当前位置:文档之家› 变频器开关电源故障检修五例

变频器开关电源故障检修五例

变频器开关电源故障检修五例
变频器开关电源故障检修五例

变频器开关电源故障检修五例

例一:康沃CVF-G1 型开关电源故障检修

接手了3台康沃CVF-G1型小功率机器,故障皆为开关电源无输出,无屏显。该机开关电源的IC为3844B,手头无此型号的IC,况不可能3台机器都是3844B 损坏了吧?故先从其外围电路查起。

所有开关电源不外乎有以下几条支路:1、上电启动支路,往往由数只较大阻值的电阻串联而成,上电时将500V直流引至3844B供电脚,提供开关管的起振电压;2、正反馈和工作电源支路,由反馈绕组和整流滤波电路组成(有的机器由两绕组供电支路组成,有的兼用。);3、稳压支路,一般由次级5V供电支路,将5V电压的变化与一基准电压相比较,其变量由光耦反馈到初级3844B 的2脚,但该机型的电压反馈是取自初级。

电路起振的条件是:1、500V供电回路正常,500V直流经主绕组加至开关管漏极,开关管源极经小阻值电流采样电阻形成供电回路;2、上电启动支路正常,提供足够幅度的起振电压(电流);3、正反馈和工作电源支路正常,提供满足幅度要求的正反馈电压(电流)和工作电源;4、负载侧无短路,负载侧短路无法使反馈电压建立起来足够的幅度,故电路不能起振。以上电路可称之为振荡回路。

为缩小故障,应采用将稳压支路开路,看电路能否起振。应施行降、调压供电并将易受过电压冲击损坏的电路供电切断,确保安全。若能起振,说明满足起振条件的4个支路大致正常,可进而排查稳压支路的故障元件。若仍不能起振,说明故障在振荡回路,可查找上述的四个支路。

依上述检查次序,甲、乙、丙机开关电源的故障都在振荡电路。检查甲机四个支路及3844B外围元件都无异常,试将一块3845B代换之,电源输出正常,修复;乙机,换用3845B后仍不能起振,4个支路元件都无异常,试将上电启动支路的300k电阻并联200k 电阻后,上电恢复正常;丙机也为3844B损坏,换新块后故障排除。

只有乙机的故障稍微有趣,试分析如下:

表面看起来,乙机查不出一个坏件,致使维修陷入困境。但减小启动支路的电阻值后,则能正常工作。乙机的“异常之处”到底在哪里呢?可能是元器件性能的微弱变化导致电器参数的的变动,如开关管放大能力的些微降低、或开关变压器因轻度受潮使Q值变化、或3844B输出内阻有所增大,或阻容元件有轻微变异,上述原因的查找与确认委实不易,或者是有一种,甚至有可能是数种原因参与其中。但上述多种原因只导致了一个后果:开关管不能被有效启动,电路不能起振!解决的办法是转变掉现有状态,往促成开关管起振的方面下力气,在起动支路并联电阻是最省力也是最有效的一个方法。

顺便说明一下,该机的启动支出路电阻为300k,再加上其它环节的电阻,实际加到开关管栅极的启动电流仅1mA多一点。虽然场效应管为电压控制器件,理论上不吸取电流,但能使其导通的结电容充电电流,恰恰是使其导通的硬指标。从此一角度来讲,场效应管仍为电流驱动器件。当电路参数产生变动后,原启动支路的供给电流不足以使开关管导通乃至微导通,所以电路不能起振。将此启动电流值稍稍加大,电路便有可能起振。300k启动电阻有阻值偏大之嫌,我认为稍稍减小其阻值有利无弊。

因而高效率的修理方法不妨走以下的路子:检查开关管不坏,4个支路大致无异常,先在启动支路上并联电阻试验,无效后,再换用3844B,再无效,才下功夫细查电路。往往第一、二个步骤,故障就已经排除了。

例二:佳灵JP6C-9开关电源故障一例

上电,操作面板无显示,检测主电路输入、输出端子电阻均正常。判断为控制板开关电源故障。细听有轻微的间隔的嗒、嗒声,显然为电源起振困难。据经验,此种现象多为电源负载异常引起。查各路电源的整流、滤波及负载电路,均无异常;先后脱开散热风扇电源、逆变驱动电源、操作面板显示电源等电流较大的电源支路,故障现象依旧。

检查并联在开关变压器一次绕组的尖峰电压吸收网络(由电阻与电容并联后与二极管串联),用指针式万用表测量二极管正反向电阻均为15欧姆,感觉异

常。将两只并联二极管拆开检测,正常。细观察,电容器有细微裂纹,测其引脚,查出为2kV 103电容击穿短路。更换后,机器恢复正常。

此电容短路引起开关电源起振困难的故障殊不多见。

此电压尖峰电压吸收网络的设置,本是为了吸收开关管截止期间产生的异常的危及开关管安全的尖峰电压,但电容击穿后,开关变压器一次绕组相当于并联了二极管。对开关变压器来说,开关变压器在开关管导通期间吸入的能量在开关管截止期间,被二极管快速泻放,不能够积累产生振荡能量,同时二极管相当开关变压器一个过重的负载,因而造成开关电源起振困难的故障现象。

例三:台安N2-1013变频器开关电源故障

上电即跳OC故障,检测逆变输出模块未损坏,六块逆变驱动IC已损坏大半。进一步检查发现,开关电源有一奇特现象:甩开CPU主板供电时,测+5V 正常,但其它支路的供电较正常偏高,如+15V为+18V,22V的驱动供电为26V,担插上CPU主板的接线排时,测+5V仍正常,但其它支路的供电较则出现异常升高现象!如22V的驱动供电甚至于上升为近40V(PC923、PC929的供电极限电压为36V),驱动IC的损坏即源于此。

重点检查稳压环节,IC202、PC9等外围电路皆无异常。进一步查找其它电路也无“异常”,检修陷入僵局。

分析:电路的稳压环节是起作用的。稳压电路的电压采样取自+5V电路,拔掉CPU主板的接线排时,相当于+5V轻载或空载,+5V的上升趋势使电压负反馈量加大,电源开关管驱动脉冲的占空比减小,开关变压器的激磁电流减小,其它支路的输出电压相对较低;当插入CPU主板的接线排时,相当于+5V带载或重载,+5V的下降趋势使电压负反馈量减小,电源开关管驱动脉冲的占空比加大,开关变压器的激磁电流上升,使其它支路的输出电压幅度上升。现在的状况是,+5V电路空载时,其它供电虽输出较低,但仍偏高。+5V加载后,其它供电支路则出现异常高的电压输出!故障环节要么是电源本身故障导致带载能力变差,要么是负载电路异常,两者的异常都使得稳压电路进行了恪尽职守的“误”调节,

结果是维护了+5V故障电路的“电压稳定”,出现了其它供电支路“异常的电压变化”!

下手检修+5V电路,拔下电源滤波电容C239,220u10V,检测:容量仅十几个微法,存在明显的漏电电阻。一只电容的失效正好满足了两个条件:容量变小使电源带载能力差,漏电使负载变重。

更换此电容后,试机正常。

例四:东元7200GA-30kW变频器

开关电源故障一例

该机在遭受雷击损坏修复后,运行了一个多月,又出现了奇怪的故障现象:运行当中有随机停机现象,可能几天停机一次,也可能几个小时停机一次;起动困难,起动过程中电容充电短接接触器哒哒跳动,起动失败,但操作面板不显示故障代码。费些力气起动成功后又能运转一段时间。

将控制板从现场拆回,将热继电器的端子短接,以防进入热保护状态不能试机;将电容充电接触器的触点检测端子短接以防进入低电压保护状态不能试机,进行全面检修,检查不出什么异常,都是好的呀。

又将控制板装回机器,上电试机,起动时接触器哒哒跳动,不能起动。拔掉12CN插头散热风扇的连线后,情况大为好转,起动成功率上升。仔细观察,起动过程中显示面板的显示亮度有所降低,判断故障为控制电源带负载能力差。

各路电源输出空载时,输出电压为正常值。将各路电源输出加接电阻性负载,电压值略有降低;+24V接入散热风扇和继电器负载后,+5V降为+4.7V,此时屏显及其它操作均正常。但若使变频器进入启动状态,则出现继电器哒哒跳动,间或出现“直流电压低”、“CPU与操作面板通讯中断”等故障代码,使操作失败。测量中,当+5V降为+4.5V以下时,则变频器马上会从启动状态变为待机状态。详查各电源负载电路,均无异常。

分析:控制电源带负载能力差的判断是正确的。由于CPU对电源的要求比较苛刻,不低于4.7V时,尚能勉强工作;但当低于4.5V时,则被强制进入“待机状态”;在4.7V到4.5V之间时,则检测电路工作发出故障警报。

可是意想不到的是此故障的检修竟然相当棘手,遍查开关电源的相关元器件竟“无一损坏”!无奈之下,试将U1(KA431AZ)的基准电压分压电阻之一的R1(5101)并联电阻试验,其目的是改变分压值而使输出电压上升。测输出电压略有上升,但带载能力仍差。细观察线路板,分流调整管Q1似有焊接痕迹,但看其型号为原型号,即使更换也是从同类机中拆换的。该机的开关管Q2为高反压和高放大倍数的双极型三极管,市场上较难购到,况电路对这两只管子的参数有较严格的要求。再结合故障分析,分流调整管的工作点有偏移,对Q2基极电流的分流太强,将导致电源带载能力差。试将与电压反馈光耦串接的电阻R6(330欧)串联47欧电阻以减小Q1的基极电流,进而降低其对Q2的分流能力,使电源的带载能力有所增强。上电试机,无论加载或启动操作,+5V均稳定输出5V,故障排除!

故障推断:开关管Q1有老化现象,放大能力下降,故经分流后的Ib值不足使其饱合导通(导通电阻增大)而使电源带载能力变差;分流支路有特性偏移现象,使分流过大,开关管得不到良好驱动,从而使电源带载能力差。

例五:英威腾P9/G9-55kW变频器

开关电源检修一例

在雷雨天气中突然停机,面板无显示,疑遭雷击损坏。

检查:输入整流模块与输出逆变模块俱无损坏。开关电源无输出,开关管损坏,电源引入铜箔条及开关管漏极回路的铜箔条都已与基板脱离,说明此回路承受了大电流冲击。

更换开关管与振荡块3844B后,给开关电源先送入交流220V整流电源,不起振,也验明了无短路现象;再送入500V直流电源,上电即烧电源引入保险丝F1。停电测量检查,无短路现象,更换保险丝后上电,低于300V直流时,不起振,送入500V时仍烧保险丝。分析电源的负载电路有短路故障时,电源往往不能起振;怀疑起振后开关管回路存在短路故障,但测量检查,确实无短路现象。检修进入死胡同。

仔细观察开关电源的线路板,开关电源的约550V直流电源通过主直流回路引入,线路板为双面线路板。电源引入端子在线路板的边缘,正面为+极引线铜箔条,反面为-极引线铜箔条,发现线路板边缘——+、-铜箔条之间有一条“黑线”!由于潮湿天气,使线路板材的绝缘降低,引起+、-铜箔条之间跳火,线路板碳化。电源电压低于某值时不会击穿,高于500V时便使碳化线路板击穿,烧掉保险丝。烧保险的原因并非起振后开关管回路有短路故障,而由线路板碳化引起。

清除线路板边缘的碳化物并做好绝缘处理,送入500V时不再烧保险,但不能起振。检查3844B供电支路的整流二极管D38(LL4148)有一定的反向电阻,更换后试机正常。

由线路板潮湿后被击穿碳化,引起烧保险故障,这也是开关电源中较少碰到的故障现象

开关电源常见四大故障及检修方法

开关电源常见四大故障及检修方法 开关电源是各种电子设备必不可缺的组成部分,其性能优劣直接关系到电子设备的技术指标及能否安全可靠地工作。由于深圳开关电源内部关键元器件工作在高频开关状态,功耗小,转化率高,且体积和重量只有线性电源的20%—30%,故目前它已成为稳压电源的主流产品。电子设备电气故障的检修,本着从易到难的原则,基本上都是先从电源入手,在确定其电源正常后,再进行其他部位的检修,且电源故障占电子设备电气故障的大多数。故了解开头电源基本工作原理,熟悉其维修技巧和常见故障,有利于缩短电子设备故障维修时间,提高个人设备维护技能。 1. 无输出,保险管正常这种现象说明开关电源未工作或进入了保护状态。首先要测量电源控制芯片的启动脚是否有启动电压,若无启动电压或者启动电压太低,则要检查启动电阻和启动脚外接的元件是否漏电,此时如电源控制芯片正常,则经上述检查可以迅速查到故障。若有启动电压,则测量控制芯片的输出端在开机瞬间是否有高、低电平的跳变,若无跳变,说明控制芯片坏、外围振荡电路元件或保护电路有问题,可先代换控制芯片,再检查外围元件;若有跳变,一般为开关管不良或损坏。 2. 保险烧或炸主要检查300V上的大滤波电容、整流桥各二极管及开关管等部位,抗干扰电路出问题也会导致保险

烧、发黑。需要注意的是:因开关管击穿导致保险烧一般会把电流检测电阻和电源控制芯片烧坏。负温度系数热敏电阻也很容易和保险一起被烧坏。 3. 有输出电压,但输出电压过高这种故障一般来自于稳压取样和稳压控制电路。在直流输出、取样电阻、误差取样放大器如TL431、光耦、电源控制芯片等电路共同构成一个闭合的控制环路,任何一处出问题就会导致输出电压升高。 4. 输出电压过低除稳压控制电路会引起输出电压低,还有下面一些原因也会引起输出电压低: a. 开关电源负载有短路故障(特别是DC/DC变换器短路或性能不良等),此时,应该断开开关电源电路的所有负载,以区分是开关电源电路还是负载电路有故障。若断开负载电路电压输出正常,说明是负载过重;或仍不正常说明开关电源电路有故障。 b. 输出电压端整流二极管、滤波电容失效等,可以通过代换法进行判断。 c. 开关管的性能下降,必然导致开关管不能正常导通,使电源的内阻增加,带负载能力下降。 12v开关电源维修分析 一.开关电源不启振,出现这种情况,我们首先要查看开关频率是否正确、保护电路是否封锁、电压反馈电路、电流反馈电路又没问题以及开关管是否击穿等。

变频器开关电源的原理及维修(整理)

变频器开关电源的原理及维修(整理)变频器开关电源的原理及维修 维修部杨海涛 电源是每一个电路的重要组成部分,担负着为电路提供能量的重要作用,它是设备能够正常运行的重要保障。电源的种类很多,开关电源由于体积小、重量轻、效率高、动态稳压效果好,因此被广泛应用到了各种电子设备中。下面就以 UC3844开关电源芯片为例讲述一下开关电源的基本原理和在变频电路中的作用。右图a-1所示为开关电源PWM波形调制芯片。该图为8脚双列直插封装。 7脚是芯片的电源输入端,该端在内部集成了稳压器和最低门限电压控制器,所以该芯片不用在外围设置稳压电路,只要接一只降压电阻即可。最低门限值为10V,当7脚输入电压低于10V,该芯片将禁止输出,处于保护状态。正常工作时该端电压约为12V—16V之间。 4脚是内部压控振荡器的定时端,通过接上合适的RC网络,使输出的PWM波控制在20KHZ—100KHZ之间。 a—1 2脚、3脚是输出取样反馈端,用于检开关电源的输出,以便进行PWM调制控制,从而达到稳压的目的。在变频器系统中,开关电源需要输出:一组5V/DC、一组?12V/DC、四组20V/DC等多组电压。其中5V/DC 主要用作主板及控制板的供电,?12V/DC用作霍尔检测器件的供电,四组20V/DC用作IGBT的触发供电。变频器的型号及品牌不同,其开关电源的电压值也不尽相同,但基本构架是一样的,在此仅以下图为例讲一讲开关电源的工作原理。 a—2 如图a—2所示:电源经D1—D4、C1、C2整流滤波之后,通过降压电阻R3到了UC3844的7脚电源正端,为其供电,UC3844通过检测当7脚电压大于10V时,控制内部压控振荡器开始工作,通过R8、C5将PWM的频率控制在要求范围之内。此时6脚输出PWM信号去控制开关管Q1的通断,R10是开关管的电流检测电阻,通过检测R10的电压值来实时调整PWM的脉冲宽度,从而达到自动稳压

开关电源故障分析与维修

开关电源故障分析与维修 UC3843控制芯片介绍 UC3842是电流模式八脚单端PWIVI控制芯片,其内部电路框图如图所示,主要由基准电压发生器、欠电压保护电路、振荡器、PWM闭锁保护、推挽放大电路、误差放大器及电流比较器等电路组成。该控制芯片与外围振荡定时器件、开关管、开关变压器可构成功能完善的他励式开关电源。 UC3842是UC384×系列中的一种,它是一种电流模式类开关电源控制电路。此类开关电源控制电路采用了电压和电流两种负反馈控制信号进行稳压控制。电压控制信号,即通常所说的误差(电压)取样信号。电流控制信号是在开关管源极(或发射极)接人取样电阻,对开关管源极(或发射极)的电流进行取样而得到的,开关管电流取样信号送入UC3842,既参与稳压控制又具有过电流保护功能。因为电流取样是在开关管的每个开关周期内都要进行的,因此这种控制又称为逐周(期)控制。 UC384×主要包括UC3842、UC3843、UC3844、UC3845等芯片,它们的功能基本一致,不同的是:①集成电路的启动电压(7脚)和启动后的最低工作电压(即欠电压保护动作电压)不同;②输出驱动脉冲占空比不同;③允许工作环境温度不同。另外,集成电路型号末尾字母不同还表示封装形式不同。

对于采用UC3843的电源,当其损坏后,可考虑用易购的UC3842进行代换。但由于UC3842的启动电压不得低于16V,因此,代换后应使UC3842的启动电压达到16V以上,否则,电源将不能启动。UC3842是UC384×系列中的一种,它是一种电流模式类开关电源控制电路。 UC384×系列芯片的主要不同点 与UC384×系列类似的还有UC388×系列,其中,UC3882与UC3842、UC3883与UC3843、UC3884与UC3844、UC3885与UC3845相对应。主要区别是第6脚驱动脉冲占空比最大值略有不同。另外,还有一些采用了KA384×/KA388×,此类芯片与UC384×/UC388×的相应类型完全一致。 常见故障及维修方法: 1. 烧保险或炸管 主要检查300V上的大滤波电容、整流桥各二极管及开关管等部位,抗干扰电路出问题也会导致保险烧、发黑。 需要注意的是:因开关管击穿导致保险烧一般会把电流检测电阻和电源控制芯片烧坏。负温度系数热敏电阻、整流桥也会和保险一起被烧坏。

丹佛斯变频器常见故障维修

3 变频器常见故障现象和故障处理 我公司使用的vlt5000系列变频器在运行中常见的故障有:多种故障错乱出现(报警5、6、7、8)接地故障(报警14)、电机uvw相丢失(报警31.32.33)、通讯故障等。 3.1 开关电源损坏 这是众多变频器常发生的故障,通常是由于开关电源的元器件损坏或负载发生短路造成的,丹佛斯变频器采用了新型脉宽集成控制器uc2844来调整开关电源的输出,同时uc2844还带有电流检测,电压反馈等功能。当发生无显示,控制端子无电压,24v风扇不运转等现象时我们首先应该考虑开关电源是否损坏(一般为uc2844或电阻损坏)。如果不能判断是否电源故障,可以外接24v电源进行测试,测试结果一切正常可以判定为电源故障。 3.2 丹佛斯5011变频器的液晶显示屏上显示字母“14”报警 变频器液晶显示屏上出现“alarm 14”报警,变频器不能工作,重新送电后按reset 键能复位,再启动时再次报警,查操作手册为接地报警,检查电机和相关电缆并无接地故障,也就是说故障在变频器。分析电路导致接地报警的原因为霍尔传感器输出电压信号到电流取样板再送到运算放大器进行比较,结果数值过大,(见图2)查检测部分霍尔传感器正常,检测对陶瓷基薄膜集成电阻r501时测其中的一路阻值因腐蚀已变无穷大致使接地不良,造成信号过强,引起报警,无原件更换,在上面焊同阻值大功率贴片电阻,重新启动后运行正常。接地故障是平时经常遇到的故障,在排除电机接地存在问题的原因外,最可能发生故障的部分就是霍尔传感器和信号传输电阻,由于它们受温度、湿度、腐蚀气体等环境因素的影响较大,工作点很容易发生飘移,导致接地报警。

变频器开关电源的检修思路和检修方法

变频器开关电源的检修思路和检修方法 变频器的开关电源电路完全可以简化为上图电路模型,电路中的关键要素都包含在内了。而任何复杂的开关电源,剔除枝蔓后,也会剩下上图这样的主干。其实在检修中,要具备对复杂电路的“化简”的能力,要在看似杂乱无章的电路伸展中,拈出这几条主要的脉络。要向解牛的庖丁学习,训练自己的眼前不存在什么整体的开关电源电路,只有各部分脉络和脉络的走向——振荡回路、稳压回路、保护回路和负载回路等。 看一下电路中有几路脉络。 1、振荡回路:开关变压器的主绕组N1、Q1的漏--源极、R4为电源工作电流的通路;R1提供了启动电流;自供电绕组N 2、D1、C1形成振荡芯片的供电电压。这三个环节的正常运行,是电源能够振荡起来的先决条件。 当然,PC1的4脚外接定时元件R2、C2和PC1芯片本身,也构成了振荡回路的一部分。 2、稳压回路:N 3、D3、C4等的+5V电源,R7—R10、PC3、R5、R6等元件构成了稳压控制回路。 当然,PC1芯片和1、2脚外围元件R3、C3,也是稳压回路的一部分。 3、保护回路:PC1芯片本身和3脚外围元件R4构成过流保护回路;N1绕组上并联的D2、R6、C4元件构成了IGBT的保护电路;实质上稳压回路的电压反馈信号——稳压信号,也可看作是一路电压保护信号。但保护电路的内容并不仅是局限于保护电路本身,保护电路的起控往往是由于负载电路的异常所引起。

4、负载回路:N3、N4次级绕组及后续电路,均为负载回路。负载回路的异常,会牵涉到保护回路和稳压回路,使两个回路做出相应的保护和调整动作。 振荡芯片本身参与和构成了前三个回路,芯片损坏,三个回路都会一齐罢工。对三个或四个回路的检修,是在芯片本身正常的前提下进行的。另外,要像下象棋一样,用全局观念和系统思路来进行故障判断,透过现象看本质。如停振故障,也许并非由振荡回路元件损坏所引起,有可能是稳压回路故障或负载回路异常,导致了芯片内部保护电路起控,而停止了PWM脉冲的输出。并不能将和各个回路完全孤立起来进行检修,某一故障元件的出现很可能表现出“牵一发而全身动”的效果。 开关电源电路常表现为以下三种典型故障现象(结合图3、9): 一、次级负载供电电压都为0V。变频器上电后无反应,操作显示面板无指示,测量控制端子的24V和10V电压为0V。检查主电路充电电阻或预充电回路完好,可判断为开关电源故障。检修步骤如下: 1、先用电阻测量法测量开关管Q1有无击穿短路现象,电流取样电阻R4有无开路。电路易损坏元件为开关管,当其损坏后,R4因受冲击而阻值变大或断路。Q1的G极串联电阻、振荡芯片PC1往往受强电冲击而损坏,须同时更换;检查负载回路有无短路现象,排除。 2、更换损坏件,或未检测中有短路元件,可进行上电检查,进一步判断故障是出在振荡回路还是稳压回路。 检查方法: a、先检查启动电阻R1有无断路。正常后,用18V直流电源直接送入UC3844的7、5脚,为振荡电路单独上电。测量8脚应有5V电压输出;6脚应有1V左右的电压输出。说明振荡回路基本正常,故障在稳压回路; 若测量8脚有5V电压输出,但6脚电压为0V,查8、4脚外接R、C定时元件,6脚外围电路; 若测量8脚、6脚电压都为0V,UC3844振荡芯片坏掉,更换。 b、对UC3844单独上电,短接PC2输入侧,若电路起振,说明故障在PC2输入侧外围电路;电路仍不起振,查PC2输出侧电路。 二、开关电源出现间歇振荡,能听到“打嗝”声或“吱、吱”声,或听不到“打嗝”声,但操作显示面板时亮时熄。这是因负载电路异常,导致电源过载,引发过流保护电路动作的典型故障特征。负载电流的异常上升,引起初级绕组激磁电流的大幅度上升,在电流采样电阻R4形成1V以上的电压信号,使UC3844内部电流检测电路起控,电路停振;R4上过流信号消失,电路又重新起振,如此循环往复,电源出现间歇振荡。 检查方法:

解析开关电源电压输出低的原因和检修方法

解析开关电源电压输出 低的原因和检修方法 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

解析开关电源电压输出低的原因和 检修方法 1、开关电源电压输出低的原因 (1)220V交流电压输入和整流滤波电路对开关管提供的工作电压不够,超出脉宽调整电路控制范围。 (2)负载电路存在过流引起开关电源负载加重而导致输出电压下降。 (3)开/关机切换错误,行扫描电路刚开始工作瞬间,开关电源即处于待机状态,此类故障适用于无预备电源的机器,CPu电源取自同一个电源,非副电源提供。 (4)开/关机接口电路末端因故障处于开机与待机之间的状态,从而导致开关电源输出电压低于正常值高于待机值。 (5)保护电路末端因故障进入导通状态,使电源进入弱振状态,引起开关电源输出电压下降。 (6)整流输出电路中二极管和滤波电容、限流电阻损坏引起输出电压低。 (7)脉宽调制电路故障,不能对开关电源输出电压的变化作出正确的响应,对开关管基极电压调整方向不对,从而造成开关电源输出电压低。 (8)正反馈电路中的正反馈电阻值变化,续流二极管性能变质或恒流源故障,使正反馈量不足,导致振荡周期变长,振荡频率下降,从而引起开关电源输出电压低。 (9)它激式开关电源因未得到行逆程脉冲而工作于低频状态,造成输出电压低。 2、判断故障的方法与步骤 从上述分析的原因看出,引起电压低的原因涉及到了开关电源自身的各个部分和与开关电源相关的所有电路,在检修时应先缩小故障范围。 (1)先测开关管c极电压,确认开关管供电正常。 (2)根据开关电源各个输出端电压判断故障。 开关电源有的输出端电压正常,有的低于正常值。故障在输出电压低的这个整流输出电路,应对电路中的限流电阻、整流二极管、滤波电容进行检查代换,若限流电阻发烫,说明负载过流,查负载。 开关电源各路输出均低。这种情况说明负载和整流输出电路均正常,故障在开关电源的正反馈电路、脉宽调整、开/待机电路、保护电路。 输出电压有的下降比例大,有的输出电压下降比例小。测量结果说明故障在输出电压下降比例大的电路。此时可断开此路负载,如果断开的是行电路,应接假负载。在断开负载后,再测开关电源各输出端电压,若恢复正常,可判断所断电路的负载有过流现象。若仍不正常,说明故障在该整流滤波电路。 3、断开主负载、接上灯泡,判断是否负载故障

开关电源的检修思路和检修方法

开关电源的检修思路和检修方法 开关电源简化电路图 变频器的开关电源电路完全可以简化为上图电路模型,电路中的关键要素都包含在内了。而任何复杂的开关电源,剔除枝蔓后,也会剩下上图这样的主干。其实在检修中,要具备对复杂电路的“化简”的能力,要在看似杂乱无章的电路伸展中,拈出这几条主要的脉络。要向解牛的庖丁学习,训练自己的眼前不存在什么整体的开关电源电路,只有各部分脉络和脉络的走向——振荡回路、稳压回路、保护回路和负载回路等。 看一下电路中有几路脉络。 1、振荡回路:开关变压器的主绕组N1、Q1的漏--源极、R4为电源工作电流的通路;R1提供了启动电流;自供电绕组N 2、D1、C1形成振荡芯片的供电电压。这三个环节的正常运行,是电源能够振荡起来的先决条件。 当然,PC1的4脚外接定时元件R2、C2和PC1芯片本身,也构成了振荡回路的一部分。 2、稳压回路:N 3、D3、C4等的+5V电源,R7—R10、PC3、R5、R6等元件构成了稳压控制回路。 当然,PC1芯片和1、2脚外围元件R3、C3,也是稳压回路的一部分。 3、保护回路:PC1芯片本身和3脚外围元件R4构成过流保护回路;N1绕组上并联的D2、R6、C4元件构成了IGBT的保护电路;实质上稳压回路的电压反馈信号——稳压信号,也可看作是一路电压保护信号。但保护电路的内容并不仅是局限于保护电路本身,保护电路的起控往往是由于负载电路的异常所引起。 4、负载回路:N3、N4次级绕组及后续电路,均为负载回路。负载回路的异常,会牵涉到保护回路和稳压回路,使两个回路做出相应的保护和调整动作。 振荡芯片本身参与和构成了前三个回路,芯片损坏,三个回路都会一齐罢工。对三个或四个回路的检修,是在芯片本身正常的前提下进行的。另外,要像下象棋一样,用全局观念和系统思路来进行故障判断,透过现象看本质。如停振故障,也许并非由振荡回路元件损坏所引起,有可能是稳压回路故障或负载回路异常,导致了芯片内部保护电路起控,而停止了PWM脉冲的输出。并不能将和各个回路完全孤立起来进行检修,某一故障元件的出现很可能表现出“牵一发而全身动”的效果。 开关电源电路常表现为以下三种典型故障现象(结合图3、9): 一、次级负载供电电压都为0V。变频器上电后无反应,操作显示面板无指

变频器开关电源故障检修五例

变频器开关电源故障检修五例 例一:康沃CVF-G1 型开关电源故障检修 接手了3台康沃CVF-G1型小功率机器,故障皆为开关电源无输出,无屏显。该机开关电源的IC为3844B,手头无此型号的IC,况不可能3台机器都是3844B 损坏了吧?故先从其外围电路查起。 所有开关电源不外乎有以下几条支路:1、上电启动支路,往往由数只较大阻值的电阻串联而成,上电时将500V直流引至3844B供电脚,提供开关管的起振电压;2、正反馈和工作电源支路,由反馈绕组和整流滤波电路组成(有的机器由两绕组供电支路组成,有的兼用。);3、稳压支路,一般由次级5V供电支路,将5V电压的变化与一基准电压相比较,其变量由光耦反馈到初级3844B 的2脚,但该机型的电压反馈是取自初级。 电路起振的条件是:1、500V供电回路正常,500V直流经主绕组加至开关管漏极,开关管源极经小阻值电流采样电阻形成供电回路;2、上电启动支路正常,提供足够幅度的起振电压(电流);3、正反馈和工作电源支路正常,提供满足幅度要求的正反馈电压(电流)和工作电源;4、负载侧无短路,负载侧短路无法使反馈电压建立起来足够的幅度,故电路不能起振。以上电路可称之为振荡回路。 为缩小故障,应采用将稳压支路开路,看电路能否起振。应施行降、调压供电并将易受过电压冲击损坏的电路供电切断,确保安全。若能起振,说明满足起振条件的4个支路大致正常,可进而排查稳压支路的故障元件。若仍不能起振,说明故障在振荡回路,可查找上述的四个支路。 依上述检查次序,甲、乙、丙机开关电源的故障都在振荡电路。检查甲机四个支路及3844B外围元件都无异常,试将一块3845B代换之,电源输出正常,修复;乙机,换用3845B后仍不能起振,4个支路元件都无异常,试将上电启动支路的300k电阻并联200k 电阻后,上电恢复正常;丙机也为3844B损坏,换新块后故障排除。 只有乙机的故障稍微有趣,试分析如下:

开关电源维修步骤及常见故障分析 - 电源

开关电源维修步骤及常见故障分析- 电源 1、修理开关电源时,首先用万用表检测各功率部件是否击穿短路,如电源整流桥堆,开关管,高频大功率整流管;抑制浪涌电流的大功率电阻是否烧断。再检测各输出电压端口电阻是否异常,上述部件如有损坏则需更换。 2、第一步完成后,接通电源后还不能正常工作,接着要检测功率因数模块(PFC)和脉宽调制组件(PWM),查阅相关资料,熟悉PFC和PWM模块每个脚的功能及其模块正常工作的必备条件。 3、然后,对于具有PFC电路的电源则需测量滤波电容两端电压是否为380VDC左右,如有380VDC左右电压,说明PFC模块工作正常,接着检测PWM组件的工作状态,测量其电源输入端VC ,参考电压输出端VR ,启动控制Vstart/Vcontrol端电压是否正常,利用220VAC/220VAC隔离变压器给开关电源供电,用示波器观测PWM模块CT端对地的波形是否为线性良好的锯齿波或三角形,如TL494 CT端为锯齿波,FA5310其CT端为三角波。输出端V0的波形是否为有序的窄脉冲信号。 4、在开关电源维修实践中,有许多开关电源采用UC38××系列8脚PWM组件,大多数电源不能工作都是因为电源启动电阻损坏,或芯片性能下降。当R断路后无VC,PWM 组件无法工作,需更换与原来功率阻值相同的电阻。当PWM组件启动电流增加后,可减小R值到PWM组件能正常工作为止。在修一台GE DR电源时,PWM模块为UC3843,检测未发现其他异常,在R(220K)上并接一个220K的电阻后,PWM组件工作,输出电压均正常。有时候由于外围电路故障,致使VR端5V电压为0V,PWM组件也不工作,在修柯达8900相机电源时,遇到此情况,把与VR端相连的外电路断开,VR从0V变为5V,PWM 组件正常工作,输出电压均正常。 5、当滤波电容上无380VDC左右电压时,说明PFC电路没有正常工作,PFC模块关键检测脚为电源输入脚VC,启动脚Vstart/control,CT和RT脚及V0脚。修理一台富士3000相机时,测试一板上滤波电容上无380VDC电压。VC,Vstart/control,CT和RT波形以及V0波形均正常,测量场效应功率开关管G极无V0 波形,由于FA5331(PFC)为贴片元件,机器用久后出现V0端与板之间虚焊,V0信号没有送到场效应管G极。将V0端与板上焊点焊好,用万用表测量滤波电容有380VDC电压。当Vstart/control 端为低电平时,PFC亦不能工作,则要检测其端点与外围相连的有关电路。

[整理]东元变频器开关电源

两例变频器开关电源电路实例 ——兼论电容C23在电路中的重要作用 先看以下电路实例: 图1 东元7200PA 37kW变频器开关电源电路 CN4

图2 海利普HLPP001543B型15kW变频器开关电源电路 图1、图2电路结构和原理基本上是相同的,下面以图1电路例简述其工作原理。 开关电源的供电取自直流回路的530V直流电压,由端子CN19引入到电源/驱动板。 电路原理简述:由R26~R33电源启动电路提供Q2上电时的起始基极偏压,由Q2的基极电流Ib的产生,导致了流经TC2主绕组Ic的产生,继而正反馈电压绕组也产生感应电压,经R32、D8加到Q2基极;强烈的正反馈过程,使Q2很快由放大区进入饱合区;正反馈电压绕组的感应电压由此降低,Q2由饱合区退出进入放大区,Ic开始减小;正反馈绕组的感应电压反向,由于强烈的正反馈作用,Q2又由放大状态进入截止区。以上电路为振荡电路。D2、R3将Q2截止期间正反馈电压绕组产生的负压,送入Q1基极,迫使其截止,停止对Q2的Ib的分流,R26-R33支路再次从电源提供Q1的起振电流,使电路进入下一个振荡循环过程。 5V输出电压作为负反馈信号(输出电压采样信号)经稳压电路,来控制Q2的导通程度,实施稳压控制。稳压电路由U1基准电压源、PC1光电耦合器、Q1分流管等组成。5V输出电压的高低变化,转化为PC1输入侧发光二极管的电流变化,进而使PC1输出测光电三极管的导通内阻变化,经D1、R6、PC1调整了Q2的偏置电流。以此调整输出电压使之稳定。 这是我的第二本有关变频器维修的书中,对图1电路原理的简述,由于疏漏了对电容C23作用的讲解,给读者带来了一些疑问:1)N2绕组负电压是如何加到Q2基极的?2)电路中C23的作用是什么?3)C23的充、放电回路是怎样走的?这3问题涉及到电路原理的关键部分,无它,开关电管Q2即无法完成由饱和导通→进入放大区→快速截止→重新导通的工作状态转换,三个问题其实又只是一个问题,即图1的C23(或图2中的C38)究竟对电路的工作状态转换起到怎样的重要作用?先不要忙,将这个问题暂且按下不表,先说几句题外话。 在由3844(42/43/34)PWM脉冲芯片为核心构成的开关电源电路,大行其道的今天,像图1、图2这样由两只双极型晶体管构成的开关电源电路(对比于集成器件,或称之为分立元件构成的开关电源),仍占有一席之地,在数个变频器厂家的产品中,得到应用。难道是厂家技术人员有怀旧情结吗?还是为了降低生产成本?其实都不是!采用分立元件做开关电源,设计人员肯定有更全面和深入的考虑。 而我的维修经验而论,我比较倾向和首肯于由分立元件构成的开关电源,理由是其工作可靠性高,故障率低,使用和维修都比较让人放心。电路的质量,并不取决于采用集成器件或分立元件,也不取决于电路采用元器件的数量多少,这些都是形式而非本质。相对于分立元件组成的电路,集电器件是否就具有技术上的先进性和工作上的可靠性?则真的是一个问号,不可一概而论。比较二者电路的设计难度,分立元件的电路,恐怕难度要更高一些。 与分立元件的电源相比,用3844做成的电源电路,更像一个“傻瓜型”电路,有固定的电路模式,与成型外围作成一个电路单元,可以应急取代任意开关电源电路,达到修复目的(有的技术人员已经这样做了)。 电路的元件数量愈少,电路结构越是精简,电路的故障率就越低,这是一个被实践验证的法则。实际维修中,采用图1电路形式的开关电源,故障率和可靠性,要优于用集成器件做成的开关电源。个别电源,

在维修变频器电源模块过程中

以下是工程师在维修过程中,总结出来的一些经验,供大家参考,希望对大家能有所帮助。 开关电源的几个维修步骤如下: 1、检测整流电路D1—D4是否击穿或断路,滤波电路的电容是否损坏,平衡电阻R1、R2是否正常,降压电阻R3是否烧断或阻值增大失效(断电情况下测试)。 2、检测开关管b-e结、c-e结是否有击穿短路现象、测量开关变压器各个绕组是否有短路现象,以确定开关管、及开关变压器的好坏(断电情况下测试)。 3、检测次级输出绕组的整流滤波元件,重点察看滤波电容是否鼓包或损坏,以排除次级电路短路的可能。 4、检测吸收回路D 5、R11、C9是否正常(断电情况下测试)。 5、在确定上述元件正常的情况下,我们可以把开关电源板从变频器上取下单独对其进行加电试验。用调压器缓缓地调至开关电源的额定电压值,此时应能听到变压器起振时的吱吱声,如没有听到起振的声音,用万用表检测UC3844的电源正、负级之间是否有12V—16V左右的直流电压。 6、在确定UC3844的供电端电压正常后,可用示波器察看一下UC3844的6脚是否有PWM 波输出到开关管的触发端(根据电路设计的不同,PWM波的频率一般在20KHZ—100KHZ 之间)。 7、如果没有PWM波输出,则更换定时元件C5、R8、C6或UC3844。经过上述几个步骤的排除,开关电源应该可以正常工作了。在变频器中,开关电源的种类很多,但基本原理都是一样的,比如说每个PWM管理芯片都有供电端、定时元件RC网络、输出PWM波的端口等,只要我们了解了它们的工作原理,按照一定的方法步骤都能够把故障排除掉。 下面工程师就把实际维修中遇到的问题和解决办法列举出来,供大家参考一下。 【案例1】:台达变频器(故障现象:上电无显示)经检测发现电源主回路、充电电阻、主回路接触器都正常,因此确定为开关电源板故障。按照上述维修步骤对开关电源板进行测量。在进行第一步测量时,发现直流母线560V到PWM调制芯片之间的的330KΩ/2W的降压电阻损坏,标称330KΩ/2W的电阻,实际测量值达2MΩ以上,因此PWM调制芯片得不到启动的电源,所以无法起振工作。为谨慎起见又检测了开关管、变压器、整流二极管及滤波电容等关键器件,在确定没问题之后上电试验,OK!开关电源起振,输出各组电压正常,装回变频器后开机试验正常,此变频器修复完毕(注:维修人员在维修中,一定要养成习惯:发现坏元件后不要急于更换试机,一定要把功率大的、容易坏的元件都测一下,确定没问题后再试机,这样既安全又保险)。 【案例2】:台安变频器(故障现象:上电无显示)经检测发现电源主回路、充电电阻、主回路接触器都正常,故障确定在电源板。按照维修步骤对开关电源板进行测量。第一步测量通过,第二步测量时发现开关管c-e结击穿,将其拆下,然后检测变压器、及整流二极管、

新手入门--变频器电路原理分析

新手入门--变频器电路原理分析(分享) 要想做好变频器维修,当然了解变频器基础知识是相当重要的,也是迫不及待的。下面我们就来分享一下变频器维修基础知识。大家看完后,如果有不正确地方,望您指正,如果觉得还行支持一下,给我一些鼓动!变频器维修入门--电路分析图对于变频器修理,仅了解以上基本电路还远远不够的,还须深刻了解以下主要电路。主回路主要由整流电路、限流电路、滤波电路、制动电路、逆变电路和检测取样电路部分组成。图2.1是它的结构图。 1)驱动电路 驱动电路是将主控电路中CPU产生的六个PWM信号,经光电隔离和放大后,作为逆变电路的换流器件(逆变模块)提供驱动信号。 对驱动电路的各种要求,因换流器件的不同而异。同时,一些开发商开发了许多适宜各种换流器件的专用驱动模块。有些品牌、型号的变频器直接采用专用驱动模块。但是,大部分的变频器采用驱动电路。从修理的角度考虑,这里介绍较典型的驱动电路。图2.2是较常见的驱动电路(驱动电路电源见图2.3)。

驱动电路由隔离放大电路、驱动放大电路和驱动电路电源组成。三个上桥臂驱动电路是三个独立驱动电源电路,三个下桥臂驱动电路是一个公共的驱动电源电路。 2)保护电路 当变频器出现异常时,为了使变频器因异常造成的损失减少到最小,甚至减少到零。每个品牌的变频器都很重视保护功能,都设法增加保护功能,提高保护功能的有效性。 在变频器保护功能的领域,厂商可谓使尽解数,作好文章。这样,也就形成了变频器保护电路的多样性和复杂性。有常规的检测保护电路,软件综合保护功能。有些变频器的驱动电路模块、智能功率模块、整流逆变组合模块等,内部都具有保护功能。 图2.4所示的电路是较典型的过流检测保护电路。由电流取样、信号隔离放大、信号放大输出三部分组成。

开关电源维修技巧

开关电源的检修技巧 开关电源中保险熔断的直接原因:开关管\电源厚模块\整流二极管击穿\100uf/400v大电容击穿漏电,消磁电阻内部碎裂. 开关电源各输出端始终无电压输出的最常见原因:交流220v整流滤波电路中的保险电阻开路;开关管基极到100uf/400v大滤波电容正极之间的电阻开路. 开关电源只在开机瞬间有小电压输出的常见原因:行输出管击穿,开关电源中开关变压器一左的2.2uf~100uf电解电容失效`漏电 开关电源输出电压低的最常见原因:行输出变压器局部短路`脉宽调制电路中的三极管和二极管击穿`漏电`光耦合器件中的三极管漏电等. 造成光栅与图象S扭曲和有两条垂直方向移动黑带的原因:100UF?400V大滤波电容失效和容量下降. 造成光栅局部有彩斑的和图象局部彩色不对的原因:是开关电源交流220V输入电路中的消兹电阻开路. 开关电源无输出的检修技巧 1开关电源始终无电压输出的原因 开关电源始终无电压输出是指开关电源各输出端,在按电源开关开机后始终为0V,这种情况是由于开关电源未产生震荡所致.进一步证实的方法是测开关电源100UF/400V电容关机后的电压,若300V之后慢慢下降,则说明开关电源未产生振荡.开关电源未产生振荡的原因有: (1)开关管集电极未得到足够的工作电压 (2)开关管基极未得到启动电压和相关电路漏电 (3)开关管正反馈元件失效 2判断故障的方法和步骤 检修这类故障的首要任务是判断鼓障在上述三个部位中的哪个部位,具体方法是测开关管集电极,基极电压,可能有以下几种情况: (1)开关管集电极电压为0V和低于市电1.4倍,开关管没有正常的工作电压,如果有1.4倍的 电压,说明开关管集电极具备了正常的工作电压,说明AC220V及整流滤波电路工作正常. (2)开关管的基极电压为0V(包括开机瞬间)这种情况说明启动电路对开关管基极未提供启 动(导通)电压,或基极与发射极之间相关元件击穿,应对启动电路和开关管发射极及相关元件进行检查,若电压为0.6~0.7(包括开几瞬间),说明启动电路和开关管发射极元件正常,若在0.7V以上说明启动电路正常,但开关管发射结或其元件断路或阻值变大. (3)开关管具备导通条件:开关管基极电压为0.6~0.7V,集电极电压大于250V,说明开关管具 备了工作条件,故障在正反馈电路,包括正反馈电阻,电容,续流二极管及开关变压器正反馈绕组及其之间的连接应制板. 开关电源瞬间有电压出检修技巧 1瞬间电压输出故障原因 这种故障在按下启动开关的瞬间,开关电源某个或各个输出端电压有一个小的电压输出,然后降为0V,这种情况说明开关电源在加电的初始产生了振荡,但后由于过压,过流保护引起停振,或开关机接口电路加电初始为开机状态,但随CPU清零的结束而转入待机状态,引发这种情况的原因有: (1)开关电源因故输出电压比标准值高10V而引起过压保护 (2)负载过流引起保护动作

UC3842组成的开关电源维修经验

UC3842组成的开关电源维修经验 UC3842芯片作为小功率开关电源的PWM脉宽调制芯片,在进行开关电源维修过程中,经常会遇到由于故障引起的uc3842/uc3844不能正常工作,现将电源不能起振或轻微起振(测量输出端电压低),但没有正常工作(表现为8Pin无5V)可能的原因作如下总结: 1、首先检查7Pin所连接的电解电容(或者反馈线圈所连接的电解电容),查看其容量是否符合要求,如该电容容量明显减小,更换后应该不起振的故障就能恢复;如该电容正常,进行下一步检查。 2、在电路板上单独给uc3842/uc3844的7Pin加16V电压,测量其8Pin是否有5V,如果测量8Pin有5V电压存在,则说明此芯片没有问题;如没有5V电压,须将uc3842/uc3844拆下来单独加电16V至7Pin,测量8Pin是否有5V,如果仍然没有5V,则可证明芯片已经损坏;如果测量8Pin有 5V存在,则应该是与8Pin相连接的外围元器件与地之间有短路存在。此步骤主要是检测c3842/uc3844芯片本身是否损坏,如果芯片没有损坏,基本可以排除故障出在初级部分,可以进行下一步检查。(附:检测uc3842/uc3844芯片损坏与否的另一种方法为:在检测完芯片外围元器件(或更换完外围损坏的元器件)后,先不装电源开关管,加输入电测uc3842/uc3844的7Pin电压,若电压在10—17V间波动,其余各脚分别也有电压波动,则说明电路已起振,uc3842基本正常,若7脚电压低,其余管脚无电压或电压不波动,则uc3842/uc3844已损坏。) 3、检查次级侧,推测应该是次级由于输出过载或短路,导致电流增大,进而反映到初级侧使 uc3842/uc3844芯片的3Pin实现保护,这就需要对次级侧实现过流保护功能的电子元器件进行逐一测量,直至查出故障。 现将uc3842/uc3844芯片正常工作时主要引脚电压列于下面: 1Pin:1.5V 2Pin:2.5V 3Pin:0.005V 6Pin:1.05V 7Pin:14.1V 8Pin:5 V 昨天一同行送来一西门子75KW的驱动板电源,主诉为电源有尖叫声,开关管发烫,而次极电压“正常”。电路板几乎已被同行“通扫”。我接手后初步检测整个电路无大问题,通电后果然听到有尖叫声,不到1分钟开关管散热片就已烫手。 开关电源有尖叫声一般为两种情况:一是开关频率低,二是次极有短路。再次通电测量UC3844“ VCC”“ Vref”等电压正常,断电后手摸变压器无任何温升! 因变压器无发热现象,排除次极短路情况。而开关频率低的话一般不会引起开关管发热如此之快甚至根本不过热。那么必定是开关管及其外围驱动电路异常引起开关管的损耗增大。换开关管试机,情况依旧。当测量UC3844驱动脚到开关管G极电路时发现22Ω电阻变值。换一新的贴片电阻试机,开关电源工作正常。 回过头来再测量原来的电阻发现阻值已变大为8.45KΩ。当它变值后和开关管G-S极27KΩ的电阻“分压”导致开关管实际驱动电压幅度下降,驱动波形前后沿变形,而这是场效应管所不能容忍的,故而发现强烈**的尖叫声。 该电源板从接手到排除故障费时不过十来分钟,细心的你可知我在其中一共使用了“几板斧”? 开关电源3842检修流程使用3842的开关电源外围大同小异,检修方法基本一样,以下流程检修的前提:开关管无短路,开关管对地限流保护电阻无开路,在通电时开关管不会马上击穿,切记:先测3842(7)脚的15V供电是否正常:没有电压,就检查启动电阻,或启动电路(部分机型7脚供电使用单独的

变频器开关电源的供电取自何处

变频器开关电源的供电取自何处

变频器开关电源的供电取自何处 在维修中常需将控制线路板,进行单独上电检修。无论是检测CPU主板还是检修电源/驱动板,都需要先使开关电源工作起来,为各部分电路的检测提供条件。所以须知晓开关电源电路的电源取自哪里,进而用外置维修电源来取代之。 开关电源的电源供给一般有以下几种来处: 1、直接取自变频器主电路的直流回路的两端,即储能电容的两端,在变频器电路中,厂家往往标注为P(或P1,供电+端)、N 端(供电-端),P、N之间直流电压约为530V左右;大部分变频器开关电源的供电,皆取自此处。如台达、东元、台安、康沃、富士等变频器一些机型的开关电源,都是取自直流回路530V直流电压的; 2、直流回路的储能电容,由于耐压的关系,用两只串联接于直流回路上,两只电容对530V形成分压点,分压点电压为265V左右。有的变频器开关电源的供电是取自a点,供电电压降低了一倍。如英威腾INVT-P9系列小功率变频器的开关电源,取自直流回路的265V 分压; 3、开关电源的供电,不接自直流回路,而另用380V/220V 变压器,从变频器电源输入端子R、S、T的任二相上取得,再经整流滤波后,送至开关电源。如富士、安川、东元变频器的一些机型。

图1 开关电源电路的三种检修供电方式 由图1中的三种变频器开关电源电路的的供电方式,可以自己动手制作一个简易的维修电源,放置于检修工作台的一个位置上,这个维修电源可用于对变频器进行拆机的上电检查、维修完毕装机后上电检查、对CPU主板和电源/驱动板的脱机检修等。 图2 开关电源电路的两种维修电源 上图中(一)AC端子电源的作用: 1、用户送修变频器,测量主接线端子无短路故障后,可从变频器的R、T电源输入端子接入上图(一) 的AC端子电源,为变频器上电,进行初步检查,如操作显示面板无显示,控制端子无电压等,即可判断故障出在开关电源电路;操作面板有显示,可通过调看故障记录(一些变频器无此功能),启、停变频器,观察运行和报警(故障代码)情况,进一步判断故障所在,为拆机检测提供依据。 须注意的是: a、如图3、1中的(三)电路,应将AC端子电压接入该变频器的S、T电源输入端子,否则机器内部开关电源因得不到工作电源,整机不

维修开关电源时所遇到的问题及解决的办法

维修开关电源时所遇到的问题及解决的办法 工程师在维修开关电源时遇到的问题,已给出解决的办法:案例1:变频器(故障现象:上电无显示)经检测发现电源主回路、充电电阻、主回路接触器都正常,因此确定为开关电源板故障。在进行第一步测量时,发现直流母线560V到PWM调制芯片之间的的330KΩ/2W的降压电阻损坏,标称330KΩ/2W的电阻,实际测量值达2MΩ以上,因此PWM调制芯片得不到启动的电源,所以无法起振工作。为谨慎起见又检测了开关管、变压器、整流二极管及滤波电容等关键器件,在确定没问题之后上电试验,OK!开关电源起振,输出各组电压正常,装回变频器后开机试验正常。注:维修人员在维修中,一定要养成习惯:发现坏元件后不要急于更换试机,一定要把功率大的、容易坏的元件都测一下,确定没问题后再试机,这样既安全又保险。 案例2:变频器(故障现象:上电无显示)经检测发现电源主回路、充电电阻、主回路接触器都正常,故障确定在电源板。按照维修步骤对开关电源板进行测量。第一步测量通过,第二步测量时发现开关管c-e结击穿,将其拆下,然后检测变压器、及整流二极管、滤波电容等关键器件,在确定没问题之后上电试验,输出各组电压正常,装机测试正常,故障排除。

案例3:变频器(故障现象:上电无显示)经检测发现电源主回路、充电电阻、主回路接触器都正常,故障确定在电源板。按照维修步骤对开关电源板进行测量。第一步测量通过,第二步测量通过,第三步测量通过,第四步测量通过,然后单独对电源板加电测量PWM 调制芯片的电源端对地有12.5V左右的电压,说明供电正常。用示波器看芯片的PWM输出端,发现没有PWM调制波形。更换PWM 调制芯片后,上电试验正常,故障排除。 案例4:变频器(故障现象:上电无显示)屡烧开关管经检测发现电源主回路、充电电阻、主回路接触器都正常,故障确定在电源板。按照维修步骤对开关电源板进行测量。第一步测量通过,第二步测量发现开关管击穿,第三步测量通过,第四步测量通过,更换新的开关管,单独对电源板加电,管子又烧了。把开关管拆下后不装管子,通电试验,测量PWM调制芯片的电源端对地有12V左右的电压,也正常。用示波器看芯片的PWM输出端,发现PWM波只有5-6 KH Z左右,断电后把定时元件拆下测量,发现定时电阻阻值变大,更换定时电阻、开关管后上电正常,不再烧电源管,故障排除。 案例5:伦茨变频器(故障现象:上电无显示)屡烧开关管按照维修步骤对开关电源板进行测量。第一步测量通过,第二步测量时发现开关管c-e结击穿,第三、四、五、六、七步都测量通过。装上新的开关管上电试验,随着调压器电压的升高,可以听到起振的吱吱声,就是有点响,把电压调到额定电压后测量输出电压低于正常值,不到

开关电源常见故障维修方法

开关电源常见故障及维修方法: 1.保险烧或炸 主要检查300V上的大滤波电容、整流桥各二极管及开关管等部位,抗干扰电路出问题也会导致保险烧、发黑。需要注意的是:因开关管击穿导致保险烧一般会把电流检测电阻和电源控制芯片烧坏。负温度系数热敏电阻也很容易和保险一起被烧坏。 2.无输出,保险管正常 这种现象说明开关电源未工作或进入了保护状态。首先要测量电源控制芯片的启动脚是否有启动电压,若无启动电压或者启动电压太低,则要检查启动电阻和启动脚外接的元件是否漏电,此时如电源控制芯片正常,则经上述检查可以迅速查到故障。若有启动电压,则测量控制芯片的输出端在开机瞬间是否有高、低电平的跳变,若无跳变,说明控制芯片坏、外围振荡电路元件或保护电路有问题,可先代换控制芯片,再检查外围元件;若有跳变,一般为开关管不良或损坏。 3.有输出电压,但输出电压过高 这种故障一般来自于稳压取样和稳压控制电路。在直流输出、取样电阻、误差取样放大器如TL431、光耦、电源控制芯片等电路共同构成一个闭合的控制环路,任何一处出问题就会导致输出电压升高。 4.输出电压过低 除稳压控制电路会引起输出电压低,还有下面一些原因也会引起输出电压低: a.开关电源负载有短路故障(特别是DC/DC变换器短路或性能不良等),此时,应该 断开开关电源电路的所有负载,以区分是开关电源电路还是负载电路有故障。若断 开负载电路电压输出正常,说明是负载过重;或仍不正常说明开关电源电路有故障。 b.输出电压端整流二极管、滤波电容失效等,可以通过代换法进行判断。 c.开关管的性能下降,必然导致开关管不能正常导通,使电源的内阻增加,带负载能 力下降。 d.开关变压器不良,不但造成输出电压下降,还会造成开关管激励不足从而屡损开关 管 e.300V滤波电容不良,造成电源带负载能力差,一接负载输出电压便会下降。

相关主题
文本预览
相关文档 最新文档