当前位置:文档之家› 金属离子对牛小肠碱性磷酸酶的影响

金属离子对牛小肠碱性磷酸酶的影响

金属离子对牛小肠碱性磷酸酶的影响
金属离子对牛小肠碱性磷酸酶的影响

基因工程期末考试重点知识整理教学文案

基因工程期末考试重点知识整理

基因工程 第一章基因工程概述 1、基因工程的概念(基因工程基本技术路线PPT) 基因工程(Gene Engineering),是指在基因水平上的遗传工程,它是用人为方法将大分子(DNA)提取出来,在离体条件下用适当的工具酶进行切割后,把它与作为载体的DNA分子连接起来,然后与载体一起导入某一更易生长、繁殖的受体细胞中,以让外源遗传物质在其中“安家落户”,进行正常的复制和表达,从而获得新物种的一种崭新的育种技术. 2、基因工程的历史 基因工程准备阶段:1972,第一个重组DNA分子的构建,构建人:Paul Berg 及其同事PPT 基因工程诞生:1973,Cohen & Boyer首次完成重组质粒DNA对大肠杆菌的转化 基因工程发展阶段的几个重要事件: 一系列新的基因工程操作技术的出现; 各种表达克隆载体的成功构建; 一系列转基因菌株、转基因植物、转基因动物等的出现 3、基因工程的内容(P9) 4、基因克隆的通用策略(P12)(基因组文库(鸟枪法)+分子杂交筛选)

第二章分子克隆工具酶 5、限制性核酸内切酶的概念、特点、命名、分类(问答) 概念:一类能识别双链DNA中特殊核苷酸序列,并使每条链的一个磷酸二酯键断开的内脱氧核糖核酸酶,主要存在于细菌体内 特点(参加PPT) 命名:依次取宿主属名第一字母,种名头两个字母,菌株号,然后加上序号。如:从Haemophilus influenze Rd中提取到的第三种限制型核酸内切酶被命名为Hind Ⅲ,Hin指来源于流感嗜血杆菌,d表示来菌株Rd,Ⅲ表示序号。 分类:依据酶的亚单位组成、识别序列的种类以及是否需要辅助因子可分为:Ⅰ型酶、Ⅱ型(Ⅱs型)酶和Ⅲ型酶。 真核细胞中有4中DNA聚合酶:α,β,γ,线粒体DNA聚合酶 原核生物中3中DNA聚合酶:Ⅰ,Ⅱ,Ⅲ

牛的牛小肠碱性磷酸酶酶联免疫分析

牛的牛小肠碱性磷酸酶()酶联免疫分析() 试剂盒使用说明书 本试剂仅供研究使用 目的:本试剂盒用于测定牛血清,血浆及相关液体样本中类牛小肠碱性磷酸酶()的含量。 实验原理: 本试剂盒应用双抗体夹心法测定标本中牛的牛小肠碱性磷酸酶()水平。用纯化的牛的牛小肠碱性磷酸酶()抗体包被微孔板,制成固相抗体,往包被单抗的微孔中依次加入类牛小肠碱性磷酸酶(),再与标记的类牛小肠碱性磷酸酶()抗体结合,形成抗体抗原酶标抗体复合物,经过彻底洗涤后加底物显色。在酶的催化下转化成蓝色,并在酸的作用下转化成最终的黄色。颜色的深浅和样品中的类牛小肠碱性磷酸酶()呈正相关。用酶标仪在波长下测定吸光度(值),通过标准曲线计算样品中牛的牛小肠碱性磷酸酶()浓度。 试剂盒组成: 试剂盒组成孔配置孔配置保存 说明书份份 封板膜片()片() 密封袋个个 酶标包被板××℃保存 标准品:×瓶×瓶℃保存标准品稀释液×瓶×瓶℃保存酶标试剂×瓶×瓶℃保存 样品稀释液×瓶×瓶℃保存 显色剂液×瓶×瓶℃保存 显色剂液×瓶×瓶℃保存 终止液×瓶×瓶℃保存 浓缩洗涤液(×倍)×瓶(×倍)×瓶℃保存 样本处理及要求: . 血清:室温血液自然凝固分钟,离心分钟左右(转分)。仔细收集上清,保存过程中如出现沉淀,应再次离心。 . 血浆:应根据标本的要求选择或柠檬酸钠作为抗凝剂,混合分钟后,离心分钟左右(转分)。 仔细收集上清,保存过程中如有沉淀形成,应该再次离心。 . 尿液:用无菌管收集,离心分钟左右(转分)。仔细收集上清,保存过程中如有沉淀形成,应再次离心。胸腹水、脑脊液参照实行。 . 细胞培养上清:检测分泌性的成份时,用无菌管收集。离心分钟左右(转分)。仔细收集上清。检测细胞内的成份时,用()稀释细胞悬液,细胞浓度达到万左右。通过反复冻

血液生化检查各指标及对应正常值列表

血液生化检查各指标及对 应正常值列表 Prepared on 22 November 2020

血液生化检查各指标及对应正常值列表 (二氧化碳结合力) 2O~30 mmol/L (一氧化碳定性)(—) (a羟丁酸脱氨酶) 90~22O IU/L (磷酸肌酶激酶) 25~170 mmol/L (乳酸脱氢酶) 40~100 mmol/L (激肌酸激酶同功酶) 0~16 (血清白/球蛋白)~2-3g (高密度脂蛋白〕~ mmol/L (低密度低蛋白)~ mmol/L (极低密度脂蛋白) 1~3 mmol/L (C反应蛋白)(—) (免疫球蛋白)~ mg/ml (免疫球蛋白) 9~23 mg/ml (免疫球蛋白)~ ml (铁蛋白) 20~200 ng/ml (蛋白电脉) 3~ % (蛋白电脉)~ % (蛋白电脉)~ % (蛋白电脉)~ % (纤维蛋白原) 2~4g/L () 44~133 µmol/L

(肌酐清除率) 80~120 ml/分 (血糖)~ mmol/L (血淀粉酶) 40~160 U (补体)~L (抗链O) 1:400以下 (类风湿因子)(—) (肥达氏反应)(—) (外裴氏反应)(—) (癌胚抗原)<5mg 血生化 项目结果 ----------参考值---------- 谷丙转氨酶-ALT 0 ~ 40 U 尿素~ 7 mmol/L 血肌酐 40 ~ 130 umol/L 血尿酸 180 ~ 410 umol/L 胆固醇~ mmol/L 甘油三脂~ mmol/L 葡萄糖~ mmol/L 总胆红素 3 ~ 24 umol/L 项目谷丙转氨酶-ALT 临床意义正常时,谷-丙主要存在于组织细胞内,以肝细胞含量最多,心肌细胞中含量其次,只有极少量释放血中。所以血清中此酶活力很低。当、心肌病变、

基因工程考试题目整理

1.如何区分重组DNA和空载体自连: (一)检测方法 (1)双抗性筛选:具有四环素和氨苄青霉素两种抗生素抗性基因作为选择标记,一种抗性标记用来正选择转化子,另一种通过插入失活而可以鉴定重组子。Ori位于Amp+和tet+这两个基因之间,在四环素平板上出现的菌落一定是获得了质粒的转化子,在此基础上,如果四环素抗性转化子对氨苄青霉素敏感,则说明在载体中有外源片段的插入而使氨苄青霉素抗性失活,即重组子;若对氨苄青霉素有抗性,则此转化子的质粒是空载体。 (2)抗生素插入失活法:如BamHI可以从四环素位点切开,使该基因不能表达,但仍能表达氨苄抗性基因,对四环素是敏感的。筛选重组pBR322 按照以下方法进行,将转化细胞培养于氨苄培养基中,只有转化细胞可以生长形成克隆,影印到四环素培养基上,不能在该培养基上生长的菌落可能就是目的克隆。 (3)限制性内切酶法:外源片段通过特定的酶切位点插入到载体上,因此,可以通过这些限制性酶酶切重组质粒,电泳分析插入片段长度是否正确。(抗生素+酶切检测+测序) (4)蓝白斑筛选:多克隆位点存在于编码β-半乳糖苷酶的N端的DNA序列中,与pUC载体一起使用的宿主菌携带编码β-半乳糖苷酶的C端序列的基因片段。通过α互补机制,两个片段在体内相互弥补,产生一个有活性的β-半乳糖苷酶。以X-gal作为指示剂。若通过插入外源DNA到多克隆位点中而打断了β-半乳糖苷酶的部分基因,不能产生有活性的β-半乳糖苷酶,X-gal不会反应,重组子菌落为白色,而自连空载体转化的菌落则是蓝色的。 (5)PCR法:如果已知插入DNA片段的某些序列,就可以通过PCR的方法进行鉴定 (6)菌落原位杂交:把菌落或噬菌斑转移到硝酸纤维素膜上,然后溶菌,变性并固定DNA,最后用标记的DNA或RNA探针进行杂交来检测这些被转移的菌落或噬菌斑。 (7)测序法:若通过前面这些方法鉴定之后还是有疑虑,不知道是否阳性者确为真阳性而不是空载体自连,可以将其送到生物公司进行测序以最终确定之。 (8)基因产物检测法:如果使用的是表达载体,那么就可以通过鉴定基因产物的方法鉴定正确的克隆。 (二)避免方法: (1). 碱性磷酸酶处理载体在DNA重组实验中,用碱性磷酸酶对载体DNA的5’末端除磷,可以防止载体自连,提高重组率 (2). 噬菌体包装蛋白包装下限的限制:选用λ噬菌体或者柯氏载体,含有cos位点,包装35~51kb的片段,空载体片段太小,不会被包装 (3). 利用某些基因(改基因存在时质粒不能在一定的菌株中存在,而此被基因为外源DNA取代时则能存在)等预防措施. 2.如何在大肠杆菌中高效表达外源基因: 涉及三个方面: (1)强化蛋白质的生物合成(重组质粒的拷贝数,转录水平和翻译速率); (2)抑制蛋白质产物降解; (3)恢复维持蛋白质特异性空间结构。 (一).强化蛋白质的生物合成 1)启动子:影响表达效率的主要因素之一是启动子的强度。 高水平表达的最佳启动子必须具备的条件: (1)它必须是一种强启动子,能够使克隆基因的蛋白质产物的表达量占细胞总蛋白的10%-30%; (2)这种启动子应该是诱导型的,能通过简单的方式使用廉价的诱导物而得以诱导。 2)终止子:有效的转录终止子的必要性: (1)转录产物越长,所需时间就多,外源基因本身的转录效率下降; (2)转录通读进入质粒功能区,可能干扰质粒的复制和其他生物功能,甚至导致重组质粒的不稳定性; (3)转录终止子能增强mRNA分子的稳定从而大大提高了蛋白质产物的水平; (4)转录产物过长影响翻译效率。 3)核糖体结合位点(RBS)的结构要素:外源基因在大肠杆菌中的高效表达不仅取决于转录启动频率,而且在很大程度上还与mRNA的翻译起始效率密切相关。大肠杆菌mRNA的翻译起始效率主要由其5‵端的结构序列所决定,即核糖体结合位点(RBS),它包括4个结构要素: (1)起始密码子上游的6-8个核苷酸序列UAAGGAGG,即Shine-Dalgarno (SD)序列; (2)起始密码子AUG; (3)SD与起始密码子之间的距离及碱基组成;

碱性磷酸酶米氏常数的测定

碱性磷酸酶米氏常数的测定 [目的与要求] 通过碱性磷酸酶米氏常数的测定,了解其测定方法及意义。学会运用标准曲线测定酶的活性,加深对酶促反应动力学的理解。 [原理] 在环境的温度、pH和酶的浓度一定时。酶促反应速度与底物浓度之间的关系表现在反应开始时。酶促反应的速度(V)随底物浓度(S)的增加而迅速增加。若继续增加底物浓度,反应速度的增加率将减少。当底物浓度增加到某种程度时,反应速度会达到一个极限值,即最大反应速度(V max),如图37所示。 底物浓度与酶促反应速度的这种关系可用Michaelis-Menten方程式表示。 V = V max[S]/(K m+[S]) 上式中V max为最大反应速度,[S]为底物浓度,K m为米氏常数(Michaelis constant),而其中V则表示反应的起始速度。当V= V max/2时,K m =[S]。所以米氏常数是反应速度等于最大反应速度一半时底物的浓度。因此K m的单位以摩尔浓度(mol/L)表示。 K m是酶的最重要的特征性常数,测定K m值是研究酶动力学的一种重要方法,大多数酶的K m值在0.01-100(mmol/L)间。 酶促反应的最大速度V max实际上不易准确测定,K m值也就不易准确测出。林-贝(1ineweaver - Burk)根据Michaelis-Menten方程,推导出如下方程式,即: 1/V = (K m +[S])/ V max[S]或1/V = K m/ V max·(1/[S])+1/ V max 此式为直线方程,以不同的底物浓度1/[S]为横坐标,以1/V为纵坐标,并将各点连成 一直线,向纵轴方向延长,此线与横轴相交的负截距为-1/ K m,由此可以正确求得该酶的K m 值,如图38所示。 图37 底物浓度对反应速度的影响图38 Lineweaver-Burk作图法 本实验以碱性磷酸酶为例,测定不同底物浓度的酶活性,再根据Lineweaver-Burk法作图,计算其K m值。 可以作为碱性磷酸酶底物的物质很多,底物反应的酶对于不同的底物有不同的K m值。本实验以磷酸苯二钠为底物,由碱性磷酸酶催化水解,生成游离酚和磷酸盐。酚在碱性条件下与4-氨基安替比林作用,经铁氰化钾氧化,生成红色的醌衍生物,颜色深浅和酚的含量成正比。根据吸光度的大小可以计算出酶的活性,也可以从标准曲线上查知酚的含量,进而算出酶活性的大小。反应式如下:

碱性磷酸酶偏高的原因

碱性磷酸酶偏高的原因 当受到损伤或者障碍时经淋巴道和肝窦进入血液,同时由于肝内障碍,反流入血而引起血清碱性磷酸酶明显升高。[1] 碱性磷酸酶偏高的原因可以分为生理性原因和病理性原因,具体讨论如下: 1、生理性原因儿童骨骼发育期、孕妇、骨折愈合期,这些情况下骨组织中的碱性磷酸酶很活跃,所以检测时值会偏高。 2、病理性原因当人体患有阻塞性黄疸、、继发性肝癌、性等时,过度制造ALP,经淋巴道和肝窦进入血液,同时由于胆汁排泄障碍,反流入血,引起中的碱性磷酸酶偏高。 3、骨骼有病时,例如佝偻病、骨上肿瘤、软骨病等。 4、其他不是很常见的疾病,例如肾病、严重性贫血、甲状腺机能不全、白血病等[2]。 有何影响 碱性磷酸酶主要用于阻塞性黄疸、、、胆汁淤积性肝炎等的检查。它主要经淋巴道和肝窦进入血液,同时由于肝内胆道障碍,反流入血而引起血清碱性磷酸酶明显升高。但由于骨组织中此酶亦很活跃。因此,孕妇、骨折愈合期、骨软化症。佝偻病、骨细胞癌、骨质疏松、肝脓肿、肝结核、、、时,血清碱性磷酸酶亦可升高,所以对人体的危害是比较大的。 酸性磷酸酶(acid phosphatase,ACP)主要存在于,定位于溶酶体内。ACP测定主要用于前列腺癌的辅助诊断。ACP测定主要用于前列腺癌的辅助诊断。

(1)前列腺癌:尤其是转移癌ACP明显升高。PAP对的诊断较ACP敏感,二者对晚期前列腺的诊断、疗效观察及预后监测价值更大。 (2)血液病:白血病、、匹克病、、溶血性贫血等ACP活性亦增高。 (3)非恶性前列腺疾病:前列腺炎、前列腺肥大、前列腺梗死等ACP活性也增高。 (4)骨疾病:变形性骨炎、成骨不全、软骨病、骨肉瘤、及某些非前列腺恶性肿瘤的骨转移,ACP活性也可升高。[1] (5)其他:,急、慢性肾炎、尿潴留等ACP活性可增高。 是一种糖酵解酶。存在于机体所有组织细胞的胞质内,其中以肾脏含量较高。是能催化乳酸脱氢生成的酶,几乎存在于所有组织中。同功酶有五种形式,即LDH-1(H4)、LDH-2(H3M)、LDH-3(H2M2)、LDH-4(HM3)及LDH-5(M4),可用方法将其分离。LDH同功酶的分布有明显的组织特异性,所以可以根据其组织特异性来协用诊断疾病。正常人血清中LDH2,〉LDH1。如有释放入血则LDH1〉LDH2,利用此指标可以观察诊断心肌疾病。乳酸脱氢酶大于300,属于增高,600,高出1倍,有参考价值。如果排除急性心肌梗死、巨幼细胞性贫血及溶血性疾病后,首先要考虑恶性肿瘤。虽不是恶性肿瘤唯一的诊断,但确实对肿瘤诊断有重要的临床意义,最好做进一步检查,防患于未然。 糖的吸收途径: 小肠绒毛吸收小肠内葡萄糖的方式为二级。小肠内钠离子浓度高于小肠绒毛内的钠离子浓度,因而两者之间存在钠离子浓度差的,通过该钠离子的浓度差,葡萄糖和钠离子可以从小肠内通过离子通道进入小肠绒毛;

血液生化检查各指标及对应正常值列表

血液生化检查各指标及对应正常值列表 ALT (谷丙转氨酶)0~4O IU/L CO2Cp (二氧化碳结合力)2O~30 mmol/L AST (谷草转氨酶)0~45 IU/L CO (一氧化碳定性)(-) TP (总蛋白)60~80 g/L HBDH (a羟丁酸脱氨酶)90~22O IU/L ALB (白蛋白)35~55 g/L CPK (磷酸肌酶激酶)25~170 mmol/L ALP (碱性磷酸酶)40~160 IU/L LDW (乳酸脱氢酶)40~100 mmol/L GGT (丫.谷氨酪转肽酶)0~50 IU/L CPK-MB (激肌酸激酶同功酶)0~16 TBIL (总胆红素)1.7~17.1μmol/L A/G (血清白/球蛋白)3.5~5.5/2-3g DBIt (直接胆红素)0~6.0 μmol/L HDL (高密度脂蛋白〕1.14~1.91 mmol/L Crea (肌酐)44~133 µmol/L VLDL (低密度低蛋白)0.11~0.34 mmol/L Ua (尿酸)90~360 µmol/L LDL (极低密度脂蛋白)1~3 mmol/L UREA (尿素氮)1.8~7.1 mmol/L CRP (C反应蛋白)(-) GLU (血糖)3.61~6.11 mmol/L IgA (免疫球蛋白)0.9~4.5 mg/ml TG (甘油三脂)0.56~1.7 mmol/L IgG (免疫球蛋白)9~23 mg/ml GHO (胆固醇)2.84~5.68 mmol/L IgM (免疫球蛋白)0.8~2.2 ml Mg (血清镁)0.8~1.2 mmol/L SF (铁蛋白)20~200 ng/ml K (血清钾)3.5~5.5 mmol/L α(蛋白电脉)3~4.9 % Na (血清钠)135~145 mmol/L β(蛋白电脉)3.1~9.6 % Cl(血清氯)96~108 mmol/L γ(蛋白电脉)6.6~13.7 % Ca (血清钙)2.2~2.7 mmol/L δ(蛋白电脉)9.5~20.3 % P (血清磷)0.97~1.61 mmol/L Fdg (纤维蛋白原)2~4g/L

常见化验指标的正常值及临床意义

常见化验指标的正常值及临床意义 为了方便朋友们查询医院常见化验指标的正常值,特此整理如下:(如有与下列正常值有差异者,请以所在医院的正常值为准) 谷丙转氨酶(ALT) 正常值 3.00-40.00 u/l 临床意义: (1)ALT活性在下列疾病可见升高 a.肝胆疾病:传染性肝炎、肝癌、肝硬化活动期、中毒性肝炎、脂肪肝、胆管炎和胆囊炎等 b.心血管疾病:心肌梗死、心肌炎、心力衰竭时的肝脏淤血、脑出血等 c.骨骼肌疾病:多发性肌炎、肌营养不良等 (2)一些药物和毒物可引起ALT活性升高,如氯丙嗪、异烟肼、奎宁、水杨酸制剂及酒精、铅、汞、四氯化碳或有机磷等 谷草转氨酶(AST) 正常值3.00-40.00 u/l 临床意义: (1)AST在心肌细胞内含量较多,当心肌梗死时,血清中AST活性增高,在发病后6-12小时之显著增高,在48小时达到高峰,约在3-5天恢复正常 (2)疟疾、流行性出血热、传染性单核细胞增多症、多发性肌炎、肌营养不良、急性胰腺炎、胸膜炎、肾炎及肺炎等也可引起血清AST活性轻度增高 (3)肝炎时,AST和ALT均可明显增高,可高与正常值上限10-30倍,这在其它疾病时少见.在黄疸期间,AST和ALT即可见增高,有助于早期诊断,由于肝中AST含量增高,往往AST>ALT,但由于ALT清除率较慢,所以不久以后即ALT>AST.恢复期一般ALT恢复较慢,持续ALT、AST 增高,往往说明有慢性肝炎.AST/ALT比值如<1,则有可能是慢性迁延性肝炎.如酶活性增高,且AST/ALT比值>1,则很有可能是慢活肝.。 r_谷氨酰转移酶(r_GT) 正常值 11.00-61.00 u/l 临床意义: 人体各器官中r_GT的含量按下列顺序排列:肾、前列腺、胰、肝、盲肠和脑.肾脏中含量较高,但肾脏疾病时,血液中的该酶活性增高不明显.肾单位病变时,r_GT经尿排出,检验尿中酶活性可能有助于诊断肾脏疾病,r_GT主要诊断肝胆疾病.显著增高常见于:原发行肝癌、胰腺癌、阻塞性黄疸、胆汁性肝硬化、胰头癌、肝外胆管癌等.轻度或中度增高见于:传染性肝炎、慢性肝炎、肝硬化、急慢性胰腺炎、胆石症等 碱性磷酸酶(ALP) 正常值 53.00-140.00 u/l 临床意义: (1)碱性磷酸酶活性增高可见于下列疾病: a.生理性增高:妊娠期、儿童生长发育期、射入性血糖增多及紫外线照射后 b.肝胆疾病:阻塞性黄疸、急性或慢性黄疸性肝炎、肝癌、肝脓肿

碱性磷酸酶测定

碱性磷酸酶测定 一、试剂配制 1、甲苯 2、pH9.8氯化铵-氢氧化铵缓冲液:称取20g纯氯化铵,溶于 少量水(我配200ml,用一百多毫升水溶40g氯化铵), 然后加入浓氨水润洗烧杯和定容至100ml,用pH试纸测 pH,pH为10即可,不用刻意调pH。(氨水很臭,需要带 口罩在通风橱配) 3、8%铁氰化钾溶液(只能用一周,放冰箱保存):取8g铁氰 化钾,用水定容至100ml。 4、2%4-氨基安替比林(只能用一周,放冰箱保存):取2g4- 氨基安替比林,用水定容至100ml。 5、0.5%磷酸苯二钠溶液(用pH9.4硼酸缓冲液配) (1)先配制pH9.4硼酸盐缓冲液:称取4.768g硼砂(十 水合四硼酸钠)和0.44g纯氢氧化钠,用蒸馏水定容至 1000ml。(硼砂需要用电炉加热配制,硼砂用称量纸称量, 氢氧化钠需要用烧杯称量,基本不用配pH,pH试纸测为9) (2)称取5.05g磷酸苯二钠,用pH9.4硼酸缓冲液定容 至1000ml。 6、酚标准溶液: 酚溶液:称取1g苯酚用水溶至1L,保存于暗色瓶中。(苯酚还是需要水浴加热,详细配法看脲酶测定,但由于1g很难准确称量,

并在我配完发现天平托盘上结了一层苯酚,但测量后不影响标线的准确程度,R值为三个9) 酚工作液:取10ml原液用水稀释至1L(1ml中含0.01mg/mL) 二、测定过程 1、称取5g过1mm筛的土样于绿色塑料瓶(每个样需要3个 重复,前两个重复和第三个重复分开放,第三个重复为 无基质重复,每天做两个无土样重复,此重复加甲苯、 磷酸苯二钠溶液),加5滴甲苯(用滴管加5滴),盖盖 盖子后用震荡机低速震荡15min(我选择160的速度), 然后给第三个重复加入20ml蒸馏水,给前两个重复加入 20ml磷酸苯二钠,盖上盖子后充分摇匀后在37摄氏度恒 温箱培养2小时。 2、培养结束后过滤,过滤后取5ml滤液加入50ml容量瓶(用 5ml枪加,由于过滤液体没那么多,每加一个样用两遍蒸 馏水润洗枪),加水至大概20ml,再加0.25ml氯化铵-氢 氧化铵缓冲液,0.5ml4-氨基安替比林液,0.5ml铁氰化钾 溶液(用1ml枪加),每加一种都要充分摇匀。立即显色, 立即定容。 3、标准液是吸取1,3,5,7,9,11,13ml氮的工作液,移至50ml容 量瓶,加水加水至大概20ml,再加0.25ml氯化铵-氢氧 化铵缓冲液,0.5ml4-氨基安替比林液,0.5ml铁氰化钾溶 液。(和第二条同步)

医院常见化验指标的正常值及临床意义参考模板

医院常见化验指标的正常值及临床意义 一、谷丙转氨酶(ALT) 临床意义: (1)ALT活性在下列疾病可见升高 a.肝胆疾病:传染性肝炎、肝癌、肝硬化活动期、中毒性肝炎、脂肪肝、胆管炎和胆囊炎等 b.心血管疾病:心肌梗死、心肌炎、心力衰竭时的肝脏淤血、脑出血等 c.骨骼肌疾病:多发性肌炎、肌营养不良等 (2)一些药物和毒物可引起ALT活性升高,如氯丙嗪、异烟肼、奎宁、水杨酸制剂及酒精、铅、汞、四氯化碳或有机磷等 二、谷草转氨酶(AST) 临床意义: (1)AST在心肌细胞内含量较多,当心肌梗死时,血清中AST活性增高,在发病后6-12小时之显著增高,在48小时达到高峰,约在3-5天恢复正常 (2)疟疾、流行性出血热、传染性单核细胞增多症、多发性肌炎、肌营养不良、急性胰腺炎、胸膜炎、肾炎及肺炎等也可引起血清AST 活性轻度增高

(3)肝炎时,AST和ALT均可明显增高,可高与正常值上限10-30倍,这在其它疾病时少见.在黄疸期间,AST和ALT即可见增高,有助于早期诊断,由于肝中AST含量增高,往往AST>ALT,但由于ALT清除率较慢,所以不久以后即ALT>AST.恢复期一般ALT恢复较慢,持续ALT、AST增高,往往说明有慢性肝炎.AST/ALT比值如<1,则有可能是慢性迁延性肝炎.如酶活性增高,且AST/ALT比值>1,则很有可能是慢活肝.。 三、r_谷氨酰转移酶(r_GT) 临床意义: 人体各器官中r_GT的含量按下列顺序排列:肾、前列腺、胰、肝、盲肠和脑.肾脏中含量较高,但肾脏疾病时,血液中的该酶活性增高不明显.肾单位病变时,r_GT经尿排出,检验尿中酶活性可能有助于诊断肾脏疾病,r_GT主要诊断肝胆疾病.显著增高常见于:原发行肝癌、胰腺癌、阻塞性黄疸、胆汁性肝硬化、胰头癌、肝外胆管癌等.轻度或中度增高见于:传染性肝炎、慢性肝炎、肝硬化、急慢性胰腺炎、胆石症等 四、碱性磷酸酶(ALP) 临床意义: (1)碱性磷酸酶活性增高可见于下列疾病: a.生理性增高:妊娠期、儿童生长发育期、射入性血糖增多及紫外线照射后

碱性磷酸酶

碱性磷酸酶(ALP或AKP) 正常范围(连续监测法) 女性,1-12岁小于500U/L;大于15岁,40-150U/L; 男性,1-12岁小于500U/L;12-15岁,小于750U/L;大于15岁,40-150U/L。 中性粒细胞碱性磷酸酶染色 碱性磷酸酶是广泛分布于人体各脏器器官中,其中以肝脏为最多其次为肾脏,骨骼、肠、和胎盘等组织。这种酶能催化核酸分子脱掉5’磷酸基团,从而使DNA或RNA片段的5’-P 末端转换成5’-OH末端。但它不是单一的酶,而是一组同功酶。目前已发现有AKP1 、AKP2 、AKP3 、AKP4 、AKP5 与AKP6 六种同功酶。其中第1 、2 、6 种均来自肝脏,第3 种来自骨细胞,第 4 种产生于胎盘及癌细胞,而第 5 种则来自小肠绒毛上皮与成纤维细胞。血清中的ALP主要来自肝脏和骨骼。生长期儿童血清内的大多数来自成骨细胞和生长中的骨软骨细胞,少量来自肝。 化学特征 碱性磷酸酶名字 alkaline phosphatase (ALP 或AKP) 碱性磷酸酶是一种能够将对应底物去磷酸化的酶,即通过水解磷酸单酯将底物分子上的磷酸基团除去,并生成磷酸根离子和自由的羟基,这类底物包括核酸、蛋白、生物碱等。而该脱去磷酸基团的过程被称为去磷酸化或脱磷酸化。磷酸酶的作用与激酶的作用正相反,激酶是磷酸化酶,可以利用能量分子,如A TP,将磷酸基团加到对应底物分子上。碱性磷酸酶在碱性环境有最大活力,对来源于细菌中的ALP来说,其最适pH是8.0,而对来源于牛的ALP则是8.5。 ALP是一种含锌的糖蛋白,在碱性环境中(最适Ph为10左右)可以水解各种天然及人工合成的磷酸单酯化合物底物。 碱性磷酸酶偏高的原因 当肝脏受到损伤或者障碍时经淋巴道和肝窦进入血液,同时由于肝内胆道胆汁排泄障碍,反流入血而引起血清碱性磷酸酶明显升高。 碱性磷酸酶偏高的原因可以分为生理性原因和病理性原因,具体讨论如下: 1、生理性原因儿童骨骼发育期、孕妇、骨折愈合期,这些情况下骨组织中的碱性磷酸酶很活跃,所以检测时值会偏高。 2、病理性原因当人体患有阻塞性黄疸、原发性肝癌、继发性肝癌、胆汁淤积性肝炎等时,肝细胞过度制造ALP,经淋巴道和肝窦进入血液,同时由于胆汁排泄障碍,反流入血,引起血清中的碱性磷酸酶偏高。 3、骨骼有病时,例如佝偻病、骨上肿瘤、软骨病等。 4、其他不是很常见的疾病,例如肾病、严重性贫血、甲状腺机能不全、白血病等。 有何影响 碱性磷酸酶主要用于阻塞性黄疸、原发性肝癌、继发性肝癌、胆汁淤积性肝炎等的检查。它主要经淋巴道和肝窦进入血液,同时由于肝内胆道胆汁排泄障碍,反流入血而引起血清碱性磷酸酶明显升高。但由于骨组织中此酶亦很活跃。因此,孕妇、骨折愈合期、骨软化症。佝偻病、骨细胞癌、骨质疏松、肝脓肿、肝结核、肝硬变、白血病、甲状腺机能亢进

组织非特异性碱性磷酸酶活力的原位红外光谱检测-19届福州

收稿日期:2016-04-30 修订日期: xxxx 基金项目:国家自然科学基金委项目(21373101)、吉林省教育厅“十三五”科研项目(2016137)、吉林化工学院博士启动基金(2016002)资助。作者简介:任重远,原吉林大学博士生;现工作于吉林化工学院讲师 *通讯联系人E-mail: yqwu@https://www.doczj.com/doc/3f14095537.html, 组织非特异性碱性磷酸酶活力的原位红外光谱检测 任重远1, 3,Saida Mebarek 2,René Buchet 2,吴玉清3* 1 吉林化工学院生物与食品工程学院,吉林,132022 2 Laboratory ODMB UMR 5246, UniversitéLyon I, Villeurbanne France 69622 3 吉林大学超分子结构与材料国家重点实验室,长春,130012 摘要 本文以孵育17天的小鸡胚胎中,富含组织非特异性碱性磷酸酶(TNAP)的细胞外微结构——基质囊泡(MVs)作为研究模型,利用焦磷酸盐(PP i )作为TNAP 酶的天然底物,在近生理条件下,以红外(IR)光谱为监测工具,原位检测MVs 水解PP i 的反应过程,根据红外谱图特征吸收峰的变化,计算TNAP 酶活力值。 关键词:基质囊泡;生物底物;IR 光谱;原位检测;酶活力 中图分类号:O657.3 文献标识码:A 文章编号: 组织非特异性碱性磷酸酶(TNAP)是人体骨骼矿化形成的生物标志物,其酶活力的高低能够直接反映矿化形成能力的强弱。目前,测试TNAP 酶活力的主要方法是利用其外源性荧光底物——4-硝基苯磷酸(p -NPP)、在碱性条件下(pH=10.4)监测405 nm 处荧光强度来检测TNAP 的酶活力值。但是,这种测试条件与人体生理环境下的pH 值相距甚远。因此,开发一种在生理条件下、以生理化合物作为检测底物的快速、经济的检测碱性磷酸酶活性的方法,将作为热点研究。在骨骼中,具有矿化能力的成骨细胞、成牙细胞以及肥大的软骨细胞等,能够将含有高TNAP 活性表达的基质囊泡(MVs )释放至细胞外环境中,并从而引发矿化形成[1];MVs 是细胞外微观结构,能够为无机磷酸离子及钙离子提供沉积位点,是矿化产物羟磷灰石(HA )晶体形成的场所,因此MVs 也可视为新骨骼产生矿化的基本单位[2]。本文选择孵育17天的小鸡胚胎中所提取并纯化的细胞外微结构——基质囊泡(MVs),并将其作为研究模型,红外光谱技术为检测工具,利用焦磷酸盐(PP i )作为TNAP 酶的天然底物,在近生理条件下,监测MVs 水解PP i 的反应过程。同时,根据红外谱图特征吸收峰的变化,计算TNAP 酶活力值。 PP i 作为TNAP 酶的底物,水解过程中产生2个无机磷酸盐(P i )分子,因此,我们首先对反应过程中的反应物(PP i )及产物(P i )进行红外表征。实验结果显示,在红外指纹区(1300-900 cm -1),相同浓度(50 mM)的PP i 与无 P i 的红外光谱谱图存在明显的差异,而且它们相互之间不发生重叠。PP i 在1107 cm -1位置存在一个明显特征峰,而P i 在1076及990 cm -1分别存在两处明显的吸收峰,这是由于磷酸盐分子中HPO 42-反对称伸缩振动与对称伸缩振动所引起的[3]。 在37 °C ,pH 8.0反应条件下,利用红外光谱技术对MVs 水解PP i 过程实时监测,每隔5min 红外扫描一次,并持续60分钟。红外光谱检测结果显示,4000-1300 cm -1的光谱范围在整个水解过程中并未明显特征峰的变化。然而,在1300-900 cm -1的红外区域内却发生了明显的特征峰的变化(Fig.1)。 Fig. 1 Difference IR spectra of MVs with PP i (spectrum recorded at the indicated time minus that recorded immediately). Significant variation in the intensity of

碱性磷酸酶偏高的原因

碱性磷酸酶偏高的原因 当肝脏受到损伤或者障碍时经淋巴道和肝窦进入血液,同时由于肝内胆道胆汁排泄障碍,反流入血而引起血清碱性磷酸酶明显升高。[1] 碱性磷酸酶偏高的原因可以分为生理性原因和病理性原因,具体讨论如下: 1、生理性原因儿童骨骼发育期、孕妇、骨折愈合期,这些情况下骨组织中的碱性磷酸酶很活跃,所以检测时值会偏高。 2、病理性原因当人体患有阻塞性黄疸、原发性肝癌、继发性肝癌、胆汁淤积性肝炎等时,肝细胞过度制造ALP,经淋巴道和肝窦进入血液,同时由于胆汁排泄障碍,反流入血,引起血清中的碱性磷酸酶偏高。 3、骨骼有病时,例如佝偻病、骨上肿瘤、软骨病等。 4、其他不是很常见的疾病,例如肾病、严重性贫血、甲状腺机能不全、白血病等[2]。 有何影响 心肌梗死、巨幼细胞性贫血及溶血性疾病后,首先要考虑恶性肿瘤。虽不是恶性肿瘤唯一的诊断,但确实对肿瘤诊断有重要的临床意义,最好做进一步检查,防患于未然。 糖的吸收途径:

小肠绒毛上皮细胞吸收小肠内葡萄糖的方式为二级主动运输。小肠内钠离子浓度高于小肠绒毛上皮细胞内的钠离子浓度,因而两者之间存在钠离子浓度差的梯度,通过该钠离子的浓度梯度差,葡萄糖和钠离子可以从小肠内通过离子通道进入小肠绒毛上皮细胞;随着钠离子的不断流入,造成钠离子浓度梯度逐渐减小,为了维持钠离子内外的浓度梯度差以便于吸收葡萄糖,此时,小肠绒毛上皮细胞内钠离子--钾离子泵打开,消耗ATP,使小肠绒毛上皮细胞内的钠离子流回小肠中,再次形成运输葡糖糖所需要的钠离子浓度梯度。依次循环。 食物中的淀粉经唾液中的α淀粉酶作用,催化淀粉中α-1,4-糖苷键的水解,产物是葡萄糖、麦芽糖、麦芽寡糖及糊精。由于食物在口腔中停留时间短,淀粉的主要消化部位在小肠。小肠中含有胰腺分泌的α淀粉酶,催化淀粉水解成麦芽糖、麦芽三糖、α糊精和少量葡萄糖。在小肠黏膜刷状缘上,含有α糊精酶,此酶催化α极限糊精的α-1,4-糖苷键及α-1,6-糖苷键水解,使α-糊精水解成葡萄糖;刷状缘上还有麦芽糖酶可将麦芽三糖及麦芽糖水解为葡萄糖。小肠黏膜还有蔗糖酶和乳糖酶,前者将蔗糖分解成葡萄糖和果糖,后者将乳糖分解成葡萄糖和半乳糖。 糖被消化成单糖后的主要吸收部位是小肠上段,己糖尤其是葡萄糖被小肠上皮细胞摄取是一个依赖Na+的耗能的主动摄取过程,有特定的载体参与:在小肠上皮细胞刷状缘上,存在着与细胞膜结合的Na+-葡萄糖联合转运体,当Na+经转运体顺浓度梯度进入小肠上皮细胞时,葡萄糖随Na+一起被移入细胞内,这时对葡萄糖而言是逆浓度梯度转运。这个过程的能量是由Na+的浓度梯度(化学势能)提供的,它足以将葡萄糖从低浓度转运到高浓度。当小肠上皮细胞内的葡萄糖浓度增高到一定程度,葡萄糖经小肠上皮细胞基底面单向葡萄糖转运体(unidirectional glucose transporter)顺浓度梯度被动扩散到血液中。小肠上皮细胞内增多的Na+通过钠钾泵(Na+-K+ ATP酶),利用ATP提供的能量,从基底面被泵出小肠上皮细胞外,进入血液,从而降低小肠上皮细胞内Na+浓度,维持刷状缘两侧Na+的浓度梯度,使葡萄糖能不断地被转运。

碱性磷酸酶偏低是怎么回事

碱性磷酸酶偏低是怎么回事 碱性磷酸酶偏高有正常的生理原因和不正常的病理原因,而碱性磷酸酶偏低一般为病理性原因。如果检测到自身碱性磷酸酶偏低,一般如果数值接近正常参考值没多大问题,但数值大大低于碱性磷酸酶正常值的时候就应该引起注意,及时到医院就诊。那碱性磷酸酶偏低到底是怎么回事? 碱性磷酸酶偏低的原因 1、贫血引起的碱性磷酸酶偏低。 2、有可能是孕妇缺乏营养引起的,也有可能是由于疾病所致,常见的骨质流失是造成孕妇碱性磷酸酶偏低的最重要的病理性因素。 3、重症慢性肾炎引起的碱性磷酸酶偏低。 4、病毒性感染时其活性在正常范围或略低引起的碱性磷酸酶偏低。 5、营养不良、呆小症,维生素C缺乏症坏血病、乳糜泻、恶病质,遗传性低磷酸酶血症引起的碱性磷酸酶偏低。 6、除了以上几种情况之外,如果孕妇患有维生素c缺乏症、坏血病、乳糜泻和恶病质的时候,会影响碱性磷酸酶指数。 准妈妈碱性磷酸酶偏低怎么办 1、如果是因为营养不良和贫血造成的,则应该调整孕妇的饮食结构,多吃动物的肝脏,促进身体对铁质的吸收,多吃新鲜的蔬菜,通过补充叶酸,促进红血球的生成,达到辅助造血的功能。为了避免孕妇碱性磷酸酶由于缺乏营养造成偏低。孕妇要适量的多食用一些高钙食物比如说像豆类食品、奶类食品、一些水果和瘦肉。除此之外,还应该多吃含有丰富蛋白质的食物,比如牛奶、鱼虾、豆制品等等。妊娠期是一个特殊时期,一定要多加强营养,补充微量元素,可以让体内的胎儿更好的成长。 2、如果是因为肝功能导致碱性磷酸酶偏低,您应该在医生的指导下做出相应的药物服用,以安全地度过妊娠期,肝病不是一朝一夕就能治疗好的,孕期服药更是容易对宝贝的发育产生影响,建议您一定要谨遵医嘱,不要冲动行事。 3、保持好的心态是治疗的关键,碱性磷酸酶指数偏低是很多孕妇都有的现象,您不必过于担心和过度服药。焦虑和烦闷不仅不能治疗碱性磷酸酶偏低,还会让自己的身体机能下降,影响宝贝的发育。所以,在积极乐观的情绪下正常饮食、规律作息。

综述 骨代谢生化指标在乳腺癌骨转移中的意义

万方数据

万方数据

万方数据

骨代谢生化指标在乳腺癌骨转移中的意义 作者:李淑兰, 李靖若, LI Shu-lan, LI Jing-ruo 作者单位:450052,郑州大学第一附属医院乳腺外科 刊名: 中国实用医刊 英文刊名:Chinese Journal of Practical Medicine 年,卷(期):2013,40(12) 参考文献(20条) 1.Mundy GR Metastasis to bone:causes,consequences and therapeutic opportunities 2002(08) 2.Chen C An approach to the relevance between variations in hormone secretion and the incidence of hyperplasia of mammary glands and mammary cancer 2004 3.Berruti A;Dogliotti L;Gorzegno G Differential patterns of bone turnover in relation to bone pain and disease extent in bone in cancer patients with skeletal metastases 1999(8pt1) 4.Pratap J;Javed A;Languino LR The Runx2 osteogenic transcription factor regulates matrix metalloproteinase 9 in bone metastatic cancer cells and controls cell invasion[外文期刊] 2005(19) 5.Halleen JM;Alatalo SL;Janckila AJ Tartrate-resistant acid phosphatase 5 b is a specific and sensitive marker of bone resorption[外文期刊] 2003(2A) 6.Halleen JM;Alatalo SL;Suominen H Tartrate-resistant acid phosphatase 5b:a novel serum marker of bone resorption 2000(07) 7.Takahashi S Evaluation of cancer-induced bone diseases by bone metabolic marker 2006(04) 8.章火祥;谢鑫友;于小妹血清工型胶原吡啶交联终肽、骨钙素在肿瘤骨转移中的应用[期刊论文]-国际检验医学杂志 2008(11) 9.Maemura M;Iino Y;Yokoe T Serum concentration of pyridinoline cross-linked carboxyterminal telopeptide of type Ⅰcollagen in patients with metastatic breast cancer 2000(06) 10.Izumi M;Nakanishi Y;Takayama K Diagnostic value of boneturnover metabolites in the diagnosis of bone metastases in patients with lung carcinoma 2001(08) 11.Pectasides D;Farmakis D;Nikolaou M Diagnostic value of bone remodeling markers in the diagnosis of bone metastases in patients with breast cancer[外文期刊] 2005(01) 12.Bricon TL;Cay-Bellile C;Cottu P Lectin affinity electrophoresis of serum alkaline phosphatase in metastasized breast cancer 2010(01) 13.Jukkola A;Bloigu R;Holli K Postoperative PINP in serum reflects metastatic potential and poor survival in node-positive breast cancer[外文期刊] 2001(4B) 14.王抒;张军宁;乔田奎血清Ⅰ型前胶原氨基端前肽、Ⅰ型前胶原羧基端前肽、Ⅰ型胶原羧基端肽在骨转移性癌诊断中的应用[期刊论文]-中国临床医学 2011(18) 15.Tu Q;Zhang J;Fix A Targeted overexpression of BSP in osteoclasts promotes bone metastasis of breast cancer cells [外文期刊] 2009(01) 16.Zhang JH;Tang J;Wang J Over-expression of bone sialoprotein enhances bone metastasis of human breast cancer cells in a mouse model[外文期刊] 2003(04) 17.Gordon JA;Sodek J;Hunter GK Bone sialoprotein stimulates focal adhesion-related signaling pathways:role in migration and survival of breast and prostate cancer cells[外文期刊] 2009(06) 18.Bellahcène A;Bonjean K;Fohr B Bone sialoprotein mediates human endothelial cell attachment and migration and promotes angiogenesis[外文期刊] 2000(08) 19.Tang Y;Nakada MT;Kesavan P Extracelluar mtrix metalloproteinase inducer stimulates tumor angiogenesis by elevating vascular endothelial growth factor and matrix metalloproteinases[外文期刊] 2005(08) 20.Wright LM;Maloney W;Yu X Stromal cell-derived factor-1binding to its chemokine receptor CXCR4 on precursor cells promotes the chemotactic recruitment,development and survival of human osteoclasts[外文期刊] 2005(05)

相关主题
文本预览
相关文档 最新文档