当前位置:文档之家› 二次函数大题分类题型

二次函数大题分类题型

二次函数大题分类题型
二次函数大题分类题型

二次函数中求线段距离之和最小,两种方法:第一种我们平常讲的几种题型最短路径的题型第二种运用点坐标将线段长度之和表示出来,进而转化成二次函数的最值问题

以及二次函数中的最值问题优先考虑的方法就是将所求的用未知数表示出来,最大最小值转化为求二次函数的最大最小值

“造桥选址”

直线∥,在、,上分别求点M、N,使MN⊥,且AM+MN+BN的值最小.

将点A向下平移MN的长度单位得A',连A'B,交于点N,过N作NM⊥于M.

直线上求两点M、N(M在左),使,并使AM+MN+NB的值最小.

在直线l上求一点P,使的值最大.

如图,抛物线y=x2-3x+5

4

与x轴相交于A、B两点,与y轴相交于点C,点D是

直线BC下方抛物线上一点,过点D作y轴的平行线,与直线BC相交于点E (1)求直线BC的解析式;

(2)当线段DE的长度最大时,求点D的坐标

正方形OABC 的边长为4,对角线相交于点P ,抛物线L 经过O 、P 、A 三点,点E 是正方形内的抛物线上的动点. (1)建立适当的平面直角坐标系, ①直接写出O 、P 、A 三点坐标; ②求抛物线L 的解析式;

(2)求△OAE 与△OCE 面积之和的最大值.

若两条抛物线的顶点相同,则称它们为“友好抛物线”,抛物线C 1:y 1=-2x 2+4x+2与C 2:y 2=-x 2+mx+n 为“友好抛物线”. (1)求抛物线C 2的解析式.

(2)点A 是抛物线C 2上在第一象限的动点,过A 作AQ ⊥x 轴,Q 为垂足,求AQ+OQ 的最大值.

(3)设抛物线C 2的顶点为C ,点B 的坐标为(-1,4),问在C 2的对称轴上是否存在点M ,使线段MB 绕点M 逆时针旋转90°得到线段MB′,且点B′恰好落在抛物线C 2上?若存在求出点M 的坐标,不存在说明理由.

已知如图,在平面直角坐标系xOy中,点A、B、C分别为坐标轴上的三个点,且OA=1,OB=3,OC=4,

(1)求经过A、B、C三点的抛物线的解析式;

(2)在平面直角坐标系xOy中是否存在一点P,使得以点A、B、C、P为顶点的四边形为菱形?若存在,请求出点P的坐标;若不存在,请说明理由;

(3)若点M为该抛物线上一动点,在(2)的条件下,请求出当|PM-AM|的最大值时点M的坐标,并直接写出|PM-AM|的最大值.

如图,直线l:y=-3x+3与x轴、y轴分别相交于A、B两点,抛物线y=ax2-2ax+a+4(a<0)经过点B.

(1)求该抛物线的函数表达式;

(2)已知点M是抛物线上的一个动点,并且点M在第一象限内,连接AM、BM,设点M的横坐标为m,△ABM的面积为S,求S与m的函数表达式,并求出S的最大值;

(3)在(2)的条件下,当S取得最大值时,动点M相应的位置记为点M′.

①写出点M′的坐标;

②将直线l绕点A按顺时针方向旋转得到直线l′,当直线l′与直线AM′重合时停止旋转,在旋转过程中,直线l′与线段BM′交于点C,设点B、M′到直线l′的距

离分别为d

1、d2,当d1+d2最大时,求直线l′旋转的角度(即∠BAC的度数).

存在等腰三角形和直角三角形的问题,首先将对应的三个点的坐标表示出来,表示出来必须是只有一个未知数,再根据题目的需要分类讨论那条边等于那条边,或者那条边平方等于哪两条边的平方和

如图,抛物线y=x2+bx+c与x轴交于点A和点B(3,0),与y轴交于点C(0,3).

(1)求抛物线的解析式;

(2)若点M是抛物线在x轴下方上的动点,过点M作MN∥y轴交直线BC于点N,求线段MN的最大值;

(3)在(2)的条件下,当MN取得最大值时,在抛物线的对称轴l上是否存在点P,使△PBN是等腰三角形?若存在,请直接写出所有点P的坐标;若不存在,请说明理由.

如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=-1,且抛物线经过A(1,0),C(0,3)两点,与x轴交于点B.

(1)若直线y=mx+n经过B、C两点,求直线BC和抛物线的解析式;

(2)在抛物线的对称轴x=-1上找一点M,使点M到点A的距离与到点C的距离之和最小,求出点M的坐标;

(3)设点P为抛物线的对称轴x=-1上的一个动点,求使△BPC为直角三角形的点P的坐标.

二次函数中存在等腰直角三角形问题:构造全等三角形

如图1,对称轴为直线x=的抛物线经过B(2,0)、C(0,4)两点,抛物线

与x轴的另一交点为A

(1)求抛物线的解析式;

(2)若点P为第一象限内抛物线上的一点,设四边形COBP的面积为S,求S 的最大值;

(3)如图2,若M是线段BC上一动点,在x轴是否存在这样的点Q,使△MQC 为等腰三角形且△MQB为直角三角形?若存在,求出点Q的坐标;若不存在,请说明理由.

如图,抛物线y=ax2+bx过A(4,0),B(1,3)两点,点C、B关于抛物线的对称轴对称,过点B作直线BH⊥x轴,交x轴于点H.

(1)求抛物线的表达式;

(2)直接写出点C的坐标,并求出△ABC的面积;

(4)若点M在直线BH上运动,点N在x轴上运动,当以点C、M、N为顶点的三角形为等腰直角三角形时,请直接写出此时△CMN的面积.

如图,抛物线L:y=ax2+bx+c与x轴交于A、B(3,0)两点(A在B的左侧),与y轴交于点C(0,3),已知对称轴x=1.

(1)求抛物线L的解析式;

(2)将抛物线L向下平移h个单位长度,使平移后所得抛物线的顶点落在△OBC 内(包括△OBC的边界),求h的取值范围;

(3)设点P是抛物线L上任一点,点Q在直线l:x=-3上,△PBQ能否成为以点P为直角顶点的等腰直角三角形?若能,求出符合条件的点P的坐标;若不能,请说明理由.

如图,长方形OABC的OA边在x轴的正半轴上,OC在y轴的正半轴上,抛物线y=ax2+bx经过点B(1,4)和点E(3,0)两点.

(1)求抛物线的解析式;

(2)若点D在线段OC上,且BD⊥DE,BD=DE,求D点的坐标;

若两条抛物线的顶点相同,则称它们为“友好抛物线”,抛物线C 1:y 1=-2x 2+4x+2与C 2:y 2=-x 2+mx+n 为“友好抛物线”. (1)求抛物线C 2的解析式.

(2)点A 是抛物线C 2上在第一象限的动点,过A 作AQ ⊥x 轴,Q 为垂足,求AQ+OQ 的最大值.

(3)设抛物线C 2的顶点为C ,点B 的坐标为(-1,4),问在C 2的对称轴上是否存在点M ,使线段MB 绕点M 逆时针旋转90°得到线段MB′,且点B′恰好落在抛物线C 2上?若存在求出点M 的坐标,不存在说明理由.

二次函数与四边形问题:首先存在平行四边形问题,其一已知两个点,并已知第三个点的横坐标或者纵坐标,求第四个点的坐标,则运用平移的知识来解答。其二如果仅仅已知两个点的坐标,求第三个点或者第四个点的坐标,这时我们需要设第三个点(一般会告诉你这个点在哪条直线上)的坐标并把第四个点的坐标表示出来,再根据第一第二个点的距离等于第三第四个点的距离列方程,这里有两种情况,第三第四个点的距离是绝对值。存在矩形或者菱形注意分析其中特殊的角或者边的存在。

如图,在平面直角坐标系中,抛物线y=ax2+bx+c的顶点坐标为(2,9),与y轴交于点A(0,5),与x轴交于点E、B.

(1)求二次函数y=ax2+bx+c的表达式;

2)若点M在抛物线上,点N在其对称轴上,使得以A、E、N、M为顶点的四边形是平行四边形,且AE为其一边,求点M、N的坐标

点P是第一象限抛物线上的一点,连接PA、PB、PO,若△POA的面积是△POB

面积的倍.

①求点P的坐标;

(3)点M为直线AB上的动点,点N为抛物线上的动点,当以点O、B、M、N 为顶点的四边形是平行四边形时,请直接写出点M的坐标.

在平面直角坐标系中,平行四边形ABOC如图放置,点A、C的坐标分别是(0,4)、(-1,0),将此平行四边形绕点O顺时针旋转90°,得到平行四边形A′B′OC′.

(1)若抛物线经过点C、A、A′,求此抛物线的解析式;;

(3)在(1)的情况下,若P为抛物线上一动点,N为x轴上的一动点,点Q 坐标为(1,0),当P、N、B、Q构成平行四边形时,求点P的坐标,当这个平行四边形为矩形时,求点N的坐标.

如图,抛物线y=x2+bx+c与直线y=x-3交于A、B两点,其中点A在y轴上,点B坐标为(-4,-5),点P为y轴左侧的抛物线上一动点,过点P作PC⊥x 轴于点C,交AB于点D.

(1)求抛物线的解析式;

(2)以O,A,P,D为顶点的平行四边形是否存在?如存在,求点P的坐标;若不存在,说明理由.

(3)当点P运动到直线AB下方某一处时,过点P作PM⊥AB,垂足为M,连接PA使△PAM为等腰直角三角形,请直接写出此时点P的坐标.

如图,抛物线y=ax2+bx+c的图象经过点A(-2,0),点B(4,0),点D(2,4),与y轴交于点C,作直线BC,连接AC,CD.

(1)求抛物线的函数表达式;

(3)点M在y轴上且位于点C上方,点N在直线BC上,点P为第一象限内抛物线上一点,若以点C,M,N,P为顶点的四边形是菱形,求菱形的边长.

如图1(注:与图2完全相同),二次函数y=x2+bx+c的图象与x轴交于A(3,

0),B(-1,0)两点,与y轴交于点C.

(1)求该二次函数的解析式;

(2)设该抛物线的顶点为D,求△ACD的面积(请在图1中探索);

(3)若点P,Q同时从A点出发,都以每秒1个单位长度的速度分别沿AB,AC边运动,其中一点到达端点时,另一点也随之停止运动,当P,Q运动到t

秒时,△APQ沿PQ所在的直线翻折,点A恰好落在抛物线上E点处,请直接判定此时四边形APEQ的形状,并求出E点坐标(请在图2中探索).

二次函数与全等三角形的结合

二次函数压轴题题型归纳

一、二次函数常考点汇总 1、两点间的距离公式:()()22B A B A x x y y AB -+-= 2、中点坐标:线段AB 的中点C 的坐标为:??? ??++22 B A B A y y x x , 直线11b x k y +=(01≠k )与22b x k y +=(02≠k )的位置关系: (1)两直线平行?21k k =且21b b ≠ (2)两直线相交?21k k ≠ (3)两直线重合?21k k =且21b b = (4)两直线垂直?121-=k k 3、一元二次方程有整数根问题,解题步骤如下: ① 用?和参数的其他要求确定参数的取值范围; ② 解方程,求出方程的根;(两种形式:分式、二次根式) ③ 分析求解:若是分式,分母是分子的因数;若是二次根式,被开方式是完全平方式。 例:关于x 的一元二次方程()0122 2 =-m x m x ++有两个整数根,5<m 且m 为整数,求m 的值。 4、二次函数与x 轴的交点为整数点问题。(方法同上) 例:若抛物线()3132 +++=x m mx y 与x 轴交于两个不同的整数点,且m 为正整数,试确定 此抛物线的解析式。 5、方程总有固定根问题,可以通过解方程的方法求出该固定根。举例如下: 已知关于x 的方程2 3(1)230mx m x m --+-=(m 为实数),求证:无论m 为何值,方程总有一个固定的根。 解:当0=m 时,1=x ; 当0≠m 时,()032 ≥-=?m ,()m m x 213?±-= ,m x 3 21-=、12=x ; 综上所述:无论m 为何值,方程总有一个固定的根是1。 6、函数过固定点问题,举例如下: 已知抛物线22 -+-=m mx x y (m 是常数),求证:不论m 为何值,该抛物线总经过一个固定的点,并求出固定点的坐标。 解:把原解析式变形为关于m 的方程()x m x y -=+-122 ; ∴ ???=-=+-0 1 02 2x x y ,解得:???=-=1 1 x y ;∴ 抛物线总经过一个固定的点(1,-1)。 (题目要求等价于:关于m 的方程()x m x y -=+-122 不论m 为何值,方程恒成立) 小结.. :关于x 的方程b ax =有无数解????==0 b a

二次函数与几何综合压轴题题型归纳88728

学生: 科目: 数 学 教师: 刘美玲 一、二次函数和特殊多边形形状 二、二次函数和特殊多边形面积 三、函数动点引起的最值问题 四、常考点汇总 1、两点间的距离公式:()()22B A B A x x y y AB -+-= 2、中点坐标:线段AB 的中点C 的坐标为:?? ? ??++22B A B A y y x x , 直线11b x k y +=(01≠k )与22b x k y +=(02≠k )的位置关系: (1)两直线平行?21k k =且21b b ≠ (2)两直线相交?21k k ≠ (3)两直线重合?21k k =且21b b = (4)两直线垂直?121-=k k 3、一元二次方程有整数根问题,解题步骤如下: ① 用?和参数的其他要求确定参数的取值范围; ② 解方程,求出方程的根;(两种形式:分式、二次根式) ③ 分析求解:若是分式,分母是分子的因数;若是二次根式,被开方式是完全平方式。 例:关于x 的一元二次方程()0122 2 =-m x m x ++有两个整数根,5<m 且m 为整数,求m 的值。 4、二次函数与x 轴的交点为整数点问题。(方法同上) 例:若抛物线()3132 +++=x m mx y 与x 轴交于两个不同的整数点,且m 为正整数,试确定此 抛物线的解析式。 5、方程总有固定根问题,可以通过解方程的方法求出该固定根。举例如下:

已知关于x 的方程2 3(1)230mx m x m --+-=(m 为实数),求证:无论m 为何值,方程总有一个固定的根。 解:当0=m 时,1=x ; 当0≠m 时,()032 ≥-=?m ,()m m x 213?±-= ,m x 3 21-=、12=x ; 综上所述:无论m 为何值,方程总有一个固定的根是1。 6、函数过固定点问题,举例如下: 已知抛物线22 -+-=m mx x y (m 是常数),求证:不论m 为何值,该抛物线总经过一个固定的点,并求出固定点的坐标。 解:把原解析式变形为关于m 的方程()x m x y -=+-122 ; ∴ ???=-=+-0 1 02 2x x y ,解得:???=-=1 1 x y ; ∴ 抛物线总经过一个固定的点(1,-1)。 (题目要求等价于:关于m 的方程()x m x y -=+-122 不论m 为何值,方程恒成立) 小结.. :关于x 的方程b ax =有无数解? ?? ?==0 b a 7、路径最值问题(待定的点所在的直线就是对称轴) (1)如图,直线1l 、2l ,点A 在2l 上,分别在1l 、2l 上确定两点M 、N ,使得MN AM +之和最小。 (2)如图,直线1l 、2l 相交,两个固定点A 、B ,分别在1l 、2l 上确定两点M 、N ,使得 AN MN BM ++之和最小。 (3)如图,B A 、是直线l 同旁的两个定点,线段a ,在直线l 上确定两点E 、F (E 在F 的左侧 ),使得四边形AEFB 的周长最小。 8、在平面直角坐标系中求面积的方法:直接用公式、割补法 三角形的面积求解常用方法:如右图,S △PAB =1/2 ·PM ·△x=1/2 ·AN ·△y 9、函数的交点问题:二次函数(c bx ax y ++=2 )与一次函数(h kx y +=) (1)解方程组???h kx y c bx ax y +=++= 2可求出两个图象交点的坐标。 (2)解方程组???h kx y c bx ax y +=++= 2,即()02 =-+-+h c x k b ax ,通过?可判断两个图象的交点 的个数 有两个交点 ? 0>?

中考复习:二次函数题型分类总结

【二次函数的定义】 (考点:二次函数的二次项系数不为0,且二次函数的表达式必须为整式) 1、下列函数中,是二次函数的是 . ①y=x2-4x+1;②y=2x2;③y=2x2+4x;④y=-3x; ⑤y=-2x-1;⑥y=mx2+nx+p;⑦y =(4,x) ;⑧y=-5x。 2、在一定条件下,若物体运动的路程s(米)与时间t(秒)的关系式为s=5t2+2t,则t=4 秒时,该物体所经过的路程为。 3、若函数y=(m2+2m-7)x2+4x+5是关于x的二次函数,则m的取值范围为。 4、若函数y=(m-2)x m -2+5x+1是关于x的二次函数,则m的值为。 6、已知函数y=(m-1)x m2 +1+5x-3是二次函数,求m的值。 【二次函数的对称轴、顶点、最值】 (技法:如果解析式为顶点式y=a(x-h)2+k,则最值为k; 如果解析式为一般式y=ax2+bx+c,则最值为4ac-b2 4a 1.抛物线y=2x2+4x+m2-m经过坐标原点,则m的值为。 2.抛物y=x2+bx+c线的顶点坐标为(1,3),则b=,c= . 3.抛物线y=x2+3x的顶点在( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 4.若抛物线y=ax2-6x经过点(2,0),则抛物线顶点到坐标原点的距离为( ) B. 5.若直线y=ax+b不经过二、四象限,则抛物线y=ax2+bx+c( ) A.开口向上,对称轴是y轴 B.开口向下,对称轴是y轴 C.开口向下,对称轴平行于y轴 D.开口向上,对称轴平行于y轴 6.已知抛物线y=x2+(m-1)x-1 4 的顶点的横坐标是2,则m的值是_ . 7.抛物线y=x2+2x-3的对称轴是。 8.若二次函数y=3x2+mx-3的对称轴是直线x=1,则m=。 9.当n=______,m=______时,函数y=(m+n)x n+(m-n)x的图象是抛物线,且其顶点在原点,此抛物线的开口________.

中考数学二次函数压轴题题型归纳

中考二次函数综合压轴题型归类 一、常考点汇总 1、两点间的距离公式:()()22B A B A x x y y AB -+-= 2、中点坐标:线段AB 的中点C 的坐标为:?? ? ??++22B A B A y y x x , 直线11b x k y +=(01≠k )与22b x k y +=(02≠k )的位置关系: (1)两直线平行?21k k =且21b b ≠ (2)两直线相交?21k k ≠ (3)两直线重合?21k k =且21b b = (4)两直线垂直?121-=k k 3、一元二次方程有整数根问题,解题步骤如下: ① 用?和参数的其他要求确定参数的取值范围; ② 解方程,求出方程的根;(两种形式:分式、二次根式) ③ 分析求解:若是分式,分母是分子的因数;若是二次根式,被开方式是完全平方式。 例:关于x 的一元二次方程()0122 2 =-m x m x ++有两个整数根,5<m 且m 为整数,求m 的值。 4、二次函数与x 轴的交点为整数点问题。(方法同上) 例:若抛物线()3132 +++=x m mx y 与x 轴交于两个不同的整数点,且m 为正整数,试确定 此抛物线的解析式。 5、方程总有固定根问题,可以通过解方程的方法求出该固定根。举例如下: 已知关于x 的方程2 3(1)230mx m x m --+-=(m 为实数),求证:无论m 为何值,方程总有一个固定的根。 解:当0=m 时,1=x ; 当0≠m 时,()032 ≥-=?m ,()m m x 213?±-= ,m x 3 21-=、12=x ; 综上所述:无论m 为何值,方程总有一个固定的根是1。 6、函数过固定点问题,举例如下: 已知抛物线22 -+-=m mx x y (m 是常数),求证:不论m 为何值,该抛物线总经过一个固定的点,并求出固定点的坐标。 解:把原解析式变形为关于m 的方程()x m x y -=+-122 ;

二次函数各种题型汇总

二次函数各种题型汇总一、利用函数的对称性解题 (一)用对称比较大小 例1、已知二次函数y=x2-3x-4,若x 2-3/2>3/2-x 1 >0,比较y 1 与y 2 的大小 解:抛物线的对称轴为x=3/2,且3/2-x 1>0,x 2 -3/2>0,所以x 1 在对称轴的左侧,x 2 在对称 轴的右侧, 由已知条件x 2-3/2>3/2-x 1 >0,得:x2到对称轴的距离大于x 1 到对称轴的距离,所以y 2 > y 1 (二)用对称求解析式 例1、已知抛物线y=ax2+bx+c的顶点坐标为(-1,4),与x轴两交点间的距离为6,求此抛物线的解析式。 解:因为顶点坐标为(-1,4),所以对称轴为x=-1,又因为抛物线与x轴两交点的距离为6,所以两交点的横坐标分别为: x 1=-1-3=-4,x 2 =-1+3=2 则两交点的坐标为(-4,0)、(2,0); 设抛物线的解析式为顶点式:ya(x+1)+4,把(2,0)代入得a=-4/9。 所以抛物线的解析式为y=-4/9(x+1)2+4 (三)用对称性解题 例1:关于x的方程x2+px+1=0(p>0)的两根之差为1,则p等于() A. 2 B. 4 C. 3 D. 5 解:设方程x2+px+1=0(p>0)的两根为x1、x2,则抛物线y=x2+px+1与x轴两交点的坐标为(x1,0),(x2,0)。因为抛物线的对称轴为x=-p/2,所以x1=-p/2-1/2,x2=-p/2+1/2,因为x1x2=1。所以(-p/2-1/2)(-p/2+1/2=1,p2=5 因为p>0,所以p=5例2、如图,已知抛物线y=x2 +bx+c的对称轴为x=2,点A,B均在抛物线上,且AB与x轴平行,其中点A的坐标为(0,3),则点B的坐标为() A.(2,3) B.(3,2) C.(3,3) D.(4,3)

九年级二次函数题型总结

. : .: 增大而减小随在对称轴右侧,增大而增大;随在对称轴左侧,开口向下增大而增大随在对称轴右侧,增大而减小;随在对称轴左侧,开口向上x y x y x y x y 一、二次函数的定义 1.下列函数中属于一次函数的是( ),属于反比例函数的是( ),属于二次函数的是( ) A .y =x(x +1) B .xy =1 C .y =2x 2 -2(x +1) 2 D .132 +=x y 2.当m 时,函数y =(m -2)x 2 +4x -5(m 是常数)是二次函数. 3.若1 222 )3(---=m m x m m y 是二次函数,则m = . 4.若函数y =3x 2 的图象与直线y=kx +3的交点为(2,b),则k= ,b = . 5.已知二次函数y =―4x 2-2mx+m 2与反比例函数24 m y x +=的图象在第二象限内的一个交点的横坐标是―2,则m 的值是 . 二、二次函数的图象与性质 ) (44)()(22),() 44,2)(2 2 2 2 y x a b a c y k y h x a b x h x a b x k h a b a c a b a a k h x a y c bx ax y 代入求或将值小最大值小最大时,最值:当时, 最值:当对称轴:对称轴:顶点顶点(开口方向开口方向公式-===-==- =--↓↓+-=→----++= 1.对于抛物线y =ax 2,下列说法中正确的是( ) A .a 越大,抛物线开口越大 B .a 越小,抛物线开口越大 C .|a |越大,抛物线开口越大 D .|a |越小,抛物线开口越大 2.下列说法中错误的是( ) A .在函数y =-x 2中,当x =0时,y 有最大值0 B .在函数y =2x 2 中,当x >0时,y 随x 的增大而增大 C .抛物线y =2x 2,y =-x 2,22 1x y -=中,抛物线y =2x 2的开口最小,抛物线 y =-x 2的开口最大 D .不论a 是正数还是负数,抛物线y =ax 2的顶点都是坐标原点 3.二次函数 y=2(x -3)2+5的图象的开口方向、对称轴和顶点坐标分别为( ) A .开口向下,对称轴x=-3,顶点坐标为(3,5) B .开口向上,对称轴x =3,顶点坐标为(3,5) C .开口向上,对称轴x=-3,顶点坐标为(-3,5) D .开口向下,对称轴x=-3,顶点坐标为(-3,-5) 4.已知抛物线的解析式为y=(x -2)2+1,则抛物线的顶点坐标是 ( ) A .(-2,1) B .(2,1) C .(2,-1) D .(1,2) 5.已知二次函数y =x 2-4x +5的顶点坐标为( ) A .(-2,-1) B .(2,1) C .(2,-1) D .(-2,1) 6.抛物线y=x 2+2x-1的对称轴是 ,当x 时,y 随x 的增大而增大;当x 时,y 随x 的增大而减小. 7.抛物线c bx x y ++=23的顶点坐标为)0,3 2 (,则b= ,c= . 8.函数y =x 2―2x -l 的最小值是 ;函数y =-x 2+4x 的最大值是 . 9.已知抛物线9)2(2++-=x a x y 的顶点在坐标轴上,则a = . 配方

(完整word)自己总结很经典二次函数各种题型分类总结,推荐文档

二次函数题型分类总结 题型1、二次函数的定义 (考点:二次函数的二次项系数不为0,且二次函数的表达式必须为整式) 1、下列函数中,是二次函数的是 . ①y=x 2-4x+1; ②y=2x 2; ③y=2x 2 +4x ; ④y=-3x ; ⑤y=-2x -1; ⑥y=mx 2 +nx+p ; ⑦y =(4,x) ; ⑧y=-5x 。 2、在一定条件下,若物体运动的路程s (米)与时间t (秒)的关系式为s=5t 2 +2t ,则t =4秒时,该物体所经过的路程为 。 3、若函数y=(m 2+2m -7)x 2 +4x+5是关于x 的二次函数,则m 的取值范围为 。 4、若函数y=(m -2)x m -2 +5x+1是关于x 的二次函数,则m 的值为 。 5、已知函数y=(m -1)x 21 m +5x -3是二次函数,求m 的值。 题型2、二次函数的对称轴、顶点、最值 (技法:如果解析式为顶点式y=a(x -h)2 +k ,则最值为k ;如果解析式为一般式y=ax 2+bx+c 则最值为4ac-b 2 4a 1.抛物线y=2x 2+4x+m 2-m 经过坐标原点,则m 的值为 。 2.抛物y=x 2+bx+c 线的顶点坐标为(1,3),则b = ,c = . 3.抛物线y =x 2 +3x 的顶点在( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 4.若抛物线y =ax 2 -6x 经过点(2,0),则抛物线顶点到坐标原点的距离为( ) 5.若直线y =ax +b 不经过二、四象限,则抛物线y =ax 2 +bx +c( ) A.开口向上,对称轴是y 轴 B.开口向下,对称轴是y 轴 C.开口向下,对称轴平行于y 轴 D.开口向上,对称轴平行于y 轴 6.已知抛物线y =x 2 +(m -1)x -14 的顶点的横坐标是2,则m 的值是_ . 7.抛物线y=x 2+2x -3的对称轴是 。 8.若二次函数y=3x 2+mx -3的对称轴是直线x =1,则m = 。 9.当n =______,m =______时,函数y =(m +n)x n +(m -n)x 的图象是抛物线,且其顶点在原点,此抛物线的开口_______. 10.已知二次函数y=x 2 -2ax+2a+3,当a= 时,该函数y 的最小值为0. 11.已知二次函数y=mx 2+(m -1)x+m -1有最小值为0,则m = ______ 。 12.已知二次函数y=x 2-4x+m -3的最小值为3,则m = 。 题型3、函数y=ax 2+bx+c 的图象和性质 1.抛物线y=x 2 +4x+9的对称轴是 。 2.抛物线y=2x 2 -12x+25的开口方向是 ,顶点坐标是 。 3.试写出一个开口方向向上,对称轴为直线x =-2,且与y 轴的交点坐标为(0,3)的抛物线的解析式 。 4.通过配方,写出下列函数的开口方向、对称轴和顶点坐标: (1)y=12 x 2-2x+1 ; (2)y=-3x 2 +8x -2; (3)y=-14 x 2+x -4 5.把抛物线y=x 2+bx+c 的图象向右平移3个单位,在向下平移2个单位,所得图象的解析式是y=x 2 -3x+5,试求b 、c 的值。 6.把抛物线y=-2x 2 +4x+1沿坐标轴先向左平移2个单位,再向上平移3个单位,问所得的抛物线有没有最大值,若有,求出该最大值;若没有,说明理由。 7.某商场以每台2500元进口一批彩电。如每台售价定为2700元,可卖出400台,以每100元为一个价格单位,若将每台提高一个单位价格,则会少卖出50台,那么每台定价为多少元即可获得最大利润?最大利润是多少元? 题型4、函数y=a(x -h)2的图象与性质 1.填表:

高一数学二次函数题型复习总结

基本初等函数 1、常函数:C C y ,=为任意常数。图像:平行于x 轴直线。 2、一次函数:)0(≠+=a b ax y 。图像:直线。 3、二次函数:)0(2≠++=a c bx ax y 。图像:抛物线。 4、幂函数:,a x y =自变量在底数。图像:根据a 不同的取值,图像性质不同。 5、指数函数:,x a y =自变量在指数。图像:1>a 递增,10<a 递增,10<

题型一、求二次函数最值 1、无指定区间、对称轴固定 例1:(1)求6)(2+-=x x x f 的值域 (2)求a x x x f +-=2)(的值域 2、无指定区间、对称轴不固定 例2:(1) 求6)(2+-=ax x x f 的值域 (2)求)0(6)(2≠+-=a x ax x f 的值域 3、区间固定、对称轴固定 例3:(1)求[]1,1-6)(2在+-=x x x f 的值域 (2)求[]1,1-)0(6)(2在≠+-=a ax ax x f 的值域 4、区间固定、对阵轴动 例4:(1)求[]4,06)(2在+-=ax x x f 的最小值

二次函数题型分类复习总结(打印版)

二次函数考点分类复习 知识点一:二次函数的定义 考点:二次函数的二次项系数不为0,且二次函数的表达式必须为整式。 备注:当b=c=0时,二次函数y=ax2是最简单的二次函数. 1、下列函数中,是二次函数的是 . ①y=x 2 -4x+1; ②y=2x 2 ; ③y=2x 2 +4x ; ④y=-3x ; ⑤y=-2x -1; ⑥y=mx 2 +nx+p ; ⑦y =; ⑧y=-5x 。 2、在一定条件下,若物体运动的路程s (米)与时间t (秒)的关系式为s=5t 2 +2t ,则t =4秒时,该物体所经过的路程为 。 3、若函数y=(m 2+2m -7)x 2 +4x+5是关于x 的二次函数,则m 的取值范围为 。 课后练习: (1)下列函数中,二次函数的是( ) A .y=ax 2+bx+c B 。2 )1()2)(2(---+=x x x y C 。x x y 1 2+= D 。y=x(x —1) (2)如果函数1)3(2 32 ++-=+-mx x m y m m 是二次函数,那么m 的值为 知识点二:二次函数的对称轴、顶点、最值 1、二次函数 c bx ax y ++=2,当0>a 时?抛物线开口向上?顶点为其最低点;当0

二次函数知识点总结及相关典型题目(完整资料).doc

【最新整理,下载后即可编辑】 二次函数知识点总结及相关典型题目 第一部分 基础知识 1.定义:一般地,如果c b a c bx ax y ,,(2++=是常数,)0≠a ,那么y 叫做x 的二次函数. 2.二次函数2ax y =的性质 (1)抛物线2ax y =的顶点是坐标原点,对称轴是y 轴. (2)函数2ax y =的图像与a 的符号关系. ①当0>a 时?抛物线开口向上?顶点为其最低点; ②当0a 时,开口向上;当0

a 相等,抛物线的开口大小、形状相同. ②平行于y 轴(或重合)的直线记作h x =.特别地,y 轴记作直线0=x . 7.顶点决定抛物线的位置.几个不同的二次函数,如果二次项系数a 相同,那么抛物线的开口方向、开口大小完全相同,只是顶点的位置不同. 8.求抛物线的顶点、对称轴的方法 (1)公式法:a b ac a b x a c bx ax y 44222 2 -+ ??? ? ? +=++=,∴顶点是),(a b a c a b 4422 --, 对称轴是直线a b x 2- =. (2)配方法:运用配方的方法,将抛物线的解析式化为()k h x a y +-=2的 形式,得到顶点为(h ,k ),对称轴是直线h x =. (3)运用抛物线的对称性:由于抛物线是以对称轴为轴的轴对称图形, 所以对称轴的连线的垂直平分线是抛物线的对称轴,对称轴与抛物线的交点是顶点. 用配方法求得的顶点,再用公式法或对称性进行验证,才能做到 万无一失. 9.抛物线c bx ax y ++=2中,c b a ,,的作用 (1)a 决定开口方向及开口大小,这与2ax y =中的a 完全一样. (2)b 和a 共同决定抛物线对称轴的位置.由于抛物线c bx ax y ++=2的对称轴是直线 a b x 2- =,故:①0=b 时,对称轴为y 轴;②0>a b (即a 、b 同号)时,对称轴在y 轴左侧;③0

二次函数知识点总结——题型分类总结

授课教师学生姓名上课时间 学科数学年级九年级课时计划第次共次提交时间学管师教学主管 课题名称二次函数知识点总结——题型分类总结 教学目标: 1. 掌握二次函数表达式的三种形式,能灵活选用三种形式提高解题效率。 2. 掌握二次函数的图像与性质,结合解析式确定图像顶点、对称轴和开口方向; 熟练掌握其与一元二次方程和一元二次不等式的关系;能通过基本性质解决图像 的系数符号问题、共存问题、对称性问题、以及应用问题。 教学重难点: 教学重点:1、二次函数的三种解析式形式 2、二次函数的图像与性质 教学难点:1、二次函数与其他函数共存问题 2、根据二次函数图像,确定解析式系数符号 3、根据二次函数图像的对称性、增减性解决相应的综合问题。 教学过程 【回顾与思考】 一、二次函数的定义 定义:一般地,如果 c b a c bx ax y, , ( 2+ + = 是常数, )0 ≠ a,那么y叫做x的二次函数. (考点:二次函数的二次项系数不为0,且二次函数的表达式必须为整式)精典例题: 例1:在下列关系式中,y是x的二次函数的关系式是()

A.2xy+x2=1 B.y2-ax+2=0 C.y+x2-2=0 D.x2-y2+4=0 考点:二次函数的定义. 分析:根据二次函数的定义对四个选项进行逐一分析即可,即一般地,形如y=ax2+bx+c(a、b、c是常数,a≠0)的函数,叫做二次函数. 解答:解:A、2xy+x2=1当x≠0时,可化为的形式的形式,不符合一元二次方程的一般形式,故本选项错误; B、y2-ax+2=0可化为y2=ax-2不符合一元二次方程的一般形式,故本选项错误; C、y+x2-2=0可化为y=x2+2,符合一元二次方程的一般形式,故本选项正确; D、x2-y2+4=0可化为y2=x2+4的形式,不符合一元二次方程的一般形式,故本选项错误. 故选C. 点评:本题考查的是二此函数的一般形式,即一般地,形如y=ax2+bx+c(a、b、c 是常数,a≠0)的函数,叫做二次函数.其中x、y是变量,a、b、c是常量,a是二次项系数,b是一次项系数,c是常数项.y=ax2+bx+c(a、b、c是常数,a≠0)也叫做二次函数的一般形式. 例2:函数y=(m+3)x m2+m-4,当m= 时,它的图象是抛物线. 考点:二次函数的定义. 分析:二次函数的图象是抛物线的,由二次函数的定义列出方程与不等式解答即可. 解答:解:∵它的图象是抛物线, ∴该函数是二次函数, ∴,解得m=2或-3,m≠-3,∴m=2. 点评:用到的知识点为:二次函数的图象是抛物线;二次函数中自变量的最高次数是2,二次项的系数不为0. 例3:若y=x m-2是二次函数,则m= 考点:二次函数的定义. 分析:根据二次函数的定义列出关于m的方程,求出m的值即可. 解答:解:∵函数y=x m-2是二次函数, ∴m-2=2, ∴m=4. 故答案为4. 点评:本题考查了二次函数的定义,比较简单,属于基础题. 学以致用:

二次函数题型分类总结

二次函数的定义 (考点:二次函数的二次项系数不为0,且二次函数的表达式必须为整式) 1、下列函数中,是二次函数的是 . ①y=x 2-4x+1; ②y=2x 2; ③y=2x 2+4x ; ④y=-3x ; ⑤y=-2x -1; ⑥y=mx 2+nx+p ; ⑦y =; ⑧y=-5x 。 2、在一定条件下,若物体运动的路程s (米)与时间t (秒)的关系式为s=5t 2+2t ,则t =4秒时,该物体所经过的路程为 。 3、若函数y=(m 2+2m -7)x 2+4x+5是关于x 的二次函数,则m 的取值范围为 。 4、若函数y=(m -2)x m -2 +5x+1是关于x 的二次函数,则m 的值为 。 6、已知函数y=(m -1)x m2 +1 +5x -3是二次函数,求m 的值。 二次函数的对称轴、顶点、最值 (技法:如果解析式为顶点式y=a(x -h)2 +k ,则最值为k ;如果解析式为一般式y=ax 2 +bx+c 则最值为4ac-b 2 4a 1.抛物线y=2x 2+4x+m 2-m 经过坐标原点,则m 的值为 。 2.抛物y=x 2+bx+c 线的顶点坐标为(1,3),则b = ,c = . 3.抛物线y =x 2 +3x 的顶点在( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 4.若抛物线y =ax 2-6x 经过点(2,0),则抛物线顶点到坐标原点的距离为( ) B. 5.若直线y =ax +b 不经过二、四象限,则抛物线y =ax 2 +bx +c( ) A.开口向上,对称轴是y 轴 B.开口向下,对称轴是y 轴 C.开口向下,对称轴平行于y 轴 D.开口向上,对称轴平行于y 轴 6.已知抛物线y =x 2+(m -1)x -1 4 的顶点的横坐标是2,则m 的值是_ . 7.抛物线y=x 2 +2x -3的对称轴是 。 8.若二次函数y=3x 2+mx -3的对称轴是直线x =1,则m = 。 9.当n =______,m =______时,函数y =(m +n)x n +(m -n)x 的图象是抛物线,且其顶点在原点,此抛物线的开口________. 10.已知二次函数y=x 2 -2ax+2a+3,当a= 时,该函数y 的最小值为0. 11.已知二次函数y=mx 2+(m -1)x+m -1有最小值为0,则m = ______ 。 12.已知二次函数y=x 2 -4x+m -3的最小值为3,则m = 。 函数y=ax 2 +bx+c 的图象和性质 1.抛物线y=x 2+4x+9的对称轴是 。 2.抛物线y=2x 2 -12x+25的开口方向是 ,顶点坐标是 。 3.试写出一个开口方向向上,对称轴为直线x =-2,且与y 轴的交点坐标为(0,3)的抛物线的解析式 。 4.通过配方,写出下列函数的开口方向、对称轴和顶点坐标: (1)y=12 x 2-2x+1 ; (2)y=-3x 2+8x -2; (3)y=-1 4 x 2+x -4 5.把抛物线y=x 2+bx+c 的图象向右平移3个单位,在向下平移2个单位,所得图象的解析式是y=x 2-3x+5,试求b 、c 的值。 6.把抛物线y=-2x 2+4x+1沿坐标轴先向左平移2个单位,再向上平移3个单位,问所得的抛物线有没有最大值,

二次函数应用题题型归纳

二次函数应用题 题型一 面积问题 1星光中学课外活动小组准备围建一个矩形生物苗圃园.其中一边靠墙,另外三边用长为30米的篱笆围成.已知墙长为18米(如图所示),设这个苗圃园垂直于墙的一边的长为x 米. (1)若平行于墙的一边的长为y 米,直接写出y 与x 之间的函数关系式及其自变量x 的取值范围; (2)垂直于墙的一边的长为多少米时,这个苗圃园的面积最大,并求出这个最大值; (3)当这个苗圃园的面积不小于88平方米时,试结合函数图像,直接写出x 的取值范围. 2某学校要在围墙旁建一个长方形的中药材种植实习苗圃,苗圃的一边靠围墙(墙的长度不限),另三边用木栏围成,建成的苗圃为如图所示的长方形ABCD .已知木栏总长为120米,设A B 边的长为x 米,长方形ABCD 的面积为S 平方米. (1)求S 与x 之间的函数关系式(不要求写出自变量x 的取值范围).当x 为何值时,S 取得最值(请指出是最大值还是最小值)?并求出这个最值; (2)学校计划将苗圃内药材种植区域设计为如图所示的两个相外切的等圆,其圆心分别为 1O 和2O ,且1O 到AB 、BC 、AD 的距离与2O 到CD 、BC 、AD 的距离都相等,并要求在苗 圃内药材种植区域外四周至少要留够0.5米宽的平直路面,以方便同学们参观学习.当(l)中S 取得最大值时,请问这个设计是否可行?若可行,求出圆的半径;若不可行,请说明理由. O 2 O 1 围墙 D A B C O 2 O 1 围墙D A B C E F G H I J

题型二 利润问题 1利民商店经销甲、乙两种商品. 现有如下信息: 请根据以上信息,解答下列问题: (1)甲、乙两种商品的进货单价各多少元? (2)该商店平均每天卖出甲商品500件和乙商品300件.经调查发现,甲、乙两种商品零售单价分别每降0.1元,这两种商品每天可各多销售100件.为了使每天获取更大的利润,商店决定把甲、乙两种商品的零售单价都下降m 元. 在不考虑其他因素的条件下,当m 定为多少时,才能使商店每天销售甲、乙两种商品获取的利润最大?每天的最大利润是多少? 2 ,2015年长江中下游地区发生了特大旱情,为抗旱保丰收,某地政府制定民农户投资购买抗旱设备的补贴办法,其中购买Ⅰ型、Ⅱ型抗旱设备所投资的金额与政府补贴的额度存在下表所示的函数对应关系. (1)分别求出1y 和2y 的函数解析式; (2)有一农户同时对Ⅰ型、Ⅱ型两种设备共投资10万元购买,请你设计一个能获得最大补贴金额的方案,并求出按此方案能获得的最大补贴金额. 型 号 金 额 Ⅰ型设备 Ⅱ型设备 投资金额x (万元) x 5 x 2 4 补贴金额y (万元) y 1=kx(k≠0) 2 y 2=ax 2+bx(a≠0) 2.4 3.2 信息1:甲、乙两种商品的进货单价之和是5元; 信息2:甲商品零售单价比进货单价多1元, 乙商品零售单价比进货单价的2倍少 1元. 信息3:按零售单价购买 甲商品3件和乙商品2件, 共付了19元.

初三数学二次函数公式及知识点总结

新人教版 初三数学 二次函数 知识点总结 一、二次函数概念: 1.二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。 2. 二次函数2y ax bx c =++的结构特征:⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2.⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项. 二、二次函数的基本形式 1. 二次函数基本形式:2y ax =的性质:a 的绝对值越大,抛物线的开口越小。 2. 2y ax c =+的性质:上加下减。 3. ()2 y a x h =-的性质:左加右减。 4. ()2 y a x h k =-+的性质: 三、二

次函数图象的平移 1. 平移步骤: 方法一:⑴ 将抛物线解析式转化成顶点式()2 y a x h k =-+,确定其顶点坐标()h k , ; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k , 处,具体平移方法如下: 【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位 2. 平移规律 在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”.概括成八个字“左加右减,上加下减”. 方法二: ⑴c bx ax y ++=2 沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2 变成 m c bx ax y +++=2(或m c bx ax y -++=2) ⑵c bx ax y ++=2 沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2 变成 c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2) 四、二次函数()2 y a x h k =-+与2y ax bx c =++的比较 从解析式上看,()2 y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即2 2424b ac b y a x a a -? ?=++ ??? ,其中2424b ac b h k a a -=-= ,. 五、二次函数2y ax bx c =++图象的画法 五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、 对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点()0c , 、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点). 画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点. 六、二次函数2y ax bx c =++的性质 1. 当0a >时,抛物线开口向上,对称轴为2b x a =-,顶点坐标为2424b ac b a a ??-- ??? ,. 当2b x a <- 时,y 随x 的增大而减小;当2b x a >-时,y 随x 的增大而增大;当2b x a =-时,y 有最小

二次函数与几何综合压轴题题型归纳

二次函数与几何综合压轴题题型归纳

————————————————————————————————作者:————————————————————————————————日期:

学生: 科目: 数 学 教师: 一、二次函数和特殊多边形形状 二、二次函数和特殊多边形面积 三、函数动点引起的最值问题 四、常考点汇总 4、二次函数与x 轴的交点为整数点问题。(方法同上) 例:若抛物线()3132 +++=x m mx y 与x 轴交于两个不同的整数点,且m 为正整数,试确定 此抛物线的解析式。 5、方程总有固定根问题,可以通过解方程的方法求出该固定根。举例如下: 已知关于x 的方程2 3(1)230mx m x m --+-=(m 为实数),求证:无论m 为何值,方程总有一个固定的根。 解:当0=m 时,1=x ; 当0≠m 时,()032 ≥-=?m ,()m m x 213?±-= ,m x 3 21-=、12=x ; 综上所述:无论m 为何值,方程总有一个固定的根是1。 6、函数过固定点问题,举例如下: 已知抛物线22 -+-=m mx x y (m 是常数),求证:不论m 为何值,该抛物线总经过一个固定的点,并求出固定点的坐标。 解:把原解析式变形为关于m 的方程()x m x y -=+-122 ; ∴ ???=-=+-0 1 02 2x x y ,解得:???=-=1 1 x y ; ∴ 抛物线总经过一个固定的点(1,-1)。 课 题 函数的综合压轴题型归类 教学目标 1、 要学会利用特殊图形的性质去分析二次函数与特殊图形的关系 2、 掌握特殊图形面积的各种求法 重点、难点 1、 利用图形的性质找点 2、 分解图形求面积 教学内容

二次函数题型分类总结

二次函数题型总结【回顾与思考】 一、二次函数的定义 定义:一般地,如果 c b a c bx ax y, , ( 2+ + =是常数,)0 ≠ a,那么y叫做x的二次函数. (考点:二次函数的二次项系数不为0,且二次函数的表达式必须为整式) 精典例题: 例1:在下列关系式中,y是x的二次函数的关系式是() A.2xy+x2=1 B.y2-ax+2=0 C.y+x2-2=0 D.x2-y2+4=0 考点:二次函数的定义. 分析:根据二次函数的定义对四个选项进行逐一分析即可,即一般地,形如y=ax2+bx+c(a、b、c是常数,a≠0)的函数,叫做二次函数. 解答:解:A、2xy+x2=1当x≠0时,可化为的形式的形式,不符合一元二次方程的一般形式,故本选项错误; B、y2-ax+2=0可化为y2=ax-2不符合一元二次方程的一般形式,故本选项错误; C、y+x2-2=0可化为y=x2+2,符合一元二次方程的一般形式,故本选项正确; D、x2-y2+4=0可化为y2=x2+4的形式,不符合一元二次方程的一般形式,故本选项错误. 故选C. 点评:本题考查的是二此函数的一般形式,即一般地,形如y=ax2+bx+c(a、b、c是常数,a≠0)的函数,叫做二次函数.其中x、y是变量,a、b、c是常量,a 是二次项系数,b是一次项系数,c是常数项.y=ax2+bx+c(a、b、c是常数,a≠0)也叫做二次函数的一般形式. 例2:函数y=(m+3)x m2+m-4,当m= 时,它的图象是抛物线. 考点:二次函数的定义. 分析:二次函数的图象是抛物线的,由二次函数的定义列出方程与不等式解答即可.

二次函数各种题型汇总

二次函数各种题型汇总 一、利用函数的对称性解题 (一)用对称比较大小 例1、已知二次函数y=x2-3x-4,若x2-3/2>3/2-x1>0,比较y1与y2的大小 解:抛物线的对称轴为x=3/2,且3/2-x1>0,x2-3/2>0,所以x1在对称轴的左侧,x2在对称 轴的右侧, 由已知条件x2-3/2>3/2-x1>0,得:x2到对称轴的距离大于x1到对称轴的距离,所以y2>y1 (二)用对称求解析式 例1、已知抛物线y=ax2+bx+c的顶点坐标为(-1,4),与x轴两交点间的距离为6,求此 抛物线的解析式。 解:因为顶点坐标为(-1,4),所以对称轴为x=-1,又因为抛物线与x轴两交点的距离 为6,所以两交点的横坐标分别为: x1=-1-3=-4,x2=-1+3=2 则两交点的坐标为(-4,0)、(2,0); 设抛物线的解析式为顶点式:ya(x+1)+4,把(2,0)代入得a=-4/9。 所以抛物线的解析式为y=-4/9(x+1)2+4 (三)用对称性解题 例1:关于x的方程x2+px+1=0(p>0)的两根之差为1,则p等于() A. 2 B. 4 C. 3 D. 5 解:设方程x2+px+1=0(p>0)的两根为x1、x2,则抛物线y=x2+px+1与x轴两交点的坐标 为(x1,0),(x2,0)。因为抛物线的对称轴为x=-p/2,所以x1=-p/2-1/2,x2=-p/2+1/2, 因为x1x2=1。所以(-p/2-1/2)(-p/2+1/2=1,p2=5 因为p>0,所以p=5 例2、如图,已知抛物线y=x2+bx+c的对称轴为x=2,点A,B均在抛物线上,且AB与x 轴平行,其中点A的坐标为(0,3),则点B的坐标为() A.(2,3)B.(3,2)C.(3,3)D.(4,3) 解:由点A,B均在抛物线上,且AB与x轴平行可知,点A,B关于x=2对称。 设点B的横坐标为x B ,∵点A的坐标为(0,3),所以,(0+x B)/2=2,x B=4 ∴B点坐标为(4,3) 例2 (2010,山东日照)如图2是二次函数 y=ax2+bx+c图象的一部分,其对称轴为直线x=1,若 其与x轴一交点为A(3,0),则由图象可知,不等式ax2+bx+c<0的解集是多少

相关主题
文本预览
相关文档 最新文档