当前位置:文档之家› “物理学”简介、含义、起源、历史与发展【精选】

“物理学”简介、含义、起源、历史与发展【精选】

“物理学”简介、含义、起源、历史与发展【精选】
“物理学”简介、含义、起源、历史与发展【精选】

物理学

物理学研究宇宙间物质存在的各种主要的基本形式,它们的性质、运动和转化以及内部结构;从而认识这些结构的组元及其相互作用、运动和转化的基本规律。地学和生命科学都是自然科学的重要方面,有重要的社会作用,但是像地球这样有生物的行星在宇宙中却是少见的,所以地学和生命科学不属于物理学范围。当然,物理学所发现的基本规律,即使在地球现象和生命现象中,也起着重要作用。

物理学的各分支学科是按物质的不同存在形式和不同运动形式划分的。人对自然界的认识来源于实践,而实践的广度和深度有着历史的局限性。随着实践的扩展和深入,物理学的内容也不断扩展和深入。新的分支学科陆续形成;已有的分支学科日趋成熟,应用也日益广泛。早在古代就形成的天文学和起源于古代炼金术的化学,始终保持着独立的地位,没有被纳入物理学的范围。在天文学和物理学之间、化学和物理学之间存在着密切的联系,物理学所发现的基本规律在天文现象和化学现象中也起着日益深刻的作用。

客观世界是一个内部存在着普遍联系的统一体。随着物理学各分支科学的发展,人们发现物质的不同存在形式和不同运动形式之间存在着联系,于是各分支学科之间开始互相渗透。物理学逐步发展成为各分支学科彼此密切联系的统一整体。物理学家力图寻找一切物理现象的基本规律,从而去统一地理解一切物理现象。这种努力虽然逐步有所进展,使得这一目标有时显得很接近;但与此同时,新的物理现象又不断出现,使这一目标又变得更遥远。看来人们对客观世界的探索、研究是无穷无尽的。以下大体按照物理学的历史发展过程来叙述物理学的发展及其内容。

经典力学

经典力学研究宏观物体低速机械运动的现象和规律,宏观是相对于原子等微观粒子而言的。人们在日常生活中直接接触到的物体常常包含巨量的原子,因此是宏观物体。低速是相对于光速而言的。最快的喷气客机的速度一般也不到光速的一百万分之一,在物理学中仍算是低速。物体的空间位置随时间变化称为机械运动。人们日常生活直接接触到的并首先加以研究的都是宏观低速的机械运动。

自远古以来,由于农业生产需要确定季节,人们就进行天文观察。16世纪后期,人们对行星绕太阳的运动进行了详细、精密的观察。17世纪J.开普勒从这些观察结果中总结出了行星绕日运动的三条经验规律。差不多在同一时期,伽利略进行了落体和抛物体的实验研究,从而提出关于机械运动的初步的现象性理论,并把用实验验证理论结果的方法引入了物理学。I.牛顿深入研究了这些经验规律和初步的现象性理论,发现了宏观低速机械运动的基本规律:包括三条牛顿运动定律和万有引力定律,为经典力学奠定了基础。根据对天王星运行轨道的详细天文观察,并根据牛顿的理论,预言了海王星的存在;以后果然在天文观察中发现了海王星。于是牛顿所提出的力学定律和万有引力定律被普遍接受了。

经典力学中的基本物理量是质点的空间坐标和动量。一个力学系统在某一时刻的状态由它的每一个质点在这一时刻的空间坐标和动量表示。对于一个不受外界影响,也不影响外界,不包含其他运动形式(如热运动、电磁运动等)的力学系统来说,它的总机械能就是每一个质点的空间坐标和动量的函数,其状态随时间的变化由总能量决定。在经典力学中,力学系

统的总能量和总动量有特别重要的意义。物理学的发展表明,任何一个孤立的物理系统,无论怎样变化,其总能量和总动量数值是不变的,它们是守恒量。这种守恒性质的适用范围已经远远超出了经典力学的范围,还没有发现它们的局限性。

在经典力学中出现了三个最普遍的基本物理概念:质量、空间和时间。质量可以作为物质的量的一种度量,空间和时间是物质存在的普遍形式。现有一切物理量的量纲原则上都可以由质量、空间、时间的量纲结合起来表达。具有不同量纲的物理量之间存在着质的差异。量纲在一定程度上反映物理量的质。量纲相同的物理量的质可以相同,但未必一定相同。

在经典力学中,时间和空间之间没有联系。空间向上下四方延伸,同时间无关;时间从过去流向未来,同空间无关。因此,就存在绝对静止的参照系,牛顿运动定律和万有引力定律原来是在这种参照系中表述的。相对于绝对静止的参照系作匀速运动的参照系称为惯性参照系。任何一个质点的坐标,在不同的惯性参照系中取不同的数值,这种不同数值之间的变换关系称为伽利略变换。在这种变换中,尺的长度不变,时钟运行的速度不变,经典力学基本规律的数学形式也不变。利用力学实验方法,无法确定哪些惯性参照系是绝对静止的参照系,因而绝对静止的参照系就成了一个假设。

早在19世纪,经典力学就已经成为物理学中一个成熟的分支学科,它包含了丰富的内容。例如:质点力学、刚体力学、分析力学、弹性力学、塑性力学、流体力学等。经典力学的哈密顿正则方程已成为物理学中的重要方程,并应用到统计物理学、量子力学等近代物理学的理论中。经典力学的应用范围,涉及到能源、航空、航天、机械、建筑、水利、矿山建设直到安全防护等各个领域。当然,工程技术问题常常是综合性的问题,还需要许多学科进行综合研究,才能完全解决。

机械运动中,很普遍的一种运动形式是振动和波动。声学就是系统研究这种运动的产生、传播、转化和吸收的分支学科。声波是传递信息的重要媒介,而且常常是其中不可缺少的环节。人的声带、口腔和耳就是声波的产生器和接收器。人们通过声波传递信息。有许多物体,不易为光波和电磁波透过,却能为声波透过。利用声波研究这种物体的内部性质,例如利用声波在媒质中的传播特性研究地层结构和海洋深处及海底的现象和性质,就有优越性。频率非常低的声波能在大气和海洋中传播到遥远的地方,因此能迅速传递地球上任何地方发生的地震、火山爆发或核爆炸的信息;频率很高的声波和声表面波已经用于固体的研究、微波技术、医疗诊断等领域;非常强的声波已经用于工业加工。

热学、热力学和经典统计力学

热学研究热的产生和传导,研究物质处于热状态下的性质和这些性质如何随着热状态的变化而变化。人们很早就有冷热的概念。利用火是人类文明发展史中的一个重要的里程碑。对于热现象的研究逐步澄清了关于热的模糊概念(例如:区分了温度和热量,发现它们是密切联系而又有区别的两个概念)。在此基础上开始探索热现象的本质和普遍规律。关于热现象的普遍规律的研究称为热力学。到19世纪,热力学已趋于成熟。

能量可以有许多种存在形式,力学现象中物体有动能和位能。物体有内部运动,因此有内部能量。19世纪的系统实验研究证明:热是物体内部无序运动的能量的表现,因此称这种能量为内能,以前称作热能。19世纪中期,J.P.焦耳等用实验确定了热量和功之间的定量关系,从而建立了热力学第一定律:宏观机械运动的能量与内能可以互相转化。就一个孤立的物理系统来说,不论能量形式怎样相互转化,总的能量的数值是不变的,热力学第一定律就是能量守恒与转换定律的一种表现。

在S.卡诺研究结果的基础上,R.克劳修斯等提出了热力学第二定律。它提出了一切涉及热现象的客观过程的发展方向,表达了宏观非平衡过程的不可逆性。例如:一个孤立的物体,其内部各处的温度不尽相同,那么热就从温度较高的地方流向温度较低的地方,最后达到各处温度都相同的状态,也就是热平衡的状态。相反的过程是不可能的,即这个孤立的、内部各处温度都相等的物体不可能自动回到各处温度不尽相同的状态。应用熵的概念,还可以把热力学第二定律表达为:一个孤立的物理系统的熵不能随着时间的流逝而减少,只能增加或保持不变。当熵达到最大值时,物理系统就处于热平衡状态。

热力学是一种唯象的理论。深入研究热现象的本质,就产生了统计力学。统计力学根据物质的微观组成和相互作用,研究由大量粒子组成的宏观物体的性质和行为的统计规律,是理论物理的一个重要分支。

宏观物体内部包含着大量的粒子。要研究其中每一个分子在每一时刻的状态实际上办不到。为了认识热现象的规律,也无需那么详细的知识。统计力学应用统计系综的方法,研究大量粒子的平均行为。20世纪初,J.W.吉布斯奠定了平衡态的统计力学的基础。它的关于统计分布的基本假设是:对于一个具有给定能量的给定物理系统,各种可能的状态出现的几率是等同的。热力学中的各种物理量以及它们之间的关系都可以用这种统计分布的平均值表达。温度一方面同物体内部各分子无序运动的那部分能量有关,另一方面也决定了这种内部能量在物体内部运动状态之间的分布。

非平衡统计力学所研究的问题复杂,直到20世纪中期以后才取得了比较大的进展。对于一个包含有大量粒子的宏观物理系统来说,无序状态的数目比有序状态的数目大得多,实际上多得无法比拟。系统处于无序状态的几率超过了处于有序状态的几率。孤立物理系统总是从比较有序的状态趋向比较无序的状态。在热力学中,这就相应于熵的增加。

处于平衡状态附近的非平衡系统的主要趋向是向平衡状态过渡。平衡态附近的主要非平衡过程是弛豫、输运和涨落。这方面的理论逐步发展,已趋于成熟。近20~30年来人们对于远离平衡态的物理系统如耗散结构等进行了广泛的研究,取得了很大的进展,但还有很多问题等待解决。

在一定时期内,人们对客观世界的认识总是有局限性的,认识到的只是相对的真理,经典力学和以经典力学为基础的经典统计力学也是这样。经典力学应用于原子、分子以及宏观物体的微观结构时,其局限性就显示出来,因而发展了量子力学。与之相应,经典统计力学也发展成为以量子力学为基础的量子统计力学。

经典电磁学、经典电动力学

经典电磁学研究宏观电磁现象和客观物体的电磁性质。人们很早就接触到电的现象和磁的现象,并知道磁棒有南北两极。在18世纪,发现电荷有两种:正电荷和负电荷。不论是电荷还是磁极都是同性相斥,异性相吸,作用力的方向在电荷之间或磁极之间的连接线上,力的大小和它们之间的距离的平方成反比。在这两点上和万有引力很相似。18世纪末发现电荷能够流动,这就是电流。但长期没有发现电和磁之间的联系。

19世纪前期,H.C.奥斯特发现电流以力作用于磁针。而后A.-M.安培发现作用力的方向和电流的方向以及磁针到通过电流的导线的垂直线方向相互垂直。不久之后,M.法拉第又发现,当磁棒插入导线圈时,导线圈中就产生电流。这些实验表明,在电和磁之间存在着密切的联系。

两个质点之间的万有引力沿着它们之间的连接线起作用。两个电荷之间的作用力也是这

样。这些力曾经被认为是超距作用。也就是说:这种力的传递既不需要时间,也不需要媒介。但是在电和磁之间的联系被发现以后,就认识到电磁力的性质在一些方面同万有引力相似,另一些方面却又有差别。为此法拉第引进了力线的概念,认为电流产生围绕着导线的磁力线,电荷向各个方向产生电力线,并在此基础上产生了电磁场的概念。现在人们认识到,电磁场是物质存在的一种特殊形式。电荷在其周围产生电场,这个电场又以力作用于其他电荷。磁体和电流在其周围产生磁场,而这个磁场又以力作用于其他磁体和内部有电流的物体。电磁场也具有能量和动量,是传递电磁力的媒介。它弥漫于整个空间。

19世纪下半叶,J.C.麦克斯韦总结了宏观电磁现象的规律,并引进位移电流的概念。这个概念的核心思想是:变化着的电场能产生磁场;变化着的磁场也能产生电场。在此基础上他提出了一套偏微分方程来表达电磁现象的基本规律。这套方程称为麦克斯韦方程组,是经典电磁学的基本方程,其中包含着电荷、电流如何产生电磁场的规律;也包含着电场和磁场相互影响,导致它们在时间和空间中如何变化的规律。麦克斯韦的电磁理论预言了电磁波的存在,其传播速度等于光速。这一预言后来为H.R.赫兹的实验所证实。遂使人们认识到麦克斯韦的电磁理论正确地反映了宏观电磁现象的规律,肯定了光也是一种电磁波。

由于电磁场能够以力作用于带电粒子,一个运动中的带电粒子既受到电场的力,也受到磁场的力,H.A.洛伦兹把运动电荷所受到的电磁场的作用力归结为一个公式,人们就称这个力为洛伦兹力。描述电磁场基本规律的麦克斯韦方程组和洛伦兹力就构成了经典电动力学的基础。

事实上发电机无非是利用电动力学的规律,将机械能转化为电磁能;电动机无非是利用电动力学的规律将电磁能转化为机械能。电报、电话、无线电、电灯也无一不是经典电磁学和经典电动力学发展的产物。经典电动力学对生产力的发展起着重要的推动作用,从而对社会产生普遍而重要的影响。

光学和电磁波

光学研究光的性质及其和物质的各种相互作用,光是电磁波。虽然可见光的波长范围在4×10-5~7.6×10-5cm之间,只占电磁波中很窄的一个波段,但早在认识到光是电磁波以前,人们就对光进行了研究。17世纪对光的本质提出了两种假说:一种假说认为光是由许多微粒组成的;另一种假说认为光是一种波动。19世纪在实验上确定了光有波的独具的干涉现象,以后的实验证明光是电磁波。20世纪初又发现光具有粒子性,人们在深入研究微观世界后,才认识到,光具有波粒二象性。

光可以为物质所发射、吸收、反射、折射和衍射。当所研究的物体或空间的大小远大于光波的波长时,光可以当作沿直线进行的光线来处理;但当研究深入到现象细节,其空间范围和光波波长差不多大小的时候,就必须着重考虑光的波动性。而研究光和微观粒子的相互作用时,还要考虑光的粒子性。

光学方法是研究大至天体、小至微生物以至分子、原子结构的非常有效的方法。利用光的干涉效应可以进行非常精密的测量。物质所放出来的光携带着关于物质内部结构的重要信息,例如:原子所放出来的原子光谱就和原子结构密切相关。近年来利用受激光辐射机制所产生的激光能够达到非常大的功率,且光束的张角非常小,其电场强度甚至可以超过原子内部的电场强度。利用激光已经开辟了非线性光学等重要研究方向;激光在工业技术和医学中已经有重要的应用。

现在用人工方法产生的电磁波的波长,长的已经达几千米,短的不到一百万亿分之一厘

米,覆盖了近20个数量级的波段。电磁波传播的速度大,波段又如此宽广,已成为传递信息的非常有力的工具。

在经典电磁学的建立与发展过程中,形成了电磁场的概念。在物理学尔后的发展中,场成了非常基本、非常普遍的概念,变得十分重要。在现代物理学中,场的概念已经远远超出了电磁学的范围,成为物质的一种基本的、普遍的存在形式。

狭义相对论和相对论力学

在经典力学取得很大成功以后,人们习惯于将一切现象归结为由机械运动所引起的。在电磁场概念提出以后,人们假设存在一种名叫“以太”的媒质,它弥漫于整个宇宙,渗透到所有的物体中,绝对静止不动,没有质量,对物体的运动不产生任何阻力,也不受万有引力的影响。电磁场被认为是以太中的应力,电磁波是以太中的弹性波,它在以太中向各方向的传播速度都一样大(见以太论)。

可以将以太作为一个绝对静止的参照系,因此相对于以太作匀速运动的参照系都是惯性参照系。在相对于以太作匀速运动的惯性参照系中观察,电磁波的传播速度应该随着波的传播方向而改变。例如:在一个运动的惯性参照系中观察,沿着参照系运动方向传播的光的速率看起来应该慢一些;逆着参照系运动方向传播的光的速率看起来应该快一些。这就给利用测量不同方向光速的方法,在所有的惯性参照系中确定那些是绝对静止的参照系提供了可能性。但实测的结果却出乎意料之外,在不同的、相对作匀速运动的惯性参照系中,测得的光速同传播方向无关,都完全相等。特别是A.A.迈克耳孙和E.W.莫雷进行的非常精确的实验,可靠地证明了这一点。这一实验事实显然同经典物理学中关于时间、空间和以太的概念相矛盾。A.爱因斯坦从这些实验事实出发,对空间、时间的概念进行了深刻的分析,从而建立了新的时空观念,在此基础上他提出了狭义相对论。狭义相对论的基本假设是:

①在一切惯性参照系中,基本物理规律都一样,都可用同一组数学方程来表达;

②对于任何一个光源发出来的光,在一切惯性参照系中测量其传播速率,结果都相等。

在狭义相对论中,空间和时间是彼此密切联系的统一体,空间距离是相对的,时间也是相对的。在相对于尺和钟作匀速运动的惯性参照系中的观察者看来,尺变短了,钟变慢了。因此尺的长短,时间的长短都是相对的。但在狭义相对论中,并不是一切都是相对的。例如:设在空间、时间中有两点,它们的坐标分别为(x1,t1)和(x2,t2),那末在任何惯性参照系中,量(x1-x2)2-с2(t1-t2)2的数值是不变的,因此是绝对的,其中с代表光速。空间坐标、时间坐标和一系列物理量,如:动量和能量、电场强度和磁场强度等等,在不同惯性参照系之间的变换关系称为洛伦兹变换。基本物理规律必须对于洛伦兹变换具有不变性。

麦克斯韦方程组对于洛伦兹变换具有不变性。经典力学规律对于伽利略变换具有不变性;但对于洛伦兹变换却不具有不变性,因此必须加以修改。修改后的力学称为相对论力学,它对于洛伦兹变换具有不变性。在相对论力学中,光速是机械运动速度的极限,不可逾越。当物体速度无限地趋近光速时,它的动量、能量、惯性质量均将趋于无穷大。这些结论在实验中都得到了证实。

相对论力学的另一个重要结论是:一个具有质量m的物体一定具有能量E,并有

E=mс2,

即使物体静止时也是如此。假使质量是物质的量的一种度量,能量是运动的量的一种度量,则上式表明:物质和运动之间存在着不可分割的联系。不存在没有运动的物质,也不存在没有物质的运动。对于静止物体来说,E代表它的内部运动的量。1克物质内部所蕴藏的能量相当于2万多吨TNT炸药爆炸时所释放的能量。这一规律已在核能的研究和实践中得到了证实。

当物体的速度远小于光速时,相对论力学定律就趋近于经典力学定律。因此在低速运动时,经典力学定律仍然是很好的相对真理。例如:地球绕太阳运行的速率约为30km/s。这同日常生活中遇到的机械运动的速度相比是很大的速度;但同光速相比,却是很小的速度,仅为光速的万分之一。因此处理这类问题,经典力学定律仍然是很好的相对真理,仍然能用来解决工程技术中的力学问题。

狭义相对论对空间和时间的概念进行了革命性的变革,并且否定了以太的概念,肯定了电磁场是一种独立的、物质存在的特殊形式。由于空间和时间是物质存在的普遍形式,因此狭义相对论对于物理学产生了广泛而又深远的影响。

广义相对论和万有引力的基本理论

狭义相对论给牛顿万有引力定律也带来了新问题。牛顿提出的万有引力被认为是一种超距作用,它的传递不需要时间,产生和到达是同时的。这同狭义相对论提出的光速是传播速度的极限相矛盾。而且在狭义相对论中,“同时”是一种相对的概念。因此,必须对牛顿的万有引力定律也加以改造。改造的关键来自R.V.厄缶的实验,它以很高的精确度证明:惯性质量和引力质量相等,因此不论行星的质量多大多小,只要在某一时刻它们的空间坐标和速度都相同,那末它们的运行轨道都将永远相同。引力所决定的运行轨道和运行物体的质量无关,对于所有物体都一样。这个结论提供了一个线索,启发爱因斯坦设想:万有引力效应是空间、时间弯曲的一种表现,从而提出了广义相对论。根据广义相对论,空间、时间的弯曲结构决定于物质的能量密度、动量密度在空间、时间中的分布;而空间、时间的弯曲结构又反过来决定物体的运行轨道。在引力不强,空间、时间弯曲很小的情况下,广义相对论的预言就同牛顿万有引力定律和牛顿运动定律的预言趋于一致;引力较强,空间、时间弯曲较大的情况下,就有区别。但这种区别常常很小,很难在实验中观察到。从广义相对论提出到现在已经过去了70年,至今还只有四种实验能检验出这种区别。所有这四种实验观察结果都支持广义相对论而不支持牛顿万有引力定律的结论。

广义相对论不仅对于天体的结构和演化的研究有重要意义,对于研究宇宙的结构和演化也有重要意义。

原子物理学、量子力学、量子电动力学

原子物理学研究原子的性质、内部结构、内部受激状态,以及原子和电磁场、电磁波的相互作用以及原子之间的相互作用。原子是一个很古老的概念。古代就有人认为:宇宙间万物都是由原子组成的。原子是不可分割的、永恒不变的物质最终单元。1897年J.J.汤姆孙发现了电子。这才使人们认识到原子不是不可分割的、永恒不变的,而是具有内部结构的粒子。

于是在19世纪末,经典物理学的局限性进一步暴露出来。根据经典物理学和原子中存在着电子的实验事实可以推导出:假使空腔壁的温度不为零,一个具有有限体积的空腔内的电磁辐射的能量是无穷大的。这显然不符合客观事实(见黑体辐射)。经典物理学也无法解释光电效应。为此,M.普朗克和爱因斯坦提出了同经典物理学相矛盾的假设:光是由一粒一粒光子组成的,每一粒光子的能量E为

E=hv,

式中v为光的频率,h是一个常数,称为普朗克常数。这一假设导出的结论和黑体辐射及光电效应的实验结果符合。于是,19世纪初被否定了的光的微粒说又以新的形式出现。

1911年,E.卢瑟福用α粒子散射实验(见原子结构)发现原子的质量绝大部分以及内部的正电荷集中在原子中心一个很小的区域内,这个区域的半径只有原子半径的万分之一左右,因此称为原子核。这才使人们对原子的内部结构得到了一个定性的、符合实际的概念。在某些方面,原子类似一个极小的太阳系,只是太阳和行星之间的作用力是万有引力,而原子核和电子间的作用力是电磁力。

用经典物理学来解释原子的内部结构和原子发射出来的光的频谱遇到了不可克服的困难。按照经典电动力学理论,围绕原子核运行的电子因加速运动会辐射电磁波,从而损失能量,电子轨道的半径将逐渐缩小,放出的电磁波的频率会愈来愈高,并连续改变;最后,电子因损失能量而落入原子核中。因此,原子不可能有稳定的结构。但实验表明:原子有很稳定的结构,放出来的电磁波的频谱并不连续,而是分立的,而且这种分立的频谱具有明显的规律性。

为了解释原子的结构和原子光谱的规律,N.玻尔提出了他的氢原子理论,在经典力学所容许的所有运动状态中,只有那些电子的轨道角动量为

的整数倍的状态才是客观规律所允许的状态(见玻尔氢原子理论)。因此原子内部电子围绕原子核运动的能量只能取一系列分立的数值,称为能级。原子吸收或放出光子时,就从一个能级跃迁到另一个能级,光的频率v和光子的能量E之间有如上述爱因斯坦光子假说的公式所表达的关系。光子的能量E为这两个能级的能量差。玻尔的氢原子理论在解释氢原子的结构和光谱时取得了很大的成功;但是用来研究氦原子结构时就遇到了困难。显然,经典物理学的可用范围不包括微观世界;而上述普朗克、爱因斯坦、玻尔的学说虽包含了微观世界的部分真理,但都不是微观世界物理现象的完整的基本理论。

原子物理学的基本理论是在20世纪20年代中期和后期由L.V.德布罗意、W.K.海森伯、E.薛定谔、P.A.M.狄喇克、W.泡利等所创建的量子力学和量子电动力学。它们区别于经典力学和经典电动力学的主要特点是:

①物理量所能取的数值常常是不连续的,当然,某些物理量在一定范围内也可以取连续的数值;

②它们所反映的规律不是确定性的规律,而是统计规律。

这两个特点之间又存在着密切的联系。量子力学和量子电动力学应用于研究原子结构、原子光谱、原子发射、吸收、散射光的过程以及电子、光子和电磁场的相互作用和相互转化过程非常成功。理论结果同最精密的实验结果相符合。

微观客体的一个基本性质是波粒二象性。所有一切微观粒子如:光子、电子、原子等都

具有波粒二象性。对于所有微观粒子,能量E和频率v之间、动量p和波长λ之间都有如下的关系:

这两个关系式表达了微观客体的粒子性和波动性之间的深刻联系。粒子和波是人在宏观世界的实践中形成的概念,它们各自描述了迥然不同的客体。但从宏观世界实践中形成的概念未必恰巧适合于描述微观世界的现象。现在看来,需要粒子和波动两种概念互相补充,才能全面地反映微观客体在各种不同的条件下所表现的性质。

这一基本特点的另一种表现方式是海森伯的测不准关系。这一关系说明:不可能同时测准一个粒子的位置和动量,位置测得愈准,动量必然测得愈不准;动量测得愈准,位置必然测得愈不准。测不准关系的表达式是:

Δx·Δp≥h,

式中Δx是位置测量的误差,Δp是动量测量的误差。

波粒二象性已经包含在量子力学的数学形式中:在量子力学中物理量由算符表示,物理量所能取的数值就是算符的本征值,本征值常常是不连续的,粒子性就是这种不连续性的一种表现;物理状态由波函数表达,波动性就是波函数所描述的统计性质的一种表现。

量子力学和量子电动力学产生于原子物理学研究,但是它们起作用的范围远远超出原子物理学。量子力学是所有微观、低速现象所遵循的规律,因此不仅应用于原子物理,也应用于分子物理学、原子核物理学以及宏观物体的微观结构的研究。量子电动力学则是所有微观电磁现象所必须遵循的规律,直到现在,还没有发现量子电动力学的局限性。

当所研究的现象中,坐标值和动量值的乘积远远大于h时,量子力学和量子电动力学所得到的结果就趋近于经典力学和经典电动力学所得到的结果。例如,观察不到宏观物体的波动性的原因是因为相应的波长太短。一个质量为1g的物体以1cm/s的速度运动,相应的波长为6×10-27cm,远远小于目前实验技术所能测量出来的最小距离。因此经典力学和经典电动力学仍然是反映宏观力学现象和宏观电磁现象的规律的很好的相对真理。

分子物理学研究原子如何结合成为分子,分子的内部结构、内部运动状态、它的电学性质、磁学性质和光学性质等等。分子物理现象服从量子力学和量子电动力学所反映的规律。简单的分子用量子力学和量子电动力学来分析处理,得到的结果和实验结果相符合,但用量子力学和量子电动力学来处理复杂的分子,数学上非常复杂和困难,很难得到比较准确的结果。由于X射线衍射技术、中子衍射技术、激光技术等的发展,为研究分子提供了有力的实验手段。生命物质内部的分子结构非常复杂,但应用现有的实验技术已经能够对它们的结构包括细胞内染色体中携带遗传密码的分子结构进行详细的分析。分子物理的实验研究正在不断取得进展。

量子统计力学

以量子力学为基础的统计力学,称为量子统计力学(见量子统计法)。经典统计力学以经典力学为基础,因而经典统计力学也具有局限性。例如:随着温度趋于绝对零度固体的比热

容趋于零的实验现象,就无法用经典统计力学来解释。

在宏观世界中,看起来相同的物体总是可以区别的;在微观世界中,同一类粒子却无法区分。例如:所有的电子的一切性质都完全一样。在宏观物理现象中,将两个宏观物体交换,就得到一个和原来状态不同的状态,进行统计时必须将交换前和交换后的状态当作两个不同的状态处理;但是在一个物理系统中,交换两个电子后,得到的还是原来的状态,因此进行统计时,必须将交换前和交换后的状态当作同一个状态来处理。

微观粒子还有其他特殊性。自旋为媡的半整倍数的粒子,如电子,服从费密-狄喇克统计,这类粒子统称为“费密子”;自旋为媡的整数倍的粒子,如光子,服从玻色-爱因斯坦统计(见全同粒子),这类粒子统称为“玻色子”。根据微观世界的这些规律改造经典统计力学,就得到量子统计力学。应用量子统计力学就能使一系列经典统计力学无法解释的现象,如黑体辐射、低温下的固体比热容、固体中的电子为什么对比热的贡献如此小等等,得到了合理的解释。

固体物理学

固体物理学研究固体的性质,它的微观结构及其各种内部运动,以及这种微观结构和内部运动同固体的宏观性质(如力学性质、热学性质、光学性质、电磁性质等等)的关系。每立方厘米固体中包含巨量的原子,因此上述问题是多体问题。固体的内部结构和运动形式很复杂,这方面的研究是从晶体开始的,因为晶体的内部结构简单,而且具有明显的规律性,较易研究。以后进一步研究一切处于凝聚状态的物体的内部结构、内部运动以及它们和宏观物理性质的关系。这类研究统称为凝聚态物理学。

固体中电子的运动状态服从量子力学和量子电动力学的规律。在晶体中,原子(离子、分子)有规则地排列,形成点阵。20世纪初,M.von劳厄和布喇格父子发展了X射线衍射方法,用以研究点阵结构。第二次世界大战以后,又发展了中子衍射方法,使晶体点阵结构的实验研究得到了进一步发展。

在晶体中,原子的外层电子可能具有的能量形成一段一段的能带(见固体的能带)。电子不可能具有能带以外的能量值。按电子在能带中不同的填充方式,可以把晶体区别为金属、绝缘体和半导体。能带理论结合半导体锗和硅的基础研究,高质量的半导体单晶生长和掺杂技术,导致J.巴丁、W.H.布喇顿和W.肖克莱于1947~1948年发明了晶体管。

电子具有自旋和磁矩,它们和电子在晶体中的轨道运动一起,决定了晶体的磁学性质,晶体的许多性质(如力学性质、光学性质、电磁性质等)常常不是各向同性的。作为一个整体的点阵,有大量内部自由度,因此具有大量的集体运动方式,具有各式各样的元激发(见固体中的元激发)。晶体的许多性质都和点阵的结构及其各种运动模式密切相关,晶体内部电子的运动和点阵的运动之间相耦合,也对固体的性质有重要的影响。例如:H.开默林-昂内斯在1911年发现,金属在低温下有超导电性;江崎玲於奈在1960年发现超导体的单电子隧道效应。这些效应都和这种不同运动模式之间的耦合相关。

晶体内部的原子可以形成不同形式的点阵。处于不同形式点阵的晶体,虽然化学成分相同,物理性质却可能不同。不同的点阵形式具有不同的能量:在低温时,点阵处于能量最低的形式;当晶体的内部能量增高,温度升高到一定数值,点阵就会转变到能量较高的形式。这种转变称为相变。相变会导致晶体物理性质的改变。温度不断升高,晶体可以经历几次相变。温度升高了,晶体就会熔化为液体;温度更高时,液体就会沸腾而转化为气体;温度再升高,气体中的分子就分解为原子;温度再升高,原子就分解为离子和电子,气体就转化为

等离子体。这些变化都称为相变。相变是重要的物理现象,也是重要的研究课题。

点阵结构完好无缺的晶体是一种理想的物理状态。实际晶体内部的点阵结构总会有缺陷;化学成分也不会绝对纯,内部会含有杂质。这些缺陷和杂质对固体的物理性质(包括力学、电学、磁学、发光学等)以及功能材料的技术性能,常常会产生重要的影响。大规模集成电路的制造工艺中,控制和利用杂质和缺陷是很重要的。晶体的表面性质和界面性质,会对许多物理过程和化学过程产生重要的影响。所有这些都已成为固体物理研究中的重要领域(见晶体缺陷、晶粒间界、表面物理学)。

非晶态固体内部结构的无序性使得对于它们的研究变得更加复杂。非晶态固体有一些特殊的物理性质,使得它有多方面的应用。这是一个正在发展中的新的研究领域(见非晶态半导体、非晶态材料、非晶态材料的结构模型)。

固体物理对于技术的发展有很重要的作用。在晶体管发明以后,集成电路技术迅速发展,电子学技术、计算技术以至整个信息产业也随之迅速发展。其经济影响和社会影响是革命性的。这种影响甚至在日常生活中也处处可见。固体物理学也是发展具有特定物理性质(如:发光性质、磁学性质、电学性质)材料的基础,这些材料对于工业技术的发展,往往有重要的作用。

原子核物理学

原子核是比原子更深一个层次的物质结构。原子核物理学研究原子核的性质,它的内部结构、内部运动、内部激发状态、衰变过程、裂变过程以及它们之间的反应过程。在原子核被发现以后,曾经以为原子核是由质子和电子组成的。1932年,J.查德威克发现了中子,这才使人们认识到原子核是由质子和中子组成的。质子和中子统称为核子,核子在原子核中的结合能远大于电子在原子中的结合能。

中子不带电。质子带正电荷,因此质子间存在着静电排斥力。万有引力虽然使各核子相互吸引,但在两个质子之间的静电排斥力比它们之间的万有引力要大到约1036倍。显然,将核子结合成为原子核的既不可能是电磁相互作用,也不可能是万有引力相互作用。自然界一定存在第三种基本相互作用──强相互作用。人们将核子结合成为原子核的力称为核力。核力来源于强相互作用,在宏观物理现象中,能够直接观察到万有引力和电磁力,因为它们是长程力;但从未能直接观察到核力,因为核力是短程力。从原子核的大小以及核子和核子碰撞时的截面估计,核力的力程约为10-13cm。

地球上的原子核绝大多数是稳定的;只有一些质量很大的原子核在没有外来影响下能自行转化为质量较小的其他原子核。在这种自行转化的过程中会放出射线。放出的射线有三种:一种由波长很短、能量很高的光子组成,相应的转化过程是由电磁相互作用产生的;第二种射线由氦原子核组成,相应的转化过程是强相互作用和电磁相互作用结合产生的;第三种射线由电子组成,在相应的转化过程中还同时放出一种叫做中微子的粒子。中微子不带电,质量非常小,可能等于零。中微子和物质的相互作用非常弱,直到20世纪50年代才在实验中被探测到。因此,自然界还存在着一种远较电磁相互作用为弱的第四种基本相互作用──弱相互作用。原子核放出电子和中微子的过程是由弱相互作用导致的。所有能自行转化并放出射线的原子核统称为放射性原子核。这种转化过程称为衰变过程。

原子核主要由强相互作用将核子结合而成,当原子核的结构发生变化或原子核之间发生反应时,要吸收或放出很大的能量。一些很重的原子核(如铀原子核)在吸收一个中子以后,会裂变成为两个较轻的原子核,同时放出二个到三个中子和很大的能量。两个很轻的原子核

也能熔合成为一个较重的原子核,同时放出很大的能量。这种原子核熔合过程也叫作聚变。

粒子加速器的发明和裂变反应堆的建成使人能够获得大量能量较高的质子、电子、光子、原子核和大量中子,用以轰击原子核,以便系统地开展关于原子核的性质及其运动、转化和相互作用过程的研究。

高能物理研究发现,核子还有内部结构。核子的半径和原子核的半径都是10-13cm数量级,因此原子核的内部结构很难和核子的内部结构截然分开。

原子核结构是一个远较原子结构为复杂的研究领域。目前,已有的关于原子核结构,原子核反应和衰变的理论都是模型理论。其中一部分相当成功地反映了原子核的客观规律。原子核的实验研究和理论研究仍在探索和发展之中。

原子核物理的研究已经产生了重要的社会效果。1kg铀裂变时所释放的能量相当于约2万吨TNT炸药爆炸时所释放的能量。这就是原子弹爆炸和核发电站中的关键物理过程。1kg 重氢原子核聚变为氦原子核所释放的能量还要大几倍。轻原子核聚变为较重的原子核并释放能量的过程,就是太阳几十亿年来大量放光、放热的能量来源,也是热核爆炸的能量来源。海洋中有几乎取之不尽的重氢,假使能使重氢的聚变反应有控制地进行,那么能源问题就将得到较彻底的解决。由于放射性同位素所放出的射线穿透力很强,能产生各种物理效应、化学效应和生物效应,这些射线又容易探测,因此放射性同位素在工业、农业、医学和科学研究中已经有广泛的应用。

等离子体物理学

等离子体物理研究等离子体的形成及其各种性质和运动规律。宇宙间的大部分物质处于等离子体状态。例如:太阳系的物质绝大部分集中于太阳,太阳中心区的温度超过107℃,太阳中的绝大部分物质处于等离子体状态。地球高空的电离层也处于等离子体状态。19世纪以来对于气体放电的研究、20世纪初以来对于高空电离层的研究推动了对等离子体的研究工作。从20世纪50年代起,为了利用轻核聚变反应解决能源问题,促使等离子体物理学研究蓬勃发展。

等离子体内部存在着很多种运动形式,并且相互转化着,高温等离子体还有多种不稳定性。因此等离子体研究是个非常复杂的问题。虽然知道了描述等离子体的基本数学方程,但这组方程非常难解,目前还很难用以准确预言等离子体的性质和行为。等离子体的实验研究,因为因素复杂多变,所以难度也很大,目前精确度还不高。现在正在大力进行这方面的研究,以期能够发展出一套方法,使等离子体的温度升高到一亿度以上,并能控制它的不稳定性,在足够长的时间内,将它约束住,使热核反应得以比较充分地进行下去。

粒子物理学

目前实验上所能探测到的物质结构最深层次的研究称为粒子物理学,也称为高能物理学。在20世纪20年代末,人们曾经认为电子和质子是基本粒子,后来又发现了中子。在宇宙线研究和后来利用高能加速器进行的实验研究中,又发现了数以百计的不同种类的粒子。它们都能产生、消灭、相互转化,连电子和质子也不例外。在条件具备时,电子和质子也能

产生和消灭,转化为其他粒子。这些粒子的性质很有规律性。看来它们不是以前所设想的永恒不变的、不可分割的基本粒子。所以现在将基本两字去掉,统称为粒子。

研究这些粒子,发现它们都是配成对的。配成对的粒子称为正、反粒子。正、反粒子一部分性质完全相同,另一部分性质完全相反。例如:电子和正电子是一对正、反粒子。它们的质量和自旋完全相同,它们的电荷和磁矩完全相反。有一小部分正、反粒子,它们的所有性质完全相同。它们就是同一种粒子。光子就是这样一种粒子。

另一个重要发现是,没有一种粒子是不生不灭、永恒不变的,在一定条件下都能产生和消灭。例如:原来认为电子是不生不灭的和永恒不变的。后来发现,高能光子在原子核的电场中能转化为一对电子和正电子。电子和正电子相遇,就会同时湮没而转化为两个或三个光子。

在所有这些粒子中,光子是传递电磁相互作用的媒介,1983年发现的W+、W-和Z0中间玻色子是传递弱相互作用的媒介。但迄今还没有在实验上发现理论上预言的传递万有引力的引力子和传递强相互作用的胶子。

除了光子和W+、W-、Z0中间玻色子以外,可以按照是否参与强相互作用,把实验上已经发现了的粒子分为两大类。①不参与强相互作用的粒子统称为轻子。已经发现的轻子共有三代,每代两种,共六种。与之相应,存在着六种反轻子。轻子和反轻子的自旋均为啚/2,因此都是费密子。②参与强相互作用的粒子统称为强子。已经发现的数百种粒子中绝大部分是强子。实验发现,强子有一定大小(例如:核子的半径大小为0.8×10-13cm)。进一步实验研究发现,强子内部还存在着带点电荷的、可以在强子内部相当自由地运动的东西,因此强子具有内部结构(见强子结构)。强子内部带点电荷的东西在国外称为夸克;中国的部分物理学家称之为层子,因为他们认为:即使层子也不是物质的始元,也只不过是物质结构无穷层次中的一个层次而已。组成已经发现的强子的层子也有三代,每代两套,每套三种,共十八种。与之相应,存在十八种反层子。丁肇中和B.里希特在1974年发现的J/ψ粒子证明其中的一套层子:粲层子的存在(见粲偶素)。所有层子和反层子的自旋也都是啚/2,也都是费密子。看来轻子和层子的性质有不同处,也有很多相似处,它们之间可能存在着深刻的联系。

虽然层子在强子内部可以相当自由地运动,但即使用目前加速器所能产生的能量最高的粒子束轰击强子,也没有能将层子、胶子打出来,使它们成为处于自由状态的层子和胶子。将层子和胶子囚禁在强子内部是强相互作用所独有的性质,这种性质称为“囚禁”。

弱相互作用也有其独特的性质。它的基本规律对于左和右,对于正、反粒子,对于过去和未来都是不对称的。弱相互作用的规律对于左和右不对称就是李政道和杨振宁在1956年所预言、不久以后在实验上为吴健雄所证实的宇称在弱相互作用中的不守恒。

量子电动力学是关于电磁相互作用的基本理论,它成功地经受了非常严格的实验检验。在20世纪60年代,S.L.格拉肖、A.萨拉姆和S.温伯格提出统一地描述电磁相互作用和弱相互作用的理论,称为电弱统一理论。这一理论在70年代已经成功地通过了一系列实验的检验。1983年在实验上发现这一理论所预言的W+、W-、Z0中间玻色子是一种关键性的检验,这是继麦克斯韦建立将电和磁统一起来的理论以后,向统一地理解各种基本相互作用的研究方向迈出的意义重大的一步。

粒子物理研究虽然已经获得了重要的进展,但仍是一门年轻的、迅速发展的分支学科。

实验表明:波粒二象性以及粒子的产生和消灭是微观、高速物理过程中的普遍现象。量子力学能反映波粒二象性,但不能反映粒子的产生和消灭。经典场论能反映波动的场的产生和消灭,但不能反映波粒二象性。为了克服这种局限性,可以按照将经典力学改造成为量子力学的方法,将经典场论改造成为量子场论。量子电动力学是最早建立的量子场论,并且非常成功。现在建立的一切关于微观、高速物理现象的基本理论都是量子场论。

物理学发展简史

物理学发展简史 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

一、古典物理学与近代物理学: 1、古典物理学:廿世纪以前所发展的物理学称为古典物理学,以巨观的角度研究物理,可分为 力学、热学、光学、电磁学等主要分支。 2、近代物理学:廿世纪以后(1900年卜朗克提出量子论后)所发展的物理学称为近代物理学, 以微观的角度研究物理,量子力学与相对论为近代物理的两大基石。

一、古典物理学对人类生活的影响: 1、力学:简单机械(杠杆、轮轴、滑轮、斜面、螺旋、劈) …… 2、光学: (一)反射原理: (1)平面镜:镜子…… (2)凹面镜:手电筒、车灯、探照灯…… (3)凸面镜:路口、商店监视镜…… (二)折射原理: (1)凸透镜:放大镜、显微镜、相机…… (2)凹透镜:眼镜、相机…… 3、热学:蒸汽机、内燃机、引擎、冰箱、冷(暖)气机…… 4、电学: (一)利用电能运作:一般电器用品,如:电视机、冰箱、洗衣机…… (二)利用电磁感应:发电机、变压器…… (三)利用电磁波原理:无线通讯、雷达…… 二、近代物理学对人类生活的影响: 1、半导体: (一)半导体:导电性介于导体和绝缘体间之一种材料,可分为元素半导体(如:硅、锗等)和 化合物半导体(如:砷化镓等)两种。 (二)用途: (1)半导体制成晶体管,体积小、耗电量少,具有放大电流讯号功能。 (2)半导体制成二极管具整流能力。 (3)集成电路(IC): (A)1958年发展出「集成电路」技术,系利用长晶、蚀刻、蒸镀等方式于一小芯片上容 纳上百万个晶体管、二极管、电阻、电感、电容等电子组件之技术,而此电路即称为 集成电路。 (B)IC之特性:体积小、效率高、耗电低、稳定性高、可大量生产。 (C)IC之应用:计算机、手机、电视、计算器、手表等电子产品。 (4)计算机信息科技之扩展大辐改变了人类的生活习惯,故俗称第二次工业革命。 2、雷射: (一)原理:利用爱因斯坦「原子受激放射」理论,诱发大量原子由受激态同时做能态之跃迁 并放射同频率之光子,藉以将光加以增强。 (二)特性:聚旋光性好、强度高、光束集中、频率单一(单色光)。 (三)应用:

武术运动的起源和发展

第一章武术运动的起源和发展 本章导读:中华武术,源远流长。它有着悠久的历史和广泛的群众基础,是中华民族在长期劳动生活与斗争中逐步积累和发展起来的一项宝贵文化遗产。通过本章的学习,你会了解到武术的容丰富多彩,形式多样,风格独特,它具有增强体质,防身自卫,锻炼意志,冶性情等功能,是一项具有广泛社会价值和民族文化特色的中国传统体育项目。 第一节武术——中华民族的宝贵遗产 一、走进丰富多彩的武术世界 武术容博大精深,形式丰富多样,在明清时期就形成了风格各异的上百个拳种,如太极、形意、八卦、八极、通背、番子、披挂、象形、地躺、少林、南拳、长拳、等等。现在按运动形式可以分为功法、套路、搏斗,按活动人群或应用目的可以分为竞技武术、大众健身武术、学校武术、实用军警武术等等。 (一)功法运动 传统的功法运动主要指为增强攻防能力而进行的专门基本功训练,人们习惯把它分为功和外功。功是一种相对注重练,采用以意领气、以气催力为基本锻炼手段的运动形式,它以练气为主,如练丹田气、通小周天、大周天、气行全身等。太极拳的浑圆桩,形意拳的三体式、五行拳,意拳的养生桩、技击桩都属此类。外功是相对注重外练的以练习击打力度和抗击打能力为主的运动形式,如打沙袋、踢木桩、练排打等等。外功法是相对而言的,它们是相互联系,相互促进,不能把它们绝对的分开。 (二)套路运动 套路运动是以踢、打、摔、拿、击、刺等攻防动作为素材,遵守攻守进退、动静疾徐、刚柔虚实等矛盾运动的变化规律编成的整套练习形式。主要容包括单练、对练、集体项目。传统武术套路和现代竞技武术有明显区别,当前竞技场上的套路形式是经过艺术加工的,注重难美新的形体类体育形式。 1、单练是单人练习的套路运动形式,现在的各种武术套路竞赛活动以单练为主,它又有徒手练习和持械练习之分。徒手套路以长拳、太极拳、南拳为主,还有形意拳、八卦掌、八极拳、劈挂拳、翻子拳、通背拳、地躺拳、象形拳等其它拳种。持械套路以刀、枪、剑、棍为主,还有大刀、仆刀、双刀、双剑、双钩、双鞭、单鞭、三节棍、绳镖、流星锤等其它器械。 2、对练是指两人或两人以上,按照一定的程式进行的攻防假设性练习形式,它又包括徒手对练、持械对练、徒手与器械对练三种形式。

“力学”简介、含义、起源、历史与发展

力学 力学是研究物质机械运动规律的科学。自然界物质有多种层次,从宇观的宇宙体系,宏观的天体和常规物体,细观的颗粒、纤维、晶体,到微观的分子、原子、基本粒子。通常理解的力学以研究天然的或人工的宏观对象为主。但由于学科的互相渗透,有时也涉及宇观或细观甚至微观各层次中的对象以及有关的规律。机械运动亦即力学运动是物质在时间、空间中的位置变化,包括移动、转动、流动、变形、振动、波动、扩散等,而平衡或静止,则是其中的一种特殊情况。机械运动是物质运动的最基本的形式。物质运动的其他形式还有热运动、电磁运动、原子及其内部的运动和化学运动等。机械运动并不能脱离其他运动形式独立存在,只是在研究力学问题时突出地考虑机械运动这种形式罢了;如果其他运动形式对机械运动有较大影响,或者需要考虑它们之间的相互作用,便会在力学同其他学科之间形成交叉学科或边缘学科。力是物质间的一种相互作用,机械运动状态的变化是由这种相互作用引起的。静止和运动状态不变,都意味着各作用力在某种意义上的平衡。力学,可以说是力和(机械)运动的科学。 力学在汉语中的意思是力的科学。汉语“力”字最初表示的是手臂使劲,后来虽又含有他义,但都同机械或运动没有直接联系。“力学”一词译自英语mechanics(源于希腊语μηχανη──机械)。在英语中,mechanics是一个多义词,既可释作“力学”,也可释作“机械学”、“结构”等。在欧洲其他语种中,此词的语源和语义都与英语相同。汉语中没有同它对等的多义词。mechanics在19世纪50年代作为研究力的作用的学科名词传入中国时,译作“重学”,后来改译作“力学”,一直使用至今。“力学的”和“机械的” 在英语中同为mechanical,而现代汉语中“机械的”又可理解为“刻板的”。这种不同语种中词义包容范围的差异,有时引起国际学术交流中的周折。例如机械的(mechanical)自然观,其实指用力学解释自然的观点,而英语mechanist是指机械师,不是指力学家。 发展简史 力学知识最早起源于对自然现象的观察和在生产劳动中的 经验。人们在建筑、灌溉等劳动中使用杠杆、斜面、汲水器具,逐渐积累起对平衡物体受力情况的认识。古希腊的阿基米德对杠杆平衡、物体重心位置、物体在水中受到的浮力等作了系统研究,确定它们的基本规律,初步奠定了静力学即平衡理论的基础。古

陈式太极拳的来历和起源

陈式太极拳的来历和起源 2014-01-05 太极一圆来源阅4531转56 转藏到我的图书馆微信分享: 一、陈式太极拳源始 要弄清太极拳的来龙去脉,须弄清陈家沟的历史演变。陈家沟的历史要上溯到中国元朝末年。元朝的统治者为了维护其腐朽统治,实行残酷的**压迫和经济剥削,给人民群众带来了深重的灾难,这就引发了元末农民大起义。安徽凤阳人朱元璋率众投奔红巾军,攻占集庆,并于1367年派兵北伐,强渡黄河,统一了中国,但镇守在河南怀庆府的元将铁木耳却堵住朱元璋的北伐部队。双方在黄河北岸怀庆府属地交锋,一连打了多日,难分胜负。朱元璋心中十分恼火,便把火气迁怒于怀庆百姓身上。他称帝后,山西的一批皇杠在怀庆府温县境内耿庄附近一座桥上遇劫,几个逃回的明兵向上禀报,说是被怀庆府百姓打劫。朱元璋闻讯大怒,又记起他在怀庆境内受到元将铁木耳拼死抵抗的老帐,认为怀庆府内没有良民,遂密令明将常遇春率兵血洗怀庆府,在怀庆府所辖的沁阳、温县、孟县、武陟县等地先后三次实行残酷的血腥**,致使方圆数百里人烟几绝,万顷良田荒芜。明洪武五年(公元1372年)朱元璋下令由山西省洪洞县向怀庆府属地移民。移民中有一青年名叫陈卜,祖籍本在山西泽州郡东土河村,时因家乡连年遭灾,逃荒到了洪洞,与妻儿一起被裹入移民队伍带入怀庆府境内,在温县城东北10公里处落了脚,后来人们便将此村取名陈卜庄。由于陈卜庄地势低洼,常受涝灾,明洪武七年,陈卜合家迁往常阳村。此村位于陈卜庄东南清风岭上,南临黄河,北负一岭,旱涝保收。因其西有柿沟,东有赵沟,北有正北沟,三面环沟,随着陈氏家族人丁繁衍,常阳村遂易名为陈家沟,直至建国后陈家沟所用的婚丧嫁娶用具上还常有”古常阳”的字样。陈家沟距今温县县城正东约5公里,村中陈姓居多,居民现达2600余人。二、陈式太极拳的起源陈氏始祖陈卜全家定居清风岭上的常阳村后,勤劳耕作,兴家立业,为了保卫桑梓不受地方匪盗危害,精通拳械的陈卜在村中设立武学社,传授子孙乡民习拳练武。陈卜及其后代六世同堂,计有二世陈刚、三世陈琳、四世陈景元、五世陈堂、六世陈宗儒(独子思贵)等人。到七世开始分家立业。其中一支为七世陈思贵、八世陈抚民、九世陈王庭和陈王前兄弟。陈王廷(约1600-1680)又名陈奏庭,系明末文庠生、清初武痒生,文武双全,曾只身闯玉带山,劝阻登封武举李际遇叛乱,为清廷在山东平定盗匪立过战功,在河南、山东负有盛名却不被清廷重用。陈王庭报国无门,收心隐退,在耕作之余,依据自己祖传之一百单八式长拳,博采众家精华,结合易学上有关的阴阳五行之理,并参考传统中医学中有关经络学说及导引、吐纳之术,发明创造出了一套具有阴阳相合、刚柔相济的新型拳术,包括太极拳五路、炮捶一路、双人推手及刀、枪、棍、剑、锏、双人粘枪等器械套路。在刺枪术和八杆四杆术对练套路中还运用太极拳术的缠丝劲,开辟了长兵器阴阳变换、刚柔相济的先河。至于太极双人推手的开拓性创造,则早已成为了闪耀中华武术史的综合性的技击实践方法,因为这种方法既不会伤人,又可以在实践中检验武功。从现存的陈王庭的《长短句》中,我们约略可以了解到陈王庭当时的一些情形:“叹当年,披坚执锐,扫荡群氛,几次颠险!蒙恩赐,枉徒然,到而今年老残喘。只落得《黄庭》一卷随身伴,闲来时造拳,忙来时耕田,趁余闲,教下些弟子儿孙,成龙成虎任方便。欠官粮早完,要私债即还,骄谄勿用,忍让为先。人人道我憨,人人道我颠,常洗耳不弹冠。笑杀那万户诸侯,兢兢业业,不如俺心中常舒泰,名利总不贪。参透机关,识彼邯郸,陶情于渔水,盘桓乎山川,兴也无干,废也无干。若得个世境安康,恬淡如常,不悔不求,哪管他世态炎凉,成也无关,败也无关。谁是神仙?我是神仙!”依照村语传言,陈王庭创太极拳,还与一个叫蒋发的武林高手是分不开的。王庭公早年闯玉带山李际遇山寨时,曾结识李际遇部下一名战将蒋发,此人武艺也相当了得,传说脚快如飞,可百步追兔。李际遇被清政府**后,蒋发落难投奔了陈王庭,以陈王庭为友为师,自己甘愿为仆为徒,关系甚密,使陈王庭造拳有了切

物理学发展简史

物理学发展简史 摘要:物理学的发展大致经历了三个时期:古代物理学时期、近代物理学时期(又称经典物理学时期)和现代物理学时期。物理学实质性的大发展,绝大部分是在欧洲完成,因此物理学的发展史,也可以看作是欧洲物理学的发展史。 关键词:物理学;发展简史;经典力学;电磁学;相对论;量子力学;人类未来发展 0 引言 物理学的发展经历了漫长的历史时期,本文将其划分为三个阶段:古代、近代和现代,并逐一进行简要介绍其主要成就及特点,使物理学的发展历程显得清晰而明了。 1 古代物理学时期 古代物理学时期大约是从公元前8世纪至公元15世纪,是物理学的萌芽时期。 物理学的发展是人类发展的必然结果,也是任何文明从低级走向高级的必经之路。人类自从具有意识与思维以来,便从未停止过对于外部世界的思考,即这个世界为什么这样存在,它的本质是什么,这大概是古代物理学启蒙的根本原因。因此,最初的物理学是融合在哲学之中的,人们所思考的,更多的是关于哲学方面的问题,而并非具体物质的定量研究。这一时期的物理学有如下特征:在研究方法上主要是表面的观察、直觉的猜测和形式逻辑的演绎;在知识水平上基本上是现象的描述、经验的肤浅的总结和思辨性的猜测;在内容上主要有物质本原的探索、天体的运动、静力学和光学等有关知识,其中静力学发展较为完善;在发展速度上比较缓慢。在长达近八个世纪的时间里,物理学没有什么大的进展。 古代物理学发展缓慢的另一个原因,是欧洲黑暗的教皇统治,教会控制着人们的行为,禁锢人们的思想,不允许极端思想的出现,从而威胁其统治权。因此,在欧洲最黑暗的教皇统治时期,物理学几乎处于停滞不前的状态。 直到文艺复兴时期,这种状态才得以改变。文艺复兴时期人文主义思想广泛传播,与当时的科学革命一起冲破了经院哲学的束缚。使唯物主义和辩证法思想重新活跃起来。科学复兴导致科学逐渐从哲学中分裂出来,这一时期,力学、数学、天文学、化学得到了迅速发展。 2 近代物理学时期 近代物理学时期又称经典物理学时期,这一时期是从16世纪至19世纪,是经典物理学的诞生、发展和完善时期。 近代物理学是从天文学的突破开始的。早在公元前4世纪,古希腊哲学家亚里士多德就已提出了“地心说”,即认为地球位于宇宙的中心。公元140年,古希腊天文学家托勒密发表了他的13卷巨著《天文学大成》,在总结前人工作的基础上系统地确立了地心说。根据这一学说,地为球形,且居于宇宙中心,静止不动,其他天体都绕着地球转动。这一学说从表观上解释了日月星辰每天东升西落、周而复始的现象,又符合上帝创造人类、地球必然在宇宙中居有至高无上地位的宗教教义,因而流传时间长达1300余年。

太极拳的起源和发展

太极拳的起源和发展 太极拳的起源和发展 太极拳,中国拳术之一,创始于清初。乾隆年间,山西民间武术家王宗岳用《周子全书》中阐发《易经》太极阴阳的哲理来解释拳理,写成《太极拳论》,太极拳这名称才确定下来。清末和辛亥革 命后一个时期,在太极拳起源问题上,产生过一些附会和传说。太 极拳的起源众说纷纭,民间大致有唐朝的许宣平、南宋或元末明初 时期的张三丰、清朝的陈王廷和杨露禅、王宗岳等说法。但现在多 数拳家亦以现传各式太极拳俊源出陈式太极拳之说为本。据中国武 术史学家唐豪等考证:太极拳最早传习于河南省温县陈家沟陈姓家 族中。陈氏太极拳的创编人是陈王廷,他是一位卓有创见的武术家。 太极拳的来源有以下三个方面: 1、综合吸收了明代名家拳法。明代武术极为盛行,出现了很多 名家、专著和新拳种,太极拳就是吸取了当时各家拳法之长,特别 是戚继光的三十二势长拳而编成的。 2、结合了古代导引、吐纳之术。太极拳讲究意念引导气沉丹田,讲究心静体松重在内壮,所以被称为“内功拳”之一。 3、运用了中国古代的阴阳学说和中医经络学说。陈式太极拳要 求按经络通路,螺旋缠绕,以意行气,通任督二脉,练带脉、冲脉。各式传统太极拳也皆以阴阳五行学说来概括和解释拳法中各种矛盾 变化。随着历史的发展,武术逐渐从战场搏杀转为体育健身,太极 拳正是如此。100多年前,太极拳家在《十三势行功歌》中就有 “详推用意终何在,益寿延年不老春”的提法。随着历史的发展, 武术逐渐从战场搏杀转为体育健身,太极拳正是如此。100多年前,太极拳家在《十三势行功歌》中就有“详推用意终何在,益寿延年 不老春”的提法。

目前,太极拳有陈式、杨式、孙式、吴式、武式五种流派。明末清初,河南温县陈家沟的老拳师陈王庭初创太极拳,世代相传。河 北永年人杨露禅从学于陈家沟陈长兴,并与其子杨健侯、其孙杨澄 甫等人在陈式太极拳的基础上,创作发展了“杨式太极拳”。清末 河北永年人武禹襄在杨露禅从陈家沟返乡后,深爱其术,从师于杨 露禅学习陈式老架太极拳,后又从陈清平学赵堡架,经过修改,创 造了“武式太极拳”。河北完县人孙禄堂,从师李魁垣学形意拳, 而后学于李魁垣的师傅郭云深,又从师于程廷华学八卦掌。后又从 师郝为真学太极拳,之后参合八卦、形意、太极三家拳术的精义, 融合一体而创“孙式太极拳”。 太极拳经过长期流传,演变出许多流派,其中流传较广或特点较显著的有以下五派: 一、陈式太极拳 又分老架和新架两种,老架是清初陈王廷所创,原有5个套路,又名十三势,另有长拳一百单八势1套,炮捶1套。从陈王廷起, 经过300多年的传习,积累了不少经验,对原有拳套不断加工提炼,终于形成了近代所流传的陈式太极拳第1路和第2路拳套(图1)。 这两套拳动作都是经过精心编排的,其速度和强度不同,身法、运 动量和难度也不尽相同,但都符合循序渐进和刚柔相济的原则。陈 式第1路拳套现有83式,主要特点如下:1、缠丝劲明显,要求处 处留心源动腰脊,用意贯劲于四梢(即两手和两足尖),动作呈弧形 螺旋,缠绕圆转并要做到“一动内外俱动”;2、刚柔相济,柔中寓刚,亦即能打出一种似刚非刚,似柔非柔、沉重而又灵活的内劲;3、动作要和呼吸运气相结合,不仅做到“气沉丹田”,而且在练动作 的同时进行“丹田内转”,有时也可在呼气时发声(如呵、哂、嘘、吹),以加大劲力;4、快慢相间,亦即在动作转换处要快,一般行拳 时要慢;5、拳路架子可分高中低3种,体弱有病者可以练高架子, 青壮年体健者则可练低架子。陈式第2路拳套原名炮捶,现有71式,主要特点如下:1、震脚发劲的动作更多;2、动作比第1路快、刚, 爆发力强;3、“窜蹦跳跃,闪展腾挪”的动作较多,气势雄壮。第 2路只适于青壮年练,流传不广。陈式新架套路也有两种,一种是 陈有本(陈家沟拳师)编创的,顺序与老架同,架式较老架小,转圈

历史上最伟大的物理学家排名

历史上最伟大的物理学家排名 最伟大的物理学家Top10 PhysicsWeb曾经搞过历史上最伟大的物理学家的投票,结果如下表: 1:牛顿(经典力学、光学) 牛顿(Sir Isaac NewtonFRS, 1643年1月4日--1727年3月31日)爵士,英国皇家学会会员,是一位英国物理学家、数学家、天文学家、自然哲学家和炼金术士。他在1687年发表的论文《自然哲学的数学原理》里,对万有引力和三大运动定律进行了描述。这些描述奠定了此后三个世纪里牛顿像(21张)物理世界的科学观点,并成为了现代工程学的基础。他通过论证开普勒行星运动定律与他的引力理论间的一致性,展示了地面物体与天体的运动都遵循着相同的自然定律;从而消除了对太阳中心说的最后一丝疑虑,并推动了科学革命。在力学上,牛顿阐明了动量和角动量守恒之原理。在光学上,他发明了反射式望远镜,并基于对三棱镜将白光发散成可见光谱的观察,发展出了颜色理论。他还系统地表述了冷却定律,并研究了音速。在数学上,牛顿与戈特弗里德·莱布尼茨分享了发展出微积分学的荣誉。他也证明了广义二项式定理,提出了“牛顿法”以趋近函数的零点,并为幂级数的研究作出了贡献。在2005年,英国皇家学会进行了一场“谁是科学史上最有影响力的人”的民意调查,牛顿被认为比阿尔伯特·爱因斯坦更具影响力。

2:爱因斯坦(相对论、量子力学奠基人) 爱因斯坦(Albert Einstein,1879年3月14日-1955年4月18日),举世闻名的德裔美国科学家,现代物理学的开创者和奠基人。爱因斯坦1900年毕业于苏黎世工业大学,1909年开始在大学任教,1914年任威廉皇家物理研究所所长兼柏林大学教授。后因二战爆发移居美国,1940年入美国国籍。 十九世纪末期是物理学的变革时期,爱因斯坦从实验事实出发,从新考查了物理学的基本概念,在理论上作出了根本性的突破。他的一些成就大大推动了天文学的发展。他的量子理论对天体物理学、特

“化学”简介、含义、起源、历史与发展

化学 化学是研究物质的性质、组成、结构、变化和应用的科学。世界是由物质组成的,化学则是人类用以认识和改造物质世界的主要方法和手段之一,它是一门历史悠久又富有活力的学科。它的成就是社会文明的重要标志。从开始用火的原始社会,到使用各种人造物质的现代社会,人类都在享用化学成果。人类的生活能够不断提高和改善,有赖于科学技术的进步,而化学的贡献在其中起了重要的作用。 化学是重要的基础科学之一,在与物理学、生物学、天文学等学科的相互渗透中,不仅本身得到了迅速的发展,同时也推动了其他学科和技术的发展。例如,核酸化学的研究结果使今天的生物学从细胞水平提高到分子水平,建立了分子生物学;对地球、月球和其他天体的化学成分的分析,得出了元素分布的规律,发现了星际空间简单化合物的存在,为天体演化和现代宇宙学提供了实验数据,创建了地球化学和宇宙化学。化学的重大成就,还丰富了自然辩证法的内容,推动了唯物主义哲学思想的发展。 化学的历史发展 原始人类从用火之时开始,由野蛮进入文明,同时也就开始了用化学方法认识和改造天然物质。火──燃烧──就是一种化学现象。掌握了火以后,人类开始熟食;逐步学会了制陶、冶铜、炼铁;以后,又懂得了酿造、染色等等。这些由天然物质加工改造而成的制品,成为古代文明的标志。在这些生产实践的基础上,萌发了古代化学知识。 古人曾根据物质的某些性质对物质进行分类,并企图追溯其本源及其变化规律。公元前4世纪或更早,中国提出了阴阳五行学说,认为万物是由金、木、水、火、土五种基本物质组合而成,而五行则是由阴阳二气相互作用而成的。此说为朴素的唯物主义自然观,用“阴阳“这个概念来解释自然界两种对立和互相消长的物质势力,认为二者的相互作用是一切自然现象变化的根源。此说为中国炼丹术的理论基础之一。公元前4世纪,希腊也提出与五行学说类似的火、风、土、水四元素说和古代原子论。这些朴素的元素思想,即为物质结构及变化理论的萌芽。后来在中国出现了炼丹术,到了公元前2世纪的秦汉时代,炼丹术已颇为盛行,大致在公元7世纪传到阿拉伯国家,与古希腊哲学相融合而形成阿拉伯炼金术,阿拉伯炼金术于中世纪传入欧洲,形成欧洲炼金术,后逐步演进为近代的化学。英文中化学一字(chemistry)的字根chem,即来源于中世纪的拉丁文炼金术(alchemia)。 炼丹术的指导思想是深信物质能转化,试图在炼丹炉中夺造化之功,人工合成金银或修炼长生不老之药,有目的地将各类物质搭配烧炼,进行实验。为此设计了研究物质变化用的各种器皿,如升华器、蒸馏器、研钵等,也创造了各种实验方法,如研磨、混合、溶解、结晶、灼烧、熔融、升华、密封等。与此同时,进一步分类研究了各种物质的性质,特别是相互反应的性能。这些都为近代化学的产生奠定了基础,许多器具和方法经过改造后仍然在今天的化学实验室中沿用。炼丹家在实验过程中发明了火药,发现了若干元素(如汞、锌、砷、锑、磷等),制成了某些合金(如黄铜、白铜),还制出和提纯了许多化合物,如明矾等。这些成果我们至今仍在利用。 16世纪开始,欧洲工业生产蓬勃兴起,推动了医药化学和冶金化学的创立和发展,使炼金术转向生活和实际,更进而注意对物质化学变化本身的研究。在元素的科学概念建立之

学物理学史的体会

学物理学史的体会 院系:物理与信息技术学院 班级:2011级物理学班 学号:201105110134 姓名:牛亮亮 摘要:物理学史,顾名思义,万物之理。他是研究我们周围世界的一切现象,并努力的对其作出合理的科学解释,他承载的是人类对未知的好奇,用自己的行动去探索,去实践。从而揭示出世界的本质,使人们可以尽最大限度的了解我们生活的环境,了解我们的物理。 关键词:物理学史德育的火花教学的催化剂 科学史现在已是世界公认的一门独立学科。其中物理学史是科学史的重要组成之一,它是研究物理学辩证发展过程规律的一门学科。作为人类对自然界各种物理现象的认识史,它将揭示物理学作为一个整体的发展进程,特别是揭示物理学思想的发展和沿革的历史,研究物理学发生和发展的基本规律。 在《科学史与新人文主义》一书中萨顿曾说:“在旧人文主义者同科学家之间只有一座桥梁,那就是科学史,建造这座桥梁是我们这个时代的主要文化需要。”萨顿去世已近半个世纪了,但他70年前的话同样是适用于今天的时代的,对我们仍有启发:物理学史的教育价值不容忽视。记得有人曾说过:物理学是一门科学,是一门智慧,是一门文化。物理学是以物质基本结构、相互作用和基本运动规律为研究对象的自然科学,是人们认识物质世界的本质,揭示物质世界的规律,具有基础性和应用性的重要学科。物理学的知识和方法促进了许多相关学科和生产技术的发展,有力地推动了人类社会文明的进步。 关于物理学史,歌德曾说过:“一门科学的历史,就是这门科学本身。”而美国科学史家萨顿将科学史定义为“如果把科学定义为系统的实证知识或看作是在不同时期、不同地点所系统化了的这样一种知识,那么科学史就是这种知识发展的描述和说明”,从这一意义上讲物理学史就是:人类在长期的社会实践活动中对自然的物理知识系统的历史的描述,是物理学家征服世界、改造自然、创造发明的奋斗史,记述了物理知识的累积过程,以及物理科学的发展演变规律的发展史。

浅谈太极拳发展现状及未来发展策略

龙源期刊网 https://www.doczj.com/doc/351805488.html, 浅谈太极拳发展现状及未来发展策略 作者:潘峰 来源:《体育时空·上半月》2014年第07期 中图分类号:G852.1 文献标识:A 文章编号:1009-9328(2014)07-000-01 摘要随着社会经济的发展,人们越来越注重自身的健康,体育健康管理意识也不断增强。太极拳作为一项民族传统体育项目,植根于中国传统道家学说的土壤,体现着阴阳协调的互动要求;提倡呼吸、精神、形体、道德的修炼,追求生命的长久。笔者从时代需要出发,浅谈太极拳发展现状及改进策略。 关键词太极拳养生发展 二十一世纪以来,社会经济不断蓬勃发展,人们的生活发生了日新月异的变化,生活节奏也不断加快,人们对健康管理的意识也不断增强,运用何种手段进行养生保健已成为人们所关注的重点。太极拳运动作为中国传统文化越来越被人们所重视,特别是其健身养生的价值更被人们所肯定。因此,太极拳的发展现状及未来的发展更值得我们去关注与研究。 一、太极拳发展中存在的问题 (一)太极拳运动的普及面不广 练太极拳的人绝大多数都是中老年人或体弱多病者,太极拳在中老年人这一阶层普及率较高,而青壮年这一阶层普及率就差多了。出现这一差别的主要原因是太极拳动作轻柔缓慢,很多人都认为太极拳是老人打的拳,这是对太极拳认识不全面的表现。其实太极拳是刚柔相济、动静结合的拳术,运动量可大可小,特别是太极推手这一练习手段很适合年青人练习。 (二)对太极拳养生思想体系认识不到位 我们早已倡导太极拳运动,但缺乏广泛推广的长远规划和目标,未引起更高领导层的关注和重视。对太极拳的认识仅限于各式流派的拳械套路、推手功夫等。未形成推广太极拳就是推广中国文化的概念和认识。其次人们对太极拳的养生保健、修身养性的作用及拳理认识还不到位,认为只是拳架子、不实用,特别是很多青年人认为太极拳只是老年群体锻炼身体的一种手段,与自己无关,也就不会从意识上重视太极拳的锻炼。 (三)相关部门对太极拳的宣传力度不够 宣传工作至关重要,但未起到首当其充的作用,还没有通过宣传,使海内外人士真正了解太极拳的魅力,特别是在海外,其影响面和知名度尚不如柔道和跆拳道。另一方面,相关部门

物理学发展史

物理学发展史 公元1638年,意大利科学家伽利略的《两种新科学》一书出版,书内载有斜面实验的详细描述。伽利略的动力学研究与1609~1618年间德国科学家开普勒根据天文观测总结所得开 普勒三定律,同为牛顿力学的基础。 公元1643年,意大利科学家托利拆利作大气压实验,发明水银气压计。 公元1646年,法国科学家帕斯卡实验验证大气压的存在。 公元1654年,德国科学家格里开发明抽气泵,获得真空。 公元1662年,英国科学家波义耳实验发现波义耳定律。十四年后,法国科学家马里奥 特也独立的发现此定律。 公元1663年,格里开作马德堡半球实验。 公元1666年,英国科学家牛顿用三棱镜作色散实验。 公元1669年,巴塞林那斯发现光经过方解石有双折射的现象。 公元1675年,牛顿作牛顿环实验,这是一种光的干涉现象,但牛顿仍用光的微粒说解 释。 公元1752年,美国科学家富兰克林作风筝实验,引雷电到地面。 公元1767年,美国科学家普列斯特勒根据富兰克林导体内不存在静电荷的实验,推得 静电力的平方反比定律。 公元1780年,意大利科学家加伐尼发现蛙腿筋肉收缩现象,认为是动物电所致。不过 直到1791年他才发表这方面的论文。 公元1785年,法国科学家库仑用他自己发明的扭秤,从实验得静电力的平方反比定律。在这以前,英国科学家米切尔已有过类似设计,并于1750年提出磁力的平方反比定律。 公元1787年,法国科学家查理发现了气体膨胀的查理-盖·吕萨克定律。盖·吕萨克的研 究发表于1802年。 公元1792年,伏打研究加伐尼现象,认为是两种金属接触所致。 公元1798年,英国科学家卡文迪许用扭秤实验测定万有引力常数G。 公元1798年,美国科学家伦福德发表他的摩擦生热的实验,这些实验事实是反对热质 说的重要依据。

物理学最新动态与发展趋势

物理学最新动态与发展趋势 日常教学工作非常忙碌,很少有时间去探讨、了解与中学教学直接关联的物理问题。本次参加全国物理教师国培活动,有幸认识了当今物理学界的物理大家、泰山北斗,使我们知道了作为中学物理教师搞好常规教学的同时,还需要了解新的教学理念和教学方法,尤其要知道物理学的最新动态、最新发展趋势。这样才能更好的驰骋讲坛,站的高、望的远,才有可能为祖国培养一流的人才。学习之余,我们通过研讨、读书、上网,了解到当今科学研究中三个突出的基本问题:宇宙构成、物质结构及生命的本质和维持;所对应的现代新技术革命的八大学科分别是:能源、信息、材料、微光、微电子技术、海洋科学、空间技术和计算机技术等。物理学在这些问题的解决和学科中占有首要的地位。 物理学发展的前沿领域有: 一、能物理和核物理的前沿领域 A.高能物理:高能物理研究的主要内容是粒子的种类、性质、它们之间的相互作用力、它们是由什么构成和如何构成的、粒子层次和组成它们的更基本的组元层次的新现象和新规律。由于高能加速器的建造,近40年来这门学科得到极大的发展,它的进展对认识原子核和宇宙的起源与进化也有深刻的影响。其前沿领域有:(1)发展“标准模型” 已知微观世界里的力有强力、电磁力、弱力和引力等四种,已发现的微观粒子可以分成强子与轻子二类。强子是有着这四种力的粒子,轻子是有着强力之外三种力的粒子。迄今我们对粒子物理的认识可以由“标准模型”所归纳。在这个模型里,轻子是基本的,而强子是由更基本的组元——夸克构成的,组成微观世界的组元是三代轻子(υθ,θ),(υμ,μ),(υτ,τ)和三代夸克(u,d),(c,s),(t,b)。电磁力与弱力由电-弱统-理论描述,传递电磁力是光子,传递弱力的是矢量玻色子。传递强力的是胶子,其规律由量子色动力学(QCD)描述。这三种力的来源是破缺的定域规范对称性,破缺是由希格斯(Higgs)粒子引起的。虽然希格斯粒子和υτ中微子尚未发现,但目前所有的实验结果都与标准模型符合。“标准模型”并不完美,目前大部分人相信它是一个有效的唯象理论。仍存在很多基本问题有待解决。例如,在理论中的参数达20个之多,其中11个来自希格斯机制。这样的模型显然不能成为高能物理的基本理论。因此,深入检验标准模型,探索这些参数的来源并找寻向基本理论的发展,是今后重要的研究领域。 (2)粒子的质量起源与自发对称性破缺机制研究 这三代轻子和三代夸克的质量有着令人惊讶的巨大差异:中微子质量比几个电子伏特还小,而顶夸克质量为质子的180倍,与金原子核相近。虽然规范对称性要求光子、胶子和引力子的质量为零,但是它并不要求中微子的质量为零。希格斯粒子被引入标准模型以产生规范对称性的自发破缺,但是其质量与耦合强度的大小已超出标准模型的范畴。所有这些都是有待解决的研究前沿问题。 (3)新粒子和更深层次的粒子 实验上和理论上都不排除有更多的新粒子的存在,例如,磁单极子和其他较重的粒子。也没有任何的理由限定目前的粒子的组元只能有三代,新的代意味着新的种类的粒子,每一种新粒子的发现都会对粒子物理带来新的突破。不计反粒子,目前构成物质结构的最小基本组分是6种轻子,18种夸克以及传递电、弱、强相互作用的12种媒介子。虽然直至10-17厘米尺度尚未有夸克与轻子具有结构的迹象,

太极拳的起源与发展

太极拳的起源发展 关于太极拳的起源,目前学术界很多人都在研究,也存在一些争论。 应该说,太极拳作为中国武术中比较晚形成的一个流派,它借鉴了许多其他武术流派的理论和技术精华。所以从太极拳身上看到很多其他武术拳种的痕迹也是正常的。 太极拳的理论基础是中国传统文化中的阴阳思想,而这种阴阳思想在古代很早以前就已经发展得很系统,比如《黄帝内经》是早期最为系统地将阴阳思想与人体健康相结合的著作,被中医奉为经典。在《周易》中,对于阴阳、八卦的理论学说阐述得很透彻,我们在后来的太极拳理论中,不难发现,处处都有对这些早期哲学、医学著作的借鉴、衍化使用。 所以说太极拳的相关理论在很早以前的古代就已经有了。从技术上来说,也不难在古代的导引术、养生术和武术中看到太极拳后来的影子。一个突出的例子就是马王堆导引图。这是 l973年在长沙马王堆出土的文物,在一个帛片上生动记载了当时人们运动肢体锻炼的动作,栩栩如生。比较精妙的是,通过复原后的导引图使我们惊奇地发现,其中很多动作和现代的太极拳动作相似,这种相似不仅有形似,更有神似的成分。太极拳也的确有导引养生的作用。 但到现在为止,并没有发现明代以前有完整、成型的太极拳套路或清晰的、直接的太极拳技术理论论述,也没有十分明确的太极拳概念。虽然从文献上偶尔也能看到相近的词汇,但那不是作为一个明确系统的概念出现,而是另有他义。当然,对这一点也有学者有不同意见。因此,从比较严谨的角度来看,我们可以说。在古代很久以前,在战国以前,作为后来太极拳理论体系的基础理论已经形成,很多与太极拳相关的技术元素也在不断衍生。 到了明末清初,完整的太极拳概念,它的理论、技术架构开始出现了。 现在在国内外广泛流行的几个重要的太极拳流派都是从那时起逐渐衍化、发展起来的。 太极拳的理论技术体系的完整形成是在明来清初时期。在清代,太极拳出现第一次发展的高峰时期,这一时期的重要成果是几大主要太极拳流派的开始出现。 一些太极拳家以深厚的武术素养和服务于社会的责任感,以及变革的巨大勇气,对太极拳推陈出新,在陈氏太极拳的基础上,相继诞生了杨式、武式、吴式、孙式太极拳。为后来太极拳的发展与繁荣奠定了坚实基础。 20世纪的上半个世纪,太极拳开始由局部地区、由家族广泛走向社会。1928年成立的中央国术馆对推进包括太极拳在内的武术发挥了重要作用。国术馆内开设有专门的太极拳课程,并且邀请了孙禄堂等太极拳名家进行授课。几十年间,在一些著名太极拳家的主持下,全国各地陆续成立了一些太极研究机构和民间推广、交流机构,对培养太极拳人才、推广太极拳发挥了长远的作用,有些至今仍然挂牌运作,影响遍及海内外。如上海成立的致柔拳社、武当

“物理学”简介、含义、起源、历史与发展【精选】

物理学 物理学研究宇宙间物质存在的各种主要的基本形式,它们的性质、运动和转化以及内部结构;从而认识这些结构的组元及其相互作用、运动和转化的基本规律。地学和生命科学都是自然科学的重要方面,有重要的社会作用,但是像地球这样有生物的行星在宇宙中却是少见的,所以地学和生命科学不属于物理学范围。当然,物理学所发现的基本规律,即使在地球现象和生命现象中,也起着重要作用。 物理学的各分支学科是按物质的不同存在形式和不同运动形式划分的。人对自然界的认识来源于实践,而实践的广度和深度有着历史的局限性。随着实践的扩展和深入,物理学的内容也不断扩展和深入。新的分支学科陆续形成;已有的分支学科日趋成熟,应用也日益广泛。早在古代就形成的天文学和起源于古代炼金术的化学,始终保持着独立的地位,没有被纳入物理学的范围。在天文学和物理学之间、化学和物理学之间存在着密切的联系,物理学所发现的基本规律在天文现象和化学现象中也起着日益深刻的作用。 客观世界是一个内部存在着普遍联系的统一体。随着物理学各分支科学的发展,人们发现物质的不同存在形式和不同运动形式之间存在着联系,于是各分支学科之间开始互相渗透。物理学逐步发展成为各分支学科彼此密切联系的统一整体。物理学家力图寻找一切物理现象的基本规律,从而去统一地理解一切物理现象。这种努力虽然逐步有所进展,使得这一目标有时显得很接近;但与此同时,新的物理现象又不断出现,使这一目标又变得更遥远。看来人们对客观世界的探索、研究是无穷无尽的。以下大体按照物理学的历史发展过程来叙述物理学的发展及其内容。 经典力学 经典力学研究宏观物体低速机械运动的现象和规律,宏观是相对于原子等微观粒子而言的。人们在日常生活中直接接触到的物体常常包含巨量的原子,因此是宏观物体。低速是相对于光速而言的。最快的喷气客机的速度一般也不到光速的一百万分之一,在物理学中仍算是低速。物体的空间位置随时间变化称为机械运动。人们日常生活直接接触到的并首先加以研究的都是宏观低速的机械运动。 自远古以来,由于农业生产需要确定季节,人们就进行天文观察。16世纪后期,人们对行星绕太阳的运动进行了详细、精密的观察。17世纪J.开普勒从这些观察结果中总结出了行星绕日运动的三条经验规律。差不多在同一时期,伽利略进行了落体和抛物体的实验研究,从而提出关于机械运动的初步的现象性理论,并把用实验验证理论结果的方法引入了物理学。I.牛顿深入研究了这些经验规律和初步的现象性理论,发现了宏观低速机械运动的基本规律:包括三条牛顿运动定律和万有引力定律,为经典力学奠定了基础。根据对天王星运行轨道的详细天文观察,并根据牛顿的理论,预言了海王星的存在;以后果然在天文观察中发现了海王星。于是牛顿所提出的力学定律和万有引力定律被普遍接受了。 经典力学中的基本物理量是质点的空间坐标和动量。一个力学系统在某一时刻的状态由它的每一个质点在这一时刻的空间坐标和动量表示。对于一个不受外界影响,也不影响外界,不包含其他运动形式(如热运动、电磁运动等)的力学系统来说,它的总机械能就是每一个质点的空间坐标和动量的函数,其状态随时间的变化由总能量决定。在经典力学中,力学系

第二章 人类传播活动的历史与发展

第二章人类传播活动的历史与发展 第一节从动物传播到人类传播 一、动物社会的传播现象 二、动物传播的局限:动物传播的局限P24 三、劳动创造了人类语言:恩格斯关于劳动创造了语言的论述P26-27 四、人类语言的能动性和创造性:人类语言的四个基本特征P27 第二节:人类传播的发展进程 一、口语传播时代:口语(命名)出现的意义P29;口语的局限P29-30 二、文字传播时代:文字的出现P30;文字发明的意义P31 三、印刷传播时代:印刷术的发明(中国造纸印刷术、古腾堡印刷机)P31-32;印刷媒介的意义(施拉姆的论述及郭的补充)P32 四、电子传播时代:电子媒介的意义(时空和速度的突破、声音与影像信息系统的体外化)P33;电脑,电子媒介发展趋势(电脑、无线、通讯卫星和数字化技术)P33-34 第三节:信息社会与信息传播 信息社会的概念P35 一、媒介传播的进化与社会发展:哈特的媒介三分法P35-36 二、信息爆炸与信息社会:贝尔的社会发展三大阶段P37;托夫勒的三次浪潮P38;信息社会在经济结构上的四个特点P38 三、迎接高度信息化社会的到来:战后社会信息化的两个阶段(初级、高级)P39;社会“高度信息化”阶段的三个特点P39;世界各国建设信息社会(NII,GII)P39;我国信息化建设P39-40;对人类发展史的概要认识P40 一.动物传播 信号:传播并非人类特有现象。动物社会传递信息的常见信号就有以下几种: 1.气味。(分泌特定气味的荷尔蒙-一般草食和肉食动物) 2.发光。(萤火虫求偶) 3.超声波。(蝙蝠) 4.动作。(灰雁动作信号,蜜蜂的“8字舞”) 5.声音。(鸟语) 局限性:动物传播与人类传播不能同日而语的,两者之间有着本质的区别。表现在: 第一.动物的信息行为是一种先天的本能行为,取决于体内的信息功能和遗传基因,而非后天的系统学习; 第二,动物传递和接收信息的过程是基于条件反射原理的过程,而不伴随复杂的精神和思维活动。 —句话.动物传播只是对自然界的一种被动的适应,而不能成为对自然界和自身进行能动的、创造性改造。受过训练的黑猩猩也无法表达抽象的、过去的和未来的事物。 二.人类语言 为什么说劳动创造了语言?(劳动创造了人类的语言) 劳动:从传播学角度讲,语言的产生,标志着从动物传播到人类传播的重大飞跃。语言产生的根本动力,来自于人类最基本的创造性活动——劳动。劳动中相互协作对语言的需要促进了早期人类发音器官的发达,经过漫长的进化和发展,终于出现了分音节的语言。 人类语言区别于动物界信号系统的根本特征是什么? 人类语言的特性概括如下:(一力三性) 1.人类语言具有超越历史时间和空间的能力,它不仅能够表述现在,而且能够表述过去和未来;不仅能够表述眼前的事物,而且能够表述在遥远空间发生的事情。 2.人类语言具有无限的灵活性,可表达任何具体的、抽象的甚至虚构的事物,在表达内容上几乎无任何限制。 3.人类语言具有发音的经济性,以有限的几十种元音和辅音,配之以声调变化,能够组合成数十万以上的语音单词。这说明,人类能够以最小的体能消耗来最大限度地发挥自己的音声能力。 4,人类语言具有巨大的能动性和创造性。动物只能靠有限的声音和特定的化学或物理信号进行传播。而人类可以不断创造出新词语、新概念、新含义和新的表达方法.并且能够将声音语言转换成文字或其他符号体系加以记录和保存;人类不仅创造了自己的生活语言,还创造出了科学语言、艺术语言以及以手语、计算机语言为代表的各种人工语言。语言的历史,同时也是人类创造活动的历史。 综上所述,能动性和创造性是人类语言区别于动物界信号系统的最根本特征。人类语言活动不仅是人类对自然界和社会进行能动改造活动的有机组成部分,而且还不断创造和发展着自身,不断开创着崭新的语义世界。 从动物传播到人类传播,劳动创造了人类的语言。语言的产生,是完成从动物传播到人类传播之巨大飞跃的根本标志。 语言的起源:“汪汪”理论,“感叹”理论,“唱歌”理论,“吆——嗨——嗬”理论。 劳动的发展使相互支持和共同协作的场合增多了,劳动中的相互协作对语言的需要促进了早期人类发音器官的发达。 人类语言的特性:

太极拳的产生及发展

太极拳的历史及发展 罗源机电1211 12223017 摘要:本文主要陈述了太极这一拳系的起源,因其起源众说纷纭,本文选取其中可信度较高的陈家沟说法。重点讲述陈氏太极拳的历史传承,套路变化及发展过程。最后就陈氏太极拳发展的主要四个流派的太极拳特点进行简要概述。 一、太极拳名字由来 太极拳成为“长拳”、“棉拳”、“十三式”、“软手”。清朝乾隆年间,山西人王宗岳著《太极拳论》,太极拳这个名称才确定下来。太极拳属武术——大拳系。“太极”一词源出《周易?系辞》:“易有太极,是生两仪,…”“太”就是大的意思,“极”就是开始或顶点的意思。宋朝周敦颐在《太极图说》中的第一句话就是“无极而太极”,并非说太极从无极产生,而是“太极本无极”之意,意即“太极”是产生万物的本源,含有至高、至极、绝对、唯一之意。 二、太极拳的起源 关于太极拳的起源与创始人,众说纷纭,大致有唐朝许宣平,宋朝张三峰,明朝张三丰, 清朝陈王庭① 和王宗岳等几种不同的说法。虽张三丰和王宗岳各著有《太极拳论》,但现在 多数拳家以现传各式太极拳均源出陈式太极拳,而持陈王庭创拳之说。本文持陈王庭创拳之说。经历史考证,太极拳起源于中国河南温县陈家沟,由陈氏第九世祖、著名拳师陈王庭所创,距今已有300多年历史。 陈氏太极拳的起源可追朔到陈氏始祖陈卜。陈卜原籍在山西泽州郡 (今晋城),后来由泽州搬居山西洪桐县。明洪武5年 (公元1374年),迁居河南怀庆府 (今沁阳)。当时,陈卜为人忠厚,精通拳械,深受近邻乡民敬重,所以当地人将其居住的地方叫陈卜庄 (解放后,陈卜庄划归温县,至今仍叫陈卜庄)。后来,因陈卜庄地势比较低洼,经常遭受洪涝,所以陈卜一家又迁居到距温县城东十里的常杨村。因村中有一条南北走向的深沟(有一段深沟仍保留至今),所以随着陈氏人丁繁衍,家族不断壮大,常杨村易名为陈家沟。 陈卜定居陈家沟以后,开始垦荒种田,兴家立业。随着家族不断壮大,到第七世开始分家。为了家园安全,地方安宁,于是在村中设立武学社,传授武艺。这期间,陈氏家史文字记载很少,大多为口传。直到1711年,陈氏第十世祖陈庚为陈卜立碑,才开始简要记述陈卜史实。但间隔已有300余年,其间的人物、事迹及有关拳术多有疏漏。所以关于拳艺、人物、事迹的文字记载,仅从陈氏第九世祖陈王庭记起。

相关主题
文本预览
相关文档 最新文档