当前位置:文档之家› (高起专)第十章二重积分习题解答-6页文档资料

(高起专)第十章二重积分习题解答-6页文档资料

(高起专)第十章二重积分习题解答-6页文档资料
(高起专)第十章二重积分习题解答-6页文档资料

(高起专)第十章二重积分习题解答

(一) 选择题(在每小题给出的四个选项中,只有一项符合题目要求,选出正确的选项) 1

.1

220

I dy x y dx =

?

,则交换积分次序后得 C 。

(A

)1

220

I dy x y dy =?

; (B

)1

220

3I x y dy =?;

(C )2

11220

3x I dx x y dx -=

??

; (D )2

1

1220

3x I dx x y dy +=

?

?

2.设积分域为{(,)|11,11}D x y x y =-≤≤-≤≤,则

x y

D

e

dxdy +=?? D. .

(A)

2)1(-e , (B)21)(2--e e , (C) 42)1(-e , (D) 21)(--e e ;

3. 设积分域D 由直线,2,2y x x y x =+==围成,则

(,)D f x y dxdy =?? C

(A)

1

20

(,)x

x

dx f x y dy -??

, (B) 21

(,)y

y

dy

f x y dx -??

, (C) 2

1

2(,)x

x

dx f x y dy -??, (D) 1

(,)x

dx f x y dy ??.;

4.2

2

x y D

I e dxdy --=

??,D :221x y +≤,化为极坐标形式是 D 。

(A )2

21

[]r I e

dr d π

θ-=

?

?;

(B )2

1

2

04[]r I e dr d π

θ-=?

?;

(C )2

1

20

2[]r I e rdr d π

θ-=?

?;

(D )2

21

[]r I e rdr d π

θ-=

??。

5. 2

D

I xy d σ=

??

, 其中22:1D x y +≤的第一象限部分,则 C 。 (A

)1

20

I dy xy dy =?

; (B )1

1

20

I dx xy dy =?

?;

(C

)1

2

I dx dy =?

(D )1

232

cos sin I d r dr π

θθθ=

?

?。

填空题

1.

交换二次积分次序,1

(,)x

I f x y dy =?= 。故

2

1

1

(,)(,)y

x

y I dx f x y dy dy f x y dx ==???

2.设积分域D 由11,22,x y -≤≤-≤≤围成,则

3

(2)D

x

y dxdy +=?? 0

3.设积分域为2

2

{(,)|14,}D x y x y y x =≤+≤≥,则积分

22()D

f x y dxdy +=??

在极坐标下的二次积分

为 。解

52

4

22

21

4

()()D

f x y d x d y d

r f r d r

ππ

θ+=??

??。 4.积分

224

()x y x y dxdy +≤+??

在极坐标下的二次积分为 。

2222

2

4

()(cos sin )x y x y dxdy d r dr πθθθ+≤+=

+??

??

5.二重积分

2

2

221

()x y x y d σ+≤+=??

__________ 。

2221

223

1

()2

x y x y dxdy d r dr ππ

θ+≤+=

=??

??

6.交换二次积分次序,2

20

0(,)x

I dx

f x y dy -=??

= 。

故 22

22

(,)(,).y

x

I d x f x y d y

d y

f x y d x

--=

=??

?? (三)解答题 1.计算积分

xy D

xe dxdy ??,其中D :01,10≤≤-≤≤y x 。 解 由被积函数可以看出先对y 积分较简单。

1

1

010

1

1

1

1

|(1)().

xy xy xy D

x

x xe dxdy xdx e dy e dx e dx x e e -----===-=+=??????

2.计算

dxdy xy D

??2,其中D 是由直线1,==x x y 和x 轴围成的平面区域。 解 由积分区域和被积函数可以看出可以任选积分次序。

解1 先对y 积分

111

2

2

3451000000

1111

()|333515x x D xy dxdy xdx y dy x y dx x dx x =====??????? 解2 先对x 积分

1

1

1

22221

00

1()2y D y xy dxdy y dy xdx y x dy ==????? 1

1

2235

0011111(1)()22325111121().23521515

y y dy y y =-=-=-==?

3.计算

dxdy y x D

??+)cos(,其中D 是由直线π===y x x y ,0,围成的平面区域。

解 由积分区域和被积函数可以看出可以任选积分次序,先对y 积分

000

cos()cos()sin()|

1

[sin()sin 2]cos()|cos 2| 2.

2x

D

x

x y dxdy dx x y dy x y dx

x x dx x x π

π

π

π

π

ππππ+=+=+=+-=-++=-??????

4.计算

dxdy y D

??,其中D 是由直线,x y =,0,1==x x 及曲线x

e y =围成的平面区域。

解 由积分区域可以看出,先对y 积分较简单。

1

11

2222

200

0111115|().22446412x

x e e x x D x e ydxdy dx ydy y dx e x dx e ===-=--=-?????? 5.计算

22()D

x y dxdy +??,其中D 是由抛物线,2

x y =直线0,1==y x 围成的平面区域。 解

2

2

1

1

1

2

2

2

2

2

34600

1126()(

)(

)()3

3105x x D

x y d x d y d x x

y d y x y y d x x x d x

+=

+=+=+=?????? 6.将二重积分

dxdy y x f D

),(??化为两种二次积分次序,其中D 是由直线1,1,x y x y +=-=

0x =围成的平面区域。

1

11

10

1

1

1

(,)(,)(,)(,)y y

x

D

x f x y dxdy dx f x y dxdy dy f x y dxdy dy f x y dxdy +----==+????

????

7.交换

I=

110

y

x

dx dy ?的积分次序,并求该积分的值。

解 由所给二次积分次序写出积分域D

的不等式表达式:01x y ≤≤≤≤ 由此可得积分域的图形:

故2

110

(,)(,)y

x

y I

dx f x y dy dy f x y dx ==???

8.设

()f x 在[0,1]

上连续,证明:2

11

00

()()()y

x dy f x dx e e f x dx =-??

证 积分

dx x f e

dy y y

)(0

1

??可以表达成dx x f dy e y

y

)(0

1

??,函数)(x f 为抽象表达式,不便先对x 积分,故可考

虑交换积分次序,2

2

2

1

1

1

1

1

10

()()()|()().y

y

y x x x f x dx f x dx e dy f x e dx e e f x dx ===-?????

9.计算二重积分dxdy x y I D

)22(--=??,其中D 是由抛物线,22

x y =和直线42=+y x 围成的平面区

域。

解 第一步:绘出区域图形,

第二步:解方程22(1)

24

(2)

y x

x y ?=?

+=?,求交点, 将(1)代入(2)得2

12202,1y y y y +-=?=-=,交点为12(8,2),(2,1)M M -。

第三步:确定积分限:由区域特点知,先对x ,后对y 积分较方便,

2:21,242D y y x y -≤≤≤≤-

2

2

421221

2

4222

123452

(2)(2)22(2)

41181(4432)2510

y

D y y

y x x

I y dxdy dy y dx

x x xy dy

y y y y y dy -----=--=--=--=--++

+=??????

10.计算二重积分22

(1)D

I x y dxdy =--??

,其中D 是由221x y +=和直线0,==y x y 在第一象限内围成的

平面区域。

解 区域是单位圆的一部分,被积函数有表达式22

y x

+,一般用极坐标计算二重积分,

1

4

4

42

2

2

2410000

0111(1)(1)()|24416D I x y dxdy d r rdr r r d d π

π

π

π

θθθ=--=-=-==??????

11

.计算二重积分D

I =

,其中D 是圆222x y y +=围成的平面区域。

解 区域是圆,被积函数有表达式22

y x

+,一般用极坐标计算二重积分,由直角坐标化为极坐标,变换公式为:

cos ,sin ,x r y r dxdy rdrd θθθ===,

因此圆2

2

2x y y +=在极坐标下的表达式为2

2sin 2sin r r r θθ=?=,

积分域:0,02sin D r θπθ≤≤≤≤, 于是

2sin 20

32003018

8sin (1cos )(1)cos 338132(1)(cos cos )339

D

I d r dr

d d π

θ

ππ

πθ

θθθθθθ====--=--=??

?? 12

.计算二重积分D

I =??,其中D 是圆环22224x y ππ≤+≤。

解 用极坐标

220

2222sin

sin 2(cos )2(cos |cos )

6.

D

d r rdr

rd r r r rdr ππ

ππ

π

π

πππ

θπ

ππ=

=-=-+=-??????

13.已知D 是圆域2

2

2

(0)x y a a +≤>,求a 的值,使2

2()

2

x

y D

I e dxdy π

-+=

=

??。

解 利用极坐标有:

2

22

2

2

()

20

12()

(1)

2

x

y D a

r r a a I e dxdy

d e rdr

e e πθππ-+---===-=-????

令 2

(1)2

a e

π

π--=

,解得

a =

14.求抛物面222z x y =--

与上半圆锥面z =所围成的立体的体积V 。

解 由二重积分的几何意义,

??D

d y x f σ),(的值等于以D 为底,以曲面),(y x f z =为顶的曲顶柱体的体积,所

以抛物面2

2

2z x y =--

与上半圆锥面z =所围成的立体的体积为

2222(2)(2D

D

D

V x y d x y d σσσ=---=--????

其中D 为抛物面22

2z x y =--

与圆锥面z =

所围成的立体在xoy 面上的投影。

为求区域D

,由22

2z x y z ?=--??=??消去z ,得221x y +=,所以区域22

:1D x y +≤是圆,被积函数有表达式

22y x +,用极坐标计算二重积分,得

21

342

2

2

2

1000

5

(2(2)2[]346D r r V x y d d r r rdr r π

σθππ=--=--=--=????.

第十章 重积分练习题(答案)

1.填空: (1)设D 是由x 轴,y 轴及直线1=+y x 所围成的三角形闭区域,则比较二重积分的值的大小,有2()D x y d σ+??≥3 ()D x y d σ+??. (2)设??++=D d y x I σ)94(22,其中(){} 4,22≤+=y x y x D ,则估计二重积分的值,有 36π≤≤I 100π. (3)交换积分次序:=??-2210),(y y dx y x f dy ????-+222021 010),(),(x x dy y x f dx dy y x f dx . (4)设D 是由直线y x 2=及抛物线2y x =所围成的闭区域,化二重积分σd y x f D ),(??为两个不同次序的二次积分是????x x y y dy y x f dx dx y x f dy 24022 0),(),(2,. (5)在极坐标系中,面积元素为d d ρρθ。 2.选择: (1)设平面区域(){}(){} 0,0,1,,1,22122≥≥≤+=≤+=y x y x y x D y x y x D ,则下列等式一定成立的是( C ). (A)????=1),(4),(D D dxdy y x f dxdy y x f . (B)????=1 4D D xydxdy xydxdy . (C)14D D =. (D)????=1 4D D xdxdy xdxdy . (2)设平面区域(){}(){}a y x a x y x D a y x a x a y x D ≤≤≤≤=≤≤≤≤-=,0,,,,1,则=+??D dxdy y x xy )sin cos (( A ). (A)??1sin cos 2 D ydxdy x . (B)??12D xydxdy . (C)??+1 )sin cos (4D dxdy y x xy . (D)0. (3)设?? ????+=+=+=σσσd y x I d y x I d y x I D 2223222221)cos(,)cos(cos ,,其中 (){} 1,22≤+=y x y x D ,则( A ). (A)123I I I >>. (B)321I I I >>.

高等数学科学出版社下册课后答案第十章曲线积分与曲面积分习题简答(可编辑修改word版)

1 2 1 2 2 5 L L ? ? ? 第十章曲线积分与曲面积分习题简答 习题 10—1 1 计算下列对弧长的曲线积分: (1) I = ? L xds ,其中 L 是圆 x 2 + y 2 = 1中 A (0,1) 到 B ( , - ) 之间的一段劣弧; 解: (1 + ) . (2) ? L (x + y +1)ds ,其中 L 是顶点为O (0, 0), A (1, 0) 及 B (0,1) 所成三角形的边界; 解: ?L (x - y + 1)ds = 3 + 2 . (3) ? x 2 + y 2 ds ,其中 L 为圆周 x 2 + y 2 = x ; 解: ? x 2 + y 2 ds = 2 . (4) x 2 yzds ,其中 L 为折线段 ABCD ,这里 A (0, 0, 0) , B (0, 0, 2), C (1, 0, 2), L D (1, 2, 3) ; 解: ? L x 2 yzds = 8 . 3 z B (0, 0, 2) D (1, 2,3) C (1, 0, 2) 2 求八分之一球面 x 2 + y 2 + z 2 = 1(x ≥ 0, y ≥ 0, z ≥ 0) 的边界曲线的重心,设曲线的密 度 = 1 。 解 故所求重心坐标为? 4 , 4 , 4 ? . A (0, 0, 0) y x 3 3 3? 习题 10—2 1 设 L 为 xOy 面内一直线 y = b ( b 为常数),证明 1 2 y A C o x B

? ? ?L x - y + z = 2 , ? 证明:略. 2 计算下列对坐标的曲线积分: ?L Q (x , y )dy = 0 。 (1) ? L xydx ,其中 L 为抛物线 y = x 上从点 A (1, -1) 到点 B (1,1) 的一段弧。 2 4 解 : ? L xydx = 5 。 (2) (x 2 + y 2 )dx + (x 2 - y 2 )dy ,其中 L 是曲线 y = 1 - 1 - x 从对应于 x = 0 时的点到 L x = 2 时的点的一段弧; 解 (x 2 + y 2 )dx + (x 2 - y 2 )dy = 4 . L 3 (3) ? L ydx + xdy , L 是从点 A (-a , 0) 沿上半圆周 x 2 + y 2 = a 2 到点 B (a , 0) 的一段弧; 解 ?L ydx + xdy = 0. (4) xy 2dy - x 2 ydx ,其中 L 沿右半圆 x 2 + y 2 = a 2 以点 A (0, a ) 为起点,经过点C (a , 0) L 到终点 B (0, -a ) 的路径; 解 ?L xy 2dy - x 2 ydx = -a 4 。 4 (5) ? L x dx + 3zy dy - x ydz ,其中 L 为从点 A (3, 2,1) 到点 B (0, 0, 0) 的直线段 AB ; 3 2 2 0 3 87 解 ? x 3dx + 3zy 2dy - x 2 ydz = 87? t dt = - 。 L 1 4 ?x 2 + y 2 = 1 , (6) I = (z - y )dx + (x - z )dy + (x - y )dz , L 为椭圆周? 且从 z 轴 ? 正方向看去, L 取顺时针方向。 解: = -2 。 习题 10—3 1. 利用曲线积分求下列平面曲线所围成图形的面积:

不定积分例题及参考答案

第4章不定积分

习题4-1 1.求下列不定积分: 知识点:直接积分法的练习——求不定积分的基本方法。 思路分析:利用不定积分的运算性质和基本积分公式,直接求出不定积分! ★(1) 思路: 被积函数52 x - =,由积分表中的公式(2)可解。 解: 53 2 2 23x dx x C -- ==-+? ★(2)dx ? 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。 解:1 14111 33322 23 ()2 4dx x x dx x dx x dx x x C - - =-=-=-+???? ★(3)2 2x x dx +? () 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。 解:2 2 3 2122ln 23 x x x x dx dx x dx x C +=+=++? ??() ★(4) 3)x dx - 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。 解: 3153 22 222 3)325 x dx x dx x dx x x C -=-=-+?? ★★(5)422 331 1 x x dx x +++? 思路:观察到422 223311311 x x x x x ++=+++后,根据不定积分的线性性质,将被积函数分项, 分别积分。 解:4223 2233113arctan 11x x dx x dx dx x x C x x ++=+=++++??? ★★(6)2 2 1x dx x +?

思路:注意到22222 111 1111x x x x x +-==-+++,根据不定积分的线性性质,将被积函数分项,分别积分。 解:2221arctan .11x dx dx dx x x C x x =-=-+++??? 注:容易看出(5)(6)两题的解题思路是一致的。一般地,如果被积函数为一个有理的假分式, 通常先将其分解为一个整式加上或减去一个真分式的形式,再分项积分。 ★(7)x dx x x x ? 34134 (- +-)2 思路:分项积分。 解:3411 342x dx xdx dx x dx x dx x x x x --=-+-?????34134(- +-)2 223134 ln ||.423 x x x x C --=--++ ★ (8)23( 1dx x -+? 思路:分项积分。 解 :2231( 323arctan 2arcsin .11dx dx x x C x x =-=-+++? ? ★★ (9) 思路 =? 111 7248 8 x x ++==,直接积分。 解 : 715 8 88 .15x dx x C ==+? ★★(10) 221 (1)dx x x +? 思路:裂项分项积分。 解: 222222 111111 ()arctan .(1)11dx dx dx dx x C x x x x x x x =-=-=--++++???? ★(11)21 1 x x e dx e --? 解:21(1)(1) (1).11 x x x x x x x e e e dx dx e dx e x C e e --+==+=++--??? ★★(12)3x x e dx ?

第十章重积分自测题(答案)

第十章《重积分》自测题 一、单项选择题 1.设1D 是正方形域,2D 是1D 的内切圆,3D 是1D 的外接圆,1D 的中心点在(1,1)-,记 22 1 221y x y x D I e dxdy ---= ??,22 2 222y x y x D I e dxdy ---= ??,22 2233 y x y x D I e dxdy ---= ??则123,,I I I 大小 顺序为( B )。 (A )123I I I ≤≤;(B) 213I I I ≤≤;(C )321I I I ≤≤;(D )312I I I ≤≤。 2.D=}2 1 ,1),{(22-≥≤+x y x y x 则σd y x D )(2 2??+=( A ) (A)? - 1 2 1dx dy y x x x )(2 2 112 2? ---+ (B) dy x x ? ---2 2 11? - +12 12 2)(dx y x (C) ? - 12 1dx dy y x x )(2 12 12 2? -- + (D) ? - 12 1dx dy y x )(1 2 12 2? - + 3.改变12 2 2 111 2 (,)(,)y y dy f x y dx dy f x y dx + ??? ?的积分次序,则下列结果正确的是(A ) (A )??21 1),(x x dy y x f dx (B )??2 1 1 ),(x x dy y x f dx (C )??31 1),(x x dy y x f dx (D )??1 3 11 ),(x x dy y x f dx 4.已知D 是正方形域:11,02x y -≤≤≤≤,则2 D I y x dxdy = -?? 的值为( D ) (A ) 23 ; (B ) 43 ; (C ) 2115 ; (D ) 4615 5.设D :2222 ,,(0)x y ax x y ay a +≤+≤>,则(,)D f x y dxdy ??可化为( D )。 (A )cos 20sin (cos ,sin )a a d f r r rdr π θθθ θθ?? ; (B )sin 402(cos ,sin )a a d f r r rdr π θθ θθ?? ; (C )sin 400 (cos ,sin )a d f r r rdr π θ θ θθ?? +sin 2 cos 4 (cos ,sin )a a d f r r rdr π θπθ θ θθ?? ; (D ) sin 40 (cos ,sin )a d f r r rdr π θθ θθ? ? + cos 2 4 (cos ,sin )a d f r r rdr π θπ θ θθ?? 6.Ω由不等式2 2 y x z +≥,222 (1)1x y z ++-≤确定,则???Ω dv z y x f ),,(=(D )

高等数学 习题册解答_10.重积分(青岛理工大学)

第十章 重积分 § 1 二重积分的概念与性质 1、由二重积分的几何意义求二重积分的值 dxdy y x I D ??+=22 其中D 为:422≤+y x ( dxdy y x I D ??+=22=πππ3 16 2.4..312.4.= -) 2、设D 为圆域,0,222>≤+a a y x 若积分 dxdy y x a D ?? --2 2 2 =12π,求a 的值。 解: dxdy y x a D ?? --2 2 2 =3 .34.21a π 81 =a 3、设D 由圆,2)1()2(22围成=-+-y x 求??D dxdy 3 解:由于D 的面积为π2, 故??D dxdy 3=π6 4、设D :}10,53|),{(≤≤≤≤y x y x , ????+=+=D D dxdy y x I dxdy y x I 221)][ln(,)ln(,比较1I , 与2I 的大小关系 解:在D 上,)ln(y x +≤ 2)][ln(y x +,故1I ≤2I 5、 设f(t)连续,则由平面 z=0,柱面 ,122=+y x 和曲面2)]([xy f z =所围的 立体的体积,可用二重积分表示为??≤+=1 :222)]([y x D dxdy xy f V 6、根据二重积分的性质估计下列积分的值 ??D ydxdy x 22sin sin ππ≤≤≤≤y x D 0,0: (≤ 0??D ydxdy x 22sin sin 2π≤) 7、设f(x,y)为有界闭区域D :222a y x ≤+上的连续函数,求 ??→D a dxdy y x f a ),(1 lim 2 0π 解:利用积分中值定理及连续性有)0,0(),(lim ),(1lim 8 2 0f f dxdy y x f a a D a ==→→??ηξπ

二重积分练习题

二重积分自测题 (一)选择题 1.设D 是由直线0=x ,0=y ,3=+y x ,5=+y x 所围成的闭区域, 记:??σ+= D d y x I )ln(1,??σ+=D d y x I )(ln 22 ,则( ) A .21I I < B .21I I > C .122I I = D .无法比较 2.设D 是由x 轴和∈=x x y (sin [0,π])所围成,则积分??=σD yd ( ) A . 6π B .4π C .3π D .2 π 3.设积分区域D 由2 x y =和2+=x y 围成,则=σ??D d y x f ),(( ) A .? ?-+2 122),(x x dy y x f dx B .??-212 ),(dy y x f dx C . ? ?-+1 2 22),(x x dy y x f dx D .??+1 2 2),(x x dy y x f dx 4.设),(y x f 是连续函数,则累次积分? ? =4 2),(x x dy y x f dx ( ) A . ?? 40 412),(y y dx y x f dy B .?? -4 412),(y y dx y x f dy C . ? ?4 4 1),(y dx y x f dy D .??40 2 1 2 ),(y y dx y x f dy 5.累次积分? ?=-2 2 2 x y dy e dx ( ) A . )1(212--e B .)1(314--e C .)1(214--e D .)1(3 1 2--e 6.设D 由14122≤+≤y x 确定,若??σ+=D d y x I 2211,??σ+=D d y x I )(2 22, ??σ+=D d y x I )ln(223,则1I ,2I ,3I 之间的大小顺序为( ) A .321I I I << B .231I I I << C .132I I I << D .123I I I << 7.设D 由1||≤x ,1||≤y 确定,则 =??D xy xydxdy xe sin cos ( ) A .0 B .e C .2 D .2-e 8.若积分区域D 由1≤+y x ,0≥x ,0≥y 确定,且 ? ?=1 1 )()(x dx x xf dx x f , 则 ??=D dxdy x f )(( )

高数教案第十章重积分

高等数学教案

第十章重积分 §10-1 二重积分的概念与性质 一、二重积分的概念 (一)引例 1. 曲顶柱体的体积 设有一空间立体 ,它的底是xoy面上的有界区域D,它的侧面是以D的边界曲线为准

线,而母线平行于z轴的柱面,它的顶是曲面(.) z f x y =。 当(,) x y D ∈时,(,) f x y在D上连续且(,)0 f x y≥,以后称这种立体为曲顶柱体。 曲顶柱体的体积V可以这样来计算: (1) 用任意一组曲线网将区域D分成n个小区域1σ ?, 2 σ ?,, n σ ?,以这些小区域的边界曲线为准线,作母线平行于z轴的柱面,这些柱面将原来的曲顶柱体Ω分划成n个小曲 顶柱体 1 ?Ω, 2 ?Ω,, n ?Ω。 (假设 i σ ?所对应的小曲顶柱体为 i ?Ω,这里 i σ ?既代表第i个小区域,又表示它的面积值, i ?Ω既代表第i个小曲顶柱体,又代表它的体积值。) 图10-1-1 从而 1 n i i V = =?Ω ∑ (将Ω化整为零) (2) 由于(,) f x y连续,对于同一个小区域来说,函数值的变化不大。因此,可以将小曲顶柱体近似地看作小平顶柱体,于是 ?Ω?? i i i i i i i f ≈?∈ ()() () ξησξησ (以不变之高代替变高, 求 i ?Ω的近似值) (3) 整个曲顶柱体的体积近似值为 V f i i i i n ≈ = ∑() ξησ ? 1 (4) 为得到V的精确值,只需让这n个小区域越来越小,即让每个小区域向某点收缩。为此,我

们引入区域直径的概念: 一个闭区域的直径是指区域上任意两点距离的最大者。 所谓让区域向一点收缩性地变小,意指让区域的直径趋向于零。 设n个小区域直径中的最大者为λ, 则 V f n i i i i = →= ∑ lim() , λ ξησ 01 ? 2.平面薄片的质量 设有一平面薄片占有xoy面上的区域D, 它在() ,x y处的面密度为() ,x y ρ,这里(),0 x y ρ≥,而且(),x y ρ在D上连续,现计算该平面薄片的质量M。 图10-1-2 将D分成n个小区域1σ ?, 2 σ ?,, n σ ?,用 i λ记 i σ ?的直径, i σ ?既代表第i个小区域又代表它的面积。 当{} 1 max i i n λλ ≤≤ =很小时, 由于(),x y ρ连续, 每小片区域的质量可近似地看作是均匀的, 那么第i小块区域的近似质量可取为 ρξησξησ (,)(,) i i i i i i ?? ?∈ 于是∑ = ? ≈ n i i i i M 1 ) , (σ η ξ ρ M i i i i n = →= ∑ lim(,) λ ρξησ 01 ? 两种实际意义完全不同的问题, 最终都归结同一形式的极限问题。因此,有必要撇开这类极限问题的实际背景, 给出一个更广泛、更抽象的数学概念,即二重积分。 (二)二重积分的定义

高等数学 习题册解答_10.重积分(青岛理工大学).

第十章重积分 § 1 二重积分的概念与性质 1、由二重积分的几何意义求二重积分的值dxdy y x I D ??+=22 其中D 为:422≤+y x ( dxdy y x I D ??+=22=πππ3 16 2. 4. . 312. 4. = - 2、设D 为圆域, 0, 222>≤+a a y x 若积分 dxdy y x a D ?? --2 2 2 =12π,求a 的值。 解: dxdy y x a D ?? --2

2 2 =3 . 34. 21a π 81 =a 3、设D 由圆, 2 1( 2(22围成=-+-y x 求??D dxdy 3 解:由于D 的面积为π2, 故??D dxdy 3=π6 4、设D :}10, 53| , {(≤≤≤≤y x y x , ????+=+=D D dxdy y x I dxdy y x I 221][ln(, ln(,比较1I , 与2I 的大小关系 解:在D 上,ln(y x +≤ 2][ln(y x +, 故1I ≤2I 5、设f(t连续,则由平面 z=0,柱面 , 122=+y x 和曲面2]([xy f z =所围的立体的体积,可用二重积分表示为??≤+=1 :222]([y x D dxdy xy f V 6、根据二重积分的性质估计下列积分的值 ??D

ydxdy x 22sin sin ππ≤≤≤≤y x D 0, 0: (≤ 0??D ydxdy x 22sin sin 2π≤ 7、设f(x,y为有界闭区域D :222a y x ≤+上的连续函数,求??→D a dxdy y x f a , (1 lim 2 0π 解:利用积分中值定理及连续性有 0, 0( , (lim , (1lim 8 2 0f f dxdy y x f a a D a ==→→??ηξπ § 2 二重积分的计算法 1、设?? +=D dxdy y x I 1,其中D 是由抛物线12+=x y 与直线y=2x,x=0所围成的区域,则I=() A : 2

经济数学(二重积分习题及答案)

第九章二重积分 习题 9-1 1.设0),(≥y x f ,试阐述二重积分(,)d D f x y σ ??的几何意义. 解 当0),(≥y x f 时,二重积分(,)d D f x y σ??表示的是以xy 平面上的有界闭区间为底, 以曲面),(y x f z =为顶,母线平行于z 轴,准线为区域D 的边界的一个曲顶柱体的体积. 2.试确定下列积分的符号并说明理由: 221 (1) ln()d d x y x y x y +<+?? 224 (2) d x y x y *+≤?? 解 (1) 因 1x y +<, 则将此式两边平方,得 220121 x y xy ≤+<-< 于是 0)ln(2 2 <+y x 故 221 ln()d d 0. x y x y x y +<+

习题册重积分答案

第十章 总积分习题解答 第12次课 二重积分的概念及性质 1、 略 2、根据这三点可知区域: 2 120ln()10[ln()]ln() x y x y x y x y ≤+≤?<+

第13次课 二重积分的计算法 1、 (1)根据积分区域: 11,11x y -≤≤-≤≤ 1 1 22221 1 8 ()()3 D x y d dy x y dy σ--+=+=???? 或者:根据对称性质: 2222882()233D D D y d x y d x d σσσ==+==?????? (2)根据积分区域: 0000 cos()(sin 2sin )11(cos 2cos 2cos cos ) 22() 232 x xdx x y dy x x x dx x x xdx x x xdx π π π π π π π π ππ+=-=---+=-+=? ???? (3)根据积分区域 3 2 22 2 22 0235222 22 2 00 2(4)311264 (4)(4)(4)335 15 D xy d xdx y dy x x dy x d x x σ==-=- --=--= ??? ?? (4)根据对称性: 1:0,0,1D x y x y ≥≥+≤ 1 110 1 12200()4()4()14 4((1)(1))2(1)23 y D D x y dxdy x y dxdy dy x y dx y y y dy y dy -+=+=+=-+-=-= ?????? ?? P45

第十章 重积分单元测试卷

第十章 重积分单元测试卷 一、填空题(每小题4分,共20分): {} . ,1)2()1(.5.,),,(,2,1,2.4. sin .3. ,0,1|),(.2. ,),(,),(.1222221 0221 20 2 ???????? ???? Ω Ω -= ≤+-+-Ω= ====+Ω==≥≤+== =dv z y x I dxdydz z y x f I z z z y x dy x x dy ydxdy y y x y x D I dy y x f dx I y x f y y D x x 则为设则下的三次积分化为柱面坐标系将所围成由设则设则改变积分次序将连续设 二、选择题(每小题5分,共20分): .)(;)(;)(;)()( ,,,)sin(,)(, )ln(,1,21 ,0,0.1312231123321321321I I I D I I I C I I I B I I I A I I I dxdy y x I dxdy y x I dxdy y x I y x y x y x D D D D <<<<<<<<+=+=+==+=+==??????间的大小关系为则所围成由设 ( ) . ),(),()(; ),()(;),(),()(; ),()(),(,),(.201 80 21 21 21 228 26 218 2 2121 212282122 6 21 4 2 ??? ? ?? ??? ? ?? ??--+-++------+++---+---++=y y y y y y y y y y y x x dx y x f dy dx y x f dy D dx y x f dy C dx y x f dy dx y x f dy B dx y x f dy A dy y x f dx y x f 则二次积分是连续函数设 3. 半径为R 和r(0

二重积分练习题,DOC

二重积分自测题(一)选择题 1.设D 是由直线0=x ,0=y ,3=+y x ,5=+y x 所围成的闭区域, 记:??σ+=D d y x I )ln(1,??σ+=D d y x I )(ln 22,则() A .21I I < B .21I I > C .122I I = D .无法比较 2.设D 是由x 轴和∈=x x y (sin [0,π])所围成,则积分??=σD yd () A .6π B .4π C .3π D .2 π 3.设积分区域D 由2x y =和2+=x y 围成,则=σ??D d y x f ),(() A .??-+212 2 ),(x x dy y x f dx B .??-212 0),(dy y x f dx C .??-+1 22 2 ),(x x dy y x f dx D .??+1 02 2 ),(x x dy y x f dx 4.设),(y x f 是连续函数,则累次积分??=4 02),(x x dy y x f dx () A .??404 12 ),(y y dx y x f dy B .?? -4 0412),(y y dx y x f dy C .??4041),(y dx y x f dy D .??402 12 ),(y y dx y x f dy 5.累次积分??=-202 2 x y dy e dx () A .)1(212--e B .)1(314--e C .)1(214--e D .)1(3 12--e 6.设D 由 141 22≤+≤y x 确定,若??σ+=D d y x I 2 2 11,??σ+=D d y x I )(222, ??σ+=D d y x I )ln(223,则1I ,2I ,3I 之间的大小顺序为()

(高起专)第十章二重积分习题解答-6页文档资料

(高起专)第十章二重积分习题解答 (一) 选择题(在每小题给出的四个选项中,只有一项符合题目要求,选出正确的选项) 1 .1 220 I dy x y dx = ? ,则交换积分次序后得 C 。 (A )1 220 I dy x y dy =? ; (B )1 220 3I x y dy =?; (C )2 11220 3x I dx x y dx -= ?? ; (D )2 1 1220 3x I dx x y dy += ? ? 。 2.设积分域为{(,)|11,11}D x y x y =-≤≤-≤≤,则 x y D e dxdy +=?? D. . (A) 2)1(-e , (B)21)(2--e e , (C) 42)1(-e , (D) 21)(--e e ; 3. 设积分域D 由直线,2,2y x x y x =+==围成,则 (,)D f x y dxdy =?? C (A) 1 20 (,)x x dx f x y dy -?? , (B) 21 (,)y y dy f x y dx -?? , (C) 2 1 2(,)x x dx f x y dy -??, (D) 1 (,)x dx f x y dy ??.; 4.2 2 x y D I e dxdy --= ??,D :221x y +≤,化为极坐标形式是 D 。 (A )2 21 []r I e dr d π θ-= ? ?; (B )2 1 2 04[]r I e dr d π θ-=? ?; (C )2 1 20 2[]r I e rdr d π θ-=? ?; (D )2 21 []r I e rdr d π θ-= ??。 5. 2 D I xy d σ= ?? , 其中22:1D x y +≤的第一象限部分,则 C 。 (A )1 20 I dy xy dy =? ; (B )1 1 20 I dx xy dy =? ?; (C )1 2 I dx dy =? ; (D )1 232 cos sin I d r dr π θθθ= ? ?。 填空题 1. 交换二次积分次序,1 (,)x I f x y dy =?= 。故 2 1 1 (,)(,)y x y I dx f x y dy dy f x y dx ==??? 2.设积分域D 由11,22,x y -≤≤-≤≤围成,则 3 (2)D x y dxdy +=?? 0 3.设积分域为2 2 {(,)|14,}D x y x y y x =≤+≤≥,则积分 22()D f x y dxdy +=?? 在极坐标下的二次积分 为 。解 52 4 22 21 4 ()()D f x y d x d y d r f r d r ππ θ+=?? ??。 4.积分 224 ()x y x y dxdy +≤+?? 在极坐标下的二次积分为 。 2222 2 4 ()(cos sin )x y x y dxdy d r dr πθθθ+≤+= +?? ??

二重积分习题答案

二重积分习题答案 This model paper was revised by the Standardization Office on December 10, 2020

第八章二重积分习题答 案 练习题 1.设D :0y ≤,0x a ≤≤,由二重积分的几何意义 计算d D x y 解:d D x y =200 d π θ?? =222 01()2r d a r π θ=--?? 2. 设二重积分的积分区域为2214x y ≤+≤,则2dxdy =?? 解:2dxdy =??22 1 26d rdr π θπ=? ? 练习题 1.2d D x σ??其中D 是两个圆,y x 122=+与,y x 422=+围成的环型区域. 解:2d D x σ??=22 222301 001515 cos [cos2]84 d r dr d d πππθθθθθπ= +=???? 2计算二重积分σd y x D )3 41(-- ??,其中D 是由直线2,,2=-=x x ;1,1=-=y y 围成的矩形。 解:σd y x D )341(--??= 221211212(1)[(1)]4346x y x y dx dy y dx ------=--??? =222(1)84 x dx --=?

3. 应用二重积分,求在xy 平面上由曲线224x x y x y -==与所围成的区域D 的面积. 解: 2 2 2 42 20 2320(42) 28(2)|33 x x x D A dxdy dx dy x x x x -===-=- =????? 4. 求旋转抛物面224z x y =--与xy 平面所围成的立体体积 解: 22 222 2 (4)(4)48D V x y d d r rdr d ππ σθθπ=--=-==????? 习 题 八 一.判断题 1.d D σ??等于平面区域D 的面积.(√) 2.二重积分 100f(x,y)d y dy x ??交换积分次序后为1 1 f(x,y)d x dx x ? ? (×) 二.填空题 1.二重积分的积分区域为2214x y ≤+≤,则4dxdy = ?? 12π12π. 2.二重积分d d D xy x y ??的值为 1 12 ,其中2:0D y x ≤≤,01x ≤≤. 112 3.二重积分10 (,)y dy f x y dx ??交换积分次序后为 11 (,)x dx f x y dy ?? . 11 (,)x dx f x y dy ?? 4.设区域D 为1x ≤,1y ≤,则??(sin x x -)d d x y = 0.0 5.交换积分次序

高数教案第十章重积分

高数教案第十章重积分 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

高等数学教案

第十章 重积分 §10-1 二重积分的概念与性质 一、二重积分的概念 (一)引例 1. 曲顶柱体的体积 设有一空间立体Ω,它的底是xoy 面上的有界区域D ,它的侧面是以D 的边界曲线为准线,而母线平行于z 轴的柱面,它的顶是曲面(.)z f x y =。 当(,)x y D ∈时,(,)f x y 在D 上连续且(,)0f x y ≥,以后称这种立体为曲顶柱体。 曲顶柱体的体积V 可以这样来计算: (1) 用任意一组曲线网将区域D 分成n 个小区域1σ?,2σ?, ,n σ?,以这 些小区域的边界曲线为准线,作母线平行于z 轴的柱面,这些柱面将原来的曲顶柱体Ω分划成n 个小曲顶柱体1?Ω,2?Ω, ,n ?Ω。 (假设i σ?所对应的小曲顶柱体为i ?Ω,这里i σ?既代表第i 个小区域,又表示它的面积值, i ?Ω既代表第i 个小曲顶柱体,又代表它的体积值。)

图10-1-1 从而 1n i i V ==?Ω∑ (将Ω化整为零) (2) 由于(,)f x y 连续,对于同一个小区域来说,函数值的变化不大。因此,可以将小曲顶柱体近似地看作小平顶柱体,于是 ?Ω??i i i i i i i f ≈?∈()()( )ξησξησ (以不变之高代替变高, 求i ?Ω的近似值) (3) 整个曲顶柱体的体积近似值为 V f i i i i n ≈=∑()ξησ?1 (4) 为得到V 的精确值,只需让这n 个小区域越来越小,即让每个小区域向某点收缩。为此,我们引入区域直径的概念: 一个闭区域的直径是指区域上任意两点距离的最大者。 所谓让区域向一点收缩性地变小,意指让区域的直径趋向于零。 设n 个小区域直径中的最大者为λ, 则 V f n i i i i =→=∑lim (),λξησ01 ? 2.平面薄片的质量 设有一平面薄片占有xoy 面上的区域D , 它在(),x y 处的面密度为(),x y ρ,这里(),0x y ρ≥,而且(),x y ρ在D 上连续,现计算该平面薄片的质量M 。

二重积分习题答案

第 八 章 二 重 积 分 习 题 答 案 练习题8.1 1.设D : 0y ≤,0x a ≤≤,由二重积分的几何意义 计算 d x y 1.D ??2D 解:σd y x D 341(--??= 22 1 21 1212(1[(1]4346x y x y dx dy y dx ------=--??? =2 22(1)84 x dx --=? 3. 应用二重积分,求在xy 平面上由曲线224x x y x y -==与所围成的区域D 的面积.

解: 2 2 2 42 20 2320(42) 28(2)|33 x x x D A dxdy dx dy x x x x -===-=- =????? 4. 求旋转抛物面224z x y =--与xy 平面所围成的立体体积 解: 2222 2 2 (4)(4)48D V x y d d r rdr d ππ σθθπ=--=-==????? 1.D ??2.1.2. 3.二重积分0 (,)dy f x y dx ?? 交换积分次序后为 (,)x dx f x y dy ?? . (,)x dx f x y dy ?? 4.设区域D 为1x ≤,1y ≤,则??(sin x x -)d d x y = 0.0 5.交换积分次序 1 d (,)y f x y dx ? = 2 1 1 (,)(,)x dx f x y dy f x y dy +?? .

2 1 1 (,)(,)x dx f x y dy f x y dy +?? 6.设D 是由221x y +≤所确定的区域。则22 1D dxdy x y ++?? =_ln 2πln2π 三. 选择题 1. 20x =, ). 2.3. ). 4.设D 是由22x y a +≤所确定的区域,当a =( B )时D π= A 1 B C . D 四 计算二重积分

第十章____重积分(高等数学教案)

重积分 【教学目标与要求】 1.理解二重积分、三重积分的概念,了解重积分的性质,知道二重积分的中值定理。 2.掌握二重积分的(直角坐标、极坐标)计算方法。 3.掌握计算三重积分的(直角坐标、柱面坐标、球面坐标)计算方法。 4.会用重积分求一些几何量与物理量(平面图形的面积、体积、重心、转动惯量、引力等)。【教学重点】 1.二重积分的计算(直角坐标、极坐标); 2.三重积分的(直角坐标、柱面坐标、球面坐标)计算。 3.二、三重积分的几何应用及物理应用。 【教学难点】 1.利用极坐标计算二重积分; 2.利用球坐标计算三重积分; 3.物理应用中的引力问题。 【教学课时分配】 (10学时) 第1 次课§1第2 次课§2 第3 次课§3 第4 次课§4 第5次课习题课 【参考书】 [1]同济大学数学系.《高等数学(下)》,第五版.高等教育出版社. [2] 同济大学数学系.《高等数学学习辅导与习题选解》,第六版.高等教育出版社. [3] 同济大学数学系.《高等数学习题全解指南(下)》,第六版.高等教育出版社

§10. 1 二重积分的概念与性质 【回顾】定积分 设函数y =f (x )在区间[a , b ]上非负、连续. 求直线x =a 、x =b 、y =0 及曲线y =f (x )所围成的曲边梯形的面积. (1)分割:用分点a =x 0

相关主题
文本预览
相关文档 最新文档