当前位置:文档之家› 浅谈凝聚态物理学的历史发展与研究

浅谈凝聚态物理学的历史发展与研究

浅谈凝聚态物理学的历史发展与研究
浅谈凝聚态物理学的历史发展与研究

浅谈凝聚态物理学的历史发展与研究

摘要:所谓“凝聚态”,指的是由大量粒子组成,并且粒子间有很强相互作用的系统。自然界中存在着各种各样的凝聚态物质。固态和液态是最常见的凝聚态。低温下的超流态,超导态,玻色- 爱因斯坦凝聚态,磁介质中的铁磁态,反铁磁态等,也都是凝聚态。当代物理学把固态物质和液态物质统称为凝聚态物质。本文就凝聚态物理的内容和发展进行综合性的概述。

关键词:凝聚态凝聚态物理固体物理超导物理

引言: 凝聚态物理学是当今物理学最大也是最重要的分支学科之一。研究由大

量微观粒子(原子、分子、离子、电子)组成的凝聚态物质的微观结构、粒子间的相互作用、运动规律及其物质性质与应用的科学。它是以固体物理学为主干,进一步拓宽研究对象,深化研究层次形成的学科。其研究对象除了晶体、非晶体与准晶体等固体物质外,还包括稠密气体、液体以及介于液体与固体之间的各种凝聚态物质,内容十分广泛。其研究层次,从宏观、介观到微观,进一步从微观层次统一认识各种凝聚态物理现象;物质维数,从三维到低维和分数维;结构从周期到非周期和准周期,完整到不完整和近完整;外界环境从常规条件到极端条件和多种极端条件交叉作用等,形成了比固体物理学更深刻更普遍的理论体系。经过半个世纪的发展,凝聚态物理学已成为物理学中最重要、最丰富和最活跃的分支学科,在诸如半导体、磁学、超导体等许多学科领域中的重大成就已在当代高新科学技术领域中起关键性作用,为发展新材料、新器件和新工艺提供了科学基础。前沿研究热点层出不穷,新兴交叉分支学科不断出现,是凝聚态物理学科的一个重要特点;与生产实践密切联系是它的另一重要特点,许多研究课题经常同时兼有基础研究和开发应用研究的性质,研究成果可望迅速转化为生产力.

一、凝聚态物理学的历史和发展

凝聚态物理学起源于19世纪固体物理学和低温物理学的发展。70年代特别是80年代之后, 由于固体物理学和研究范围在不断扩大,其涉及的概念体系也开始变迁的转移,固体物理学这一名词常被“凝聚态物理学”所取代。随着液体物理,半导体物理,超导物理,纳米材料等科学的发展,凝聚态物理学逐渐成为物理学科内一门不可或缺的分支。

1.1. 凝聚态物理学的萌芽时期——固体物理学的建立

固体物理学是研究固体的性质、它的微观结构及其各种内部运动,以及这种微观结构和内部运动同固体的宏观性质的关系的学科。

19世纪,人们对晶体的认识逐渐深入。1840年法国物理学家奥古斯特·布拉维导出了三维晶体的所有14种排列方式,即布拉维点阵。1912年,德国物理学家冯·劳厄发现了X射线在晶体上的衍射,开创了固体物理学的新时代,从此,人们可以通过X射线的衍射条纹研究晶体的微观结构。

1984年发现准周期结构以及分形结构中波的传播都存在一些新现象。在低温下考虑波的相干性,电输运现象会出现一些新结果,在介观物理领域中观测到一系列反映量子相干性的效应。由此看来,固体物理学范式扩大,由周期结构到非周期结构,可以容纳许多物理学研究的新领域。能带理论是建立在单电子近似的基础上的,也就是说忽略了电子间的相互作用。但实际上这种相互作用总是存在,

因而在能带的计算中需要引入相应的修正项。50—60年代发展起来的电子密度泛函理论较好地处理了这一问题,朗道的费米液体理论也表明了其元激发(准粒子)仍和费米气体相似,而相互作用则导致这些粒子“穿衣戴帽”。但是电子的相互作用也可能导致质的跃变;交换相互作用引起了铁磁性与反铁磁性,电子与声子相互作用导致了电子的配对(BCS理论)而出现超导电性。另外,电子间的相互作用也引发了金属到绝缘体的转变(莫特转变)。这些工作引起科学家对相变问题的重视。也引导了从固体物理学渐变为凝聚态物理学。

1.2凝聚态物理学的发展——诸多物理学科的融入

70年代特别是80年代之后, 由于固体物理学和研究范围在不断扩大,其涉及的概念体系也开始变迁的转移,固体物理学这一名词常被“凝聚态物理学”所取代。固体物理学的不足之处是对粒子之间相互作用不够重视也变得非常明显,凝聚态物理学的诞生正好弥补其不足之处。

从固体物理到凝聚态物理,凝聚态物理学的内容不断被充实、拓展,进而融入了液体物理,半导体物理,超导物理,纳米材料等,凝聚态物理逐渐成为了一门十分重要的物理学科。

1.3凝聚态物理学的现状——最重要的分支学科之一

凝聚态物理学是当今物理学最大也是最重要的分支学科之一。研究由大量微观粒子(原子、分子、离子、电子)组成的凝聚态物质的微观结构、粒子间的相互作用、运动规律及其物质性质与应用的科学。它是以固体物理学为主干,进一步拓宽研究对象,深化研究层次形成的学科。其研究对象除了晶体、非晶体与准晶体等固体物质外,还包括稠密气体、液体以及介于液体与固体之间的各种凝聚态物质,内容十分广泛。

近年,对于凝聚态物理的研究方向主要有:高温超导及相关强关联体系的基本电子性质、低维自旋和电荷系统、纳米功能材料的基本电子性质研究、自旋电子学材料基本性质等。

以下为近20年来凝聚态物理的研究热点:

1.准晶态的发现(1984年)

2.高温超导体的发现YBaCuO2(钇钡铜氧化物)(1986年)

3.纳米科学(1984年)

4.材料的巨磁阻效应LaSrMnO3(1992年)

5.新的高温超导材料MgB2(2001年)

二、凝聚态物理学的研究

凝聚态物理的研究对象,从最开始的固体物理,拓展到了液体物理,从晶体拓展到了非晶体,更有超导物理,纳米材料等。凝聚态物理的研究获得了巨大的进展。目前,凝聚态物理的研究方向主要有:高温超导及相关强关联体系的基本电子性质、低维自旋和电荷系统、纳米功能材料的基本电子性质研究、自旋电子学材料基本性质等。

2.1半导体物理的研究

布洛赫的能带理论为半导体物理的形成奠定了理论基础。此后,威尔逊在用能带理论解释金属、绝缘体、半导体的区别的基础上,又提出了杂质能级的概念,对半导体导电机理有了新的认识。1939年,原苏联的达维多夫、英国的莫特、德国的肖特基各自独立提出了有关半导体整流作用的理论。

在理论探索的同时,从20-30 年代开始,有人试图制造晶体管,但未能获

得成功。

晶体管的发明是固体物理学发展的产物。而通过制订严密规划并组织科学家攻关,则促进了这一成果的取得。从30年代起,贝尔实验室研究部下属真空管分部主任凯利一直考虑用某种新的器件取代真空管,因为真空管有许多缺点,不能满足电子技术日益发展的要求。凯利认为,应制订一个研究规划,深入地探索半导体,而先不考虑实用。1939年,凯利集中了一批优秀的青年科学家,给他

们提供良好的条件和充分的研究自由。1945年,贝尔实验室成立了固体物理研

究组。理论物理学家肖克利任组长,成员有巴丁和布拉顿等人。他们拟订了周密的研究和实验方案,进行了艰苦的探索。肖克利提出了“场效应”的预言。巴丁提出了半导体表面态和表面能级的概念。这些都对半导体理论的发展做出了贡献。随着每一个新观点的提出,他们不断修正实验方案。1947年12月23日,他们

终于成功了。巴丁和布拉顿在一块锗晶片表面安放了两根非常细的钨金属针。一根固定,另一根是加有负电压的可精密移动的探针。锗片背面焊有一根粗一点的金属丝。当探针移动到距离固定针0.05毫米处时,流过探针的电流发生微小起伏,竟引起固定针与锗片背面粗金属丝之间电流的大幅度变化。他们终于制成了世界上第一只点接触晶体管。肖克利等三人获1956年诺贝尔物理奖。1949年,肖克利小组又提出了PN结的整流理论。1951年,他们又制造出NPN型和PNP型晶体管。1954年,美国得克萨斯仪器公司研制的第一只硅晶体管上市。1960年,霍恩尼公司和法尔奇德公司相继发明出平面晶体管,使半导体器件发展到一个新阶段,并为集成电路的产生和发展开辟了道路。

晶体管的出现,促进了半导体物理的发展。1958年,日本的江崎玲於奈发

现半导体中的隧道效应现象,并制造了隧道二极管。近年来发现的" 电子- 空穴液滴" 现象引起人们的兴趣。1978年,科学家获得了电子- 空穴液滴的照片,

取得了研究的进展。物理学家希望对此研究会完全弄清纯半导体内的各种元激发间的相互作用,并开辟更广阔的应用前景。

2.2超导物理的研究

19世纪,英国著名物理学家法拉第在低温下液化了大部分当时已知的气体。1908年,荷兰物理学家海克·卡末林·昂内斯将最后一种难以液化的气体氦气

液化,创造了人造低温的新纪录-269 °C(4K),并且发现了金属在低温下的超导现象。超导具有广阔的应用前景,超导的理论和实验研究在20世纪获得了长足进展,临界转变温度最高纪录不断刷新,超导研究已经成为凝聚态物理学中最热门的领域之一。

早在1911年,荷兰的昂纳斯首次发现了在4.2K时水银电阻突然消失的超导电现象。1933年,迈斯纳(1891-1959)发现超导体内部的磁场是保持不变的,而且实际上为零。这种完全抗磁性是超导体的另一个基本特性,被称为迈斯纳效应。1935年,伦敦兄弟(F.London,1900-1954;H.Lon -don, 1907-1970)提出了

描述超导体的宏观电动力学方程——伦敦方程。

第二次世界大战以后,超导物理研究发展很快。1950年,弗留里希提出电子

和晶格振动之间的相互作用导致电子间的相互吸引是引起超导电性的原因。同年,麦克斯弗和雷诺等人同时独立发现,超导的各种同位素的超导转变温度T.与同

位素原子质量M 之间存在如下关系:Tc∝M ↑-α;对于一般元素,α~1/2 . 这叫同位素效应。1957年,巴丁、库柏和施里弗共同提出了超导电性的微观理论:当成对的电子有相同的总动量时,超导体处于最低能态;电子对的相同动量

是由电子之间的集体相互作用引起的,它在一定条件下导致超流动性;电子对的集体行为意味着宏观量子态的存在。这就是著名的BCS 理论。它成功地解释了超导现象,标志着超导理论的形成,对后来的超导研究产生了极大的影响。1972年,巴丁三人共同荣获诺贝尔物理奖。1962年,英国年仅22岁的研究生约瑟夫森根据BCS 理论计算出,由于量子隧道的作用,可以有一直流电流通过两个超导金属中间的薄绝缘势垒。这就是直流的约瑟夫森效应。

他还提出了交流的约瑟夫森效应。他的预言被以后的实验证实。人们利用约瑟夫森效应制成了极其灵敏的探测器。1973年,约瑟夫森获诺贝尔物理奖。

自超导电性发现起,人们就尝试利用它为人类服务。但超导电性还不能在各领域广泛应用的障碍在于超导体的临界温度太低。因此,从昂纳斯的时代开始,人们一直在寻找高临界温度的材料。80年代以来,高温超导材料的研究取得长足进展。

1986年1 月,瑞士的缪勒和柏诺兹经过3 年艰苦探索,用钡镧氧化物获得了30K 的超导转变温度。1986年4 月,他们在德国的《物理学杂志》宣布了这一成果,但未引起同行重视。其原因之一是论文只提到了这一材料的零电阻效应,而没有对抗磁性作探讨。1986年10月,他们再次投稿,肯定了所制备的样品具有完全抗磁性。不过这篇论文迟至1987年才发表。1986年11月,日本的内田等人按照缪勒等人的配方制出了类似材料,并证实了它的完全抗磁性。至此,缪勒和柏诺兹的研究工作得到公认。缪勒二人共获1987年诺贝尔物理学奖。

1987年初,围绕高温超导材料展开了一场激烈的国际角逐,掀起了全球超导热。1987年2 月,美籍华裔科学家朱经武用钇代替镧,获得了起始转变温度为90K的高温超导陶瓷。3 天以后,中国科学院物理所赵忠贤研究组用钇钡铜氧化物获得了起始转变温度93K 的超导体。各国实验室不甘落后,纷纷用各种化合物进行探索。一段时间内,超导材料临界温度直线上升,简直是日新月异。1990年,日本日立研究所超导中心发现了钒系高温超导材料,其临界温度达132K,并更新了铜系超导理论。中国国家超导研究中心同年研制出锑铋系材料,临界温度也达132K.超导材料的应用也获得蓬勃发展。1990年7 月,日本宣布制成大型核反应堆必不可少的超导线圈,效果提高了近千倍;此外还研制成世界上第一艘超导电磁推动船。中国科学院物理所于1990年9 月研制出高温超导薄膜,达到世界先进水平。中国研制的高温超导量子干涉探测器已试用于野外地磁测量,初步试验结果令人满意,达到了世界先进的技术性能指标。

超导研究的下一个目标是使超导临界温度达到常温。人们正在探索新的途径,尝试用氟、氮、碳部分取代氧,或在钇钡铜氧化物中加钪、锶和其他一些金属元素。金属氢的超导电性也是目前科学家极力研究的一个课题。高温超导材料的突破,将导致一大群新技术的兴起,并将对人类文明产生深远的影响。

2.3纳米材料的研究

地位所谓纳米技术,是指在0.1~100纳米的尺度里,研究电子、原子和分子内的运动规律和特性的一项崭新技术。

科学家们在研究物质构成的过程中,发现纳米尺度下隔离出来的几个、几十个可数原子或分子,显著地表现出许多新的特性。纳米效应就是指纳米材料具有传统材料所不具备的奇异或反常的物理、化学特性,如原本导电的铜到某一纳米级界限就不导电,原来绝缘的二氧化硅、晶体等,在某一纳米级界限时开始导电。这是由于纳米材料具有颗粒尺寸小、比表面积大、表面能高、表面原子所占比例大等特点,以及其特有的三大效应:表面效应、小尺寸效应和宏观量子隧道效应。

而利用这些特性制造具有特定功能设备的技术,就称为纳米技术。

从迄今为止的研究状况看,关于纳米技术分为三种概念。第一种,是1986年美国科学家德雷克斯勒博士在《创造的机器》一书中提出的分子纳米技术。根据这一概念,可以使组合分子的机器实用化,从而可以任意组合所有种类的分子,可以制造出任何种类的分子结构。这种概念的纳米技术未取得重大进展。第二种概念把纳米技术定位为微加工技术的极限。也就是通过纳米精度的“加工”来人工形成纳米大小的结构的技术。这种纳米级的加工技术,也使半导体微型化即将达到极限。现有技术即便发展下去,从理论上讲终将会达到限度。这是因为,如果把电路的线幅变小,将使构成电路的绝缘膜的为得极薄,这样将破坏绝缘效果。此外,还有发热和晃动等问题。为了解决这些问题,研究人员正在研究新型的纳米技术。第三种概念是从生物的角度出发而提出的。本来,生物在细胞和生物膜内就存在纳米级的结构纳米科技现在已经包括纳米生物学、纳米电子学、纳米材料学、纳米机械学、纳米化学等学科。从包括微电子等在内的微米科技到纳米科技,人类正越来越向微观世界深入,人们认识、改造微观世界的水平提高到前所未有的高度。

虽然距离应用阶段还有较长的距离要走,但是由于纳米科技所孕育的极为广阔的应用前景,美国、日本、英国等发达国家都对纳米科技给予高度重视,纷纷制定研究计划,进行相关研究。

三、凝聚态物理学的展望

通过半个多世纪的努力,凝聚态物质的研究已经取得了一系列令人注目的成果,其中既有重要的基础理论成果,如固体的能带理论、点阵动力学理论,磁性理论,超导电性理论,相变与临界现象理论等,又有震动世界的技术性成果,如半导体晶体管与激光器的诞生,新型铁磁性材料的发展等。仅半导体的研究就有11位科学家获得诺贝尔奖,超导体研究有8位科学家获得了诺贝尔奖,预期这一领域还会

有人获奖。应该说多数成果还是在结构比较简单的材料中获得的,下一步应朝向物质结构复杂化的方向推进,这已成为科学界的共识。

结束语:凝聚态物理学所研究的对象是的我们人类的生产和生活有着密切的联系,对社会生产力的提高起着巨大的推动作用,每一项技术的发展,首先要有相应的材料作基础,新材料和器件的突破往往导致新的技术和及其产业的诞生。由于新结构、新现象和新机制层出不穷,对人类的智力构成强有力的挑战、跨学科的渗透,可以预见在将来很长的时间内,凝聚态物理学都一直会具有非常强的生命力,凝聚态物理学家们肯定也会大有作为。

参考文献:

【1】李正中,《固体理论》,高等教育出版社,2002年

【2】冯端,金国钧,《凝聚态物理学》,高等教育出版社,2003年

【3】曹茂盛,《纳米材料导论》,哈尔滨工业大学出版社,2001年

【4】张裕恒,《超导物理》(第三版),中国科学技术大学出版社,2009年【5】田强,涂清云,《凝聚态物理学进展》(第二版),科学出版社,2013年【6】基泰尔(美)著,项金钟,吴兴惠译,《固体物理导论》,化学工业出版社

当今凝聚态物理研究的主要几个分支及研究进展

龙源期刊网 https://www.doczj.com/doc/3f11197659.html, 当今凝聚态物理研究的主要几个分支及研究进展 作者:张翠萍 来源:《中国新技术新产品》2016年第16期 摘要:本文通过对凝聚态物理固体电子论中的关联区、宏观量子态、介观物理与纳米结 构和软物质物理学这几个分支研究的一些内容还有对当今凝聚态物理研究的一些现象及其理论方法和已经取得的一些成就连同它们在器件和材料方面产生的作用和对未来影响的阐述,给出了这一基础学科对科学技术的影响和贡献,表明了凝聚态物理对现代科技的作用。 关键词:凝聚态物理;关联区;量子态;理论方法 中图分类号:O469 文献标识码:A 凝聚态物理学是当今物理学中最大也是最重要的分支学科之一,它是从微观角度出发,研究凝聚态物质的物理性质、微观结构以及它们之间的关系,因此建立起既深刻又普遍的理论体系,是当前物理学中最重要、最丰富和最活跃的学科,在许多学科领域中的重大成就已在当今高新科学技术领域中起了关键性作用,为发展新材料、新器件和新工艺提供了科学基础。凝聚态物理一方面与粒子物理学在概念上的发展相互渗透,对一些最基本的问题给出启示;另一方面为新型材料的研发和制备提供理论上和实验上的支持,与工科的技术学科衔接构成科学上最有实用性的拓新领域。那么,当今凝聚态物理主要研究哪些分支内容?使用什么样的理论方法?这些研究在哪些方面有所成就? 一、凝聚态物理当今主要研究的一些分支内容 凝聚态指的是由大量粒子组成且粒子间有很强相互作用的系统。固态和液态是最常见的凝聚态,低温下的超流态、超导态、玻色-爱因斯坦凝聚态、磁介质中的铁磁态、反铁磁态等,也都是凝聚态。凝聚态物理是属于偏应用的交叉学科,研究方向和分支很多,基本任务是阐明微观结构与物理性质的关系。传统的凝聚态物理主要研究半导体、磁学、超导体等,现今凝聚态物理学研究的理论内容十分广泛,以下是其中较活跃的几个分支: 1.固体电子论中的关联区 研究固体中的电子行为,是凝聚态物理的前身固体物理学的核心问题。按电子间相互作用的大小,固体中电子的行为分成3个区域,它们分别是弱关联区、中等关联区和强关联区。弱关联区的研究基于电子受晶格上离子散射的能带理论,应用于半导体和简单金属,构成了半导体物理学的理论基础;中等关联区的研究包括一般金属和强磁性物质,是构成铁磁学的物理基

物理学发展简史

物理学发展简史 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

一、古典物理学与近代物理学: 1、古典物理学:廿世纪以前所发展的物理学称为古典物理学,以巨观的角度研究物理,可分为 力学、热学、光学、电磁学等主要分支。 2、近代物理学:廿世纪以后(1900年卜朗克提出量子论后)所发展的物理学称为近代物理学, 以微观的角度研究物理,量子力学与相对论为近代物理的两大基石。

一、古典物理学对人类生活的影响: 1、力学:简单机械(杠杆、轮轴、滑轮、斜面、螺旋、劈) …… 2、光学: (一)反射原理: (1)平面镜:镜子…… (2)凹面镜:手电筒、车灯、探照灯…… (3)凸面镜:路口、商店监视镜…… (二)折射原理: (1)凸透镜:放大镜、显微镜、相机…… (2)凹透镜:眼镜、相机…… 3、热学:蒸汽机、内燃机、引擎、冰箱、冷(暖)气机…… 4、电学: (一)利用电能运作:一般电器用品,如:电视机、冰箱、洗衣机…… (二)利用电磁感应:发电机、变压器…… (三)利用电磁波原理:无线通讯、雷达…… 二、近代物理学对人类生活的影响: 1、半导体: (一)半导体:导电性介于导体和绝缘体间之一种材料,可分为元素半导体(如:硅、锗等)和 化合物半导体(如:砷化镓等)两种。 (二)用途: (1)半导体制成晶体管,体积小、耗电量少,具有放大电流讯号功能。 (2)半导体制成二极管具整流能力。 (3)集成电路(IC): (A)1958年发展出「集成电路」技术,系利用长晶、蚀刻、蒸镀等方式于一小芯片上容 纳上百万个晶体管、二极管、电阻、电感、电容等电子组件之技术,而此电路即称为 集成电路。 (B)IC之特性:体积小、效率高、耗电低、稳定性高、可大量生产。 (C)IC之应用:计算机、手机、电视、计算器、手表等电子产品。 (4)计算机信息科技之扩展大辐改变了人类的生活习惯,故俗称第二次工业革命。 2、雷射: (一)原理:利用爱因斯坦「原子受激放射」理论,诱发大量原子由受激态同时做能态之跃迁 并放射同频率之光子,藉以将光加以增强。 (二)特性:聚旋光性好、强度高、光束集中、频率单一(单色光)。 (三)应用:

论天体物理学及其对未来发展的重要作用

论天体物理学及其对未来发展的重要作用 11级物理2班黄健根1107020051 摘要:天体物理学是应用物理学的技术、方法和理论,研究天体的形态、结构、化学组成、物理状态和演化规律的天文学分支学科。它分为:太阳物理学、太阳系物理学、恒星物理学、恒星天文学、星系天文学、宇宙学、宇宙化学、天体演化学等分支学科。另外,射电天文学、空间天文学、高能天体物理学也是它的分支。多年来,随着世界人口的不断增加,资源不断的消耗,人们的生存环境日益缩减,资源也愈加匮乏。越来越多的国家将希望寄托于地球外部的空间,这进一步促进了天体物理学的发展,理论天体物理学的发展紧密地依赖于理论物理学的进步,几乎理论物理学每一项重要突破,都会大大推动理论天体物理学的前进。二十世纪二十年代初量子理论的建立,使深入分析恒星的光谱成为可能,并由此建立了恒星大气的系统理论。三十年代原子核物理学的发展,使恒星能源的疑问获得满意的解决,从而使恒星内部结构理论迅速发展;并且依据赫罗图的实测结果,确立了恒星演化的科学理论。 关键词:天体银河系特殊行星星系集团同位素 引力原子核等离子体星系空间 引言:本学期开展了物理学史着门课程,陈老师给我们讲述了有关内容,以下是我对天体物理学及其对未来发展的重要作用的论述。 (一)天体物理学的有关介绍 从公元前129年古希腊天文学家喜帕恰斯目测恒星光度起,中间经过1609年伽利略使用光学望远镜观测天体,绘制月面图,1655~1656年惠更斯发现土星光环和猎户座星云,后来还有哈雷发现恒星自行,到十八世纪赫歇耳开创恒星天文学,这是天体物理学的孕育时期。十九世纪中叶,三种物理方法——分光学、光度学和照相术广泛应用于天体的观测研究以后,对天体的结构、化学组成、物理状态的研究形成了完整的科学体系,天体物理学开始成为天文学的一个独立的分支学科。 天体物理学是应用物理学的技术、方法和理论,研究天体的形态、结构、化学组成、物理状态和演化规律的天文学分支学科。 天体物理学分为:太阳物理学、太阳系物理学、恒星物理学、恒星天文学、星系天文学、宇宙学、宇宙化学、天体演化学等分支学科。另外,射电天文学、空间天文学、高能天体物理学也是它的分支。 利用理论物理方法研究天体的物理性质和过程的一门学科。1859年﹐基尔霍夫根据热力学规律解释太阳光谱的夫琅和费线﹐断言在太阳上存在著某些和地球上一样的化学元素﹐这表明﹐可以利用理论物理的普遍规律从天文实测结果中分析出天体的内在性质﹐是为理论天体物理学的开端。理论天体物理学的发展紧密地依赖于理论物理学的进步﹐几乎理论物理学每一项重要突破﹐都会大大推动理论天体物理学的前进。二十世纪二十年代初

浅谈凝聚态物理学

浅谈凝聚态物理学 09物本—0911*******—郑默超 凝聚态物理学(condensed matter physics)是从微观角度出发,研究由大量粒子(原子、分子、离子、电子)组成的凝聚态的结构、动力学过程及其与宏观物理性质之间的联系的一门学科。凝聚态物理是以固体物理为基础的外向延拓。 凝聚态物理的研究对象除晶体、非晶体与准晶体等固相物质外还包括从稠密气体、液体以及介于液态和固态之间的各类居间凝聚相,例如液氦、液晶、熔盐、液态金属、电解液、玻璃、凝胶等。经过半个世纪的发展,目前已形成了比固体物理学更广泛更深入的理论体系。特别是八十年代以来,凝聚态物理学取得了巨大进展,研究对象日益扩展,更为复杂。一方面传统的固体物理各个分支如金属物理、半导体物理、磁学、低温物理和电介质物理等的研究更深入,各分支之间的联系更趋密切;另一方面许多新的分支不断涌现,如强关联电子体系物理学、无序体系物理学、准晶物理学、介观物理与团簇物理等。从而使凝聚态物理学成为当前物理学中最重要的分支学科之一,从事凝聚态研究的人数在物理学家中首屈一指,每年发表的论文数在物理学的各个分支中居领先位置。目前凝聚态物理学正处在枝繁叶茂的兴旺时期。并且,由于凝聚态物理的基础性研究往往与实际的技术应用有着紧密的联系,凝聚态物理学的成果是一系列新技术、新材料和新器件,在当今世界的高新科技领域起着关键性的不可替代的作用。近

年来凝聚态物理学的研究成果、研究方法和技术日益向相邻学科渗透、扩展,有力的促进了诸如化学、物理、生物物理学和地球物理等交叉学科的发展。 众所周知,复杂多样的物质形态基本上分成三类:气态、液态和固态,在这三种物态中,凝聚态物理研究的对象就占了二个,这就决定了这门学科的每一步进展都与我们人类的生活休戚相关。从传统的各种金属、合金到新型的各种半导体、超导材料,从玻璃、陶瓷到各种聚合物和复合材料,从各种光学晶体到各种液晶材料等等;所有这些材料所涉及到的声、光、电、磁、热等特性都是建立在凝聚态物理研究的基础上的。凝聚态物理研究还直接为许多高科学技术本身提供了基础。当今正蓬勃发展着的微电子技术、激光技术、光电子技术和光纤通讯技术等等都密切联系着凝聚态物理的研究和发展。凝聚态物理以万物皆成于原子为宗旨,以量子力学为基础研究各种凝聚态,这是一个非常雄心勃勃的举措。凝聚态物理这个学科名称的诞生仅仅是最近几十年的事。如果追寻一下它的渊源。应该说出自于对固态中晶态固体的研究和对液态中量子液体的研究。在对这二种特殊态的长期研究中,人们积累了一些经验,也建立起了一些信心,并逐步把一些已有的方法推广用于非晶态和液晶乃至液态的研究,从而大大拓宽了视野,逐步形成了凝聚态物理。今天,凝聚态物理的视野还在继续开拓。然而作为渊源的二种凝聚态即晶态固体和量子液体,时至今日仍然是它主要的研究对象,内容当然越来越丰富了,考

物理学发展史

我所认知的物理学发展史 经典物理学的发展古希腊时代的阿基米德已经在流体静力学和固体的平衡方面取得辉煌成就,但当时将这些归入应用数学,并没有将他的成果特别是他的精确实验和严格的数学论证方法汲入物理学中。从希腊、罗马到漫长的中世纪,自然哲学始终是亚里士多德的一统天下。到了文艺复兴时期,哥白尼、布鲁诺、开普勒和伽利略不顾宗教的迫害,向旧传统挑战,其中伽利略把物理理论和定律建立在严格的实验和科学的论证上,因此被尊称为物理学或科学之父。 研究物质世界最基本的结构、最普遍的相互作用、最一般的运动规律及所使用的实验手段和思维方法的一门学科。实验手段和思维方法是物理学中不可或缺和极其重要的内容,后者如相对性原理、隔离体(包括系统)法、理想模型法、微扰法、量纲分析法等,在古典和现代物理学中都有重要应用。物理学一词,源自希腊文physikos,很长时期内,它和自然哲学(naturalphilosophy)同义,探究物质世界最基本的变化规律。随着生产的发展。社会的进步和文化知识的扩展、深化,物理学以纯思辨的哲学演变到以实验为基础的科学。研究内容从较简单的机械运动扩及到较复杂的光、热、电磁等的变化,从宏观的现象剖析深入到微观的本质探讨,从低速的较稳定的物体运动进展到高速的迅变的粒子运动。新的研究领域不断开辟,而发展成熟的分支又往往分离出去,成为工程技术或应用物理学的一个分支,因此物理学的研究领域并非是一成不变的,研究方法不论是逻辑推理、数学分析和实验手段,也因不断精密化而有所创新,也难以用一个固定模式来概括。在19世纪发行的《不列颠百科全书》中,早已陆续地把力学、光学、热学理论和电学、磁学,列为专条,而物理学这一条却要到1971~1973年发行的第十四版上才首次出现。为了全面、系统地理解物理学整体,与其从定义来推敲,不如循历史源流,从物理学的发生和发展的过程来探索。 伽利略的成就是多方面的,仅就力学而言,他以物体从光滑斜面下滑将在另一斜面上升到同一高度,推论出如另一斜面的倾角极小,为达到同一高度,物体将以匀速运动趋于无限远,从而得出如无外力作用,物体将运动不息的结论。他精确地测定不同重量的物体以同一加速度沿光滑斜面下滑,并推论出物体自由下落时的加速度及其运动方程,驳倒了亚里士多德重物下落比轻物快的结论,并综合水平方向的匀速运动和垂直地面方向的匀加速运动得出抛物线轨迹和45°的最大射程角,伽利略还分析“地常动移而人不知”,提出著名的“伽利略相对性原理”(中国的成书于1800年前的《尚书考灵曜》有类似结论)。但他对力和运动变化关系的分析仍是错误的。全面、正确地概括力和运动关系的是牛顿的三条运动定律,牛顿还把地面上的重力外推到月球和整个太阳系,建立了万有引力定律。牛顿以上述的四条定律并运用他创造的“流数法”(即今微积分初步),解决了太阳系中的二体问题,推导出开普勒三定律,从理论上解决了地球上的潮汐问题。史称牛顿是第一个综合天上和地上的机械运动并取得伟大成就的物理学家。与此同时,几何光学也有很大发展,在16世纪末或17世纪初,先后发明了显微镜和望远镜,开普勒、伽利略和牛顿都对望远镜作很大的改进。 20世纪的物理学到19世纪末期,经典物理学已经发展到很完满的阶段,许多物理学家认为物理学已接近尽头,以后的工作只是增加有效数字的位数。开尔文在19世纪最后一个除夕夜的新年祝词中说:“物理大厦已经落成,……动力理论确定了热和光是运动的两种方式,现在它的美丽而晴朗的天空出现两朵乌云,一朵出现在光的波动理论,另一朵出现在麦克斯韦和玻耳兹曼的能量均分理论。”前者指的是以太漂移和迈克耳孙-莫雷测量地球对(绝对静止的)以太速度的实验,后者指用能量均分原理不能解释黑体辐射谱和低温下固体的比热。恰恰是这两个基本问题和开尔文所忽略的放射性,孕育了20世纪的物理学革命。 化工二班 许尚志 12071240073

历史上最伟大的物理学家排名

历史上最伟大的物理学家排名 最伟大的物理学家Top10 PhysicsWeb曾经搞过历史上最伟大的物理学家的投票,结果如下表: 1:牛顿(经典力学、光学) 牛顿(Sir Isaac NewtonFRS, 1643年1月4日--1727年3月31日)爵士,英国皇家学会会员,是一位英国物理学家、数学家、天文学家、自然哲学家和炼金术士。他在1687年发表的论文《自然哲学的数学原理》里,对万有引力和三大运动定律进行了描述。这些描述奠定了此后三个世纪里牛顿像(21张)物理世界的科学观点,并成为了现代工程学的基础。他通过论证开普勒行星运动定律与他的引力理论间的一致性,展示了地面物体与天体的运动都遵循着相同的自然定律;从而消除了对太阳中心说的最后一丝疑虑,并推动了科学革命。在力学上,牛顿阐明了动量和角动量守恒之原理。在光学上,他发明了反射式望远镜,并基于对三棱镜将白光发散成可见光谱的观察,发展出了颜色理论。他还系统地表述了冷却定律,并研究了音速。在数学上,牛顿与戈特弗里德·莱布尼茨分享了发展出微积分学的荣誉。他也证明了广义二项式定理,提出了“牛顿法”以趋近函数的零点,并为幂级数的研究作出了贡献。在2005年,英国皇家学会进行了一场“谁是科学史上最有影响力的人”的民意调查,牛顿被认为比阿尔伯特·爱因斯坦更具影响力。

2:爱因斯坦(相对论、量子力学奠基人) 爱因斯坦(Albert Einstein,1879年3月14日-1955年4月18日),举世闻名的德裔美国科学家,现代物理学的开创者和奠基人。爱因斯坦1900年毕业于苏黎世工业大学,1909年开始在大学任教,1914年任威廉皇家物理研究所所长兼柏林大学教授。后因二战爆发移居美国,1940年入美国国籍。 十九世纪末期是物理学的变革时期,爱因斯坦从实验事实出发,从新考查了物理学的基本概念,在理论上作出了根本性的突破。他的一些成就大大推动了天文学的发展。他的量子理论对天体物理学、特

2020物理学和天文学回国就业前景解析

2020物理学和天文学回国就业前景解析 物理学和天文学解决了宇宙的基本问题:宇宙是如何开始的?它是什么做的?它是如何工作的?如果试图找出其中一些问题的答案听起来很有趣,那么这就是你学习中最大的获得,除了巨大的收获,那么回国后的“经济收获”会怎样的呢?将为您详细介绍。 物理学是一门激动人心的学科,是现代社会发展的基础。该学科的应用范围从非常纯粹到非常实用,物理学位在科学研究和技术发展以及各种其他专业领域开辟了广泛的有益职业。相当数量的毕业生继续接受研究生教育,或直接依赖其专业技能的就业。 学生还可以在职业生涯中找到工作,因为他们在课程中获得了一般技能,如逻辑思维,解决问题,计算能力和计算机知识。例子包括咨询,财务,计算机编程和会计,以及管理和行政职位。 1.物理学解释了世界 了解为什么天空是蓝色的。找出世界如何发展。了解为什么全球变暖将使阿拉斯加人的雪地靴换成人字拖鞋。如果你足够好,你甚至可能破解生命的意义。可能性是无止境。 2.研究生前景 我们的研究生前景排名通常平均在60-70%左右。物理与天文学排名前10位的大学都有超过80%的前景,这意味着你在完成本科学位课程后会有很高的专业水平就业率或进一步学习。 3.解决问题的能力

一个普遍存在的术语,当人们无法用其他任何东西填充其他任何内容时,人们会把它们放在他们的简历上,但对于物理学毕业生来说,你几乎可以解决任何问题。许多学过物理的人发现它有助于他们培养批判性思维和解决问题的能力。它让你非常有用。 4.出国工作 相当多的课程不仅允许工业一年,而且可以允许它被带到国外。对于大多数人来说,这将是在英语国家,如爱尔兰或美国,但如果你也说外语,可能性进一步开放。 5.国际技能 世界是一个小而多样的地方,既更加全球化,又同时将人们分开。对宇宙的了解以及如何对其进行研究提供了可应用于当今世界任何国家或文化的技能和知识。 6.多才多艺 物理学家不必过于紧密地坚持他们的主题。你可以成为一名数学家,任何学科的工程师,确实可以接受大多数科目和主题。探索宇宙,开发激光技术,解决世界能源危机 - 等等。如果您是多技能型,请尝试联合学位。 7.困难但令人印象深刻 物理学让你对大学招聘人员,未来的雇主,以及大脑开启的任何小伙子/小姑娘更有吸引力,并关注聪明才智。如果你知道斯蒂芬霍金,那么你可以站在醉酒的人们面前不断地问你们,然后考虑物理学和天文学。 例如,宇宙学是对宇宙的起源,演化和最终命运的研究,而天体物理学则关注充满它的恒星,而空间科学则是对我们当地行

凝聚态物理学发展状况

§1 凝聚态物理学发展状况 凝聚态物理学研究物质的宏观物理性质的学科。所谓“凝聚态”,指的是由大量粒子组成,并且粒子间有很强相互作用的系统。自然界中存在着各种各样的凝聚态物质。固态和液态是最常见的凝聚态。低温下的超流态,超导态,玻色-爱因斯坦凝聚态,磁介质中的铁磁态,反铁磁态等,也都是凝聚态。 研究凝聚态物质的宏观性质及其微观本质的物理学分支。凝聚态物质的共同特点是原子(或分子)的间距和原子(或分子)本身的线度有大致相同的数量级,因而原子(或分子)间有较强的相互作用,这使凝聚态物质表现出具有一定的体积和压缩率很小这些共同的宏观特征;在微观结构上则具有长程有序(晶体)或短程有序(液体)的特点(见非晶态)。和气体相比,凝聚态物质具有迥然不同且更为多样化的属性。凝聚态物理学涉及范围极广的研究领域。自建立了量子理论后,晶态固体的一系列基本宏观性质得到了较好的理论解释,逐渐形成了较完整的晶态物理学基础。以后,晶态物理所研究的内容又有极大的扩展,如开始了对非晶态固体的研究,从完整的和纯净的晶体转移到对杂质和缺陷的研究,从体内性质扩展到表面和界面性质的研究,由平衡态转向瞬态、亚稳态和相变的研究,从常温常压条件转向极低温和超高压条件下的研究,以及从普通晶格扩展到超晶格(一种由不同单晶薄膜周期性地交替叠合而成的人工晶格)的研究,等等。所有这些构成了固体物理学这个宏大学科,按所研究的问题的不同,固体物理学又分出结晶学、金属物理学、半导体物理学、电介质物理学、磁性物理学、表面物理学和超导物理学等分支学科。凝聚态物理学除上述内容外还包括对液态氦和液晶的研究内容。凝聚态物理学由于其实用性强,和其他自然科学领域联系紧密,已成为物理学发展的重点之一。 目前凝聚态物理学面临的主要问题是铁磁态和高温超导体的理论模型。 1. 概况 凝聚态物理学是从微观角度出发,研究由大量粒子(原子、分子、离子、电子)组成的凝聚态的结构、动力学过程及其和宏观物理性质之间的联系的一门学科。凝聚态物理是以固体物理为基础的外向延拓。 凝聚态物理的研究对象除晶体、非晶体和准晶体等固相物质外还包括从稠密气体、液体以及介于液态和固态之间的各类居间凝聚相,例如液氦、液晶、熔盐、液态金属、电解液、玻璃、凝胶等。经过半个世纪的发展,目前已形成了比固体物理学更广泛更深入的理论体系。特别是八十年代以来,凝聚态物理学取得了巨大进展,研究对象日益扩展,更为复杂。一方面传统的固体物理各个分支如金属物理、半导体物理、磁学、低温物理和电介质物理等的研究更深入,各分支之间的联系更趋密切;另一方面许多新的分支不断涌现,如强关联电子体系物理学、无序体系物理学、准晶物理学、介观物理和团簇物理等。从而使凝聚态物理学成为当前物理学中最重要的分支学科之一,从事凝聚态研究的人数在物理学家中首屈一指,每年发表的论文数在物理学的各个分支中居领先位置。目前凝聚态物理学正处在枝繁叶茂的兴旺时期。并且,由于凝聚态物理的基础性研究往往和实际的技术使用有着紧密的联系,凝聚态物理学的成果是一系列新技术、新材料和新器件,在当今世界的高新科技领域起着关键性的不可替代的作用。近年来凝聚态物理学的研究成果、研究方法和技术日益向相邻学科渗透、扩展,有力的促进了诸如化学、物理、生物物理和地球物理等交叉学科的发展。 2.学科研究范围 研究凝聚态物质的原子之间的结构、电子态结构以及相关的各种物理性质。研究领域包括固体物理、晶体物理、金属物理、半导体物理、电介质物理、磁学、固体光学性质、低温物理和超导电性、高压物理、稀土物理、液晶物理、非晶物理、低维物理(包括薄膜物理、

物理学发展简史

物理学发展简史 摘要:物理学的发展大致经历了三个时期:古代物理学时期、近代物理学时期(又称经典物理学时期)和现代物理学时期。物理学实质性的大发展,绝大部分是在欧洲完成,因此物理学的发展史,也可以看作是欧洲物理学的发展史。 关键词:物理学;发展简史;经典力学;电磁学;相对论;量子力学;人类未来发展 0 引言 物理学的发展经历了漫长的历史时期,本文将其划分为三个阶段:古代、近代和现代,并逐一进行简要介绍其主要成就及特点,使物理学的发展历程显得清晰而明了。 1 古代物理学时期 古代物理学时期大约是从公元前8世纪至公元15世纪,是物理学的萌芽时期。 物理学的发展是人类发展的必然结果,也是任何文明从低级走向高级的必经之路。人类自从具有意识与思维以来,便从未停止过对于外部世界的思考,即这个世界为什么这样存在,它的本质是什么,这大概是古代物理学启蒙的根本原因。因此,最初的物理学是融合在哲学之中的,人们所思考的,更多的是关于哲学方面的问题,而并非具体物质的定量研究。这一时期的物理学有如下特征:在研究方法上主要是表面的观察、直觉的猜测和形式逻辑的演绎;在知识水平上基本上是现象的描述、经验的肤浅的总结和思辨性的猜测;在内容上主要有物质本原的探索、天体的运动、静力学和光学等有关知识,其中静力学发展较为完善;在发展速度上比较缓慢。在长达近八个世纪的时间里,物理学没有什么大的进展。 古代物理学发展缓慢的另一个原因,是欧洲黑暗的教皇统治,教会控制着人们的行为,禁锢人们的思想,不允许极端思想的出现,从而威胁其统治权。因此,在欧洲最黑暗的教皇统治时期,物理学几乎处于停滞不前的状态。 直到文艺复兴时期,这种状态才得以改变。文艺复兴时期人文主义思想广泛传播,与当时的科学革命一起冲破了经院哲学的束缚。使唯物主义和辩证法思想重新活跃起来。科学复兴导致科学逐渐从哲学中分裂出来,这一时期,力学、数学、天文学、化学得到了迅速发展。 2 近代物理学时期 近代物理学时期又称经典物理学时期,这一时期是从16世纪至19世纪,是经典物理学的诞生、发展和完善时期。 近代物理学是从天文学的突破开始的。早在公元前4世纪,古希腊哲学家亚里士多德就已提出了“地心说”,即认为地球位于宇宙的中心。公元140年,古希腊天文学家托勒密发表了他的13卷巨著《天文学大成》,在总结前人工作的基础上系统地确立了地心说。根据这一学说,地为球形,且居于宇宙中心,静止不动,其他天体都绕着地球转动。这一学说从表观上解释了日月星辰每天东升西落、周而复始的现象,又符合上帝创造人类、地球必然在宇宙中居有至高无上地位的宗教教义,因而流传时间长达1300余年。

物理学发展史

物理学发展史 公元1638年,意大利科学家伽利略的《两种新科学》一书出版,书内载有斜面实验的详细描述。伽利略的动力学研究与1609~1618年间德国科学家开普勒根据天文观测总结所得开 普勒三定律,同为牛顿力学的基础。 公元1643年,意大利科学家托利拆利作大气压实验,发明水银气压计。 公元1646年,法国科学家帕斯卡实验验证大气压的存在。 公元1654年,德国科学家格里开发明抽气泵,获得真空。 公元1662年,英国科学家波义耳实验发现波义耳定律。十四年后,法国科学家马里奥 特也独立的发现此定律。 公元1663年,格里开作马德堡半球实验。 公元1666年,英国科学家牛顿用三棱镜作色散实验。 公元1669年,巴塞林那斯发现光经过方解石有双折射的现象。 公元1675年,牛顿作牛顿环实验,这是一种光的干涉现象,但牛顿仍用光的微粒说解 释。 公元1752年,美国科学家富兰克林作风筝实验,引雷电到地面。 公元1767年,美国科学家普列斯特勒根据富兰克林导体内不存在静电荷的实验,推得 静电力的平方反比定律。 公元1780年,意大利科学家加伐尼发现蛙腿筋肉收缩现象,认为是动物电所致。不过 直到1791年他才发表这方面的论文。 公元1785年,法国科学家库仑用他自己发明的扭秤,从实验得静电力的平方反比定律。在这以前,英国科学家米切尔已有过类似设计,并于1750年提出磁力的平方反比定律。 公元1787年,法国科学家查理发现了气体膨胀的查理-盖·吕萨克定律。盖·吕萨克的研 究发表于1802年。 公元1792年,伏打研究加伐尼现象,认为是两种金属接触所致。 公元1798年,英国科学家卡文迪许用扭秤实验测定万有引力常数G。 公元1798年,美国科学家伦福德发表他的摩擦生热的实验,这些实验事实是反对热质 说的重要依据。

浅谈凝聚态物理学的历史发展与研究

浅谈凝聚态物理学的历史发展与研究 摘要:所谓“凝聚态”,指的是由大量粒子组成,并且粒子间有很强相互作用的系统。自然界中存在着各种各样的凝聚态物质。固态和液态是最常见的凝聚态。低温下的超流态,超导态,玻色- 爱因斯坦凝聚态,磁介质中的铁磁态,反铁磁态等,也都是凝聚态。当代物理学把固态物质和液态物质统称为凝聚态物质。本文就凝聚态物理的内容和发展进行综合性的概述。 关键词:凝聚态凝聚态物理固体物理超导物理 引言: 凝聚态物理学是当今物理学最大也是最重要的分支学科之一。研究由大 量微观粒子(原子、分子、离子、电子)组成的凝聚态物质的微观结构、粒子间的相互作用、运动规律及其物质性质与应用的科学。它是以固体物理学为主干,进一步拓宽研究对象,深化研究层次形成的学科。其研究对象除了晶体、非晶体与准晶体等固体物质外,还包括稠密气体、液体以及介于液体与固体之间的各种凝聚态物质,内容十分广泛。其研究层次,从宏观、介观到微观,进一步从微观层次统一认识各种凝聚态物理现象;物质维数,从三维到低维和分数维;结构从周期到非周期和准周期,完整到不完整和近完整;外界环境从常规条件到极端条件和多种极端条件交叉作用等,形成了比固体物理学更深刻更普遍的理论体系。经过半个世纪的发展,凝聚态物理学已成为物理学中最重要、最丰富和最活跃的分支学科,在诸如半导体、磁学、超导体等许多学科领域中的重大成就已在当代高新科学技术领域中起关键性作用,为发展新材料、新器件和新工艺提供了科学基础。前沿研究热点层出不穷,新兴交叉分支学科不断出现,是凝聚态物理学科的一个重要特点;与生产实践密切联系是它的另一重要特点,许多研究课题经常同时兼有基础研究和开发应用研究的性质,研究成果可望迅速转化为生产力. 一、凝聚态物理学的历史和发展 凝聚态物理学起源于19世纪固体物理学和低温物理学的发展。70年代特别是80年代之后, 由于固体物理学和研究范围在不断扩大,其涉及的概念体系也开始变迁的转移,固体物理学这一名词常被“凝聚态物理学”所取代。随着液体物理,半导体物理,超导物理,纳米材料等科学的发展,凝聚态物理学逐渐成为物理学科内一门不可或缺的分支。 1.1. 凝聚态物理学的萌芽时期——固体物理学的建立 固体物理学是研究固体的性质、它的微观结构及其各种内部运动,以及这种微观结构和内部运动同固体的宏观性质的关系的学科。 19世纪,人们对晶体的认识逐渐深入。1840年法国物理学家奥古斯特·布拉维导出了三维晶体的所有14种排列方式,即布拉维点阵。1912年,德国物理学家冯·劳厄发现了X射线在晶体上的衍射,开创了固体物理学的新时代,从此,人们可以通过X射线的衍射条纹研究晶体的微观结构。 1984年发现准周期结构以及分形结构中波的传播都存在一些新现象。在低温下考虑波的相干性,电输运现象会出现一些新结果,在介观物理领域中观测到一系列反映量子相干性的效应。由此看来,固体物理学范式扩大,由周期结构到非周期结构,可以容纳许多物理学研究的新领域。能带理论是建立在单电子近似的基础上的,也就是说忽略了电子间的相互作用。但实际上这种相互作用总是存在,

物理学发展史上的里程碑式的人

物理学发展史上的里程碑式的人

物理无处不在。它在遥远的宇宙边缘,它在星系中央的超大质量黑洞,它在构成万物的基本粒子,它甚至存在于看起来是空的空间内。物理学家的目的就是要去研究在这个物质世界中所发生的一切:掉落的苹果,行星和恒星的运动,以及微观世界中亚原子粒子的行为等等。 我们对我们所身处的这个宇宙已经有了越来越多的了解。而这一切都离不开下面这些物理学家的深刻洞察力,他们的理论、想法及发现彻底地改变了我们对宇宙的认知。 △伽利略(Galileo Galilei, 1564 - 1642)在物理学上最著名的贡献之一是他对物体运动的研究。在1630年代,他证明了所有在做自由落体运动的物体都有相同的加速度。换句话说,在没有空气阻力的情况下,羽毛和铅球将同时落地。霍金说:“自然科学的诞生要归功于伽利略。 △基于伽利略在物体运动的研究,牛顿(Isaac Newton, 1643 - 1727)在1687年发表了《自然哲学的数学原理》,阐述了三大运动定律和万有引力。他通过论证开普勒定律与他的引力理论间的一致性,证明了地球上的物体与天体的运动都遵循着相同的物理定律。

△对电和磁的研究是法拉第(Michael Faraday, 1791 - 1867)最著名的工作。在1831年,他发现了电磁感应现象;1839年,他提出了电学和磁学之间存在着基本关系。 △1864年,麦克斯韦(James Clerk Maxwell, 1831 - 1879)发表了他的电磁学理论,他提出了将电、磁和光统归为电磁场中的现象。麦克斯韦指出电场和磁场以波的形式在空间中以光速传播,同时从理论上预测了电磁波的存在。

凝聚态物理学

凝聚态物理学 本书是为一年级研究生的凝聚态物理课程撰写的教 科书。其1版出版于2000年,本书是2010年出版的第2版。它统一地处理所有的凝聚态物质,既包括了对于传统的、经典的课题的阐述,也给出了作者认为对于未来的发展将会起重要作用的一些领域的介绍。本书不仅讲述能带理论、输运现象、半导体物理,而且也介绍了准晶、相变动力学、纳米尺度电子的干涉、量子霍耳效应和超导等。在这个第2版中,包括了一些最新的进展,特别是关于软物质物理学,包括液晶、聚合物物理以及流体动力学等的材料。 本书有如下几个特点:1.强调理论与实验的对照,作者明确地指出了理论并非都与实验完全相符,目前仍然存在许多不确定的理论问题有待解决。2.书中给出了许多直接取自实验的新的图和数据表。3.每一章末尾的习题,大部分与课文紧密相关,而且分步骤给出了求解的指导。有些题目要求用计算机数值求解,特别是一些简单的能带计算,需要用计算机画出图来。4.全书末尾给出了一个长达40页的索引,这在一般的书上很少见。给读者查找相关内容带来了很大的方便。5.对于一些现象的解释尽可能做到简单,但对于一些计算和充分肯定的实验数据的解释尽量详细。6.本书列出了

1000多篇最近发表的以及历史上起过重要作用的参考文献,便于读者进一步深入研习。 全书共分27章,分别归属于六个部分。各部分与各章内容分别为:第一部分原子结构,含第1―5章:1.晶体概念; 2.三维晶格; 3.散射与结构; 4.表面和界面; 5.除晶体之外。第二部分电子结构,含第6―10章: 6.自由费米气体和单电子模型; 7.周期势中的无相互作用电子; 8.近自由与紧束缚; 9.电子一电子相互作用;10.固体中的一些实际计算。第三部分力学,含第11―15章:11.固体的内聚力;12.弹性;13. 声子;14.位错和缺陷;15.流体力学。第四部分电子输运,含第16―19章:16.Bloch电子动力学;17.输运现象和费米液体理论;18.传导的微观理论:19.电子学。第五部分光学性质,含第20-23章:20.唯象理论;21.半导体的光学性质; 22.绝缘体的光学性质;23.金属的光学性质与非弹性散射。第六部分磁性,含第24―27章:24.磁性和有序化的经典理论;25.离子与电子的磁性;26.相互作用磁矩的量子力学; 27.超导电性。 本书内容丰富,叙述清晰、透彻、易于理解,是一本适合于凝聚态物理、电子工程、材料科学、应用数学及化学学科高年级大学生和研究生学习凝聚态物理的很好的教材。对于相关领域的研究人员也具有重要的参考价值。 丁亦兵,教授

第二章 人类传播活动的历史与发展

第二章人类传播活动的历史与发展 第一节从动物传播到人类传播 一、动物社会的传播现象 二、动物传播的局限:动物传播的局限P24 三、劳动创造了人类语言:恩格斯关于劳动创造了语言的论述P26-27 四、人类语言的能动性和创造性:人类语言的四个基本特征P27 第二节:人类传播的发展进程 一、口语传播时代:口语(命名)出现的意义P29;口语的局限P29-30 二、文字传播时代:文字的出现P30;文字发明的意义P31 三、印刷传播时代:印刷术的发明(中国造纸印刷术、古腾堡印刷机)P31-32;印刷媒介的意义(施拉姆的论述及郭的补充)P32 四、电子传播时代:电子媒介的意义(时空和速度的突破、声音与影像信息系统的体外化)P33;电脑,电子媒介发展趋势(电脑、无线、通讯卫星和数字化技术)P33-34 第三节:信息社会与信息传播 信息社会的概念P35 一、媒介传播的进化与社会发展:哈特的媒介三分法P35-36 二、信息爆炸与信息社会:贝尔的社会发展三大阶段P37;托夫勒的三次浪潮P38;信息社会在经济结构上的四个特点P38 三、迎接高度信息化社会的到来:战后社会信息化的两个阶段(初级、高级)P39;社会“高度信息化”阶段的三个特点P39;世界各国建设信息社会(NII,GII)P39;我国信息化建设P39-40;对人类发展史的概要认识P40 一.动物传播 信号:传播并非人类特有现象。动物社会传递信息的常见信号就有以下几种: 1.气味。(分泌特定气味的荷尔蒙-一般草食和肉食动物) 2.发光。(萤火虫求偶) 3.超声波。(蝙蝠) 4.动作。(灰雁动作信号,蜜蜂的“8字舞”) 5.声音。(鸟语) 局限性:动物传播与人类传播不能同日而语的,两者之间有着本质的区别。表现在: 第一.动物的信息行为是一种先天的本能行为,取决于体内的信息功能和遗传基因,而非后天的系统学习; 第二,动物传递和接收信息的过程是基于条件反射原理的过程,而不伴随复杂的精神和思维活动。 —句话.动物传播只是对自然界的一种被动的适应,而不能成为对自然界和自身进行能动的、创造性改造。受过训练的黑猩猩也无法表达抽象的、过去的和未来的事物。 二.人类语言 为什么说劳动创造了语言?(劳动创造了人类的语言) 劳动:从传播学角度讲,语言的产生,标志着从动物传播到人类传播的重大飞跃。语言产生的根本动力,来自于人类最基本的创造性活动——劳动。劳动中相互协作对语言的需要促进了早期人类发音器官的发达,经过漫长的进化和发展,终于出现了分音节的语言。 人类语言区别于动物界信号系统的根本特征是什么? 人类语言的特性概括如下:(一力三性) 1.人类语言具有超越历史时间和空间的能力,它不仅能够表述现在,而且能够表述过去和未来;不仅能够表述眼前的事物,而且能够表述在遥远空间发生的事情。 2.人类语言具有无限的灵活性,可表达任何具体的、抽象的甚至虚构的事物,在表达内容上几乎无任何限制。 3.人类语言具有发音的经济性,以有限的几十种元音和辅音,配之以声调变化,能够组合成数十万以上的语音单词。这说明,人类能够以最小的体能消耗来最大限度地发挥自己的音声能力。 4,人类语言具有巨大的能动性和创造性。动物只能靠有限的声音和特定的化学或物理信号进行传播。而人类可以不断创造出新词语、新概念、新含义和新的表达方法.并且能够将声音语言转换成文字或其他符号体系加以记录和保存;人类不仅创造了自己的生活语言,还创造出了科学语言、艺术语言以及以手语、计算机语言为代表的各种人工语言。语言的历史,同时也是人类创造活动的历史。 综上所述,能动性和创造性是人类语言区别于动物界信号系统的最根本特征。人类语言活动不仅是人类对自然界和社会进行能动改造活动的有机组成部分,而且还不断创造和发展着自身,不断开创着崭新的语义世界。 从动物传播到人类传播,劳动创造了人类的语言。语言的产生,是完成从动物传播到人类传播之巨大飞跃的根本标志。 语言的起源:“汪汪”理论,“感叹”理论,“唱歌”理论,“吆——嗨——嗬”理论。 劳动的发展使相互支持和共同协作的场合增多了,劳动中的相互协作对语言的需要促进了早期人类发音器官的发达。 人类语言的特性:

物理学发展简史

物理学发展简史 专业:物流工程111 学生:吴建平 学号:2011216031 老师:代群

摘要:物理学的发展大致经历了三个时期:古代物理学时期、近代物理学时期(又称经典物理学时期)和现代物理学时期。物理学实质性的大发展,绝大部分是在欧洲完成,因此物理学的发展史,也可以看作是欧洲物理学的发展史。 关键词:物理学;发展简史;经典力学;电磁学;相对论;量子力学;人类未来发展

引言 物理学的发展经历了漫长的历史时期,本文将其划分为三个阶段:古代、近代和现代,并逐一进行简要介绍其主要成就及特点,使物理学的发展历程显得清晰而明了。 一古代物理学时期 古代物理学时期大约是从公元前8世纪至公元15世纪,是物理学的萌芽时期。 物理学的发展是人类发展的必然结果,也是任何文明从低级走向高级的必经之路。人类自从具有意识与思维以来,便从未停止过对于外部世界的思考,即这个世界为什么这样存在,它的本质是什么,这大概是古代物理学启蒙的根本原因。因此,最初的物理学是融合在哲学之中的,人们所思考的,更多的是关于哲学方面的问题,而并非具体物质的定量研究。这一时期的物理学有如下特征:在研究方法上主要是表面的观察、直觉的猜测和形式逻辑的演绎;在知识水平上基本上是现象的描述、经验的肤浅的总结和思辨性的猜测;在内容上主要有物质本原的探索、天体的运动、静力学和光学等有关知识,其中静力学发展较为完善;在发展速度上比较缓慢。在长达近八个世纪的时间里,物理学没有什么大的进展。 古代物理学发展缓慢的另一个原因,是欧洲黑暗的教皇统治,教会控制着人们的行为,禁锢人们的思想,不允许极端思想的出现,从而威胁其统治权。因此,在欧洲最黑暗的教皇统治时期,物理学几乎处于停滞不前的状态。 直到文艺复兴时期,这种状态才得以改变。文艺复兴时期人文主义思想广泛传播,与当时的科学革命一起冲破了经院哲学的束缚。使唯物主义和辩证法思想重新活跃起来。科学复兴导致来,这一时期,力学、数学、天文学、化学得到了迅速发展。 二近代物理学时期 近代物理学时期又称经典物理学时期,这一时期是从16世纪至19世纪,是经典物理学的诞生、发展和完善时期。 近代物理学是从天文学的突破开始的。早在公元前4世纪,古希腊哲学家亚里士多德就已提出了“地心说”,即认为地球位于宇宙的中心。公元140年,古希腊天文学家托勒密发表了他的13卷巨著《天文学大成》,在总结前人工作的基础上系统地确立了地心说。根据这一学说,地为球形,且居于宇宙中心,静止不动,其他天体都绕着地球转动。这一学说从表观上解释了日月星辰每天东升西落、周而复始的现象,又符合上帝创造人类、地球必然在宇宙中居有至高无上地位的宗教教义,因而流传时间长达1300余年。 公元15世纪,哥白尼经过多年关于天文学的研究,创立了科学的日心说,写出“自然科学的独立宣言”——《天体运行论》,对地心说发出了强有力的挑战。16世纪初,开普勒通过从第谷处获得的大量精确的天文学数据进行分析,先后提出了行星运动三定律。开普勒的理论为牛顿经典力学的建立提供了重要基础。从开普勒起,天文学真正成为一门精确科学,成为近代科学的开路先锋。 近代物理学之父伽利略,用自制的望远镜观测天文现象,使日心说的观念深入人心。他提出落体定律和惯性运动概念,并用理想实验和斜面实验驳斥了亚里士多德的“重物下落快”的错误观点,发现自由落体定律。他提出惯性原理,驳斥了亚里士多德外力是维持物体运动的说法,为惯性定律的科学逐渐从哲学中分裂出建立奠定了基础。伽利略的发现以及他所用的科学推理方法是人类思想史上

“物理学”简介、含义、起源、历史与发展【精选】

物理学 物理学研究宇宙间物质存在的各种主要的基本形式,它们的性质、运动和转化以及内部结构;从而认识这些结构的组元及其相互作用、运动和转化的基本规律。地学和生命科学都是自然科学的重要方面,有重要的社会作用,但是像地球这样有生物的行星在宇宙中却是少见的,所以地学和生命科学不属于物理学范围。当然,物理学所发现的基本规律,即使在地球现象和生命现象中,也起着重要作用。 物理学的各分支学科是按物质的不同存在形式和不同运动形式划分的。人对自然界的认识来源于实践,而实践的广度和深度有着历史的局限性。随着实践的扩展和深入,物理学的内容也不断扩展和深入。新的分支学科陆续形成;已有的分支学科日趋成熟,应用也日益广泛。早在古代就形成的天文学和起源于古代炼金术的化学,始终保持着独立的地位,没有被纳入物理学的范围。在天文学和物理学之间、化学和物理学之间存在着密切的联系,物理学所发现的基本规律在天文现象和化学现象中也起着日益深刻的作用。 客观世界是一个内部存在着普遍联系的统一体。随着物理学各分支科学的发展,人们发现物质的不同存在形式和不同运动形式之间存在着联系,于是各分支学科之间开始互相渗透。物理学逐步发展成为各分支学科彼此密切联系的统一整体。物理学家力图寻找一切物理现象的基本规律,从而去统一地理解一切物理现象。这种努力虽然逐步有所进展,使得这一目标有时显得很接近;但与此同时,新的物理现象又不断出现,使这一目标又变得更遥远。看来人们对客观世界的探索、研究是无穷无尽的。以下大体按照物理学的历史发展过程来叙述物理学的发展及其内容。 经典力学 经典力学研究宏观物体低速机械运动的现象和规律,宏观是相对于原子等微观粒子而言的。人们在日常生活中直接接触到的物体常常包含巨量的原子,因此是宏观物体。低速是相对于光速而言的。最快的喷气客机的速度一般也不到光速的一百万分之一,在物理学中仍算是低速。物体的空间位置随时间变化称为机械运动。人们日常生活直接接触到的并首先加以研究的都是宏观低速的机械运动。 自远古以来,由于农业生产需要确定季节,人们就进行天文观察。16世纪后期,人们对行星绕太阳的运动进行了详细、精密的观察。17世纪J.开普勒从这些观察结果中总结出了行星绕日运动的三条经验规律。差不多在同一时期,伽利略进行了落体和抛物体的实验研究,从而提出关于机械运动的初步的现象性理论,并把用实验验证理论结果的方法引入了物理学。I.牛顿深入研究了这些经验规律和初步的现象性理论,发现了宏观低速机械运动的基本规律:包括三条牛顿运动定律和万有引力定律,为经典力学奠定了基础。根据对天王星运行轨道的详细天文观察,并根据牛顿的理论,预言了海王星的存在;以后果然在天文观察中发现了海王星。于是牛顿所提出的力学定律和万有引力定律被普遍接受了。 经典力学中的基本物理量是质点的空间坐标和动量。一个力学系统在某一时刻的状态由它的每一个质点在这一时刻的空间坐标和动量表示。对于一个不受外界影响,也不影响外界,不包含其他运动形式(如热运动、电磁运动等)的力学系统来说,它的总机械能就是每一个质点的空间坐标和动量的函数,其状态随时间的变化由总能量决定。在经典力学中,力学系

相关主题
文本预览
相关文档 最新文档