当前位置:文档之家› 抽油机悬点载荷原理分析

抽油机悬点载荷原理分析

抽油机悬点载荷原理分析
抽油机悬点载荷原理分析

抽油机悬点载荷原理分析

摘要:抽油机是整个采油设备中最重要的一个环节,而分析抽油机悬点所受载荷,对于我们调节抽油机的工作参数,保证抽油机在最佳工作状态下运行是一项必要的工作。此外,对于分析系统耗功,通过减小悬点载荷提高系统效率有一定的帮助。

关键词:抽油机工作参数悬点载荷系统效率

抽油机是整个采油设备中最重要的一个环节,而分析抽油机悬点所受载荷,对于我们分析系统耗功,提高系统效率有一定的帮助。通过分析我们得出抽油机悬点载荷主要有以下几部分组成的:

1. 抽油杆的重力产生的悬点静载荷

在上、下冲程时始终作用在悬点上,其方向向下,故增加悬点载荷。

2. 液柱的重力及对抽油杆柱的浮力产生的悬点载荷

3. 振动载荷与惯性载荷

1)抽油杆柱的振动引起的悬点载荷

2)抽油杆柱与液柱的惯性产生的悬点载荷

4. 摩擦载荷

抽油机在工作时,作用在悬点上的摩擦载荷由以下五部分组成。

1)抽油杆柱与油管的摩擦

该摩擦力在上、下冲程中都存在,其大小在直井内通常不超过抽油杆自身重力的1.5%。

2)柱塞与衬套之间的摩擦力

该摩擦力在上、下冲程中都存在,当泵径不超过70mm时,其值小于1717N。

3)抽油杆柱与液柱之间的摩擦力

抽油杆柱与液柱之间的摩擦力发生在下冲程,其方向向上,是稠油井内抽油杆下行遇阻的主要原因。

抽油机悬点运动分析

东北石油大学 力学技能训练 2015 年3月29日

东北石油大学力学技能训练任务书 课程力学技能训练 题目CYJ12-3.6-73HB游梁式抽油机悬点运动分析及其载荷分析 专业工程力学姓名董日治学号110403240128 主要内容、基本要求、主要参考资料等 将要进行的力学技能训练具体的内容、要求、参考资料如下: 1.主要内容: (1)深入学习和研究常规型游梁式抽油机悬点运动分析及其载荷分析方面理论知识。 (2)利用所学的计算机基础知识独立完成编写出计算机程序并且上机进行相应计算。 (3)对于计算结果进行比较分析,通过反复计算,得到正确的计算结果。 (4)对于计算结果进行详细分析,得到相应的正确结论。 2.基本要求: (1)独立思考,刻苦钻研,掌握理论研究方法和熟练计算机操作技巧; (2)绘制出正确的指定型号游梁式抽油机悬点运动曲线及理论示功图; (3)撰写一份规范的2万字左右的力学技能训练报告。 3.主要参考资料: (1)东北石油大学电化教学中心.采油工艺实习用光盘. 1999. (2)董世民.抽油机设计计算与计算机实现[M].石油工业出版社.1987:11-21. (3)万仁博,罗英俊.采油技术手册(第四分册)[M].石油工业出版社.1993:36-52. 完成期限2015.3.9-2015.3.29 教师负责人 专业负责人 2015 年 3 月 5 日

摘要 采油是石油工程中重要的组成部分它的重要性不亚于钻井,钻井把石油和地面连通了,而采油才是把石油送到了地面。而直接影响采油质量和进度的就是采油技术和设备。 随着抽油机制造技术的不断发展进步,自20世纪90年代后,陆续开发了不同形式的以节能为目的的抽油机,节能抽油机仍然属于普通式游梁式抽油机结构。抽油机是抽油机—深井泵抽油系统中的主要地面设备。游梁式抽油机主要由游梁-连杆-曲柄机构、减速箱、动力设备、辅助设备等四大部份组成。工作时,动力机将高速旋转动动通过皮带和减速箱传给曲柄轴,带动曲柄轴做低速旋转运动,曲柄通过连杆经横梁带动游梁作上下往摆动,挂在驴头上的悬绳器便带动抽油杆作上下往复动动。 掌握抽油机悬点的运动规律(悬点的位移、速度和加速度)是研究抽油装置动力学、确定抽油装置的基本参数及运行抽油装置设计的基础,因此本文运用了三种方法分析了悬点的运动规律,即简化为简谐运动时悬点的运动规律,简化为曲柄滑块机构时悬点的运动规律,还有悬点运动规律的精确分析。 关键词:采油计算,采油设备,载荷计算

抽油机悬点运动规律及悬点载荷

第二节抽油机悬点运动规律及悬点载荷 一、教学目的 了解抽油机悬点的运动规律,抽油机悬点静载和动载的计算方法以及最大载荷、最小载荷的位置及其计算值。 二、教学重点、难点 教学重点: 1悬点运动规律; 2、载荷计算。 -| I * 教学难点: 1最大载荷和最小载荷的计算。 三、教法说明 课堂讲授并辅助以多媒体课件展示相关的图形和动画。 四、教学内容 本节主要介绍两个方面的问题: 1.抽油机悬点运动规律. 2.抽油机悬点载荷计算. (一)抽油机悬点运动规律 1、简化为简谐运动时悬点运动规律 假设条件:r/l?0、r/b?0 游梁和连杆的连接点B的运动可看做简谐运动,即认为B点的运动规律和D点做圆运动时在垂直中心线上的投影(C点)的运动规律相同。

则B点经过t时间(曲柄转角? )时位移为: S B = r(1 cos ) = r(1 - cos t) ■ 图3-13抽油机四连杆机构简图 以下死点为坐标零点,向上为坐 标正方向,则悬点A的位移为: a a SA=b S B = b r(i°S 7 V A'S A,仙计dt b w A点的速度为: 图3-14筒谐运动时悬点位移. 速度、加遠度吨线 7? 丄 ■ A/ \ 〉等直4/y *\P >.!亠I 1L / 1 *\ira A点的加速度为: W 2rcos t 2、简化为曲柄滑块机构时悬点运动规律 假设条件:° r门:14 把B点绕游梁支点的弧线运动近似地 看做直线运动,则可把抽油机的运动简化为 曲柄滑块运动。 D ffl 曲柄滑块机构简图

A 点位移: 扎 2 1 a S A = r(1 - cos —sin ) 2 b A 点速度: (二)抽油机悬点载荷计算 1、悬点所承受的载荷 (1)静载荷 V A 严 dt r (sin a 护2)b A 点加速度: W“;; 2 r(cos a 2 S .2 max 180 2 (1 十) 图3-n 悬点加速度变化庙线 1-按简谐运动计算:A 精确计算: 3-按曲柄滑块机构计算 + 扎 cos2>) — b S 2 (1 - ) l a m ax 图3-氐悬点速度变化曲线 1-按筒谐运动计算;A 精确计算; 3-按曲柄滑块机构计算

浅论定向井抽油机悬点最大载荷计算方法

浅论定向井抽油机悬点最大载荷计算方法 发表时间:2019-11-14T10:00:08.527Z 来源:《科学与技术》2019年第12期作者:张明凡 [导读] 定向井悬点载荷的方法,其基本原理都是在井眼中取一小单元长度进行受力分析。这种受力分析考虑了井斜对杆柱受力状况的影响,然后按整个抽油杆长度进行积分叠加来计算悬点载荷。 摘要:定向井悬点载荷的方法,其基本原理都是在井眼中取一小单元长度进行受力分析。这种受力分析考虑了井斜对杆柱受力状况的影响,然后按整个抽油杆长度进行积分叠加来计算悬点载荷。这种方法理论上比较科学、合理,但在实际应用中却比较繁琐,一般情况下必须借助计算机才能实现,而且在计算时必须具备准确的井斜资料。这两个要求给现场操作带来了很大的不便。能否在直井计算悬点载荷公式的基础上进行一定的修正,方便应用于现场计算,经过多井次抽油机悬点载荷的计算和现场实测示功图数据的分析,认为完全可以做到这一点。 关键词:定向井;悬点载荷;杆柱受力;经验系数修正 近年来,由于钻井及采油技术的快速发展,定向井在油田中的应用越来越普遍。特别是一些地理位置比较特殊的地区,利用定向井进行开发,大大降低了成本,方便了管理。采油厂2018—2019年产能油井中定向井和直井相比,定向井具有复杂的井身剖面,抽油杆柱和液柱在其中的受力状况和直井有所不同。所以,其悬点载荷的计算方法也应该有所区别。定向井的载荷计算是一个相当复杂的问题。目前所采用的方法是取井筒中一小单元进行受力分析,然后逐段叠加。这一过程需要输入井斜数据后利用计算机辅助进行,在现场用中很不方便,且由于受各种因素的影响,其计算结果仍然是一个近似值。通过对现场多口井实测载荷的分析比较认为,传统的直井载荷计算公式经过一定的经验系数修正后仍然可以应用于定向井载荷的近似计算。 1直井最大载荷计算 最大载荷发生在抽油机的上冲程,主要由抽油杆的重量、液柱重量两大部分组成。其次还有抽油杆及液体的惯性载荷、摩擦载荷(包括杆柱与油管的摩擦力、柱塞与衬套之间的摩擦力、液柱与油管之间的摩擦力),另外还有井口回压(增加载荷)及沉没压力(减小载荷)的影响。目前,国内外常用的直井最大载荷计算公式有以下几种: 式中:Pmax—抽油机悬点最大载荷,N;Wr—抽油杆的重量,N; Wr'—抽油杆在液体中的重量,N; Wl—液柱重力产生的悬点载荷(扣除抽油杆占据的体积),N; Wl'—活塞面积上液柱的重量,N;s—冲程,m; n—冲数,次/min。 所有公式都考虑了液柱载荷、抽油杆柱载荷和抽油杆柱的惯性载荷。但公式(1)、式(2)考虑的是作用在活塞整个截面积上的液柱载荷,公式(3)考虑的是作用在活塞环形面积上的液柱载荷。同其它公式相比公式(1)、式(2)考虑了摩擦载荷,公式(2)、式(3)考虑了液柱的惯性载荷。公式把曲柄连杆运动简化为简谐运动,即r=0。某采油厂各区块下泵不深,多数井采用长冲程、慢冲次抽油,原油黏度不高,比重也不大,因此直井不用考虑摩擦力和液柱的惯性载荷。从理论上讲,公式(5)比较适合该厂抽油机载荷的计算。表1是用公式(5)计算的三个不同区块98口井悬点最大载荷同实测载荷的对比情况。 从表1中可以看出,直井的最大载荷计算与实测值相比,绝对误差仅为0.13kN,符合率为99.2%,也就是说,计算值与实测值非常接近,完全可以用公式(5)来计算直井悬点最大载荷。 2 定向井最大载荷计算 目前,定向井的悬点载荷计算一般采用下面的方法:把井眼轴线看成是由许多段曲率半径不等的圆弧曲线组成,相邻两点为一段,考虑到横向压力、轴向拉力、杆管、杆液之间的摩擦力等,以抽油泵活塞上端面对应点为起始点,通过逐段计算每段上端载荷,直到算出悬点最大载荷。这种算法虽然从理论上是比较合理的,考虑了定向井的特殊情况,但是在实际应用中,井中的各种复杂因素不可能考虑全面,所以其计算结果仍然只能是一个近似值。而主要的问题是以上的计算方法在现场应用中很不方便。从大量的现场实测资料来看,可以用直井的经验公式来近似地计算定向井的载荷,这种计算方法完全可以满足现场应用的需要。 通常情况下,人们认为定向井和直井相比,因井眼轨迹的变化,各种摩擦力增大,从而会使悬点最大载荷增大一定的幅度。表2是用公式(5)和积分叠加的方法计算的两个区块49口井悬点最大载荷同实测载荷的对比情况。 从计算结果可以看出,用积分叠加方法计算的定向井最大载荷和实测值非常接近;用公式(5)计算的定向井的最大载荷与实测值相比,有一定偏差,绝对误差为-1.99kN,相对误差为5.66%,但相差幅度并不是很大。分析原因,一方面,大多数井的井眼轨迹变化是比较缓慢

抽油机悬点载荷的计算

WORD格式 抽油机悬点运动规律及载荷分析 一、游梁式抽油机悬点运动规律 四连杆机构:以游梁支架轴和曲柄轴的连线为固定杆,以曲柄、连杆和游梁为三个活动 杆所组成的四连杆机构。如图3-21所示, 抽油机在一个冲程中,悬点的速度和加速度不仅大小在变化,而且方向也在不断改变。上冲程前半个冲程为加速运动,加速度方向向上;后半个冲程为减速运动,加速度方向向下。下冲程前半个冲程为加速运动,加速度方向向下;后半个冲程为减速运动,加速度方向向上。 其最大速度发生在下、下冲程的中点,在上、下死点处速度为零;其最大加速度发生在上、下死点处,在上、下冲程的中点加速度为零。 上下死点处的最大加速度分别为: (3-12)

WORD格式 (3-13) 二、抽油机悬点载荷计算与分析 (一)静载荷 1.抽油杆柱载荷 上冲程,悬点承受着整个抽油杆柱的重力为: =(3-21) 对于多级抽油杆: 式中——抽油杆柱的重力,N; 2 ——抽油杆的截面积,m; L——抽油杆柱的长度,m; ——抽油杆材料(钢)的密度,。 ——每米抽油杆的平均质量,kg/m;(可查表3-1) ——用多级组合杆柱时各级抽油杆柱的每米平均质量,kg/m; ——用多级组合杆柱时各级抽油杆柱的长度,m。 下冲程,作用在悬点上的杆柱载荷等于抽油杆柱的重力减去杆柱受到的浮力: 或 (3-23) 式中——抽油杆柱在液体中的重力,N; ――抽油杆的失重系数 ——抽汲液体的密度,;当原油含水时,可用下式近似计算:

WORD格式 (3-24)式中——原油密度,; ——水的密度,; ——原油含水率,小数。 2.液柱载荷 上冲程作用在悬点上的液柱载荷为: (3-26)式中——液柱载荷,N;其它符号同前。 下冲程液柱载荷不作用在悬点上。 3.上、下冲程中在杆柱和管柱之间相互转移的载荷 — =+— = ,简称为转移载荷。 由以上推导可知,上冲程的静载荷: (3-27) 上、下冲程静载荷随悬点位移的变化曲线: 图3-29静载荷随悬点冲程变化的曲线 4.其它静载荷 1)沉没压力对悬点载荷的影响

抽油机悬点载荷的计算

抽油机悬点运动规律及载荷分析 一、游梁式抽油机悬点运动规律 四连杆机构:以游梁支架轴和曲柄轴的连线为固定杆,以曲柄、连杆和游梁为三个活动 杆所组成的四连杆机构。如图3-21所示, 抽油机在一个冲程中,悬点的速度和加速度不仅大小在变化,而且方向也在不断改变。上冲程前半个冲程为加速运动,加速度方向向上;后半个冲程为减速运动,加速度方向向下。下冲程前半个冲程为加速运动,加速度方向向下;后半个冲程为减速运动,加速度方向向上。 其最大速度发生在下、下冲程的中点,在上、下死点处速度为零;其最大加速度发生在上、下死点处,在上、下冲程的中点加速度为零。 上下死点处的最大加速度分别为: (3-12)

(3-13) 二、抽油机悬点载荷计算与分析 (一)静载荷 1.抽油杆柱载荷 上冲程,悬点承受着整个抽油杆柱的重力为: =(3-21) 对于多级抽油杆: 式中——抽油杆柱的重力,N; ——抽油杆的截面积,m2; L——抽油杆柱的长度,m; ——抽油杆材料(钢)的密度,。 ——每米抽油杆的平均质量,kg/m;(可查表3-1) ——用多级组合杆柱时各级抽油杆柱的每米平均质量,kg/m; ——用多级组合杆柱时各级抽油杆柱的长度,m。 下冲程,作用在悬点上的杆柱载荷等于抽油杆柱的重力减去杆柱受到的浮力: 或 (3-23) 式中——抽油杆柱在液体中的重力,N; ――抽油杆的失重系数 ——抽汲液体的密度,;当原油含水时,可用下式近似计算:

(3-24)式中——原油密度,; ——水的密度,; ——原油含水率,小数。 2.液柱载荷 上冲程作用在悬点上的液柱载荷为: (3-26)式中——液柱载荷,N;其它符号同前。 下冲程液柱载荷不作用在悬点上。 3.上、下冲程中在杆柱和管柱之间相互转移的载荷 — =+— = ,简称为转移载荷。 由以上推导可知,上冲程的静载荷: (3-27) 上、下冲程静载荷随悬点位移的变化曲线: 图3-29 静载荷随悬点冲程变化的曲线 4.其它静载荷 1)沉没压力对悬点载荷的影响

抽油机悬点运动规律及载荷分析

第二节 抽油机悬点运动规律及载荷分析 一、游梁式抽油机悬点运动规律 四连杆机构:以游梁支架轴和曲柄轴的连线为固定杆,以曲柄、连杆和游梁为三个活动杆所组成的四连杆机构。如图3-21所示, 抽油机在一个冲程中,悬点的速度和加速度不仅大小在变化,而且方向也在不断改变。上冲程前半个冲程为加速运动,加速度方向向上;后半个冲程为减速运动,加速度方向向下。下冲程前半个冲程为加速运动,加速度方向向下;后半个冲程为减速运动,加速度方向向上。 其最大速度发生在下、下冲程的中点,在上、下死点处速度为零;其最大加速度发生在上、下死点处,在上、下冲程的中点加速度为零。 上下死点处的最大加速度分别为: )1(220max l r s a += =ω? (3-12) )1(22max l r s a --==ωπ ? (3-13) 二、抽油机悬点载荷计算与分析 (一)静载荷 1.抽油杆柱载荷 上冲程,悬点承受着整个抽油杆柱的重力为: g L f W s r r ρ= =Lg q r (3-21) 对于多级抽油杆: g ┅L q L q W r r r )(2211++=

式中 r W —— 抽油杆柱的重力,N ; r f —— 抽油杆的截面积,m 2; L —— 抽油杆柱的长度,m ; s ρ—— 抽油杆材料(钢)的密度,3/7850m kg s =ρ。 r q —— 每米抽油杆的平均质量,kg/m ;(可查表3-1) 21r r 、q q —— 用多级组合杆柱时各级抽油杆柱的每米平均质量,kg/m ; 21、L L —— 用多级组合杆柱时各级抽油杆柱的长度,m 。 下冲程,作用在悬点上的杆柱载荷等于抽油杆柱的重力减去杆柱受到的浮力: g L f W l s r r )(ρρ-='或b W Lgb q W r r r ==' (3-23) 式中 'r W —— 抽油杆柱在液体中的重力,N ; s l s b ρρρ-=――抽油杆的失重系数 l ρ—— 抽汲液体的密度,3/m kg ;当原油含水时,可用下式近似计算: w w w o l f f ρρρ+-=)1( (3-24) 式中 o ρ—— 原油密度,3/m kg ; w ρ—— 水的密度,3/m kg ; w f —— 原油含水率,小数。 2.液柱载荷 上冲程作用在悬点上的液柱载荷为: g L f f W l r p l ρ)(-= (3-26) 式中 l W —— 液柱载荷,N ;其它符号同前。 下冲程液柱载荷不作用在悬点上。 3.上、下冲程中在杆柱和管柱之间相互转移的载荷

-游梁式抽油机运动学分析

游梁式抽油机的工作原理 游梁式抽油机是有杆抽油系统的地面驱动装置,它由动力机、减速器、机架和连杆机构等部分组成。减速器将动力机的高速旋转运动变为曲柄轴的低速旋转运动;曲柄轴的低速旋转圆周运动由连杆机构变为驴头悬绳器的上下往复直线运动,从而带动抽油泵进行抽油工作。游梁式抽油机是机械采油设备中问世最早的抽油机机种,基本结构如图1所示: 图1 常规游梁式抽油机基本机构图 1-刹车装置2-电动机3-减速器皮带轮4-减速器5-动力输入轴6-中间轴7-输出轴8-曲柄9-曲柄销10-支架11-曲柄平衡块12-连杆13-横梁轴14-横梁15-游梁平衡块16-游梁17-支架轴18-驴头19-悬绳器20-底座

常规游梁式抽油机的运动分析(下图为ppt 演示文稿,请双击打开相关内容) 常规游梁式抽油机的运动分析 常规游梁式抽油机的悬点载荷计算 一、抽油机悬点载荷简介 当游梁式抽油机通过抽油杆的上下往复运动带动井下抽油泵工作时,在抽油机的驴头悬点上作用有下列几类载荷: (1)静载荷包括抽油杆自重以及油管内外的液体静压作用于抽油泵柱塞上的液柱静载荷。 (2)动载荷由于抽油杆柱和油管内的液体作非匀速运动而产生的抽油杆柱动载荷以及作用于抽油泵柱塞上的液柱动载荷。 (3)各种摩擦阻力产生的载荷包括光杆和盘根盒间的摩擦力、抽油杆和油液间的摩擦力、抽油杆(尤其是接箍)和油管间的摩擦力、油液在杆管所形成的环形空间中的流动阻力、油液通

过泵阀和柱塞内孔的局部水力阻力,还有柱塞和泵筒之间的摩擦阻力。 抽油机有杆泵运动1个周期内的4个阶段 1—抽油杆; 2—油管; 3—泵筒 有杆泵的具体运行过程: 1.电机提供动力给齿轮箱。齿轮箱降低输出角速度同时提高输出转矩。 2.曲柄逆时针转动同时带动配重块。曲柄是通过联接杆连接游梁的,游梁提升和沉降活塞。驴头在最低位置的时候,标志着下冲程的止点。可以注意到曲柄和连接杆此时在一条直线上。 3.上冲程提升驴头和活塞,随之油背举升。在上止点,所有的铰链在一条直线。这种几种结构局限了连接杆的长度。 4.活塞和球阀。球阀是液体流动驱动开闭的。 上冲程中,动阀关闭静阀开启。活塞上部的和内部的液体从套管中被提升出去,同时外部液体补充进来。下冲程,动阀开启阀法关闭。液体流入活塞而且没有液体回流油井。 二、悬点载荷计算 j d W W W =+ j W ---悬点静载荷; d W ---悬点动载荷; (1)悬点静载荷 1.抽油杆自重计算 在上下冲程中,抽油杆自重始终作用于抽油机驴头悬点上,是一个不变的载荷,它可以用下列式子计算: '/1000r r r p r p W A gL q L ρ== 'r W -抽油杆自重,kN; p L -抽油杆总长度,m;r A -抽油杆的截面积,m 2;g 重力加速度,9.81N/kg 2;r ρ-抽油杆的密度,kg/m 3;r q -每米抽油杆自重,kN/m 。 对于组合杆柱,如果级数为K,则可用下式计算: r q =1k ri i i q ε=∑ ri q ---第i 级抽油杆住每米自重,KN/m; i ε----第i 级杆柱长度与总长之比值; 由于抽油杆全部沉没在油管内的液体之中,所以在计算悬点静载荷时,要考虑液体浮力的影响。用r W 代表抽油杆柱在液体中的自重,则它可以用下式计算:

新型抽油机载荷、扭矩计算公式

新型抽油机载荷、扭矩计算公式 及平衡调整方法 一、抽油机载荷、扭矩计算公式 1、双驴头抽油机: 悬点最大载荷:P max =(P ’液 + P ’杆 )×(1+Sn 2/2390) kN 悬点最小载荷:P min =P ’杆 (1-Sn 2/1470) kN 减速器曲柄轴最大扭矩: M max =0.22S (P max -P min ) kN.m 2、高原皮带式抽油机: 悬点最大载荷: P max = P ’液 + P ’杆 kN 悬点最小载荷: P min = P ’杆 kN 减速器输出轴最大扭矩:M max = 0.5R(P max -P min )= 0.5R P ’液 kN.m 平衡箱总配重:P 配 = 0.5(P max +P min ) kN 式中: P ’液 —抽油泵柱塞全断面上的液柱重力(沉没度太大时要考虑动液面深度), kN ; ☆ P ’液 =ρf gLA Q ρf —井液密度,t/m 3; g —重力加速度(=9.81m/s 2); A Q —柱塞全断面积,m 2; L ——下泵深度,m ; P ’杆 —抽油杆在井液中的重力,kN ; ☆ P ’杆 =9.81×10-3L P 杆 (1-ρf /ρr ) P 杆 —每米抽油杆在空气中的重量,kg ρr —抽油杆密度(对钢杆ρr =7.85t/m 3) S —冲程长度,m ; n —冲程次数, min -1 R —悬绳器驱动摩擦轮节圆半径,m ; 二、双驴头抽油机平衡调整 双驴头抽油机安装前应根据油井井况和抽油机工况,初步估算平衡块的组合和平衡块的位置,以避免出现严重的不平衡现象。投产后,应根据曲柄轴实际净扭矩情况,调整平衡,以保证抽油机在最佳状态下工作,现介绍两种平衡调整的计算方法。 1、安装前初步估算平衡 (1)估算所需的平衡力矩M 平(据已有数据选用三式之一)

常用抽油机知识介绍

辽河油田常用抽油机知识介绍 第一节抽油机基础知识 1.1 概述 当地层具有的能量不足以将原油提升到地面时,就需要通过能量的转换来达到目的。有杆抽油设备(抽油机-抽油泵装置)因结构简单、制造容易、使用方便而成为目前应用最广泛的能量转换装置。 有杆抽油设备主要由三部分组成,一是地面部分;二是井下部分;三是联系地面和井下的中间部分。它是由地面部分(机械)将运动和动力进行转换后,通过中间部分(杆柱或管柱)传递给井下部分(泵),再通过井下部分(泵)将能量传递给原油,完成将原油提升到地面的任务。 游梁式抽油机因具有适应野外无人看管、全天候运转的条件和使用可靠等特点,从抽油机发展的开始到现在,它都是应用最广泛的抽油机。但随着井深和产量的不断增加,需要抽油机的能力就越大,游梁式抽油机重量大的缺点就越明显。为了减轻抽油机的重量,提升节能效果,近二十年来也大力推广应用了一些无游梁式抽油机。 1.2 抽油机的原理、结构、特点、分类及应用 按照抽油机结构和原理的不同,抽油机可分为游梁式抽油机和无游梁式抽油机。 一、游梁式抽油机 游梁式抽油机的基本特点是结构简单,制造容易,使用方便,特别是它可以长期在油田全天候运转,使用可靠。因此,尽管它存在驴头悬点运动的加速度较大、平衡效果较差、效率较低、在长冲程时体积较大和笨重等缺点,但仍然是目前应用最广泛的抽油机。 游梁式抽油机的工作 原理是:由动力机供给动力, 经减速器将动力机的高速转 动变为抽油机曲柄的低速转 动,并由曲柄—连杆—游梁 机构将旋转运动变为抽油机 驴头的上、下往复运动,经 悬绳器总成带动深井泵工 作。 游梁式抽油机的主要 部件有:提供动力的动力机; 传递动力并降低速度的减速 器;传递动力并将旋转运动 变成往复运动的四杆机构 (曲柄、连杆、游梁、支架及横梁和底座);传递动力并保证光杆做往复直线运动的驴头及悬绳器总成;使抽油机能停留在任意位置的刹车装置以及为使动力机能在一个较小的负载变化围工作的平衡装置等。 游梁式抽油机根据结构型式不同可分为:

抽油机悬点运动规律及载荷分析

第二节抽油机悬点运动规律及载荷分析 一、游梁式抽油机悬点运动规律 四连杆机构:以游梁支架轴和曲柄轴的连线为固定杆,以曲柄、连杆和游梁为三个活动杆所组成的四连杆机构。如图3-21所示, 抽油机在一个冲程中,悬点的速度和加速度不仅大小在变化,而且方向也在不断改变。上冲程前半个冲程为加速运动,加速度方向向上;后半个冲程为减速运动,加速度方向向下。下冲程前半个冲程为加速运动,加速度方向向下;后半个冲程为减速运动,加速度方向向上。 其最大速度发生在下、下冲程的中点,在上、下死点处速度为零;其最大加速度发生在上、下死点处,在上、下冲程的中点加速度为零。 上下死点处的最大加速度分别为: sr2?(?1?)a(3-12)max2l?0?sr2?(1??)a?(3-13)抽油机悬点载荷计算与分析二、(一)静载荷 max2l??? 1.抽油杆柱载荷 上冲程,悬点承受着整个抽油杆柱的重力为: ?gfLW?qLg(3-21)=srrr对于多级抽油杆: ┅)?Lg?Lq(?Wq22r11rr ——抽油杆柱的重力,N;式中W r2——;抽油杆的截面积,m f r——抽油杆柱的长度,m;L 3——??。抽油杆材料(钢)的密度,m?7850kg/ss——每米抽油杆的平均质量,

kg/m;(可查表3-1)q r——、q用多级组合杆柱时各级抽油杆柱的每米平均质量,kg/m;q2r1r、L——用多级组合杆柱时各级抽油杆柱的长度,m。L21下冲程,作用在悬点上的杆柱载荷等于抽油杆柱的重力减去杆柱受到的浮力: ??)gL(?W??f或(3-23)bWqLgb??W?lrsrrrr——抽油杆柱在液体中的重力,N;式中?W r??l?s?b――抽油杆的失重系数?s3——?mkg/;当原油含水时,可用下式近似计算:抽汲液体的密度,l???f)?(1??f (3-24)wlwow3——?m/kg;原油密度,式中o3——?mkg/;水的密度,w——f 原油含水率,小数。w2.液柱载荷 上冲程作用在悬点上的液柱载荷为: ?gL?f)W?(f(3-26)llrp——W液柱载荷,N;其它符号同前。式中l下冲程液柱载荷不作用在悬点上。 .上、下冲程中在杆柱和管柱之间相互转移的载荷3. —W???WW?W llrr?????gL(f?f)gLfg?LfLg()f—==+lrplplrsrs,简称为转移载荷。?W l由以上推导可知,上冲程的静载荷: (3-27) ??W??WW?W lrrl上、下冲程静载荷随悬点位移的变化曲线: 图3-29 静载荷随悬点冲程变化的曲线 4.其它静载荷 1)沉没压力对悬点载荷的影响 沉没压力:泵的吸入口沉没在液面以下一定深度,该处的压力称为沉没压力。吸入压力:上冲程中,在沉没压力作用下,井内液体克服泵的入口设备的阻力进入泵内,此时液流具有的压力称吸入压力。 吸入压力作用在活塞底部而产生向上的载荷为: F?Pf?(p??p)f(3-28)psiinp——pF作用在活塞上产生的载荷,N;吸入压力式中ni——p吸入压力,Pa n2f;——活塞截面积,m P——p沉没压力,Pa;s——p?液流通过泵的入口设备产生的压力降,Pa;i下冲程中,吸入阀关闭,沉没压力对悬点载荷没有影响。2)井口回压对悬点载荷的影响 F?p(f?f))上冲程增加悬点载荷:3-29(rpBBu 下冲程减小悬点载荷:(3-30)fF?p rBdB——井口回压在上冲程中造成的悬点载荷,N;式中F Bu——井口回压在下冲程中造成的悬点载荷,N;F Bd ——井口回压,Pa;其它符号同前。p B由于沉没压力和井口回压在上冲程中造

抽油机示功图

抽油机示功图浅析

————————————————————————————————作者:————————————————————————————————日期:

抽油机地面示功图浅析 摘要:抽油机地面示功图是将抽油机井光杆悬点载荷变化所作的功简化成直观封 闭的几何图形,是光杆悬点载荷在动态生产过程中的直观反映,是油田开发技术 人员必须掌握的分析方法。通过示功图的正确分析评价,可诊断抽油机井是否正 常生产。本文通过对地面示功图原理进行阐述,结合现场实际,对井下生产情况 进行解释分析,应用地面示功图解决现场实际问题,同时提出地面示功图的发展 方向,为油田开发现场分析诊断提供可借鉴性依据。 关键词:抽油机、示功图、应用、发展 1、抽油机悬点载荷 在抽油机生产过程中,抽油机驴头要承受多种载荷,除了抽油杆柱自重、液柱重量等静载荷外,还有惯性载荷、振动载荷等动载荷以及各种摩擦载荷。在抽油机驴头悬点上下往复运动过程中,上述各类载荷均呈周期性变化。反映悬点载荷随其位移变化规律的图形称为地面(光杆)示功图(力×位移=功)。取得地面示功图简单准确的办法是利用诊断仪对实际抽油机进行实测(目前萨中油田主要采用金时和哈工大的诊断仪器)。利用实测示功图可求得悬点实际载荷,用于机、杆、泵的工作状况分析(诊断)。 1.1、悬点静载荷及静载荷理论示功图 1.1.1、上冲程悬点静载荷 在上冲程中理想状态下,由于上、下压差的作用,游动凡尔关闭,柱塞上下流体不连通,产生悬点静载荷的力包括抽油杆柱重力和柱塞上、下流体压力。1.1.1.1、抽油杆柱重力 上冲程作用在悬点上的抽油杆柱重力为它在空气中的重力。 W r=A rρr gL p(1) W r——抽油杆柱在空气中的重量,KN; A r——抽油杆截面积,m2; ρr——抽油杆密度,t/m3(钢杆为7.85 t/m3); g——重力加速度,m/s2(一般为9.81 m/s2); L p——抽油杆柱长度(即泵深),m; 1.1.1.2、作用于柱塞上部环行面积上的流体压力(泵排出压力) 对于无气的举升液柱,此压力为井口回压与液柱静压之和,即

采油工程—— 抽油机悬点运动规律及载荷分析

第三章 有杆泵采油 第二节 抽油机悬点运动规律及载荷分析 一、游梁式抽油机悬点运动规律 四连杆机构:以游梁支架轴和曲柄轴的连线为固定杆,以曲柄、连杆和游梁为三个活动杆所组成的四连杆机构。如图3-21所示, 抽油机在一个冲程中,悬点的速度和加速度不仅大小在变化,而且方向也在不断改变。上冲程前半个冲程为加速运动,加速度方向向上;后半个冲程为减速运动,加速度方向向下。下冲程前半个冲程为加速运动,加速度方向向下;后半个冲程为减速运动,加速度方向向上。 其最大速度发生在下、下冲程的中点,在上、下死点处速度为零;其最大加速度发生在上、下死点处,在上、下冲程的中点加速度为零。 上下死点处的最大加速度分别为: )1(220max l r s a += =ω? (3-12) )1(22max l r s a --==ωπ ? (3-13) 二、抽油机悬点载荷计算与分析 (一)静载荷 1.抽油杆柱载荷 上冲程,悬点承受着整个抽油杆柱的重力为: g L f W s r r ρ= =Lg q r (3-21)

对于多级抽油杆: g ┅L q L q W r r r )(2211++= 式中 r W —— 抽油杆柱的重力,N ; r f —— 抽油杆的截面积,m 2; L —— 抽油杆柱的长度,m ; s ρ—— 抽油杆材料(钢)的密度,3/7850m kg s =ρ。 r q —— 每米抽油杆的平均质量,kg/m ;(可查表3-1) 21r r 、q q —— 用多级组合杆柱时各级抽油杆柱的每米平均质量,kg/m ; 21、L L —— 用多级组合杆柱时各级抽油杆柱的长度,m 。 下冲程,作用在悬点上的杆柱载荷等于抽油杆柱的重力减去杆柱受到的浮力: g L f W l s r r )(ρρ-='或b W Lgb q W r r r ==' (3-23) 式中 'r W —— 抽油杆柱在液体中的重力,N ; s l s b ρρρ-=――抽油杆的失重系数 l ρ—— 抽汲液体的密度,3/m kg ;当原油含水时,可用下式近似计算: w w w o l f f ρρρ+-=)1( (3-24) 式中 o ρ—— 原油密度,3/m kg ; w ρ—— 水的密度,3/m kg ; w f —— 原油含水率,小数。 2.液柱载荷 上冲程作用在悬点上的液柱载荷为: g L f f W l r p l ρ)(-= (3-26) 式中 l W —— 液柱载荷,N ;其它符号同前。

相关主题
文本预览
相关文档 最新文档