当前位置:文档之家› 排队论练习题

排队论练习题

排队论练习题
排队论练习题

排队论例题

排队论例题 1、某重要设施是由三道防线组成的防空系统。第一道防线上配备两座武器;第二道防线上配备三座武器;第三道防线上配备一座武器。所有的武器类型一样。武器对来犯敌人的射击时间服从μ=1(架/分钟)的指数分布,敌机来犯服从λ=2(架/分钟)的泊松流。试估计该防空系统的有效率。

解: 武器联合发挥作用 该防空系统有效率 = 1- (三道防线后的损失率) 三道防线均可看成M/M/1/1系统 第一道防线:λ=2架/分钟, μ=2架/分钟(两座武器) ρ=λ/μ=1 .P )A (P ,P ,P ,P P P 1212111110001=======λλρ损 第二道防线 : .P )A (P ,P ,P ,P P P ,)(.414 143313131122100011========= ===λλρμλρμλλ损损三座武器第三道防线: 975 .0,025.0.05.020 1)(,51,54,1,41,41,1.41 313310100012===========∴=+==== ===总损失率该防空系统的有效率总损失率损损损-12 0.05λλλλρμλρμλλP A P P P P P P P P

2、某汽车加油站只有一个加油灌,汽车到达为泊松流,加油时间服从指数分布。平均到达率和平均服务率分别为λ和μ。已知汽车排队等待(不含服务时间)1小时的损失费为C元,加油站空闲1小时损失费为2C元。试求使总的损失费(包括顾客排队等待的损失费和服务机构空闲时的损失费)最小的最优服务强度ρ(ρ=λ/μ)。

解:该排队系统为M/M/1系统 μλρ= W q ==-)(λμμλρρ-12 P0 = 1-ρ=μλ (空闲概率) 每小时空闲时间为1×P0= P0 总损失费为: ρρρ-+-=+=1)1(2220C C Cw Cp y q 对 ρ 求导 C C C C y 22 22)1(22)1()1(22ρρρρρρρ--+-=-+-+-=' ∴22±=ρ 又∵ ρ<1 ∴22-=ρ 由于2阶导数 0)1()2)(1(2)1)(22(422>---+--=''ρρρρρρy ∴在22-=ρ时为0<ρ<1上取最小值 动态规划问题 1.某企业生产某种产品,每月月初按定货单发货,生产得 产品随时入库,由于空间限制,仓库最多能够贮存产品90000件。在上半年(1至6月)其生产成本(万元/ 6个月的生产量使既能满足各月的订单需求同时生产成本最低?

泊松过程及其在排队论中的应用

泊松过程及其在排队论中的应用 摘要:叙述了泊松过程的基本定义和概念,并列举了泊松过程的其他等价定义和证明并分析了泊松过程在排队论中的应用,讨论了完成服务和正在接受服务的顾客的联合分布。 关键词:泊松过程;齐次泊松过程;排队论 1. 前言 泊松分布是概率论中最重要的分布之一,在历史上泊松分布是由法国数学家泊松引人的。近数十年来,泊松分布日益显现了其重要性而将泊松随机变量的概念加以推广就得到了泊松过程的概念。泊松过程是被研究得最早和最简单的一类点过程,他在点过程的理论和应用中占有重要的地位。泊松过程在现实生活的许多应用中是一个相当适合的模型,它在物理学、天文学、生物学、医学、通讯技术、交通运输和管理科学等领域都有成功运用的例子。 2. 泊松过程的概念 定义3.2 :设计数过程{ X(t),t ≥ 0}满足下列条件: (1) X(0) = 0; (2) X(t)是独立增量过程; (3) 在任一长度为t 的区间中,事件A 发生的次数服从参数0t >λ的泊松分布,即对任意是s, t ≥ 0,有 ! )(})()({n t e n s X s t X P n t λλ-==-+, ,1,0=n 则称计数过程{ X(t),t ≥ 0}为具有参数0>λ的泊松过程。 注意,从条件(3)知泊松过程是平稳增量过程且t t X E λ=)]([,由于, t t X E )]([= λ表示单位时间内事件A 发生的平均个数,故称λ为此过程的速率或强度。 从定义3.2中,我们看到,为了判断一个计数过程是泊松过程,必须证明它满足条件(1)、(2)及(3)。条件(1)只是说明事件A 的计数是从t = 0时开始的。条件(2)通常可从我们对过程了解的情况去验证。然而条件(3)的检验是非常困难的。为此,我们给出泊松过程的另一个定义。 定义3.3 :设计数过程{ X(t),t ≥ 0}满足下列条件: (1) X(0) = 0; (2) X(t)是独立平稳增量过程; (3) X(t)满足下列两式: o(h). 2} X(t)-h)P{X(t o(h),h 1} X(t)-h)P{X(t =≥++==+λ

胡运权排队论习题解

胡运权排队论习题解 某修理店只有一个修理工人, 来修理的顾客到达次数服从普阿松分布,平均每小时3人,修理时间服从负指数分布,平均需10分钟, 求 (1) 修理店空闲时间概率; (2) 店内有4个顾客的概率; (3) 店内至少有一个顾客的概率; (4) 在店内顾客平均数; (5) 等待服务的顾客平均数; (6) 在店内平均逗留时间; (7) 平均等待修理(服务)时间; (8) 必须在店内消耗15分钟以上的概率. 04440s q s q 60M /M /1//3 6.10 31(1)p 1162 111 (2)p (1)(1)()2232 11 (3)1p 1223 (4)L 1()63 13 12(5)L ()632111 (6)()633 1 1 2(7)()636(8)1-F()W W λμρρρλμλρλμλμλρμλω∞∞====-=-==-=-=-=-====--?===--===--===--解:该系统为()模型,,;; ; 人; 人;小时; 小时; 1515-(6-3)- -(-)60 20 e e e . μλω ? ===

11 (1)(2)(3)232 11 (4)(5)2211 (6)(7)(8)3615. 15 -20 答:修理店空闲时间概率为;店内有三个顾客的概率为;店内至少 有一个顾客的概率为;店内顾客平均数为1人;等待服务顾客平均数为人; 在店内平均逗留时间分钟;平均等待修理时间为分钟;必须在店内 消耗分钟以上的概率为e 10.22015(1)(2)(3)(4) 1.25M /M /1. 603(/20λ= =设有一单人打字室,顾客的到达为普阿松流,平均到达时间间隔为分钟,打字时间服从指数分布,平均时间为分钟,求顾客来打字不必等待的概率;打字室内顾客的平均数;顾客在打字室内平均逗留时间; 若顾客在打字室内的平均逗留时间超过小时,则主人将考虑增加设备及打字员,问顾客的平均到达概率为多少时,主人才会考虑这样做?解:该题属模型人小时0s s s 60)4(/).15 31 (1)p 1144 3 (2)L 3()4311 (3)1()43 1 (4)1.251 1.25 3.23.230.2(/).4W W μρλμλμλμλ λλ ===-=-====--===--=>-≥>-=-,人小时; 人; 小时; ; ,,人小时 1 (1)(2)3(3)4 1(4)0.2/. 答:顾客来打字不必等待的概率为;打字室内顾客平均数为人;顾客在 打字室内平均逗留时间为小时;平均到达率为人小时时,店主才会考虑增加设备及打字员 汽车按平均90辆/h 的poission 流到达高速公路上的一个收费关卡,通过关卡的平均时间为38s 。由于驾驶人员反映等待时间太长,主管部门打算采用新装置,使汽车通过关卡的平均时间减少到平均30s 。但增加新装置只有在原系统中等待的汽车平均数超过5辆和新系统中关卡空闲时间不超过10%时才是合算的。根据这一要求,分析新装置是否合算。

运筹学各章的作业题答案解析

《管理运筹学》各章的作业 ----复习思考题及作业题 第一章绪论 复习思考题 1、从运筹学产生的背景认识本学科研究的内容和意义。 2、了解运筹学的内容和特点,结合自己的理解思考学习的方法和途径。 3、体会运筹学的学习特征和应用领域。 第二章线性规划建模及单纯形法 复习思考题 1、线性规划问题的一般形式有何特征? 2、建立一个实际问题的数学模型一般要几步? 3、两个变量的线性规划问题的图解法的一般步骤是什么? 4、求解线性规划问题时可能出现几种结果,那种结果反映建模时有错误? 5、什么是线性规划的标准型,如何把一个非标准形式的线性规划问题转化成标准形式。 6、试述线性规划问题的可行解、基础解、基础可行解、最优解、最优基础解的概念及它们之间的相互关系。 7、试述单纯形法的计算步骤,如何在单纯形表上判别问题具有唯一最优解、有无穷多个最优解、无界解或无可行解。 8、在什么样的情况下采用人工变量法,人工变量法包括哪两种解法? 9、大M 法中,M 的作用是什么?对最小化问题,在目标函数中人工变量的系数取什么?最大化问题呢? 10、什么是单纯形法的两阶段法?两阶段法的第一段是为了解决什么问题?在怎样的情况下,继续第二阶段? 作业题: 1、把以下线性规划问题化为标准形式: (1) max z= x1-2x2+x3 s.t. x1+x2+x3≤12 2x1+x2-x3≥ 6 -x1+3x2=9 x1, x2, x3≥0 (2) min z= -2x1-x2+3x3-5x4 s.t x1+2x2+4x3-x4≥ 6 2x1+3x2-x3+x4=12 x1+x3+x4≤ 4 x1, x2, x4≥0

排队论习题

排队论习题 1、某大学图书馆的一个借书柜台的顾客流服从泊松流,平均每小时50人,为顾客服 务的时间服从负指数分布,平均每小时可服务80人,求: (1)顾客来借书不必等待的概率3/8 (2)柜台前平均顾客数5/3 (3)顾客在柜台前平均逗留时间1/30 (4)顾客在柜台前平均等待时间1/80 2、一个新开张的理发店准备雇佣一名理发师,有两名理发师应聘。由于水平不同,理发师甲平均每小时可服务3人,雇佣理发师甲的工资为每小时14元,理发师乙平均每小时可服务4人,雇佣理发师乙的工资为每小时20元,假设两名理发师的服务时间都服从负指数分布,另外假设顾客到达服从泊松分布,平均每小时2人。问:假设来此理发店理发的顾客等候一小时的成本为30元,请进行经济分析,选出一位使排队系统更为经济的理发师。 3、一个小型的平价自选商场只有一个收款出口,假设到达收款出口的顾客流为泊松流,平均每小时为30人,收款员的服务时间服从负指数分布,平均每小时可服务40人。(1)计算这个排队系统的数量指标P0、L q、L s、W q、W s。 (2)顾客对这个系统抱怨花费的时间太多,商店为了改进服务准备队以下两个方案进行选择。 1)在收款出口,除了收款员外还专雇一名装包员,这样可使每小时的服务率从40人提高到60人。 2)增加一个出口,使排队系统变成M/M/2系统,每个收款出口的服务率仍为40人。 对这两个排队系统进行评价,并作出选择。 4、汽车按泊松分布到达某高速公路收费口,平均90辆/小时。每辆车通过收费口平均需时间35秒,服从负指数分布。司机抱怨等待时间太长,管理部门拟采用自动收款装

置使收费时间缩短到30秒,但条件是原收费口平均等待车辆超过6辆,且新装置的利用率不低于75%时才使用,问上述条件下新装置能否被采用。 5、有一台电话的共用电话亭打电话的顾客服从λ=6个/小时的泊松分布,平均每人打电话时间为3分钟,服从负指数分布。试求: (1)到达者在开始打电话前需等待10分钟以上的概率 (2)顾客从到达时算起到打完电话离去超过10分钟的概率 (3)管理部门决定当打电话顾客平均等待时间超过3分钟时,将安装第二台电话,问当λ值为多大时需安装第二台。 6、某无线电修理商店保证每件送到的电器在1小时内修完取货,如超过1小时分文不收。已知该商店每修一件平均收费10元,其成本平均每件5.5元,即每修一件平均赢利4.5元。已知送来修理的电器按泊松分布到达,平均6件/小时,每维修一件的时间平均为7.5分钟,服从负指数分布。试问: (1)该商店在此条件下能否赢利 (2)当每小时送达的电器为多少件时该商店的经营处于盈亏平衡点。 7、顾客按泊松分布到达只有一名理发员的理发店,平均10人/小时。理发店对每名顾客的服务时间服从负指数分布,平均为5分钟。理发店内包括理发椅共有三个座位,当顾客到达无座位时,就依次站着等待。试求: (1)顾客到达时有座位的概率 (2)到达的顾客需站着等待的概率 (3)顾客从进入理发店到离去超过2分钟的概率 (4)理发店内应有多少座位,才能保证80%顾客在到达时就有座位。 8、某医院门前有一出租车停车场,因场地限制,只能同时停放5辆出租车。当停满5辆后,后来的车就自动离去。从医院出来的病人在有车时就租车乘坐,停车场无车时就向附近出租汽车站要车。设出租汽车到达医院门口按λ=8辆/小时的泊松分布,从医院依次出来的病人的间隔时间为负指数分布,平均间隔时间6分钟。又设每辆车每次只载一名病人,并且汽车到达先后次序排列。试求:

matlab单服务台排队系统实验报告

matlab 单服务台排队系统实验报告 一、实验目的 本次实验要求实现M/M/1单窗口无限排队系统的系统仿真,利用事件调度法实现离散事件系统仿真,并统计平均队列长度以及平均等待时间等值,以与理论分析结果进行对比。 二、实验原理 根据排队论的知识我们知道,排队系统的分类是根据该系统中的顾客到达模式、服务模式、服务员数量以及服务规则等因素决定的。 1、 顾客到达模式 设到达过程是一个参数为λ的Poisson 过程,则长度为t 的时间内到达k 个呼 叫的概率 服从Poisson 分布,即 e t k k k t t p λλ-= !)()(,?????????=,2,1,0k ,其中λ>0为一 常数,表示了平均到达率或Poisson 呼叫流的强度。 2、 服务模式 设每个呼叫的持续时间为i τ,服从参数为μ的负指数分布,即其分布函数为 {}1,0t P X t e t μ-<=-≥ 3、 服务规则 先进先服务的规则(FIFO ) 4、 理论分析结果 在该M/M/1系统中,设λρμ= ,则稳态时的平均等待队长为1Q ρλ ρ= -,顾客 的平均等待时间为 T ρμλ= -。 三、实验内容 M/M/1排队系统:实现了当顾客到达分布服从负指数分布,系统服务时间也服 从负指数分布,单服务台系统,单队排队,按FIFO 方式服务。 四、采用的语言 MatLab 语言 源代码: clear; clc; %M/M/1排队系统仿真

SimTotal=input('请输入仿真顾客总数SimTotal='); %仿真顾客总数;Lambda=0.4; %到达率Lambda; Mu=0.9; %服务率Mu; t_Arrive=zeros(1,SimTotal); t_Leave=zeros(1,SimTotal); ArriveNum=zeros(1,SimTotal); LeaveNum=zeros(1,SimTotal); Interval_Arrive=-log(rand(1,SimTotal))/Lambda;%到达时间间隔Interval_Serve=-log(rand(1,SimTotal))/Mu;%服务时间 t_Arrive(1)=Interval_Arrive(1);%顾客到达时间 ArriveNum(1)=1; for i=2:SimTotal t_Arrive(i)=t_Arrive(i-1)+Interval_Arrive(i); ArriveNum(i)=i; end t_Leave(1)=t_Arrive(1)+Interval_Serve(1);%顾客离开时间LeaveNum(1)=1; for i=2:SimTotal if t_Leave(i-1)

排队论习题及答案

《运筹学》第六章排队论习题 1. 思考题 (1)排队论主要研究的问题是什么; (2)试述排队模型的种类及各部分的特征; (3)Kendall 符号C B A Z Y X /////中各字母的分别代表什么意义; (4)理解平均到达率、平均服务率、平均服务时间和顾客到达间隔时间等概念; (5)分别写出普阿松分布、负指数分布、爱尔朗分布的密度函数,说明这些分 布的主要性质; (6)试述队长和排队长;等待时间和逗留时间;忙期和闲期等概念及他们之间的联系 与区别。 2.判断下列说法是否正确 (1)若到达排队系统的顾客为普阿松流,则依次到达的两名顾客之间的间隔时间 服从负指数分布; (2)假如到达排队系统的顾客来自两个方面,分别服从普阿松分布,则这两部分 顾客合起来的顾客流仍为普阿松分布; (3)若两两顾客依次到达的间隔时间服从负指数分布,又将顾客按到达先后排序, 则第1、3、5、7,┉名顾客到达的间隔时间也服从负指数分布; (4)对1//M M 或C M M //的排队系统,服务完毕离开系统的顾客流也为普阿松流; (5)在排队系统中,一般假定对顾客服务时间的分布为负指数分布,这是因为通过对大 量实际系统的统计研究,这样的假定比较合理; (6)一个排队系统中,不管顾客到达和服务时间的情况如何,只要运行足够长的时间后, 系统将进入稳定状态; (7)排队系统中,顾客等待时间的分布不受排队服务规则的影响; (8)在顾客到达及机构服务时间的分布相同的情况下,对容量有限的排队系统,顾客的 平均等待时间少于允许队长无限的系统; (9)在顾客到达分布相同的情况下,顾客的平均等待时间同服务时间分布的方差大小有 关,当服务时间分布的方差越大时,顾客的平均等待时间就越长; (10)在机器发生故障的概率及工人修复一台机器的时间分布不变的条件下,由1名工人 看管5台机器,或由3名工人联合看管15台机器时,机器因故障等待工人维修的平均时间不变。 3.某店有一个修理工人,顾客到达过程为Poisson 流,平均每小时3人,修理时间服从负 指数分布,平均需19分钟,求: (1)店内空闲的时间; (2)有4个顾客的概率; (3)至少有一个顾客的概率; (4)店内顾客的平均数; (5)等待服务的顾客数; (6)平均等待修理的时间; (7)一个顾客在店内逗留时间超过15分钟的概率。 4.设有一个医院门诊,只有一个值班医生。病人的到达过程为Poisson 流,平均到达时间间隔为20分钟,诊断时间服从负指数分布,平均需12分钟,求: (1)病人到来不用等待的概率; (2)门诊部内顾客的平均数; (3)病人在门诊部的平均逗留时间; (4)若病人在门诊部内的平均逗留时间超过1小时,则医院方将考虑增加值班医生。问 病人平均到达率为多少时,医院才会增加医生? 5.某排队系统只有1名服务员,平均每小时有4名顾客到达,到达过程为Poisson 流,,服务时间服从负指数分布,平均需6分钟,由于场地限制,系统内最多不超过3名顾客,求: (1)系统内没有顾客的概率; (2)系统内顾客的平均数;

排队论练习题

第9章排队论 判断下列说法是否正确: (1)若到达排队系统的顾客为泊松流,则依次到达的两名顾客之间的间隔时间服从负指数分布; (2)假如到达排队系统的顾客来自两个方面,分别服从泊松分布,则这两部分顾客合起来的顾客流仍为泊松分布; (3)若两两顾客依次到达的间隔时间服从负指数分布,又将顾客按到达先后排序,则第1、3、5、7,…名顾客到达的间隔时间也服从负指数分布; (4)对M/M/1或M/M/C的排队系统,服务完毕离开系统的顾客流也为泊松流; (5)在排队系统中,一般假定对顾客服务时间的分布为负指数分布,这是因为通过对大量实际系统的统计研究,这样的假定比较合理; (6)一个排队系统中,不管顾客到达和服务时间的情况如何,只要运行足够长的时间后,系统将进入稳定状态; (7)排队系统中,顾客等待时间的分布不受排队服务规则的影响; (8)在顾客到达及机构服务时间的分布相同的情况下,对容量有限的排队系统,顾客的平均等待时间将少于允许队长无限的系统; (9)在顾客到达的分布相同的情况下,顾客的平均等待时间同服务时间分布的方差大小有关,当服务时间分别的方差越大时,顾客的平均等待时间将越长; (10)在机器发生故障的概率及工人修复一台机器的时间分布不变的条件下,由1名工人看管5台机器,或由3名工人联合看管15台机器时,机器因故障等待工人维修的平均时间不变。 M/M/1 、某理发店只有一名理发师,来理发的顾客按泊松分布到达,平均每小时4人,理发时间服从负指数分布,平均需6小时,求: (1)理发店空闲时间的概率; (2)店内有3个顾客的概率; (3)店内至少有1个顾客的概率; (4)在店内顾客平均数; (5)在店内平均逗留时间; (6)等待服务的顾客平均数; (7)平均等待服务时间; (8)必须在店内消耗15分钟以上的概率。 、某修理店只有一个修理工,来修理东西的顾客到达次数服从泊松分布,平均每小时4 人,修理时间服从负指数分布,平均需6分钟。求: (1)修理店空闲时间的概率; (2)店内有3个顾客的概率; (3)店内顾客平均数; (4)店内等待顾客平均数; (5)顾客在店内平均逗留时间; (6)平均等待修理时间。

排队论

排队论实验报告

《排队现象的建模、解析与模拟》 课程设计 姓名: 学号: 班级:

题目描述:排队系统的稳定性与什么有关?与系统的一步概率转移矩阵有什么关系?收敛速度快慢与什么有关? 解答过程: (1)初始设定: 设初始状态X=(P1 P2 P3 … Pn),一步状态概率转移矩阵为P ,最终系统趋于稳定的状态为Y=(Y1 Y2 Y3 … Yn),可知X 和Y 是一个固定不变的行向量,且P1+P2+P3+…+Pn=1,Y1+Y2+Y3+…+Yn=1。 (2)描述模型: 对排队系统最终趋于稳定的描述为:Y=X*P n ,n>N(N 是一个足够大的数)。 (3)提出假想: 由(2)中对于系统最终趋于稳定状态的描述,因为X 和Y 都是固定的向量,所以,若系统趋于稳定,则P n 收敛。假设P 最终收敛为 P σ=(a1 a2 ?an ???x1x2?xn ) , 由概率转移矩阵的性质可知各行概率之和为1,即a1+a2+…+an=1。 因为Y* P σ= (Y1 Y2 Y3 … Yn)* (a1 a2 ?an ???x1x2?xn )=Y=(Y1 Y2 Y3 … Yn),故提出猜测:概率转移矩阵收敛后各列的元素值相等。 (4)MATLAB 验证猜想: ① 当n ≥73时收敛:

② 当n≥38时收敛 ③ 当n≥11时收敛

④ 当n≥3时收敛 ⑤ P本身就是收敛后的结果

(5)结论: 经过一系列验证,得出系统的稳定性只与一步转移概率矩阵P 有关,若P 收敛,则系统趋于稳定,反之系统不稳定。并且P 收敛后行和为1,每列元素值相同。 因为Y* P σ= (Y1 Y2 Y3 …… Yn)* (a1 a2 ?an ???a1a2?an ) =((Y1+Y2+Y3+…Yn)*a1 (Y1+Y2+Y3+…Yn)*a2 … (Y1+Y2+Y3+…Yn)*an) =(a1 a2 … an) 所以最终的概率分布的结果是矩阵收敛后的一行。 收敛速度快慢与一步概率转移矩阵每列元素值的分布有关,若每列元素值分布比较均匀,则收敛速度较快,反之收敛速度较慢。每列元素值相等的矩阵,本身就是收敛后的结果。单位阵是一个特例,它每列元素值不相等,但是单位阵收敛。与单位阵类似的一类矩阵,即 每列有且仅有一个1出现的矩阵,这类矩阵不会收敛。

《运筹学》_练习卷一、二、三_-_答案

《运筹学》练习卷(一)-答案 一、填空题(每空1分,共8分) 1、在线性规划问题中,若存在两个最优解时,必有相邻的顶点是最优解。 2、树图中,任意两个顶点间有且仅有一条链。 3、线性规划的图解法适用于决策变量为两个的线性规划模型。 4、在线性规划问题中,将约束条件不等式变为等式所引入的变量被称为松弛变量。 5、求解不平衡的运输问题的基本思想是设立虚供地或虚需求点,化为供求平衡的标准形式。 6、运输问题中求初始基本可行解的方法通常有最小费用法与西北角法两种方法。 7、称无圈的连通图为树,若图的顶点数为p,则其边数为 p-1 。 二、单项选择题(每题2分,共10分) 1、最早运用运筹学理论的是(A) A 二次世界大战期间,英国军事部门将运筹学运用到军事战略部署 B 美国最早将运筹学运用到农业和人口规划问题上 C 二次世界大战期间,英国政府将运筹学运用到政府制定计划 D 50年代,运筹学运用到研究人口,能源,粮食,第三世界经济发展等问题上 2、下列哪些不是运筹学的研究范围(D) A 质量控制 B 动态规划 C 排队论 D 系统设计 3、对于线性规划问题,下列说法正确的是(D) A 线性规划问题可能没有可行解 B 在图解法上,线性规划问题的可行解区域都是“凸”区域 C 线性规划问题如果有最优解,则最优解可以在可行解区域的顶点上到达 D 上述说法都正确 4、下面哪些不是线性规划问题的标准形式所具备的(C)A所有的变量必须是非负的 B 所有的约束条件(变量的非负约束除外)必须是等式 C 添加新变量时,可以不考虑变量的正负性 D 求目标函数的最小值 5、在求解运输问题的过程中运用到下列哪些方法(D) A 西北角法 B 位势法 C 闭回路法 D 以上都是 三、名词解释(每题3分,共12分) 1、需求:对存储来说,需求就是输出。最基本的需求模式是确定性的,在这种情况下,某一种货物的未来需求都是已知的。

2011-2012-2实验7排队论问题的编程实现

实验7 排队论问题的编程实现 成绩 专业班级 信息112学号18姓名 高廷旺 报告日期 实验类型: 实验目的: 实验内容: 实验原理 态情形的指标公式, 实验步骤 要求上机实验前先编写出程序代码 编辑录入程序 调试程序并记录调试过程中出现的问题及修改程序的过程 经反复调试后,运行程序并验证程序运行是否正确。 记录运行时的输入和输出。 ?验证性实验 o 综合性实验 o 设计性实验 熟练排队论问题的求解算法 。 排队论基本问题的求解算法。 对于几种基本排队模型: M/M/1、M/M/1/N 、M/M/1/m/m 、M/M/c 等能够根据稳 求岀相应的数量指标。 1 2 3 4 5 预习编写程序代码: 实验报告:根据实验情况和结果撰写并递交实验报告。 实验总结:排队问题用lingo 求解简单明了, 还有关系式表达的认识。挺有成就感。很棒。 参考程序 例题1 M/M/1 模型 某维修中心在周末现只安排一名员工为顾客提供服务, 正在接受服务,则需要排队等待,假设来维修的顾 5人,维修时间服从负指数分布, 平均需要6min ,试求该系统的主要数量指标。 例题 2 M/M/C 模型 设打印室有3名打字员,平均每个文件的打印时间为 16件,试求该打印室的主要数量指标。 例题3混合制排队 M/M/1/N 模型 某理发店只有 1名理发员,因场所有限,店里最多可容纳 5名顾客,假设来理发的顾客 按Poisson 过程到达,平均到达率为 6人/h ,理发时间服从负指数分布,平均 12 min 可 为1名顾客理发,求该系统的各项参数指标。 例题4闭合式排队 M/M/1/K/1 模型 设有1名工人负责照管 8台自动机床,当机床需要加料、 发生故障或刀具磨损时就自动停车, 等待工人照管。设平均每台机床两次停车的时间间隔为 1h ,停车时需要工人照管的平均时间是 6min ,并均服从负指数分布,求该系统的各项指标。 参考程序 ______________ 例题1等待制M/M/1 模型 sx=1; rx=5; tx=6/60; lq=rx*tx; twait= @p eb(lq,sx); 容易编程。加深了对 linggo 中for 语句, 新来维修的顾客到达后,若已有顾客 客到达过程为Po isso n 流,平均每小时 10 min ,而文件的到达率为每小时 例题2等待制 M/M/C 模型 sx=3; rx=16; tx=10/60; lq=rx*tx; twait= @p eb(lq,sx);

(完整word版)《运筹学》_第六章排队论习题及_答案

《运筹学》第六章排队论习题 转载请注明 1. 思考题 (1)排队论主要研究的问题是什么; (2)试述排队模型的种类及各部分的特征; (3)Kendall 符号C B A Z Y X /////中各字母的分别代表什么意义; (4)理解平均到达率、平均服务率、平均服务时间和顾客到达间隔时间等概念; (5)分别写出普阿松分布、负指数分布、爱尔朗分布的密度函数,说明这些分 布的主要性质; (6)试述队长和排队长;等待时间和逗留时间;忙期和闲期等概念及他们之间的联系 与区别。 2.判断下列说法是否正确 (1)若到达排队系统的顾客为普阿松流,则依次到达的两名顾客之间的间隔时间 服从负指数分布; (2)假如到达排队系统的顾客来自两个方面,分别服从普阿松分布,则这两部分 顾客合起来的顾客流仍为普阿松分布; (3)若两两顾客依次到达的间隔时间服从负指数分布,又将顾客按到达先后排序, 则第1、3、5、7,┉名顾客到达的间隔时间也服从负指数分布; (4)对1//M M 或C M M //的排队系统,服务完毕离开系统的顾客流也为普阿松流; (5)在排队系统中,一般假定对顾客服务时间的分布为负指数分布,这是因为通过对大 量实际系统的统计研究,这样的假定比较合理; (6)一个排队系统中,不管顾客到达和服务时间的情况如何,只要运行足够长的时间后, 系统将进入稳定状态; (7)排队系统中,顾客等待时间的分布不受排队服务规则的影响; (8)在顾客到达及机构服务时间的分布相同的情况下,对容量有限的排队系统,顾客的 平均等待时间少于允许队长无限的系统; (9)在顾客到达分布相同的情况下,顾客的平均等待时间同服务时间分布的方差大小有 关,当服务时间分布的方差越大时,顾客的平均等待时间就越长; (10)在机器发生故障的概率及工人修复一台机器的时间分布不变的条件下,由1名工人 看管5台机器,或由3名工人联合看管15台机器时,机器因故障等待工人维修的平均时间不变。 3.某店有一个修理工人,顾客到达过程为Poisson 流,平均每小时3人,修理时间服从负 指数分布,平均需19分钟,求: (1)店内空闲的时间; (2)有4个顾客的概率; (3)至少有一个顾客的概率; (4)店内顾客的平均数; (5)等待服务的顾客数; (6)平均等待修理的时间; (7)一个顾客在店内逗留时间超过15分钟的概率。 4.设有一个医院门诊,只有一个值班医生。病人的到达过程为Poisson 流,平均到达时间间隔为20分钟,诊断时间服从负指数分布,平均需12分钟,求: (1)病人到来不用等待的概率; (2)门诊部内顾客的平均数; (3)病人在门诊部的平均逗留时间; (4)若病人在门诊部内的平均逗留时间超过1小时,则医院方将考虑增加值班医生。问 病人平均到达率为多少时,医院才会增加医生? 5.某排队系统只有1名服务员,平均每小时有4名顾客到达,到达过程为Poisson 流,,服务时间服从负指数分布,平均需6分钟,由于场地限制,系统内最多不超过3名顾客,求:

排队论练习题

第9章排队论 9.1 判断下列说法是否正确: (1)若到达排队系统的顾客为泊松流,则依次到达的两名顾客之间的间隔时间服从负指数分布; (2)假如到达排队系统的顾客来自两个方面,分别服从泊松分布,则这两部分顾客合起来的顾客流仍为泊松分布; (3)若两两顾客依次到达的间隔时间服从负指数分布,又将顾客按到达先后排序,则第1、 3、5、7,…名顾客到达的间隔时间也服从负指数分布; (4)对M/M/1或M/M/C的排队系统,服务完毕离开系统的顾客流也为泊松流; (5)在排队系统中,一般假定对顾客服务时间的分布为负指数分布,这是因为通过对大量实际系统的统计研究,这样的假定比较合理; (6)一个排队系统中,不管顾客到达和服务时间的情况如何,只要运行足够长的时间后,系统将进入稳定状态; (7)排队系统中,顾客等待时间的分布不受排队服务规则的影响; (8)在顾客到达及机构服务时间的分布相同的情况下,对容量有限的排队系统,顾客的平均等待时间将少于允许队长无限的系统; (9)在顾客到达的分布相同的情况下,顾客的平均等待时间同服务时间分布的方差大小有关,当服务时间分别的方差越大时,顾客的平均等待时间将越长; (10)在机器发生故障的概率及工人修复一台机器的时间分布不变的条件下,由1名工人看管5台机器,或由3名工人联合看管15台机器时,机器因故障等待工人维修的平均时间不变。 M/M/1 9.2、某理发店只有一名理发师,来理发的顾客按泊松分布到达,平均每小时4人,理发时 间服从负指数分布,平均需6小时,求: (1)理发店空闲时间的概率; (2)店内有3个顾客的概率; (3)店内至少有1个顾客的概率; (4)在店内顾客平均数; (5)在店内平均逗留时间; (6)等待服务的顾客平均数; (7)平均等待服务时间; (8)必须在店内消耗15分钟以上的概率。 9.3、某修理店只有一个修理工,来修理东西的顾客到达次数服从泊松分布,平均每小时4 人,修理时间服从负指数分布,平均需6分钟。求: (1)修理店空闲时间的概率; (2)店内有3个顾客的概率; (3)店内顾客平均数; (4)店内等待顾客平均数; (5)顾客在店内平均逗留时间; (6)平均等待修理时间。

排队论开题报告

基于Matlab的排队论问题 仿真模拟研究 一、选题意义 排队论(queuing theory), 或称随机服务系统理论, 是通过对服务对象到来及服务时间的统计研究,得出这些数量指标(等待时间、排队长度、忙期长短等)的统计规律,然后根据这些规律来改进服务系统的结构或重新组织被服务对象,使得服务系统既能满足服务对象的需要,又能使机构的费用最经济或某些指标最优。它是数学运筹学的分支学科。也是研究服务系统中排队现象随机规律的学科。广泛应用于计算机网络, 生产, 运输, 库存等各项资源共享的随机服务系统。排队论研究的内容有3个方面:统计推断,根据资料建立模型;系统的性态,即和排队有关的数量指标的概率规律性;系统的优化问题。其目的是正确设计和有效运行各个服务系统,使之发挥最佳效益。日常生活中存在大量有形和无形的排队或拥挤现象,如旅客购票排队,市内电话占线等现象。排队论的应用非常广泛。它适用于一切服务系统。尤其在通信

系统、交通系统、计算机、存贮系统、生产管理系统等发面应用得最多。排队论的产生与发展来自实际的需要,实际的需要也必将影响它今后的发展方向。 二、论文综述 基于现实生活,我选取用餐高峰时间的高校的食堂某摊位的窗口数量和用餐学生排队等候情况为研究对象,采集数据,分析整理。首先采用排队论理论知识进行推断,建立模型,确定输入过程,服务规则,和服务台。理论计算出顾客流的概率分布,损失制,等待制,服务台数量及构成,最后确定顾客等待时间及合理的窗口数量。再采用Matlab 软件进行仿真模拟,产生随机数模拟顾客流,运用语言确定服务规则,进行模拟,仿真出顾客流概率,顾客等待时间,窗口设置情况。最后理论和模拟实验一同对比分析,得出结论提出合理建议。 三、论文提纲 一、文献综述 1、研究背景及意义 2、国内外发展状况 3、研究内容及目标 · 二、排队论模型的理论支撑 1、排队论模型的概念及特征 2、排队论模型计常用公式及模型方法 三、基于蒙特卡罗方法的排队论模型随机模拟 1、基本思想 2、算法 3、程序清单 4、运行与调试结果 四、结果与分析

运筹学 第三版 胡运权 郭耀煌 黄色封皮 第九and十章排队论习题答案

9.1 有A,B,C,D,E,F 6项工作,关系分别如图9-38(a),(b),试画出网络图。 9.2 试画出下列各题的网络图(见表9-8,表9-9,表9-10),并为事项编号。

9.3 设有如图9-39,图9-40网络图,用图上计算法计算时间参数,并求出关键 路线。

9.4 绘制表9-11,表9-12所示的网络图,并用表上计算法计算工作的各项时间参数、确定关键路线。

9.5 某工程资料如表9-13所示。 要求: (1)画出网络图。 (2)求出每件工作工时的期望值和方差。 (3)求出工程完工期的期望值和方差。 (4)计算工程期望完工期提前3天的概率和推迟5天的概率。 解:每件工作的期望工时和方差见表9-13的左部。 工程完工期的期望值为32个月,方差为5(1+1+1+1+1)。 工程期望完工期提前3天的概率为0.09,推迟5天的概率为0.987。

9.6 对图9-41所示网络,各项工作旁边的3个数分别为工作的最乐观时间、最可能时间和最悲观时间,确定其关键路线和最早完工时间的概率。 根据关键线路,再考虑到其他线路上的时差很多,可知最早完工时间应该等于关键线路上各个工作最早完工时间之和: 4+2+6+2+3=2=19 。概率为0.005 。 9.7 某项工程各道工序时间及每天需要的人力资源如图9-42所示。图中,箭线上的英文字母表示工序代号,括号内数值是该工序总时差,箭线下左边数为工序工时,括号内为该工序每天需要的人力数。若人力资源限制每天只有15人,求此条件下工期最短的施工方案。 解:最短工期还是15天。各个工作的开始时间如下图所示:

信息系统分析与设计课后复习题参考答案

参考答案 第1章 一、填空题 1. 整体性层次性环境适应性目的性自组织性相关性 2. 整体性 二、选择题 1. A 2. C 三、问答题 1. 系统是由若干具有特定属性的组成元素经特定联系而构成的、与周围环境相互联系的、具有特定的结构和功能的整体。 2. 统的特性有以下几个方面:整体性、层次性、环境适应性、目的性、自组织性以及相关性。举例略。 3. 略。 第2章 一、填空题 1. 信源信宿载体 2. 战略信息战术信息作业信息 3. 客观性传递性时效性时滞性共享性 二、选择题 1. C 2. A 3. B 三、问答题 1. 信息具有以下几个特征:客观性、传递性、时效性、时滞性、共享性。 2. 信息系统的开发经历了以处理为中心、数据为中心、以对象为中心和以模型为中心的四个阶段。 以处理为中心的阶段,数据与程序是一体的,没有独立的数据库,主要用于完成特定的任务,数据各自孤立,无法共享。这个阶段出现了结构化设计方法和模块化技术。 以数据为中心的阶段,数据与程序分离,数据由数据库管理系统(DBMS)管理,应用程序通过访问数据库,获取所需的数据并进行处理,各种应用程序共享数据库中的数据资源。这一阶段主要解决数据的可重要问题。 以对象为中心的阶段,它把信息系统中所有要素看作对象,对象由数据(属性)和处理(方法)构成,持久性对象的数据存贮在数据库中,数据库中的数据通过影射(Mapping)转换为软件对象。这个阶段出现了许多面向对象的分析与设计方法。本阶段强调软件的可重用。以模型为中心的阶段,基于信息模型开发软件产品。UML作为一种标准的建模语言,用于建立软件及信息系统的信息模型,并利用软件工具实现软件开发的正向工程(Forward Engineering)和逆向工程(Reverse Engineering),乃至知识库的管理。这一阶段强调模型和解决方案(模式)的可重用。 3. 系统科学是以系统及其机理为对象,研究系统的类型、性质和运动规律的科学。 系统科学主要包括以下五个方面的容: (1)系统概念,即关于系统的一般思想和理论。 (2)一般系统理论,即用数学的形式描述和确定系统的结构和行为的纯数学理论。 (3)系统理论分论,指为了解决各种特点的系统结构和行为的一些专门学科,如图论、博弈论、排队论、控制论、信息论等。 (4)系统方法,即为了对系统对象进行分析、计划、设计和运用所采用的具体应用理论及

东大版交通工程学课后习题解答

第一部分:交通工程学课后思考题解答 第一章:绪论 ●1-1简述交通工程学的定义、性质、特点、与发展趋势 定义:交通工程学是研究交通发生、发展、分布、运行与停住规律,探讨交通调查、规划、设计、监管、管理、安全的理论以及有关设施、装备、法律与法规。协调道路交通中人、车、路与环境之间的相互关系。使道路交通更加安全、高校、快捷、舒适、方便、经济的一门工程技术学科。 性质:是一门兼有自然科学与社会科学双重属性的综合性学科。 特点:系统性、综合性、交叉性、社会性、超前性、动态性 发展趋势:智能化和系统化 ●1-2简述我国的交通现状与交通工程学科面临的任务 现状:综合运输六点;公路交通三点;城市交通四点 任务:即重点研究的那些领域 ●1-3简述城市交通畅通工程的目标和重点任务 目标:提高城市交通建设与管理科学化水平。 重点任务:改善道路条件,优化交通结构,强化科学管理,规范交通行为 ●1-4简述交通工程学科的研究范围、重点及作用。 范围:交通特性分析技术、交通调查方法、交通流理论、道路通行能力分析技术、道路交通系统规划理论、交通安全技术、道路交通系统管理技术与管理规划、静态交通系统规划、交通系统的可持续发展规划、交通工程的新理论新方法新技术作用:良好的交通条件与高效的运输系统能促进社会的发展,经济的繁荣,和人们日常生活的正常进行以及城市各项功能的发挥、山区开发、旅游开展。经济方面能扩大商品市场与原材料的来源,降低生产成本与运输费用,促进工业、企业的发展与区域土地的开发,提高土地价格与城市的活力,交通的发展还可实现运输的专业化、便捷化、批量化与运费低廉化。从而有可能更大的范围内合理配置生产要素,同时也可促进全国或地区范围内人口的合理流动。 第二章:交通特性 ●2-1交通特性包括那几个方面?为什么要进行分析?意义如何?分析中要注意什么问 题? 特性:人-车-路基本特性、交通量特性、行车速度特性、交通密度特性、交通流基本特性及其相互关系、交通要素与环境之间的相关关系。 分析原因:是交通工程学的基础部分,是进行合理的交通规划、设计、营运、管理与控制的前提。 ●2-2略 ●2-3交通量的类型、定义及表示方法。交通量有哪些交通特性?研究这些特性有什么意 义? 类型:机动车交通量、非机动车交通量、行人交通量、年平均日交通量、月平均日交通量、周平均日交通量等 特性:时间分布特性、空间分布特性、构成特性 意义:为了获得人、车与城市道路以及公路系统运动情况的数据,了解其分布特性,为交通运行分析提供必要的数据基础。

相关主题
文本预览
相关文档 最新文档