当前位置:文档之家› HFSS天线设计实例-微带贴片天线

HFSS天线设计实例-微带贴片天线

HFSS天线设计实例-微带贴片天线
HFSS天线设计实例-微带贴片天线

内容概述

设计指标和天线尺寸计算

HFSS设计流程

1.重命名工程文件为:MSAntenna,设计名称为:Patch

2.设置求解类型为:模式求解

3.设置默认单位:mm

4.创建参考地4.1创建

4.2修改属性

4.3修改参数(-45,-45,0),X=90,Y=90

4.4设置边界条件为:理想导体边界条件

5.创建介质层

5.1创建长方体

5.2修改属性:Substrate,材料为Roger RO4003,颜色为墨绿,透明度0.6

5.3修改参数:顶点(-40,-40,0)X=80;Y=80;Z=5

6.创建微带辐射源

6.1创建长方形

6.2修改属性:Patch,铜黄,0.4

6.3修改参数:顶点(-15.5,-20.7,5)X=31;Y=41.4

6.4设置边界条件为:理想边界条件

7.创建同轴馈线7.1创建圆柱体

7.2修改属性:Feed,材料:pec;

7.3修改参数:圆心(9.5,0,0),r=0.5;H=5

8.创建馈点孔8.1创建圆面

8.2修改属性:Port

8.3修改参数:圆心(9.5,0,0),r=1.5

8.4相减:GND-Port(保留Port平面作为集总端口平面)

基于HFSS矩形微带贴片天线的仿真设计报告

.. .. .. 矩形微带贴片天线的仿真设计 实验目的:运用HFSS的仿真能力对矩形微带天线进行仿真 实验容:矩形微带天线仿真:工作频率7.55GHz 天线结构尺寸如表所示: 名称起点尺寸类型材料 Sub -14.05,-16,0 28.1,32,0.794 Box Rogers 5880 (tm)GND -14.05,-16,-0.05 28.1,32,0.05 Box pec Patch -6.225,-8,0.794 12.45 , 16, 0.05 Box pec MSLine -3.1125,-8,0.794 2.49 , -8 , 0.05 Box pec Port -3.1125,-16,-0.05 2.49 ,0, 0.894 Rectangle Air -40,-40,-20 80,80,40 Box Vacumn 一、新建文件、重命名、保存、环境设置。 (1)、菜单栏File>>save as,输入0841,点击保存。 (2). 设置激励终端求解方式:菜单栏HFSS>Solution type>Driven Termin ,点击OK。

(3)、设置模型单位:3D Modeler>Units选择mm ,点击OK。 (4)、菜单栏Tools>>Options>>Modeler Options,勾选”Edit properties of new pri”, 点击OK。 二、建立微带天线模型 (1)、插入模型设计 (2)、重命名

输入0841 (3)点击创建GND,起始点:x:-14.05,y:-16,z:-0.05,dx:28.1,dy:32,dz:0.05 修改名称为GND, 修改材料属性为 pec, (4)介质基片:点击,:x:-14.05,y:-16,z:0。dx: 28.1,dy: 32,dz: 0.794, 修 改名称为Sub,修改材料属性为Rogers RT/Duriod 5880,修改颜色为绿色,透明度0.4。

实验七 微带贴片天线的设计与仿真

实验七微带贴片天线的设计与仿真 一、实验目的 1.设计一个微带贴片天线 2..查看并分析该微带贴片天线的 二、实验设备 装有HFSS 13.0软件的笔记本电脑一台 三、实验原理 传输线模分析法求微带贴片天线的辐射原理如下图所示: 设辐射元的长为L,宽为ω,介质基片的厚度为h。现将辐射元、介质基片和接地板视为一段长为L的微带传输线,在传输线的两端断开形成开路,根据微带传输线的理论,由于基片厚度h<<λ,场沿h方向均匀分布。在最简单的情况下,场沿宽度ω方向也没有变化,而仅在长度方向(L≈λ/2)有变化。 在开路两端的电场均可以分解为相对于接地板的垂直分量和水平分量,两垂直分量方向相反,水平分量方向相同,因而在垂直于接地板的方向,两水平分量电场所产生的远区场同向叠加,而两垂直分量所产生的场反相相消。因此,两开路端的水平分量可以等效为无限大平面上同相激励的两个缝隙,缝的电场方向与长边垂直,并沿长边ω均匀分布。缝的宽度△L≈h,长度为ω,两缝间距为L≈λ/2。这就是说,微带天线的辐射可以等效为有两个缝隙所组成的二元阵列。 四、实验内容 利用HFSS软件设计一个右手圆极化天线,此天线通过微带结构实现。中心频率为2.45GHz,选用介质基片R04003,其介电常数为εr=2.38,厚度为h =5mm。最后得到反射系数和三维方向图的仿真结果。 五、实验步骤 1.建立新工程 了方便建立模型,在Tool>Options>HFSS Options中讲Duplicate Boundaries with geometry 复选框选中。 2.将求解类型设置为激励求解类型: (1)在菜单栏中点击HFSS>Solution Type。

PBG结构的微带贴片天线设计

PBG结构的微带贴片天线设计 由于微带贴片天线具有体积小、重量轻、低剖面、易加工、共形等优点,所以在军事和民用方面都有着广泛的应用前景。众所周知,集成电路的基底是一些高介电常数材料,而微带贴片天线在低介电常数基底上才能获得最佳性能。位于高介电常数基底的贴片天线由于表面波的损耗辐射效率很低,并且频率带宽极窄,当应用的频率变高时这种情况更加突出,导致贴片天线的增益和效率下降,并且在阵列情况下还会有高的交叉极化电平和互耦电平。 为了实现微带贴片天线的集成化,同时避免昂贵的基底混合技术,就必须在高介电常数基底上实现高效率的贴片天线。近年来出现的新型光子晶体贴片天线能够较好地改善以高介电常数介质为基底的贴片天线的性能。光子晶体贴片天线是指基于光子晶体的贴片天线。所谓光子晶体,或称PBG材料,是指将高介电常数的介质周期性的放置所产生的一种人工电磁晶体,该电磁晶体的表面波波矢图在某一频率范围内出现一个频率禁带,简称禁带。通过在贴片天线中人为的引入光子晶体结构,并利用光子晶体的禁带效应,抑制沿基底传播的表面波,增加天线辐射到空间的电磁波,从而改善天线的性能。 本文所采用的高阻抗表面型PBG结构具有结构紧凑、带隙性能好、可以集成等优点,在天线的设计中得到了广泛的应用。 1 PBG天线设计 本文设计的矩形贴片天线,是中心频率为10 GHz的矩形微带天线(辐射元为矩形),馈电方式选为中心侧馈。采用ROGER3010材料做为基板,厚度h=1.28 mm,相对介电常数=10.2。矩形贴片的尺寸为L×W。贴片单元的尺寸由经验公式计算可以得出: 利用ADS自带的计算传输线的软件LineCalc来计算传输线的宽度ω=0.162 mm。PBG材料的设计首先利用等效媒质模型得到初始的参数,更准确的参数则通过全波数值仿真获得。由于高阻抗表面PBG结构的周期大小远小于工作波长,适合用集总电路元件(电容、电感)组成的等效LC并联谐振电路来描述其电磁特性。像电路滤波器一样阻止沿表面传输的电流。如前所述,蘑菇型高阻抗表面相邻贴片间的电容效应(介质基片既起着支撑作用,又达到增强电容的效果),与金属过孔的等效电感组成集中参数的并联谐振电路。这里有高阻面的设计公式: 式中:εr是介质的介电常数;t是高阻面的高度;g是周期间距;ω是单元边长;a为周期。最后得到的设计结果是,ω=1.73 mm,g=0.22 mm()。 2 建模与仿真 根据设计的PBG天线的结构,在HFSS中建模并仿真。模型图 仿真得到的反射系数图。 可以看到回波损耗小于-10 dB的带宽约为600 MHz,参考天线谐振频率为9.96 GHz,PBG 微带天线谐振频率为10.05 GHz。PBG天线的谐振频率比参考天线略高,这是因为二者之间的耦合造成的。二者在9.99 GHz具有相同的反射系数-21.28 dB,在这个频率上仿真得到其方向图。可以看到PBG结构使方向性有所增强,天线的增益大约提高0.53 dB。PBG贴片

基于HFSS的天线设计

一、实验目的 ?利用电磁软件An soft HFSS设计一款微带天线。 ?微带天线要求:工作频率为2.5GHz带宽(回波损耗S11<-10dB)大于5% ?在仿真实验的帮助下对各种微波元件有个具体形象的了解。 二、实验原理 1、微带天线简介 微带天线的概念首先是由Deschamps于1953年提出来的,经过20年左右的 发展,Munson和Howell于20世纪70年代初期制造出了实际的微带天线。微带天线由于具有质量轻、体积小、易于制造等优点,现今已经广泛应用于个人无线通信中。 图1是一个简单的微带贴片天线的结构,由辐射源、介质层和参考地三部分 组成。与天线性能相关的参数 包括辐射源的长度L、辐射源的宽度W介 质层的厚度h、介质的相对介电常数r和 损耗正切tan、介质层的长度LG和宽度WG 图1所示的微带贴片天线是 图1:微带天线的结构 采用微带天线来馈电的,本次将要设计的 矩形微带贴片天线采用的是同轴线馈电,也就是将同轴线街头的内心线穿过参考地和介质层与辐射源相连接。 对于矩形贴片微带天线,理论分析时可以采用传输线模型来分析其性能,矩形贴片微带天线的工作主模式是TM10模,意味着电场在长度L方向上有g/2的 改变,而在宽度W方向上保持不变,如图2 (a)所示,在长度L方向上可以看做成有两个终端开路的缝隙辐射出电磁能量,在宽度W方向的边缘处由于终端开路,所以电压值最大电流值最小。从图 2 (b)可以看出,微带线边缘的电场可 以分解成垂直于参考地的分量和平行于参考地的分量两部分,两个边缘的垂直电场分量大小相等、方向相反,平行电场分量大小相等,方向相反;因此,远区辐射电场垂直分量相互抵消,辐射电场平行于天线表面。

用Sonnet Agilent HFSS设计微带天线概要

用Sonnet & Agilent HFSS设计微带天线 摘要:以一同轴线底馈微带贴片为题材,分别用Sonnet 软件及Agilent Hfss 软件进行Simulate,分析其特性。并根据结果对这两个软件作一比较。 天线模型: 天线为微带贴片天线,馈电方式为50Ω同轴线底馈,中心频率3GHz ξ=,尺寸56mm*52mm*3.175mm 基片采用Duroid材料 2.33 r Patch :30mm*30mm 馈电点距Patch中心7mm处。 参见下图。 一.Sonnet 参数设置如下图:

介质层按照天线指标予以设置: 画出Antenna Layout.

Top view Bottom view 其中箭头所指处为via,并在GND层加上via port. 即实现了对Patch的底馈。 至此,Circuit Edit完成。下一步对其进行模拟。Array模拟结果: S11,即反射系数图:

可见中心频率在3G附近,。 进一步分析电流分布: 在中心频率的附近,取3G,3.1G作表面电流分布图:

可见,在中心频率的电流分布较为对称。符合设计的要求。 远区场方向图: 选取了若干个频率点绘制远区场增益图。从中可以看到,中心频率的增益较边缘为大。 符合设计的要求。

二.Agilent Hfss Agilent Hfss (high frequency structure simulator)是AGILENT公司的一个专门模拟高频无源器件的软件。较现在广泛应用的ANSOFT HFSS功能类似,但操作简单明了。能在平面结构上建模天线不同,Agilent Hfss可以精确地定义天线的立体结构。并可将馈电部分考虑在模拟因素内,按要求设定辐射界面,等等。可能在本文的例子中,由于结构比较简单,并不能充分体现这一点,但也应可见一斑。 本例与HFSS HELP中所附带的例子较为类似,因此我参照HELP文件,在HFSS5.6环境下较为顺利的完成了模拟。 用HFSS模拟天线,主要分Draw Model、Assign Material、Define Boundary、Solve、Post Process 五个步骤: ⒈Draw Model: HFSS采用的是相当流行的AUTOCAD的ENGINE,因此绘制方法与AUTOCAD大同小异,这里不在赘述。我先分Air Box、Substrate Box、Coax Line、Patch几个部分画好模型。其中COAX LINE 包括内导体(圆柱)及外层介质及外导体(环柱);PATCH为一平面矩形,AIR BOX、SUBSTRATE BOX 为长方体。 同时,由于基板,同轴线之间会有重叠,所以应用3D OBJECTS 菜单中的Subtract命令将 重叠部分减去。

实验一:微带天线的设计与仿真

实验一:微带天线的设计与仿真 一、实验步骤、仿真结果分析及优化 1、原理分析: 本微带天线采用矩形微带贴片来进行设计。 假设要设计一个在2.5GHz 附近工作的微带天线。我采用的介质基片, εr= 9.8, h=1.27mm 。理由是它的介电系数和厚度适中,在2.5GHz 附近能达到较高的天线效率。并且带宽相对较高。 由公式:2 /1212-?? ? ??+= r r f c W ε=25.82mm 贴片宽度经计算为25.82mm 。 2 /1121212 1-?? ? ?? +-+ += w h r r e εεε=8.889; ()()()()8.0/258.0264.0/3.0412.0+-++=?h w h w h l e e εε ?l=0.543mm ; 可以得到矩形贴片长度为: l f c L e r ?-= 22ε=18.08mm 馈电点距上边角的距离z 计算如下: ) 2( cos 2 ) (cos 2)(5010 22z R z G z Y e r in ?===λεπβ 2 20 90W R r λ= (0λ<

计算结果:在这类介质板上,2.5GHz 时候50Ω传输线的宽度为1.212mm 。 2、计算 基于ADS 系统的一个比较大的弱点:计算仿真速度慢。特别是在layout 下的速度令人 无法承受,所以先在sonnet 下来进行初步快速仿真。判断计算值是否能符合事实。 sonnet 中的仿真电路图如下: S11图象如下: 可见,按照公式计算出来的数据大致符合事实上模拟出来的结果。但是发现中心频率发生了偏移,这主要是由于公式中很多的近似引起的。主要的近似是下面公式引起 2 20 90W R r λ= (0λ<

HFSS矩形微带贴片天线的仿真设计报告

基于HFSS矩形微带贴片天线的仿真设计 实验目的:运用HFSS的仿真能力对矩形微带天线进行仿真实验内容:矩形微带天线仿真:工作频率 天线结构尺寸如表所示: 一、新建文件、重命名、保存、环境设置。 (1)、菜单栏File?save as,输入Antenna,点击保存。 (2).设置激励终端求解方式:菜单栏HFSS>Solution type>Driven Termin ,点击OK (3)、设置模型单位:3D Modeler>Units 选择mm,点击OK (4)、菜单栏Tools>>Options>>Modeler Options, 勾选” Edit properties of new pri ” ,点击OK 二、建立微带天线模型 (1)点击三仓U 建GND,起始点:x:0 ,y:0 ,z: ,dx:,dy:32,dz:

(2) 介质基片:点击 :比,:x:0, y:0 , z:0。dx: , dy: 32 , dz:-, 修改名称为Sub,修改 材料属性为 Rogers RT/Duriod 5880,修改颜色为绿色 点击OK (3) 建立天线模型patch , 点击^已,x:,y: 8, z:0 ,dx: ,dy: 16 ,dz: 命名为patch ,点击OK (4) 建立天线模型微带线 MSLine 点击’硏,x:,y: 0, ,z: 0 , dx: ,dy: 8 ,dz:, 命名为MSLine,材料pec,透明度 选中 Patch 和 MSLine,点击 Modeler>Boolean>Unite (5) 、建立端口。创建供设置端口用的矩形,该矩形连接馈线与地 Modeler>Grid Plane>XZ ,或者设置回厂刁冈 习 点击 e ,创建Port 。命名为port 双击 Port 下方 CreatRectangle 输入:起始点:x: ,y: 0,z:-,尺寸:dx: ,dy: 0 ,dz: (6) 、创建 Air 。 点击1 ,x:-5 ,y:-5 ,z:, dx:, dy:42, dz: 修改名字为Air ,透明度. 三、设置边界条件和端口激励。 (1)设置理想金属边界:选择 GND 右击Assign Boundaries>>Pefect E 将理想边界命名为:PerfE_GND ,点击OK (2)、设置边界条件:选择 Port ,点击 Assign Boundaries>>Pefect E 在对话框中将其命名为 PerfE_Patch ,点击0K ,透明度。 修改名称为GND,修改材料属性为pec ,

HFSS 天线设计实例

HFSS 天线设计实例 这是一种采用同轴线馈电的圆极化微带天线 切角实现圆极化 设计目标!(具体参数可能不精确,望大家谅解)主要讲解HFSS操作步骤! GPS微带天线:介质板:厚度:2mm,介电常数:2.2,大小:100mm*100mm 工作频率:1.59GHz,圆极化(左旋还是右旋这里不讲了哈),天线辐射在上半平面覆盖! 50欧同轴线馈电, 1、计算参数 首先根据经验公式计算出天线的基本参数,便于下一步建立模型。 贴片单元长度、宽度(正方形贴片长宽相等)、馈电点位置,分离单元长度.下表是经HFSS分析后选择的一组参数:

2、建立模型 首先画出基板50mm*50mm*2mm 的基板 起名为substrate 介电常数设置为如图2.2的,可以调整color颜色和transparent透明度便于观察 按Ctrl+D可以快速的使模型全可见!按住Ctrl+Alt键,拖动鼠标可以使3D模型自由旋转同理,我们画贴片:

1、在基板上画出边长65mm(假设用公式算出的是这么多)的正方形 2、起名为patch,颜色选绿色,透明度设为0。5 画切角是比较麻烦的 1、用画线条工具,画三线段,坐标分别是0.5.0, 5.0.0, 0.0.0 2、移动三角形,选中polyline1,选菜旦里edit\Arrange\move,先确定坐标原点或任一点为基准点,将三角形移动到左上角和贴片边沿齐平。 3、复制三角形,选中polyline1,选菜单里edit\arrange\duplicate\around axis,相对坐标轴复制,角度换成180,然后在右下角就出现了相对称的另一个三角形。 4、从patch上切掉对角上的分离单元polyline1和polyline1_1: 选中patch、polyline1和polyline1_1,选菜单里3D modeler\Boolean\Subtract 把polyline1和polyline1_1从patch上切掉最后剩下 先在介质板底面画一个100mm*100mm的正方形作为导电地板。起名为 ground 下面就是画馈源了:我们采用同轴线馈电,有两种建模方法: 1、在馈电点画一0.5mm的铜柱代表同轴线内导体,起名为feed 2、在介质板底面馈电点处画一1.5mm的圆,起名为port 3、复制port为port1,复制feed为feed1 4、复选port和feed1,执行菜单里3D Modeler\Boolean\Subtract,使port成为一个内径0.5mm外径1.5mm

微带天线仿真设计(5)讲解

太原理工大学现代科技学院 微波技术与天线课程设计 设计题目:微带天线仿真设计(5) 专业班级 学号 姓名 指导老师

专业班级 学号 姓名 成绩 设计题目:微带天线仿真设计(5) 一、设计目的: 通过仿真了解微带天线设计 二、设计原理: 1、微带天线的结构 微带天线是由一块厚度远小于波长的介质板(成为介质基片)和(用印刷电路或微波集成技术)覆盖在他的两面上的金属片构成的,其中完全覆盖介质板一片称为接触板,而尺寸可以和波长想比拟的另一片称为辐射元。 微带天线的馈电方式分为两种,如图所示。一种是侧面馈电,也就是馈电网络与辐射元刻制在同一表面;另一种是底馈,就是以同轴线的外导体直接与接地板相连,内导体穿过接地板和介质基片与辐射元相接。 微带天线的馈电 (a )侧馈 (b )底馈 2、微带天线的辐射原理 用传输线模分析法介绍矩形微带天线的辐射原理。矩形贴片天线如图: … …………… …… …… …… … …装 …… …… …… …… … …… …… …… 订… …… … …… …… …… …… …… … …线 …… …… …… …… … …… …… ……

设辐射元的长为L,宽为ω,介质基片的厚度为h。现将辐射元、介质基片和接地板视为一段长为L的微带传输线,在传输线的两端断开形成开路,根据微带传输线的理论,由于基片厚度h<<λ,场沿h方向均匀分布。在最简单的情况下,场沿宽度ω方向也没有变化,而仅在长度方向(L≈λ/2)有变化。在开路两端的电场均可以分解为相对于接地板的垂直分量和水平分量,两垂直分量方向相反,水平分量方向相同,因而在垂直于接地板的方向,两水平分量电场所产生的远区场同向叠加,而两垂直分量所产生的场反相相消。因此,两开路端的水平分量可以等效为无限大平面上同相激励的两个缝隙,缝的电场方向与长边垂直,并沿长边ω均匀分布。缝的宽度△L≈h,长度为ω,两缝间距为L≈λ/2。这就是说,微带天线的辐射可以等效为有两个缝隙所组成的二元阵列。 经过查阅资料,可以知道微带天线的波瓣较宽,方向系数较低,这正是微带天线的缺点,除此之外,微带天线的缺点还有频带窄、损耗大、交叉极化大、单个微带天线的功率容量小等.在这个课设中,借助EDA仿真软件Ansoft HFSS进行设计和仿真。Ansoft公司推出的基于电磁场有限元方法(FEM)的分析微波工程问题的三维电磁仿真软件,Ansoft HFSS 以其无与伦比的仿真精度和可靠性,快捷的仿真速度,方便易用的操作界面,稳定成熟的自适应网格剖分技术,使其成为高频结构设计的首选工具和行业标准,并已广泛应用于航

GHz矩形微带贴片天线设计

燕山大学 课程设计说明书 题目: 基于ADS的矩形微带贴片天线的设计 学院(系):理学院 年级专业:电子信息科学与技术13 学号: 学生姓名:张凤麒任春宇 指导教师:徐天赋 教师职称:副教授 燕山大学课程设计(论文)任务书 院(系):理学院基层教学单位:电子信息科学与技术13

说明:此表一式四份,学生、指导教师、基层教学单位、系部各一份。年月日燕山大学课程设计评审意见表

基于ADS的矩形微带贴片天线设计 The Design of Rectangular microstrip patch antenna with ADS 摘要:本文研究了通信系统中的矩形微带贴片天线。首先介绍了矩形微带贴片的背景及微带馈电的设计考虑。使用了安捷伦辅助仿真工具ADS对2GHz矩形微带贴片天线结构及相应的参数进行了设置仿真及优化,尽可能达到其相应的技术指标。 Abstract:This paper studies the rectangular microstrip patch antenna in communication system. Firstly, the background of rectangular microstrip patch and the design considerations of microstrip feed are introduced. The microstrip patch antenna structure and corresponding parameters of 2GHz rectangular microstrip patch antenna are simulated and optimized by ADS, and the corresponding technical index is reached as far as possible. 关键词:矩形微带贴片天线 ADS 设计 Keyword:Rectangular microstrip patch antenna ADS design 一.矩形微带贴片天线的背景 微带贴片天线由于具有质量轻、体积小,易于制造等优点,现今已经广泛应用于个人无线通信中。微带贴片天线由接地板、介质基片和介质基片上的辐射贴片构成的,其中辐射贴片可以是任意的几何形状,但是只有有限的几何形状能计算出辐射特性,比如矩形,圆形,椭圆形,三角形、半圆形、正方形等比较规则的几何形状,其中矩形和圆形贴片的研究最多,可以作为单独的天线使用也可以作为阵元使用。当然在实际应用中,也有矩形和圆形贴片达不到要求的情况,这就促使了人们对各种几何形状微带贴片天线的研究。本文选用矩形贴片来研究微带天线。

用ADS设计微带天线

用ADS 设计微带天线 一、原理 本微带天线采用矩形微带贴片来进行设计。 假设要设计一个在2.5GHz 附近工作的微带天线。我采用的介质基片, εr= 9.8, h=1.27mm 。理由是它的介电系数和厚度适中,在2.5GHz 附近能达到较高的天线效率。并且带宽相对较高。 由公式:2 /1212-? ? ? ??+=r r f c W ε=25.82mm 贴片宽度经计算为25.82mm 。 2 /1121212 1-?? ? ?? +-+ += w h r r e εεε=8.889; ()()()()8.0/258.0264.0/3.0412.0+-++=?h w h w h l e e εε ?l=0.543mm ; 可以得到矩形贴片长度为: l f c L e r ?-= 22ε=18.08mm 馈电点距上边角的距离z 计算如下: ) 2( cos 2 ) (cos 2)(5010 2 2z R z G z Y e r in ?===λεπβ 2 20 90W R r λ= (0λ<

计算结果:在这类介质板上,2.5GHz时候50Ω传输线的宽度为1.212mm。 二、计算 基于ADS系统的一个比较大的弱点:计算仿真速度慢。特别是在layout下的速度令人无法承受,所以先在sonnet下来进行初步快速仿真。判断计算值是否能符合事实。 sonnet中的仿真电路图如下:

S11图象如下: 可见,按照公式计算出来的数据大致符合事实上模拟出来的结果。但是发现中心频率发生了偏移,这主要是由于公式中很多的近似引起的。主要的近似是下面公式引起 2 20 90W R r λ= (0λ<

矩形微带贴片天线设计及仿真

《现代电子电路》课程设计题目矩形微带天线的设计与仿真 单位(院、系):信息工程学院 学科专业: 电子与通信工程 学号:416114410159 姓名:曾永安 时间:2011.4.25

矩形微带天线的设计与仿真 学科专业:电子与通信工程学号:416114410159 姓名:曾永安指导老师:吴毅强 摘要:本文介绍了一种谢振频率为2.45GHz,天线输入阻抗为50Ω的使用同轴线馈电的矩形微带天线。通过HFSS V10软件对该天线进行仿真、优化,最终得到最佳性能。 关键词:HFSS,微带线,天线

Design and Simulation of Rectangular Microstrip Antenna Abstract:This paper introduces a rectangular microstrip antenna which works at resonance frequency of 2.45GHz and antenna input impedance of 50Ω and is fed by coaxial cable. The model of the antenna is set up a nd simulated by ANSOFT HFSS V10 ,and the optimal parameters of the microstrip antenna are obtained as well. Key words:HFSS,Microstrip,Antenna

1.引言 微带天线的概念首先是由Deschamps于1953年提出来的,经过20多年的发展,Munson和Howell于20世纪70年代初期制造了实际的微带天线。微带天线结构简单,体积小,能与载体共形, 能和有源器件、电路等集成为统一的整体,已被大量应用于100MHz~100GHz宽频域上的无线电设备中, 特别是在飞行器和地面便携式设备中得到了广泛应用。微带天线的特征是: 比通常的微波天线有更多的物理参数, 可以有任意的几何形状和尺寸;能够提供50Ω输入阻抗,不需要匹配电路或变换器;比较容易精确制造, 可重复性较好;可通过耦合馈电, 天线和RF电路不需要物理连接;较易将发射和接收信号频段分开;辐射方向图具有各向同性。本文设计的矩形微带天线工作于ISM频段,其中心频率为2.45GHz;无线局域网、蓝牙、ZigBee等无线网络均可工作在该频段上。选用的介质板材为Rogers R04003,其相对介电常数εr=3.38,厚度h=5mm;天线使用同轴线馈电。 2.微带贴片天线理论分析 图1是一个简单的微带贴片天线的结构,由辐射元、介质层和参考地三部分组成。与天线性能相关的参数包括辐射元的长度L、辐射元的宽度W、介质层的厚度h、介质的相对介电常数 r和损耗角正切tanδ、介质层的长度LG和宽度WG。图1所示的微带贴片天线采用微带线馈电,本文将要设计的矩形微带天线采用的是同轴线馈电,也就是将同轴线街头的内芯线穿过参考点和介质层与辐射元相连接。 图1 微带天线的结构

基于HFSS的天线设计教材

图1:微带天线的结构 一、 实验目的 ●利用电磁软件Ansoft HFSS 设计一款微带天线。 ◆微带天线要求:工作频率为2.5GHz ,带宽 (回波损耗S11<-10dB)大于5%。 ●在仿真实验的帮助下对各种微波元件有个具体形象的了解。 二、 实验原理 1、微带天线简介 微带天线的概念首先是由Deschamps 于1953年提出来的,经过20年左右的发展,Munson 和Howell 于20世纪70年代初期制造出了实际的微带天线。微带天线由于具有质量轻、体积小、易于制造等优点,现今已经广泛应用于个人无线通信中。 图1是一个简单的微带贴片天线的结构,由辐射源、介质层和参考地三部分组成。与天线性能相关的参数 包括辐射源的长度L 、辐射源的 宽度W 、介质层的厚度h 、介质 的相对介电常数r ε和损耗正切 δtan 、介质层的长度LG 和宽度 WG 。图1所示的微带贴片天线是采用微带天线来馈电的,本次将要设计的矩形微带贴片天线采用的是同轴线馈电,也就是将同轴线街头的内心线穿过参考地和介质层与辐射源相连接。 对于矩形贴片微带天线,理论分析时可以采用传输线模型来分析其性能,矩形贴片微带天线的工作主模式是TM10模,意味着电场在长度L 方向上有2/g λ的改变,而在宽度W 方向上保持不变,如图2(a )所示,在长度L 方向上可以看做成有两个终端开路的缝隙辐射出电磁能量,在宽度W 方向的边缘处由于终端开路,所以电压值最大电流值最小。从图2(b )可以看出,微带线边缘的电场可以分解成垂直于参考地的分量和平行于参考地的分量两部分,两个边缘的垂直电场分量大小相等、方向相反,平行电场分量大小相等,方向相反;因此,远区辐射电场垂直分量相互抵消,辐射电场平行于天线表面。

基于ADS的微带缝隙天线的仿真设计

课程设计说明书 题目:基于ADS的微带缝隙天线的仿真设计 学院(系): 年级专业: 学号: 学生姓名: 指导教师: 教师职称:

基于ADS的微带缝隙天线的仿真设计 摘要:通信系统的发展带来了天线行业的勃勃生机,在众多的天线类型中微带天线已成为当前研究的前沿之一,具有广阔的前景与实用意义。特别是微带缝隙天线,以其重量轻、剖面薄、平面结构且易与载体共形,馈电网络可与天线结构一起制成等优点已经引起天线工作者的广泛关注。本文就设计一个中心频率工作为880MHz,相对带宽为B=5%,介质板厚度h=1.6mm,损耗角正切tanδ=0.0018,介电常数为Er=2.3的微带缝隙天线展开研究以及仿真和优化。 关键词:ADS;微带缝隙天线;仿真设计; Design of microstrip slot antenna based on ADS simulation Abstract: Communication system development has brought the antenna the vitality of the industry, in many types of antenna microstrip antenna has become one of the forefront of current research, has broad prospects and practical significance. Microstrip slot antenna, in particular, with its light weight, thin section, flat structure and easy with conformal carrier, feeding the advantages of network can be made with the antenna structure has caused extensive concern of antenna workers. In this paper, the design of a work center frequency is 880 MHZ, relative bandwidth is B = 5%, medium plate thickness h = 1.6 mm, loss tangent tan delta = 0.0018, the dielectric constant of Er = 2.3 microstrip slot antenna study and simulation and optimization. Key words: ADS; Microstrip slot antenna. The simulation design; 学习目的 1. 学习射频电路的理论知识;

微带天线仿真设计

… 设计一、微带天线仿真设计 三角形贴片是微带贴片天线最基本的模型,本设计就是基于微带贴片天线基础理论以及熟练掌握HFSS10仿真软件基础上,设计一个三角形贴片天线,其工作频率为,分析其远区辐射场特性以及S曲线。 一.设计目的与要求 1.理解和掌握微带天线的设计原理 2.选定微带天线的参数:工作频率、介质基片厚度、贴片模型及馈电点位置 3.创建工程并根据设计尺寸参数指标绘制微带天线HFSS模型 4.保存工程后设定边界条件、求解扫描频率,生成S参数曲线和方向图 5.观察对比不同尺寸参数的微带天线的仿真结果,并分析它们对性能的影响— 二.实验原理 如下图所示,用传输线模分析法介绍它的辐射原理。。 设辐射元的长为L,宽为ω,介质基片的厚度为h。现将辐射元、介质基片和接地板视为一段长为L的微带传输线,在传输线的两端断开形成开路,根据微带传输线的理论,由于基片厚度h<<λ,场沿h方向均匀分布。在最简单的情况下,场沿宽度ω方向也没有变化,而仅在长度方向(L≈λ/2)有变化。 在开路两端的电场均可以分解为相对于接地板的垂直分量和水平分量,两垂直分量方向相反,水平分量方向相同,因而在垂直于接地板的方向,两水平分量电场所产生的远区场同向叠加,而两垂直分量所产生的场反相相消。因此,两开路端的水平分量可以等效为无限大平面上同相激励的两个缝隙,缝的电场方向与长边垂直,并沿长边ω均匀分布。缝的宽度△L≈h,长度为ω,两缝间距为L≈λ/2。这就是说,微带天线的辐射可以等效为有两个缝隙所组成的二元阵列。

矩形贴片天线示意图 三.贴片天线仿真步骤 1、建立新的工程 】 运行HFSS,点击菜单栏中的Project>Insert HFSS Dessign,建立一个新的工程。 2、设置求解类型 (1)在菜单栏中点击HFSS>Solution Type。 (2)在弹出的Solution Type窗口中 (a)选择Driven Modal。 (b)点击OK按钮。 3. 设置模型单位 将创建模型中的单位设置为毫米。 《 (1)在菜单栏中点击3D Modeler>Units。 (2)设置模型单位: (a)在设置单位窗口中选择:mm。 (b)点击OK按钮。 4、创建微带天线模型 (1)创建地板GroundPlane。坐标:X:-45,Y:-45,Z:0按回车键。在坐标输入栏中输入长、宽:dX:90,dY:90,dZ:0。 (2)为GroundPlane设置理想金属边界。在3D模型窗口中将3D模型以合适的大小显示(可以用Ctrl+D来操作)。

hfss设计天线范例

第二章创建项目 本章中你的目标是: √保存一个新项目。 √把一个新的HFSS设计加到已建的项目 √为项目选择一种求解方式 √设置设计使用的长度单位 时间:完成这章的内容总共大约要5分钟。 一.打开HFSS并保存一个新项目 1.双击桌面上的HFSS9图标,这样就可以启动HFSS。启动后的程序工作环境如图:

图2-1 HFSS工作界面 1.打开File选项(alt+F),单击Save as。2.找到合适的目录,键入项目名hfopt_ismantenna。 图2-2 保存HFSS项目 二.加入一个新的HFSS设计 1.在Project菜单,点击insert HFSS Design选项。( 或直接点击图标。)一个新的工程被加入到hfopt_ismantenna项目中,默认名为HFSSModel n。

图2-3 加入新的HFSS设计 2.为设计重命名。在项目树中选中HFSSModel1,单击鼠标右键,再点击Rename项,将设计重命名为hfopt_ismantenna。 图2-4 更改设计名

三.选择一种求解方式 1.在HFSS菜单上,点击Solution Type选项. 2.选择源激励方式,在Solution Type 对话框中选中Driven Mode项。 图2-5 选择求解类型图2-6 选择源激励方式 四.设置设计使用的长度单位

1.在3D Modeler菜单上,点击Units选项. 2.选择长度单位,在Set Model Units 对话框中选中mm项。 图2-5 选择长度单位图2-6 选择mm作为长度单位 第三章构造模型 本章中你的目标是: √建立物理模型。 √设置变量。 √设置模型材料参数 √设置边界条件和激励源 √设置求解条件 时间:完成这章的内容总共大约要35分钟。

HFSS 矩形微带贴片天线的仿真设计报告

基于H F S S矩形微带贴片天线的仿真设计 实验目的:运用HFSS的仿真能力对矩形微带天线进行仿真 实验内容:矩形微带天线仿真:工作频率 天线结构尺寸如表所示: 名称起点尺寸类型材料 Sub 0,0,0 ,32,Box Rogers 5880 (tm) GND 0,0,,32,Box pec Patch , 8 , 0 , 16, Box pec MSLine ,0, , 8 , Box pec Port ,0, ,0, Rectangle Air -5,-5, , 42, Box Vacumn 一、新建文件、重命名、保存、环境设置。 (1)、菜单栏File>>save as,输入Antenna,点击保存。 (2). 设置激励终端求解方式:菜单栏HFSS>Solution type>Driven Termin ,点击OK。 (3)、设置模型单位:3D Modeler>Units选择mm ,点击OK。 (4)、菜单栏Tools>>Options>>Modeler Options,勾选”Edit properties of new pri”, 点击OK。 二、建立微带天线模型 (1)点击创建GND,起始点:x:0,y:0,z:,dx:,dy:32,dz:

修改名称为GND, 修改材料属性为 pec, (2)介质基片:点击,:x:0,y:0,z:0。dx: ,dy: 32,dz: - , 修改名称为Sub,修改材料属性为Rogers RT/Duriod 5880,修改颜色为绿色,透明度。点击OK (3) 建立天线模型patch, 点击,x:,y: 8, z:0 ,dx: ,dy: 16,dz: 命名为patch,点击OK。 (4) 建立天线模型微带线MSLine 点击,x:,y: 0, ,z: 0 , dx:,dy: 8,dz: , 命名为MSLine,材料pec, 透明度 选中Patch和MSLine,点击Modeler>Boolean>Unite (5)、建立端口。创建供设置端口用的矩形,该矩形连接馈线与地。Modeler>Grid Plane>XZ,或者设置 点击,创建Port。命名为port 双击Port下方CreatRectangle 输入:起始点:x: ,y: 0,z:- ,尺寸: dx:,dy: 0,dz: (6)、创建Air。 点击,x:-5,y:-5,z:, dx:, dy:42, dz: 修改名字为Air,透明度. , 三、设置边界条件和端口激励。 (1)设置理想金属边界:选择GND,右击Assign Boundaries>>Perfect E 将理想边界命名为:PerfE_GND,,点击OK。 (2)、设置边界条件:选择Port,点击Assign Boundaries>>Perfect E

微带天线仿真设计(圆形侧馈)

太原理工大学 微波技术与天线课程设计设计题目:微带天线仿真设计 学生姓名 学号 专业班级 指导教师

太原理工大学现代科技学院 课程设计任务书 注:课程设计完成后,学生提交的归档文件应按,封面—任务书—说明书—图纸的顺序进 行装订上交(大张图纸不必装订) 指导教师签名: 日期: 专业班级 学生姓名 课程名称 微波技术与天线课程设计 设计名称 微波器件或天线设计 设计周数 1.5周 指导教师 设计 任务 主要 设计 参数 1 熟悉HFSS 仿真平台的使用 2 熟悉微带天线的工作原理与设计方法 3 在HFSS 平台上完成如下仿真设计 题目一:三角形微带天线设计(同轴馈),900MHz ,1800MHz /2.4GHz , 4GHz /2.4GHz ,5.8GHz 学号为1、6完成此题 题目二:三角形微带天线设计(侧馈),900MHz ,1800MHz /2.4GHz , 4GHz /2.4GHz ,5.8GHz 学号为2、7完成此题 题目三:圆形微带天线设计(同轴馈),900MHz ,1800MHz /2.6GHz , 4GHz /2.4GHz ,5.8GHz 学号为3、8完成此题 题目四:圆形微带天线设计(侧馈),900MHz ,1800MHz /2.6GHz , 4GHz /2.4GHz ,5.8GHz 学号为4、9完成此题 题目五:半波偶极子天线设计,900MHz ,1800MHz /2.6GHz , 4GHz /2.4GHz ,5.8GHz 学号为5、0完成此题 4 结合同组其他同学的设计结果完成对于结构参数与性能之间关系的探讨 5 在1.5周内完成设计任务 设计内容 设计要求 1、 6. 5:分组、任务分配、任务理解 2、 6. 6:查阅参考资料,理论上熟悉所设计的器件的工作原理与特性,完成方案的设计 3、 6. 7~6.9:熟悉仿真平台的使用,完成在平台上的建模,设置,结果提取与分析,以 及验收。 4、 6. 12:同组同学结果汇总及讨论 5、 6.13~6.14:设计说明书的撰写 在设计过程中,作为设计小组成员,每位同学要具有团队意识和合作精神,并最终独立完成自己的设计任务。 主要参考 资 料 刘学观,微波技术与天线,西安电子科技大学电出版社,2008 李明洋,HFSS 应用设计详解,人民邮电出版社,2010 学生提交 归档文件 1、相关知识及基本原理 2、参数归纳:材质、尺寸 3、软件仿真过程及结果分析 4、设计总结

相关主题
文本预览
相关文档 最新文档