤为重要,它是心理声学的基础。 研究声音和它引起的听觉之间关系的一门边缘学科。它既是声学的一个分支,也是心理物理学的一个分支。心理声学本可包括言语和音乐这样一些复合声和它们的知觉。这些可见语言声学、音乐声学等条,本条只限于较基础和简单的心理声学现象,即①刚刚能引起听觉的声音──听阈;②声音的强度、频率、频谱和时长这些参量所决定的声音的主观属性──响度、音调、音色和音长;③某些和复合声音有关的特殊的心理声学效应──余音、掩蔽、非线性、双耳效应。 分类 听阈分强度阈和差阈。声音不够一定强度不能引起听觉。在多次作用中能有50%的次数引起听觉的最小声压级称为强度阈(也称听阈)。听阈有个体差异,因而所谓正常听阈只能是一些听力正常的年轻人的听阈的统计平均值。听阈随频率而变化。500~4000Hz之间阈值最低,在它们之上和之下的高频声和低频声的

手机声学原理介绍

Learning report on principles of acoustics of the cellphone ZHOU Yang-fang Once in the Sunlite Electronic (Shen Zhen ) co.,ltd, Shen Zhen 518000, China Abstract: These days , through the chect of kinds of material ,I have a general idea of the mobile phone acoustics and make a relavant arrangement ,making mainly a summary report in here . The sound system of the phone have the three basic function devices that include the speaker ,the receiver ,and the microphone .The speaker is to realize the hand-free cellphone conversation and the speech broadcasting ,the receiver’s purpose is that the voice messenger is received by the phone ,and the microphone’s function is that the acoustic information is passed from people to phone .They realize the fundamental function of the phone and perfectly deduce the phone’s roles in the daily life so that we cannot do without it . Keywords: Acoustics of the cellphone ,acoustics devices ,sound wave , the working principle ,short circuiting effect Content: 1.The basic knowledge of the electroacoustics 1.1Sound propagation mode 1.2Speed of sound 1.3Frequency domain 1.4Sound pressure level 1.5V oice three elements 2.Acoustics devices of the phone’s structure 3.Working principle of SPK.&RCV. 3.1The basic principle of application 3.2Workong principle 3.3Difference of SPK.&RCV. 3.4The basic parameters of SPK.&RCV. 4.The acoustic short circuiting effect

现代声学理论课程期末报告

同济大学 现代声学理论期末报告 报告名称有限元在结构—声场 耦合分析中的应用学号1410578 研究生郭磊 专业、年级声学2014级 所在院、系物理科学与工程学院 导师葛剑敏 2015年1 月4日

有限元在结构—声场耦合分析中的应用 摘要:基于有限元模型分析了结构—声场耦合系统的左、右特征向量关系式,证明声场一结构耦合系统左特征向量可用右特征向量的分量来表示,基于此分析推导出声场一结构耦合系统的特征值敏度表达式。以一矩形声场一结构耦合系统为实例进行计算,基于Nastran对声场一结构耦合系统进行模态分析,用其内部的DAMP语言编程计算了特征值敏度。结果验证了该方法的有效性及正确性。 关键字:特征向量,特征值,敏度,有限元,结构—声场耦合系统 1 引言 近年来,封闭空腔的减振降噪成为一个热门课题。封闭空腔动力学特性之一是声场与结构之间的动力学耦合,即结构和声场相互作用的动力学系统,此类系统是车辆、船舶及航空工程中经常遇到的动力学系统,准确的分析及预测其动力学性能是相关工程设计中的重要内容之一。尤其结构—声场耦合系统的模态及其敏度是对其进行响应分析及优化的基础。 声场一结构耦合系统的模态分析是在有限元分析方法的基础上发展起来的,1966年Gladwell和Zimmermann建立了关于结构—声场的能量公式,把声音视 为连续介质中的弹性体,用余能定理导出板的振动与声场、薄膜振动与声场的理论表达式,从此有限元法应用于求解结构—声场耦合得到推广。 声场一结构耦合系统系数矩阵具有不对称性,系数矩阵的不对称使其模态问题成为复模态问题,复模态即其特征值及特征向量均可能为复数,若为复数则为成对出现的共扼复数。对于一般性非耦合结构的特征值及特征向量的灵敏度分析,人们已经作了大量的研究。一般可分为两种方法:直接法和模态法”。直接法是一种精确方法,适用于计算少数模态的一阶导数。当需要计算多个模态的导数时,一般用模态法。这些方法一般不能直接适应于结构—声场耦合系统这类复模态问题。文献基于解耦的在真空中的结构模态基和刚性边界的声场模态基,以结构和声场在边 界上的速度为耦合项,构造了结构—声场耦合模型,将不对称的系数矩阵转化为对称矩阵,以此为基础计算了耦合系统特征值敏度。但该文献结构—声场耦合有限元模型中的未知变量已不是一般意义上的结构位移和声场内的声压,已失去了结构—声场耦合系统原有的物理意义。本文基于结构—声场耦合系统的有限元方程,推导论证了其左特征向量可用右特征向量来表示,基于此推导了计算结构—声场耦合系统特征值敏度的新方法,其特征值敏度表达式简单清晰,物理意义明确,在只要求特征值敏度时可不用求解特征向量敏度,节省了计算时间。以一矩形结构—声场耦合统为计算实例,用Nastran计算其特征值及右特征向量,

第三章 海洋的声学特性

第三章 海洋的声学特性 本章从声学角度讨论海洋、海洋的不均匀性和多变性,弄清声信号传播的环境,有助于海中目标探测、声信号识别、通讯和环境监测等问题的解决。 3.1 海水中的声速 声速:海洋中重要的声学参数,也是海洋中声传播的最基本物理参数。 海洋中声波为弹性纵波,声速为: s c ρβ1 = 式中,密度ρ和绝热压缩系数s β都是温度T 、盐度S 和静压力P 的函数,因此,声速也是T 、S 、P 的函数。 1、声速经验公式 海洋中的声速c (m/s )随温度T (℃)、盐度S (‰)、压力P (kg/cm 2)的增加而增加。 经验公式是许多海上测量实验的总结得到的,常用的经验公式为: 较为准确的经验公式: STP P S T c c c c c ????++++=22.1449 式中,4734221007.510822.2104585.56233.4T T T T c T ---?-?+?-=? ()()2235108.735391.1-?--=-S S c S ? 4123925110503.310451.3100279.11060518.1P P P P c P ----?-?+?+?=? ()[ ][][]T P T T P T T T P PT P P T S c STP 31021012382546214310745.110286.910391.210644.6103302.110796.21009.21096.11061.210197.135----------?-?+?-+?-?+?-+?-?-?+?--=? 上式适用范围:-3℃

理论声学答案

习题1.1 衰减因子511010/0.0010.5220.1m R s m γ--?===? 衰减模量21 2m m s R τγ === 力学品质因素 053 1010*10/10 m m m m Q R R ω--= === 共振频率 0 1.58 1.592Hz Hz ωπ'====≈ 习题1.3 02 f π= 增加质量 m , ( )'002f f π-= 可得 0'00f f f =-, ()() 2 '000'' 00 2m f f m f f f -= -, ()() 2 22'000''0 00 42mf f f K f f f π-= - 习题1.4有一动圈传声器,当作质点系统处理,测得振膜固有频率600Hz ,质量0.8克,求弹性系数和力顺。 ()2 0211370K f m π = = (牛顿/米),力顺51 8.810C K -= =?(米/牛顿,秒2/千克) 习题1.5简单振子的固有频率是100Hz ,在频率为300Hz 的外力作用下振动,求振动的质量抗和弹性抗之比。 2 2 2 01m m m mC C ωωωωω==?? ??? 习题1.6 标准重物质量1m =,0.1l =,弹簧弹性系数10mg K g l = =,g 地球重力加速度 石块质量() 1 2 2 198 2.52K m ωπ= = =kg 弹簧伸长150l = mm , 111m g Kl =,()22 211111110.052 1.97Kl Kl g l m K ωωπ=====m/s 2 习题1.7质点系统受幅度调制的振荡力 t t h f ωωsin )sin 1(1+=,ωω<<1,求振动。 ()()11sin cos cos 2 h f t t t ωωωωω= + --+???? ()()()()()()()()121122 111132 11exp()sin exp 2cos 2exp 2cos 2i i t t x m i R K h i t h t x m i R K h i t h t x m i R K ωωωωωωωωωωωωωωωωωωωω- -> = --+--????- -> =----+--+????-+ -> =-+-++

相关主题
文本预览
相关文档 最新文档