当前位置:文档之家› 结构动力学题解12.27

结构动力学题解12.27

结构动力学题解12.27
结构动力学题解12.27

结构动力学习题解答(一二章)

第一章 单自由度系统 1.1 总结求单自由度系统固有频率的方法和步骤。 单自由度系统固有频率求法有:牛顿第二定律法、动量距定理法、拉格朗日方程法和能量守恒定理法。 1、 牛顿第二定律法 适用范围:所有的单自由度系统的振动。 解题步骤:(1) 对系统进行受力分析,得到系统所受的合力; (2) 利用牛顿第二定律∑=F x m && ,得到系统的运动微分方程; (3) 求解该方程所对应的特征方程的特征根,得到该系统的固有频率。 2、 动量距定理法 适用范围:绕定轴转动的单自由度系统的振动。 解题步骤:(1) 对系统进行受力分析和动量距分析; (2) 利用动量距定理J ∑=M θ &&,得到系统的运动微分方程; (3) 求解该方程所对应的特征方程的特征根,得到该系统的固有频率。 3、 拉格朗日方程法: 适用范围:所有的单自由度系统的振动。 解题步骤:(1)设系统的广义坐标为θ,写出系统对于坐标θ的动能T 和势能U 的表达式;进一步写求出拉格朗日函数的表达式:L=T-U ; (2)由格朗日方程 θθ ??- ???L L dt )(&=0,得到系统的运动微分方程; (3) 求解该方程所对应的特征方程的特征根,得到该系统的固有频率。 4、 能量守恒定理法 适用范围:所有无阻尼的单自由度保守系统的振动。 解题步骤:(1)对系统进行运动分析、选广义坐标、写出在该坐标下系统的动能T 和势能U 的表达式;进一步写出机械能守恒定理的表达式 T+U=Const (2)将能量守恒定理T+U=Const 对时间求导得零,即 0) (=+dt U T d ,进一步得到系统的运动微分方程; (3) 求解该方程所对应的特征方程的特征根,得到该系统的固有频率。 1.2 叙述用衰减法求单自由度系统阻尼比的方法和步骤。 用衰减法求单自由度系统阻尼比的方法有两个:衰减曲线法和共振法。 方法一:衰减曲线法。 求解步骤:(1)利用试验测得单自由度系统的衰减振动曲线,并测得周期和相邻波峰和波谷的幅值i A 、1+i A 。 (2)由对数衰减率定义 )ln( 1 +=i i A A δ, 进一步推导有 2 12ζ πζδ-= ,

结构动力学习题2..

结构动力学习题参考答案

2.3一根刚梁AB ,用力在弹簧BC 上去激励它,其C 点的运动规定为Z (t ),如图P2. 3. 按B 点的垂直运动u 来确定系统的运动方程,假定运动是微小的。 解:以在重力作用下的平衡位置作为基准点,则方程建立时不考虑重力。根据 达朗贝尔原理,通过对A 点取矩建立平衡方程,刚体上作用有弹簧弹力1s f , 2s f , 以及阻尼力D f ,惯性力2M 。B 点的垂直位移是u ,则有几何关系知2/L 处的位移为2/u 。 根据位移图和受力图可得: 02 221=?-?+? +L f L f L f M s D s I 其中 . 22221.... 221) (21 23 1 31u c f u z k f u k u R f u m L L u m L M D s s I =-==?=== 代入○ 1式得: 0 )(L 4 1 41ML 3121...=--++L u z k u k u cL u 合并化简得: )(12)123(3M 4221. .. t Z k u k k u c u =+++ 2.5 系统如图P2.5 , 确定按下形式的运动方程:)(. ..t P ku u c u m u =++。其中u 为 E 点的垂直运动。假定薄刚杆AE 的质量为M,其转动很小。

解:根据牛顿定律,运动几何关系,对B 点取矩得 L u L m mL L u k L u c L L t f p 4 3 )4(1214343854)(.. 22.0? ??????+=??-?-?? 化简合并得: ) ()()(845 .,3,3,M 7)(8 45 337. ... .. t P ku u c u m t P L t f P K k C c m L t f P ku u c u M u u O O =++===== ++得令 2.13 一根均匀杆,图P2.13 其单位体积质量密度ρ,并具有顶部质量M ,应 用假定法L x x =()ψ来推导该系统轴向自由振动的运动方程。假定=AE 常数。 解: ) ()()(),(t u L x t u x t x u = =ψ 由虚功原理,有: 0W V W =+-惯非保守δδδ ① 其中非保守力为端部集中力)(t P ,惯性力包括顶部质量M 和均匀杆的所受的惯性力,计算如下:

结构动力学问答题答案-武汉理工-研究生

结构动力学问答题答案-武汉理工-研究生

《结构动力学》思考题 第1章 1、对于任一振动系统,可划分为由激励、系统和响应三部分组成。试结合生活或工程分 别举例说明:何为响应求解、环境识别和系统识别? 响应求解:结构系统和荷载已知,求响应。又称响应预估问题,是工程正问题的一种,通常在工程中是指结构系统已知,具体指结构的形状构件及离散元件等, 环境识别:主要是荷载的识别,结构和响应已知,求荷载。属于工程反问题的一种。在工程中,如已知桥梁的结构和响应,根据这些来反推出桥梁所受到的荷载。 系统识别:荷载和响应已知,求结构的参数或数学模型。又称为参数识别,是工程反问题的一种,在土木工程领域,房屋、桥梁和大坝等工程结构被视为“系统”,而“识别”意味着由振动实验数据求得结构的动力特性(如频率、阻尼比和振型)。如模态分析和模态试验技术等基本成型并得到广泛应用。 2、如何从物理意义上理解线性振动系统 解的可叠加性。 求补充!!!!! 3、正确理解等效刚度的概念,并求解单自由度系统的固有频率。 复杂系统中存在多个弹性元件时,用等效弹性元件来代替原来所有的弹性元件,等效原则是等效元件刚度等于组合元件刚度,则等效元件的刚度称为等效刚度。 4、正确理解固有频率f 和圆频率ω的物理意义。 固有频率f :物体做自由振动时,振动的频率与初始条件无关,而仅与系统的本身的参数有关(如质量、形状、材质等),它是自由振动周期的倒数,表示单位时间内振动的次数。 圆频率ω: ω=2π/T=2πf 。即为单位时间内位移矢量在复平面内转动的弧度,又叫做角频率。它只与系统本身的参数m ,k 有关,而与初始条件无关 5、正确理解过阻尼、临界阻尼、欠阻尼的概念。 一个系统受初扰动后不再受外界激励,因为受到阻力造成能量损失而位移峰值渐减的振动称为阻尼振动。系统的状态按照阻尼比ζ来划分。把ζ=0的情况称为无阻尼,即周期运动;把0<ζ<1的情况称为欠阻尼,即系统所受的阻尼力较小,振幅在逐渐减小,最后才达到平衡位置;把ζ>1的情况称为过阻尼,如果阻尼再增大,系统需要较长的时间才能达到平衡;把ζ=1的情况称为临界阻尼,即阻尼的大小刚好使系统作非"周期"运动。 1过阻尼:n n ω> (m c n 2/= m k n =ω),特征根为两个负实数,微分方程的解是一条负指数衰减曲线,不会发生往复振动。2临界阻尼:n n ω=,特征方程的跟为两个相等的实数。3欠阻尼:n n ω<。 6、正确理解自由振动和强迫振动的概念。 自由振动:没有激振力(动荷载)的作用,振动系统在初始扰动后,仅靠恢复力维持的振动。 强迫振动:振动系统在外界干扰力或干扰位移作用下产生的振动 7 、 )(t f kx x c x m =++

建筑类英文翻译

英语翻译1 外文原文出处: Geotechnical, Geological, and Earthquake Engineering, 1, Volume 10, Seismic Risk Assessment and Retrofitting, Pages 329-342 补充垂直支撑对建筑物抗震加固 摘要:大量的钢筋混凝土建筑物在整个世界地震活跃地区有共同的缺陷。弱柱,在一个或多个事故中,由于横向变形而失去垂直承载力。这篇文章提出一个策略关于补充安装垂直支撑来防止房子的倒塌。这个策略是使用在一个风险的角度上来研究最近实际可行的性能。混凝土柱、动力失稳的影响、 多样循环冗余的影响降低了建筑系统和 组件的强度。比如用建筑物来说明这个 策略的可行性。 1、背景的介绍: 建筑受地震震动,有可能达到一定程 度上的动力失稳,因为从理论上说侧面 上有无限的位移。许多建筑物,然而, 在较低的震动强度下就失去竖向荷载的支撑,这就是横向力不稳定的原因(见图。提出 了这策略的目的是为了确定建筑物很可 能马上在竖向荷载作用下而倒塌,通过 补充一些垂直支撑来提高建筑物的安 全。维护竖向荷载支撑的能力,来改变 水平力稳定临界失稳的机理,重视可能 出现微小的侧向位移(见图。 在过去的经验表明,世界各地的地 震最容易受到破坏的是一些无筋的混凝 土框架结构建筑物。这经常是由于一些

无关紧要的漏洞,引起的全部或一大块地方发生破坏,比如整根梁、柱子和板。去填实上表面来抑制框架的内力,易受影响的底层去吸收大部分的内力和冲力。 这有几种过去被用过的方法可供选择来实施: ) 1、加密上层结构,可以拆卸和更换一些硬度不够强的材料。 2、加密上层结构,可以隔离一些安装接头上的裂缝,从而阻止对框架结构的影响。 3、底楼,或者地板,可以增加结构新墙。这些措施(项目1、2和3)能有效降低自重,这韧性能满足于一层或多层。然而,所有这些都有困难和干扰。在美国,这些不寻常的代价换来的是超过一半更有价值的建筑。 4、在一些容易受到破坏的柱子裹上钢铁、混凝土、玻璃纤维、或碳纤维。 第四个选项可以增加柱子的强度和延性,这足以降低柱子受到破坏的风险在大多数的建筑物中。这个方案虽然成本比前面低,但是整体性能也会降低,对比较弱的地板破坏会更加集中。加强柱子的强度在美国很流行,但它的成本依旧是很高的。在发展中国家,这些先进的技术对某些种类的加料或加强,还不能够做到随心所欲。 这个程序的提出包含了另一个选择,美国已经运用这个选择用来降低房子倒塌的风险。这个方法是增加垂直支撑,来防止建筑在瞬间竖向荷载作用下就倒塌(见图。这是 为支撑转移做准备的,当柱子 被剪切破坏和剪切衰弱时。这 个补充支撑通常是钢结构、管 道支撑或木材支撑。他们通常 安装在单独的柱子上,但(图 钢柱也可以被放置在能承担 的水平框架上。这种技术能有 效的降低自重,从而降低了建 筑在瞬间竖向荷载下就遭到 破坏。在水平方向的强烈震 动,产生的不稳定大概很少被想到。补充的安装垂直技撑相对比较便宜。一些有用的空间可能通过安装支撑被影响,可是这是一些微不足道的比较。在美国为建筑安装一些补充支撑现在非常流行。

粘弹性结构动力学分析的一种数值方法

粘弹性结构动力学分析中的一种数值方法 彭 凡 傅 衣 铭 (湖南大学工程力学系, 长沙 410082, 中国) 摘要:针对材料具积分型本构关系,及松弛模量为Prony 级数形式的粘弹性结构动力学问题,本文结合Newmark 方法与Taylor 方法,建立了计算该类问题的一种数值算法。且以简支梁为例,应用该方法具体地分析了考虑线性与非线性粘弹性时梁的强迫振动响应。 关键词:粘弹性 动力学 数值方法 响应 1 引言 随着人们对结构材料物理与力学性质了解的不断深入,以及新型材料的广泛应用,粘弹性结构的动力学研究受得了愈来愈多的重视,数值计算已成为一种主要的分析手段。文[1]基于Newmark 方法建立了粘弹性结构动力学响应的有限元法,但只涉及到线性问题,而且在每一计算步,卷积积分的计算量较大。桂洪斌等[2]提出将粘弹性结构的动力学方程进行Laplace 变换,然后在相域中求解问题,显然这种处理方式同样只适应于线性情况。当考虑几何,物理包括损伤等非线性因素时,粘弹性结构动力学的数值分析就变得十分复杂与困难了。文[3,4]通过将微分-积分型非线性动力学方程化成高阶的微分方程,最终由Runge-Kutta 法来获得数值解,但只有当材料为标准线性固体或Prony 级数取较少项数时,这种方法才比较容易实现。本文针对材料服从积分型本构关系,且松弛模量为Prony 级数形式的粘弹性结构动力学问题,建立了从时域内直接求解的数值算法,它是基于Newmark 方法与Taylor 方法而得出的。其中Taylor 方法为卷积积分的递规算法,能使计算量显著降低[5]。文中通过对粘弹性梁的受迫振动分析来说明方法的应用。 2 简支粘弹性梁受迫振动的动力学方程 考虑一简支梁,其跨度为L ,高为h ,中点受横向周期激励t H θsin 。设材料具非线性粘弹性,可由Leaderman [6]本构关系描叙,则有 00 () ()(())(())()t E t t E g t g d t τσεεττ τ?-=+?-? (1) 式中)0(0E E =,)(t E 为松弛函数,)(εg 为应变ε的非线性函数: 23()g εεβεγε=++ (2) 其中β与γ为常数。在小挠度情况下,梁的受迫振动方程为: ()3 23452202422 334522422 0(,)(,)(,) 1280()(,)(,) sin ()1280t w x t h w x t h w x t A E t x x x E t h w x h w x d H x L t t x x x ργτττγτδθτ?? ????????++ ????????????? ???-?????++=- ??-????????? ? (3) 式中A ,ρ分别为梁的质量密度及横截面面积,δ为Dirac 函数, 满足两个简支端条件,即,,(0,)(0,)(,)(,)0xx xx w t w t w L t w L t ====的挠度),(t x w 取为 1(,)()sin k k k x w x t f t L π∞ ==∑ (4) 为说明问题起见,式(4)中只考虑1=k 的项,且令)()(1t f t f =。将式(4)代入式(3)后,作Galerkin 积分,并记

结构动力学解题思路及习题解答

. .. wd .. 第一章 单自由度系统 1.1 总结求单自由度系统固有频率的方法和步骤。 单自由度系统固有频率求法有:牛顿第二定律法、动量距定理法、拉格朗日方程法和能量守恒定理法。 1、 牛顿第二定律法 适用范围:所有的单自由度系统的振动。 解题步骤:(1) 对系统进行受力分析,得到系统所受的合力; (2) 利用牛顿第二定律∑=F x m ,得到系统的运动微分方程; (3) 求解该方程所对应的特征方程的特征根,得到该系统的固有频率。 2、 动量距定理法 适用范围:绕定轴转动的单自由度系统的振动。 解题步骤:(1) 对系统进行受力分析和动量距分析; (2) 利用动量距定理J ∑=M θ ,得到系统的运动微分方程; (3) 求解该方程所对应的特征方程的特征根,得到该系统的固有频率。 3、 拉格朗日方程法: 适用范围:所有的单自由度系统的振动。 解题步骤:(1)设系统的广义坐标为θ,写出系统对于坐标θ的动能T 和势能U 的表达式;进一步写求出拉格朗日函数的表达式:L=T-U ; (2)由格朗日方程 θθ ??- ???L L dt )( =0,得到系统的运动微分方程; (3) 求解该方程所对应的特征方程的特征根,得到该系统的固有频率。 4、 能量守恒定理法 适用范围:所有无阻尼的单自由度保守系统的振动。 解题步骤:(1)对系统进行运动分析、选广义坐标、写出在该坐标下系统的动能T 和势能U 的表达式;进一步写出机械能守恒定理的表达式 T+U=Const (2)将能量守恒定理T+U=Const 对时间求导得零,即 0) (=+dt U T d ,进一步得到系统的运动微分方程; (3) 求解该方程所对应的特征方程的特征根,得到该系统的固有频率。 1.2 叙述用衰减法求单自由度系统阻尼比的方法和步骤。 用衰减法求单自由度系统阻尼比的方法有两个:衰减曲线法和共振法。 方法一:衰减曲线法。 求解步骤:(1)利用试验测得单自由度系统的衰减振动曲线,并测得周期和相邻波峰和波谷的幅值i A 、1+i A 。 (2)由对数衰减率定义 )ln( 1 +=i i A A δ, 进一步推导有 2 12ζ πζδ-= ,

(完整版)结构动力学历年试题

结构动力学历年试题(简答题) 1.根据荷载随时间的变化规律,动力荷载可以划分为哪几类?每一类荷载包括哪几种,请 简述每一种荷载的特点。P2 2.通过与静力问题的对比,试说明结构动力计算的特点。P3 3.动力自由度数目计算类 4.什么叫有势力?它有何种性质。P14 5.广义力是标量还是矢量?它与广义坐标的乘积是哪个物理量的量纲?P16 6.什么是振型的正交性?它的成立条件是什么?P105 7.在研究结构的动力反应时,重力的影响如何考虑?这样处理的前提条件是什么?P32 8.对于一种逐步积分计算方法,其优劣性应从哪些方面加以判断?P132 9.在对结构动力反应进行计算的思路上,数值积分方法与精确积分方法的差异主要表现在 哪里?第五章课件 10.利用Rayleigh法求解得到的振型体系的基本振型和频率及高阶振型和频率与各自的精确 解相比有何特点?造成这种现象的原因何在?P209 11.根据荷载是否预先确定,动荷载可以分为哪两类?它们各自具有怎样的特点?P1 12.坐标耦联的产生与什么有关,与什么无关?P96 13.动力反应的数值分析方法是一种近似的计算分析方法,这种近似性表现在哪些方面? P132及其课件 14.请给出度哈姆积分的物理意义?P81 15.结构地震反应分析的反应谱方法的基本原理是什么?P84总结 16.某人用逐步积分计算方法计算的结构位移,得到如下的位移时程的计算结果:。。。 17.按照是否需要联立求解耦联方程组,逐步积分法可以分为哪两类?这两类的优劣性应该 如何进行判断?P132 18.根据荷载随时间的变化规律,动力荷载可以划分为哪几类?每一类荷载又包括哪些类型, 每种类型请给出一种实例。P2 19.请分别给出自振频率与振型的物理意义?P103 20.振型叠加法的基本思想是什么?该方法的理论基础是什么?P111参考25题 21.在振型叠加法的求解过程中,只需要取有限项的低阶振型进行分析,即高阶振型的影响 可以不考虑,这样处理的物理基础是什么?P115 22.我们需要用数值积分方法求解一座大型的高坝结构的地震反应时程,动力自由度的总数 为25000个,我们如何缩短计算所耗费的机时?P103 23.什么是结构的动力自由度?动力自由度与静力自由度的区别何在?P11及卷子上答案 24.一台转动机械从启动到工作转速正好要经过系统的固有频率(又称为转子的临界转速), 为减小共振,便于转子顺利通过临界转速,通常采用什么措施比较直接有效?简要说明理由。详解见卷子上答案 25.简述用振型叠加法求解多自由度体系动力响应的基本原理及使用条件分别是什么?若 振型叠加法不适用,可采用何种普遍适用的方法计算体系响应?详解见卷子上答案 26.振型函数边界条件。。。 27.集中质量和一致质量有限元的差异和优缺点,采用这两种有限元模型给出的自振频率与 实际结构自振频率相比有何种关系?P242及卷子上答案 28.人站在桥上可以感觉到桥面的震动,简述当车辆行驶在桥上和驶离桥面的主要振型特征 有何不同? 29.简述用Duhamel积分法求体系动力响应的基本原理,以及积分表达式中的t和τ有何差

结构动力学思考题解答

结构动力学思考题 made by 李云屹 思考题一 1、结构动力学与静力学的主要区别是什么?结构的运动方程有什么不同? 主要区别为: (1)动力学考虑惯性力的影响,静力学不考虑惯性力的影响; (2)动力学中位移等量与时间有关,静力学中位移等量不随时间变化; (3)动力学的求解方法通常与荷载类型有关,静力学一般无关。 运动方程的不同: 动力学的运动方程包括位移项、速度项和加速度项;静力学的平衡方程只包括位移项。 2、什么是动力自由度?什么是静力自由度?区分动力自由度和静力自由度的意义是什么?动力自由度:确定结构体系质量位置的独立参数; 静力自由度:确定结构体系在空间中的几何位置的独立参数。 意义:通过适当的假设,当静力自由度数大于动力自由度数时,使用动力自由度可以减少未知量,简化计算,提高计算效率。 3、采用集中质量法、广义坐标法和有限元法都可以使无限自由度体系简化为有限自由度体系,它们所采用的手法有什么不同? 4、在结构振动的过程中引起阻尼的原因有哪些? (1)材料的内摩擦或材料变形引起的热耗散; (2)构件连接处或结构构件与非结构构件之间的摩擦; (3)结构外部介质的阻尼。 5、在建立结构运动方程时,如考虑重力的影响,动位移的运动方程有无改变? 如果满足条件: (1)线性问题; (2)重力的影响预先被平衡; 则动位移的运动方程不会改变,否则会改变。 思考题二 1、刚度系数k ij和质量系数m ij的直接物理意义是什么?如何直接用m ij的物理概念建立梁单元的质量矩阵[M]? k ij:由第j自由度的单位位移所引起的第i自由度的力; m ij:由第j自由度的单位加速度所引起的第i自由度的力。 依次令第j(j=1,2,3,4)自由度产生单位加速度,而其他的广义坐标处保持静止,使用平衡方程解出第i自由度上的力,从而得到m ij,集成得到质量矩阵[M]。

结构动力学_克拉夫(第二版)课后习题

例题E2-1 如图E2-1所示,一个单层建筑理想化为刚性大梁支承在无重的柱子上。为了计算此结构的动力特性,对这个体系进行了自由振动试验。试验中用液压千斤顶在体系的顶部(也即刚性大梁处)使其产生侧向位移,然后突然释放使结构产生振动。在千斤顶工作时观察到,为了使大梁产生0.20in[0.508cm]位移需要施加20 kips[9 072 kgf]。在产生初位移后突然释放,第一个往复摆动的最大位移仅为0.16 in[0. 406 cm],而位移循环的周期为1.4 s。 从这些数据可以确定以下一些动力特性:(1)大梁的有效重量;(2)无阻尼振动频率;(3)阻尼特性;(4)六周后的振幅。 2- 1图E2-1所示建筑物的重量W为200 kips,从位移为1.2 in(t=0时)处突然释放,使其产生自由振动。如果t=0. 64 s时往复摆动的最大位移为0.86 in,试求 (a)侧移刚度k;(b)阻尼比ξ;(c)阻尼系数c。

2-2 假设图2- la 所示结构的质量和刚度为:m= kips ·s 2/in ,k=40 kips/in 。如果体系在初始条件 in 7.0)0(=υ、in/s 6.5)0(=υ&时产生自由振动,试求t=1.0s 时的位移及速度。假设:(a) c=0(无阻 尼体系); (b) c=2.8 kips ·s/in 。 2-3 假设图2- 1a 所示结构的质量和刚度为:m=5 kips ·s 2/in ,k= 20 kips/in ,且不考虑阻尼。如果初始条件in 8.1)0(=υ,而t=1.2 s 时的位移仍然为1.8 in ,试求:(a) t=2.4 s 时的位移; (b)自由振动的振幅ρ。

结构动力学简答题

结构力学简答题 1、结构动力分析的目的:是确定结构在动力荷载作用下的内力和变形,并通过动力分析确定结构的动力特性。 1、动力荷载的类型:(1)是否随时间变化:静荷载和动荷载(2)是否已预先确定:确定性荷载和非确定性荷载(3)随时间变化的规律:周期荷载:简谐荷载和非简谐周期荷载;非周期荷载:冲击荷载和一般任意荷载。 2、结构动力计算的特点:(1)动力反应要计算全部时间点上的一系列解,比静力计算复杂且要消耗很多的计算时间。(2)由于动力反应中结构的位置随时间迅速变化,从而产生惯性力,惯性力对结构的反应又产生重要影响。 3、结构离散化的方法:集中质量法、广义坐标法、有限元法。本质是无限自由度问题转化为有限自由度的过程。 4、有限元法:(1)与广义坐标法相似,有限元法采用了形函数的概念,但不同于广义坐标法在全部体系上插值,而是采用了分片的插值,因此形函数的表达式可以相对简单。(2)与集中质量法相比,有限元法中的广义坐标也采用了真实的物理量,具有直接、直观的优点,与集中质量法相同。 5、广义坐标:能决定质点系几何位置的彼此独立的量。选择原则:解题方便。 6、动力自由度:结构体系在任意瞬时的一切可能的变形中,决定全部质量位置所需的独立参数的数目。动力自由度不完全取决于质点的数目,也与结构是否静定有关。静力自由度:确定体系在空间中的位置所需的独立参数的数目。前者是由于系统的弹性变形而引起的各质点的位移分量,后者是指结构中的刚体由于约束不足而产生的刚体位移。 7、有势力:(1)每一个力的大小和方向只决定于体系所有各质点的位置。(2)体系从某一位置到另一位置所做的功只决定于质点的始末位置,而与路径无关。(3)沿任何封闭路线所作的功为零。 8、实位移:如果位移不仅满足约束方程,而且满足运动方程和初始条件,则称为体系的实位移。可能位移:满足所有约束方程的位移称为体系的可能位移。虚位移:在某一固定时刻,体系在约束许可的情况下产生的任意组微小位移。三者关系:实位移即为体系的真实位移,它必是可能位移中的一员。虚位移与可能位移的区别在于虚位移是约束冻结后许可产生的微小位移。当对于约束方程中不显含时间的稳定约束体系中虚位移与可能位移相同时,实位移必与某一虚位移重合。 9、广义力:广义力是标量而非矢量,广义力与广义坐标的乘积具有功的量纲。 10、阻尼力:引起结构能量的耗散,使结构振幅逐渐变小的这种作用。 产生原因:(1)固体材料变形时的内摩擦,或材料快速应变引起的热耗散。 (2)结构连接部位的摩擦,结构与非结构之间的摩擦。(3)结构周围外部介质引起的阻尼。 11、四种建立运动方程方法的特点 (1)达朗贝尔原理:矢量方法,直观,建立了动平衡概念。 (2)虚位移原理:半矢量方法,可处理复杂分布质量和弹性问题。 (3)哈密顿原理:标量方法,表达简洁。 (4)拉格朗日方法:标量方法,运用面广。 13、进行结构动力分析计算时,重力的影响如何考虑?这样处理的前提条件是什么? 如果重力在动荷载作用前被弹簧预先平衡,则在研究结构的动力反应时可以完全不考虑重力的影响。建立体系的运动方程,直接解出体系的动力解。若未被预先平衡,则需考虑重力的影响,应用叠加原理将动静问题分开计算,将结果相加即得到结构的真实反应。这样做的前提条件是结构是线弹性且处于小变形范围之内。重力问题的分析和动力问题的分析可以分开讨论。

结构动力学习题解答一二章

第一章 单自由度系统 1、1 总结求单自由度系统固有频率的方法与步骤。 单自由度系统固有频率求法有:牛顿第二定律法、动量距定理法、拉格朗日方程法与能量守恒定理法。 1、 牛顿第二定律法 适用范围:所有的单自由度系统的振动。 解题步骤:(1) 对系统进行受力分析,得到系统所受的合力; (2) 利用牛顿第二定律∑=F x m && ,得到系统的运动微分方程; (3) 求解该方程所对应的特征方程的特征根,得到该系统的固有频率。 2、 动量距定理法 适用范围:绕定轴转动的单自由度系统的振动。 解题步骤:(1) 对系统进行受力分析与动量距分析; (2) 利用动量距定理J ∑=M θ &&,得到系统的运动微分方程; (3) 求解该方程所对应的特征方程的特征根,得到该系统的固有频率。 3、 拉格朗日方程法: 适用范围:所有的单自由度系统的振动。 解题步骤:(1)设系统的广义坐标为θ,写出系统对于坐标θ的动能T 与势能U 的表达式;进一步写求出拉格朗日函数的表达式:L=T-U ; (2)由格朗日方程 θθ ??- ???L L dt )(&=0,得到系统的运动微分方程; (3) 求解该方程所对应的特征方程的特征根,得到该系统的固有频率。 4、 能量守恒定理法 适用范围:所有无阻尼的单自由度保守系统的振动。 解题步骤:(1)对系统进行运动分析、选广义坐标、写出在该坐标下系统的动能T 与势能U 的表达式;进一步写出机械能守恒定理的表达式 T+U=Const (2)将能量守恒定理T+U=Const 对时间求导得零,即 0) (=+dt U T d ,进一步得到系统的运动微分方程; (3) 求解该方程所对应的特征方程的特征根,得到该系统的固有频率。 1、2 叙述用衰减法求单自由度系统阻尼比的方法与步骤。 用衰减法求单自由度系统阻尼比的方法有两个:衰减曲线法与共振法。 方法一:衰减曲线法。 求解步骤:(1)利用试验测得单自由度系统的衰减振动曲线,并测得周期与相邻波峰与波谷的幅值i A 、1+i A 。 (2)由对数衰减率定义 )ln( 1 +=i i A A δ, 进一步推导有 2 12ζ πζδ-= ,

建筑英文文献及翻译

外文原文出处: NATO Science for Peace and Security Series C: Environmental Security, 2009, Increasing Seismic Safety by Combining Engineering Technologies and Seismological Data, Pages 147-149 动力性能对建筑物的破坏 引言:建筑物在地震的作用下,和一些薄弱的建筑结构中,动力学性能扮演了一个很重要的角色。特别是要满足最基本的震动周期,无论是在设计的新建筑,或者是评估已经有的建筑,使他们可以了解地震的影响。 许多标准(例如:欧标,2003;欧标,2006),建议用简单的表达式来表达一个建筑物的高度和他的基本周期。这样的表达式被牢记在心,得出标定设计(高尔和乔谱拉人,1997),从而人为的低估了标准周期。因为这个原因,他们通常提供比较低的设计标准当与那些把设计基础标准牢记在心的人(例:乔普拉本和高尔,2000)。当后者从已进行仔细建立的数字模型中得到数值(例:克劳利普和皮诺,2004;普里斯特利权威,2007)。当数字估计与周围震动测量的实验结果相比较,有大的差异,提供非常低的周期标准(例:纳瓦洛苏达权威,2004)。一个概述不同的方式比较确切的结果刊登在马西和马里奥(2008);另外,一个高级的表达式来指定更有说服力的坚固建筑类型,提出了更加准确的结构参数表(建筑高度,开裂,空隙填实,等等)。 联系基础和上层建筑的震动周期可能发生共振的效果。这个原因对于他们的振动,可能建筑物和土地在非线性运动下受到到破坏,这个必须被重视。通常,结构工程师和岩土工程师有不同的观点在共振作用和一些变化的地震活动。结构工程师们认为尽管建筑物和土壤的自振周期和地震周期都非常的接近。但对于建筑物周期而言,到底是因为结构还是非结构造成的破坏提出了疑问。如果加大振动,建筑物减轻自身的重量对共振产生的破坏有很大的减轻效果。岩土工程的工程师们还没有完全同意这个观点,因为土壤可以提高自身的振动周期,与建筑物有相同的振动周期,从而建立了产生共振的条件。这个问题的处理在于这个增加量到底是多少?一般来说这种答案是不可能的,因为它取决于建筑类型和土壤类型。例如,一些普通的混凝土建筑物,对这建筑物增加一个非常

艾弗尔铁塔为什么这个形状

艾弗尔铁塔为什么这个形状? 让我们从小学自然开始说起 美是真实的火花——埃菲尔铁塔为什么是这个形状的? 埃菲尔铁塔是巴黎和法国的象征,可谓是家喻户晓。那它为什么是这个形状呢?仅仅是因为好看吗?那为什么这个形状就好看呢?

抛开其它因素,仅仅从工程角度出发,为什么不是这种直筒矩形呢?当初埃菲尔是怎么考虑的呢?对于结构工程师们来说,也许一句“这是风荷载的弯矩图的形状”就够了。但这是知乎,我的目的也是科普,所以我不会做这样的回答。让我们从小学自然开始吧! 或许是杜撰,或许是确有其事,总之,我们都知道阿基米德老师曾经说过,“给我一个支点,我能撬动地球”。

根据杠杆原理,对于转轴点力矩平衡,假设地球的重量是50,地球那一端的杠杆长度是1,阿基米德这一端的长度是10,50乘1除10等于5,那么阿基米德只需要5的力就可以撬动地球。我们把这个力与旋转轴心之间的垂直距离叫做力臂,也就是在上图中,地球的力臂是1,阿基米德的力臂是10。阿基米德这边的力臂越长,所需的力就越少,如果力臂是500,那需要的力变成了50乘1除500等于0.1。 言归正传,我们把目光放到建筑上,假设我有上图这么一个建筑,最上面施加一个水平力。我们都有推倒东西的经验,一个纸箱子,一推就倒。那为什么涂阴影的整个三层不会绕着右下角倾倒呢?很简单,因为二层左边的柱子把它给拉住了。按照我们刚才的绕旋转中心力矩平衡,外部施加的水平力是1,力臂L 是10,柱子把阴影部分拉住的力臂 d 是5,那么柱子的拉力就是1乘10除5等于2。

同样的道理,三层加二层合起来的阴影部分也有可能被推倒,整个这两层被一层左边的柱子给拉住了,这时候柱子拉力的力臂 d 还是5,但是水平力的力臂L 变成了20,柱子的拉力就变成了1乘20除5等于4。整个三层楼加起来也有可能被推倒,只不过,基础的拉力把整个三层楼拉住了,这个时候,外部水平力的力臂L 变成了30,基础的拉力相应的变成了6。 同时,我们也注意到,这些阴影部分不光有可能以右下角为转动轴向上转动进而倾倒,还有可能以左下角为转动轴向下转动。之所以

乔普拉版本结构动力学

Structural idealization 结构理想化Lateral stiffness 侧向刚度 For the moment 目前 In the sense that 也就是说 Deform 变形 Linear elastic limit 线弹性范围Differential equation 微分方程External excitation 外部激励Differentiation with respect to 对…的微分 Initial equilibrium position 初始平衡位置 Oscillate 振荡 Vibrate 振动 Intuition suggest that 直觉告诉我们Ever-decreasing amplitude 不断减小的振幅 As expected 像预期的一样 Diminish in amplitude 振幅减小Damping 阻尼 Kinetic energy 动能 Strain energy 应变能Incorporate/ include 包含 Viscous damper / dashpot 粘滞阻尼器/减震器 in part because 部分原因是 energy-dissipating mechanism 能量耗散机理 inextensible axially 无轴向变形inertial 惯性 property 特性 degrees of freedom(DOFs) 自由度constrain to 约束到 formulate 描述 in contrast 相反 linearly elastic systems 线弹性体系implicit 隐含 valid 有效,成立 imply 意味着 single-valued function 单值函数hence/ thus 因此 emphasize 强调 elastic modulus 弹性模量 moment of inertia/ second moment of

结构动力学:理论及其在地震工程中的应用

5章 动力反应的数值计算 如果激励[作用力)(t p 或地面加速度)(t u g ]是随时间任意变化的,或者体系是非线性的,那么对单自由度体系的运动方程进行解析求解通常是不可能的。这类问题可以通过数值时间步进法对微分方程进行积分来处理。在应用力学广阔的学科领域中,有关各种类型微分方程数值求解方法的文献(包括几部著作中的主要章节)浩如烟海,这些文献包括这些方法的数学进展以及它们的精度、收敛性、稳定性和计算机实现等问题。 然而,本章仅对在单自由度体系动力反应分析中特别有用的很少几种方法进行简要介绍,这些介绍仅提供这些方法的基本概念和计算算法。尽管这些对许多实际问题和应用研究已经足够了,但是读者应该明白,有关这个主题存在大量的知识。 5.1 时间步进法 对于一个非弹性体系,欲采用数值求解的运动方程为 )(),(t p u u f u c u m s =++ 或者 )(t u m g - (5.1.1) 初始条件 )0(0u u = )0(0u u = 假定体系具有线性粘滞阻尼,不过,也可以考虑其他形式的阻尼(包括非线性阻尼),后面会明显看到这一点。然而由于缺乏阻尼信息.因此很少这样做,特别是在大振幅运动时。作用力)(t p 由一系列离散值给出: )(i i t p p = ,0=i 到N 。时间间隔 i i i t t t -=?+1 (5.1.2)

图5.1.1 时间步进法的记号 通常取为常数,尽管这不是必需的。在离散时刻i t (表示为i 时刻)确定反 应,单自由度体系的位移、速度和加速度分别为i u 、i u 和i u 。假定这些值是已知的,它们在i 时刻满足方程 i i s i i p f u c u m =++)( (5.1.3) 式中,i s f )(是i 时刻的抗力,对于线弹性体系,i i s ku f =)(,但是如果体系是非弹性的,那么它会依赖于i 时刻以前的位移时程和速度。将要介绍的数值方 法将使我们能够确定i +1时刻满足方程(5.1.1)的反应1+i u 、1+i u 和1+i u ,即在i +1时刻 1111)(++++=++i i s i i p f u c u m (5.1.4) 对于i =0,1,2,3,…,连续使用时间步进法,即可给出i =0,l ,2,3,… 所有瞬时所需的反应。已知的初始条件)0(0u u =)0(0u u =和提供了起动该方法的必要信息。 从i 时刻到i +1时刻的步进一般不是精确的方法,许多在数值上可以实现的近似方法是可能的。对于数值方法,有三个重要的要求:(1)收敛性一随着时间步长的减少,数值解应逼近精确解;(2)稳定性一在存在数值舍入误差的情况下,数值解应是稳定的;(3)精度一数值方法应提供与精确解足够接近的结果。这些重要的问题在本书中均作简要的讨论,全面的论述可在着重微分方程数值解法的书中找到。 本章介绍三种类型的时间步进法:(1)基于激励函数插值的方法;(2)基于速度和加速度有限差分表达的方法;(3)基于假设加速度变化的方法。前两类中各

STAAD培训大纲

STAAD中级培训大纲 2013/12 1第一天--STAAD发展简史 (3) 2从一个简单模型入手 (3) 2.1例题 (3) 3地震荷载 (4) 3.1底部剪力法 (4) 3.2反应谱法 (5) 4中国规范校核 (6) 4.1SSDD (6) 4.2世纪旗云钢结构工具箱 (7) 5STAAD动力分析举例 (8) 5.1振型 (8) 5.2如何设定所求振型数的多寡? (8) 5.3反应谱 (8) 6第二天--- (9) 7按美国规范校核参数释义 (9) 7.1ASD与LRFD (9) 7.2参数定义 (10) 7.3验算结果解读 (12) 8STAAD软件功能问与答 (14) 8.1STAAD中整体坐标系(Global Coordinate)的定义 (14) 8.2STAAD中局部坐标系(Local Coordinate)的定义 (14) 8.3结构建模常见问题之一——几何信息 (15) 8.3.1如何修改单位? (15) 8.3.2如何合并几个点 (15) 8.3.3如何修改层高、柱距 (15) 8.3.4如何显示杆件的起始端和末端、杆件编号、杆件、杆件局部坐标系以及杆件 两端的约束情况 (16) 8.3.5如何将几根杆件合并为一根? (16) 8.3.6如何使两根共面的杆件相交(类似于AutoCAD的extend命令)? (17) 8.3.7如何只显示模型中的一部分结构 (17) 8.3.8如何查询某节点、某杆件、某板单元、面单元、体单元的信息等? (17) 8.3.9如何显示板单元(Plate Element)的局部坐标系 (18) 8.4结构建模常见问题之二——约束信息 (18) 8.4.1如何设置杆端的约束情况 (18) 8.4.2如何设置柱脚的约束情况 (18) 8.5结构建模常见问题之三——截面库与自定义截面 (19) 8.5.1如何查看标准型钢库中的型钢名称和截面特性? (19) 8.6结构建模常见问题之四——荷载 (19) 8.6.1如何修改荷载信息 (19) 8.6.2荷载组合的设定 (20)

结构动力学 期末复习重点

一 1、结构动力学计算的特点? (对比静力问题)○ 1动力反应要计算全部时间点上的一系列的解,比静力问题复杂要消耗更多的计算时间。○ 2与静力问题相比,由于动力反应中结构的位置随时间迅速变化,从而产生惯性力,惯性力对结构的反应又产生重要的影响。 2、结构动力学是研究什么的?包含什么内容? 结构动力学:是研究结构体系的动力特性及其在动力荷载作用下的动力反应分析原理和 方法的一门理论和技术学科。 目的:在于为改善工程结构体系在动力环境中的安全性和可靠性提供坚实的理论基础。 二、 1、动力系数(有阻尼、无阻尼。简谐、半功率点法、位移计……) 2、动力系数和哪些因素有关 动力放大系数受阻尼比控制,Rd 曲线形状可以反映出阻尼比的影响。主要有两点:其一是峰值大小;其二是曲线的胖瘦。 3、动力系数在工程(隔震、调频减震)的应用 4、如何用动力系数测阻尼比 三、 1、阻尼 阻尼也称阻尼力,是引起结构能量的耗散,使结构振幅逐渐变小的作用。 阻尼的来源:1固体材料变形时的内摩擦,或材料快速反应引起的热耗散;2结构连接部位的摩擦;3结构周围外部介质引起的阻尼。 2.阻尼比常用的测量方法及其优缺点: (1)对数衰减率法:相邻振动峰值比的自然对数值称为对数衰减率。采用自由振动试验,测一阶振型的阻尼比较容易。测量高阶振型阻尼比的关键是能激发出按相应振型的自由振动。 (2) 共振放大法:采用强迫振动试验,通过共振得到(Rd )max 由于静荷载下的位移较难确定,应用上存在一定的技术困难,但通过一定数学上的处理还是可以用的。(Ust 是零频 时的静位移,不容易测得。) (3) 半功率点(带宽)法:采用强迫振动试验,测出Rd-w/wn 图上振 幅值等于倍最大振幅的点,对应的长度的1/2即为阻尼比。不但能用于单自由度体系,也可以用于多自由度体系,对多自由度体系要求共振频率稀疏,即多个自振频率应相隔较远,保证在确定相应于某一自振频率的半功率点时不受相邻自振频率的影响。 3、等效粘滞阻尼比 ○1、粘性阻尼是一种理想化的阻尼,具有简单和便于分析计算的优点。○ 2工程中结构的阻尼源于多方面,其特点和数学描述更为复杂,这时可以将复杂的阻尼在一定的意义上等效 成粘性阻尼。○3一般采用基于能量等效的原则。○4阻尼耗散能量的大小可以用阻尼力的滞回曲线反映。 m st d u u R 0max 2)(21=≈ζn k k ln 21+≈y y n πξn a b f f f 2-=ζ

加强延性设计提高结构抗震性能

文章编号:1009-6825(2013)06-0012-03 加强延性设计提高结构抗震性能 收稿日期:2012-12-08作者简介:杨淑红(1969-),女,工程硕士,副教授 杨淑红 (呼伦贝尔学院,内蒙古呼伦贝尔021008) 摘 要:介绍了延性的概念及结构抗震设计中延性的含义,阐述了延性设计的原则,总结了延性设计时提高结构抗震性能的具体 措施,包括材料的延性设计、强柱弱梁设计、梁柱的延性设计、强节点弱构件设计等,为结构抗震设计提供了借鉴。关键词:延性设计,结构,抗震性能中图分类号:TU313 文献标识码:A 0引言 地震是能量以波的形式向各个方向传播、释放并引起振动的过程。由于地震的难以预知和随机发生,导致现有的“中国地震区划图”及相应的地震基本烈度表具有很大的不确定性,多次强烈地震及特大地震均发生在抗震设防低烈度地区。因此当大震来临出现弹塑性变形时,结构需通过延性设计来保证有良好的抗 变形和耗能能力。“变形、能量吸收与耗散”的能力是结构抗震性能的标志。 1延性的涵义 1.1物理术语 物理术语是指材料的结构、构件或构件的某个截面从屈服开始到达最大承载能力或到达以后而承载能力还没有明显下降期间的变形能力。 即: 1)承受较大的非弹性变形同时强度没有明显下降的能力。2)利用滞回特性吸收能量的能力。 延性概念最早出现在1961年美国波特兰水泥协会(PCA )制定的《多层钢筋混凝土建筑抗震设计》手册中。延性是抗震设计中的重要特性,用延性系数来度量。结构动力学和地震工程领域 学者乔普拉(Anil K.Chopra )在其 《结构动力学理论及其在地震工程中的应用》 (第2版)7.2节中给出延性系数的表达式:由于地面运动引起的弹塑性体系的位移峰值(最大位移)与屈服位移之比,即:μ= μm μy 是无量纲的量。1.2四个层次 在结构抗震设计中延性有四层含义:材料的延性、杆件的延 性、构件的延性、结构的延性。 材料的延性:櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅 发生较大的非弹性变形或反复弹塑性变形时强状态、提高透波性、减少制造工作量、节省工时和生产费用,适当选择夹芯面板还可以获得良好的抗震、隔热、隔音等性能。目前全世界主要的飞机制造公司生产的飞机地板、尾翼等结构件有很多都是采用全复合材料夹芯结构的。在工程建设领域,它是制作防墙板、隔断墙、隔音板、门板和吊顶的理想材料,并可用来制作地板、橱柜、活动房屋和活动墙等。 图7某时刻 Z 轴应力(t =0.1296s )图8某时刻 塑性应变(t =0.1288s ) X Y Z X Y Z 3结语 1)该蜂窝夹芯层结构抗拉破坏主要有芯子拉断和面芯脱离两 种。2)该蜂窝夹芯结构抗拉破坏模式主要和焊接部位的强度、失效应变等参数有关,合理的控制蜂窝结构焊接部位强度可以有效控制蜂窝夹芯结构的破坏模式。3)蜂窝结构在工程中应用广泛,应设计结构形式更合理的蜂窝结构用以提高结构的各项性能。参考文献: [1]雷江利.复合材料夹层结构优化设计方法研究[D ].西安: 西北工业大学,2006.[2]徐永君,李 敏,战 颂,等.蜂窝结构抗拉压性能实验研究 及其数值模拟[ J ].实验室研究与探索,2007(11):13-14.[3]Whitty JPM.Towards the design of sandwich panel composites with enhanced mechanical and thermal properties by variation of the in-plane poissons ratios [J ].Composites :Part A ,2003(34):525. [4]Ls-dyna Keyword user ’s manual (v970)[M ].Livemore Nation-al Corporation ,2003. Research and engineering application of tensile failure mode of a honeycomb sandwich structure HUANG Bi-bin YAO Hai-dong WU Lun-wen LI Zi-qing (Third Engineering Corps ,China Airport Construction ,Nanjing 210000,China ) Abstract :According to how to optimize honeycomb structure design and improve its mechanical properties problem ,using Ansys modeling ,com-bining with ls-dyna finite element analysis software researched the failure mode and effect factors under quasi static tensile ,and pointed out that the structure had the advantages of light weight ,high strength ,heat insulation and other advantages ,was worthy of promotion.Key words :honeycomb structure ,sandwich structure ,failure mode ,finite element analysis · 21·第39卷第6期2013年2月 山西 建筑 SHANXI ARCHITECTURE Vol.39No.6Feb.2013

相关主题
文本预览
相关文档 最新文档