当前位置:文档之家› 糖蜜酒精废水两相UASB处理工艺的酸化段特征

糖蜜酒精废水两相UASB处理工艺的酸化段特征

糖蜜酒精废水两相UASB处理工艺的酸化段特征
糖蜜酒精废水两相UASB处理工艺的酸化段特征

糖蜜酒精废水两相UASB处理工艺的酸化段特征两相厌氧消化法是根据参与酸性发酵和甲烷发酵的微生物不同,分别在两个反应器内完成这两个过程的方法。但二相厌氧生物处理工艺自1971年提出以后,由于学术界大多认为相分离会破坏厌氧发酵过程中各类菌群之间的协同作用,会对厌氧发酵产生不利影响,因此这一研究发展缓慢。目前,许多研究表明该法在处理富硫酸盐有机废水是有效的[1-4]。为了探讨二相厌氧UASB工艺处理糖蜜酒精废水的相分离特性,本文对产酸相的效能、运行状况、有机物的去除及微生物群体的组成等方面作了研究分析。

1 试验装置及方法

1.1 试验装置

本试验酸化段UASB反应器采用有机玻璃管制成,内径15 cm,高2 m,总有效容积为28.5 L,其中三相分离器容积为4 L,高度方向上每间隔10 cm设置一个采样口,以观测反应器中的情况。反应器夹套水保温在35±2℃左右。处理水经计量泵由底部进入反应器,在反应器顶部溢流出水。产气经脱硫后,由湿式气体流量计计量产气量。出水进入下一段处理装置。

1.2 接种污泥

接种污泥采自酒精厂EGSB反应器高温处理玉米酒精糟液的颗粒污泥,污泥浓度18.8 g/L,VSS/SS为0.93,接种量为18 L。1.3 废水性质

本试验用水来自广西某糖厂的糖蜜酒精糟液,其水质特征如表1所示。

表1 原水水质指标

1.4 分析项目及方法

TOC:TOC-10B

pH:精密pH计

碱度:滴定法

挥发酸:气相色谱法

硫酸根:重量法

硫化物:离子选择电极法

1.5 试验条件控制

试验中,原水经过稀释后进水。通过调节进水流量来控制进水COD容积负荷;通过加入Na2CO3调节pH值;实验中不再另外加入各种营养盐。

2 结果与讨论

2.1 试验结果

在最初的15 d里,进水TOC控制在10 000 mg/L左右,但去除率直线下降。调整进水TOC至6 000 mg/L,连续运行50 d,负荷逐步提高,去除率逐渐上升,到第60 d,稳定在30%左右,同时,产气量也上升至80 L/d。继续提高进水浓度,到第87 d,达到17 000 mg/L,容积负荷达到30 kg COD/m3,系统仍能正常运行,去除率在35%以上,产气达到100 L/d以上。试验中,即使SO42->1 600 mg/L,出水中的硫化物也只有80 mg/L,所以在本试验中没有发现H2S 的抑制作用。酸化段的SO42-去除率在70%左右。根据气相色谱检测,酸化段产气中,CH4和CO2组分各占50%,证明在酸化段中,也发生产甲烷反应。

另外,随系统运行,体系的缓冲能力增强,系统的稳定性较好,即使进水pH在5.2左右,出水pH一直维持在7.7。

2.2 酸化反应器的运行效能分析

一般认为,厌氧生物处理的限速步骤是产甲烷阶段,但现在已经认识到产酸阶段对厌氧生物系统的成败也起着关键的作用[5]。一方面产酸相发酵速率要快,并尽可能消除由于有机酸的大量产生而抑制或阻碍了产酸菌的活性;另一方面,因为产酸相的发酵产物将作为甲烷相的底物,所以提供易于被产甲烷菌利用、并且减少丙酸含量和可能转化为丙酸的底物,是保证产甲烷相高效、稳定运行的重要因素。

2.2.1 酸化率

酸化段是将污水中大分子和不易生物降解的有机物降解为易生

物降解的小分子有机物。酸化过程是溶解性有机物被转化为以挥发性脂肪酸为主的末端产物的过程。研究结果表明,酸化的末端产物的组成取决于厌氧降解的条件、底物种类和参与酸化的微生物种群。对两相厌氧处理的第一步,糖作为主要底物,则末端产物将是丁酸、乙酸、丙酸、乙醇、二氧化碳和氢气的混合物。

本试验用水为糖蜜酒精废水,基质中糖的含量很高,达20g/L,糖为主要底物之一,一级UASB反应器的操作控制按酸化反应器运行条件运行,试验进程中挥发酸测定结果列于表2。结果显示,出水中挥发性脂肪酸有乙酸、丙酸、丁酸、戊酸四种,其中乙酸和丁酸的量最大,乙酸最高达3 796 mg/L,丁酸达4 436 mg/L,挥发酸的浓度与进水TOC浓度有相关性。原水中已含有较高浓度的挥发酸,其中乙酸浓度在1 000 mg/L以上,如果扣除进水挥发酸后计算酸化率,则酸化率数值较低,基本上都小于30%,且该数值波动较大,这可能与进水水质波动有关。但出水挥发酸却能占总TOC的50%,尽管

该值有所波动,但基本上仍算比较稳定。这一数值说明,对糖蜜酒精废水酸化率在50%左右,较好时能达到70%。此外,据试验推断当酸化末端产物挥发酸的浓度达到一定数值后,酸化过程很难再深入进行。对于本试验乙酸、丁酸最高浓度均能达到占进水TOC的30%,但二者不能同时达到最大值。

表2 酸化反应器挥发酸测定结果

注:酸化率=(TOC出-TOC进)/TOC总TOC出:出水中挥发酸折合的TOC,TOC进进水中挥发酸折合的TOC,TOC总:进水中总TOC;挥发酸百分率=出水中挥发酸折合的TOC/进水总TOC2.2.2 酸化段TOC的去除率、产气量及微生物群体组成分析

本试验最初酸化段对TOC虽有去除,但去除率不大,仅在10%左右,产气量也不大。但随着运行时间的延长,反应器对TOC的去除率开始增加,最后稳定在40%左右,单位体积产气量逐渐增加,酸化段产气中,CH4约占气体组成的50%,这可能是反应器内产甲烷菌已适应了环境,活性增加,从而消耗更多的乙酸来产生甲烷,从而使乙酸浓度降低,丁酸进一步水解产生的乙酸可补充一部分削耗掉的乙酸。试验结果表明乙酸下降程度要比丁酸小得多。TOC去除率及单位体积产气量见图1。

图1 TOC去除率、产气量与运行天数的关系本试验结果是,随着系统运行时间的延长,TOC的去除率及产气量有加大的趋势,说明产甲烷菌的数目在加大,并且二者有较好的相关性。稳定运行后,酸化段TOC去除率趋于稳定,为40%左右,单位体积产气量稳定在5.0 L/d。

微生物的厌氧发酵过程呈阶段性[5,6],参与整个厌氧发酵过程的微生物也因代谢功能不同分为水解、发酵细菌,产氢产乙酸细菌,同型产乙酸菌,产甲烷菌等主要菌群。根据试验结果和资料分析[7-11],对二相厌氧消化过程中各大菌群的分布提出如图2所示的示意图。

图2 二相厌氧消化过程中各大类菌群的位置示意图。

由图2可见通过动力学控制实现相分离并不意味着产酸发酵菌

群与产甲烷菌群的完全分离。如Gil-Pena[12]的研究结果表明在酸化反应器的厌氧污泥中,产甲烷菌含量约为104个/毫升。表3是张录等[10]人的研究结果,从表3中可以看出,二相厌氧生物处理系统并未将产酸微生物与产甲烷微生物截然分开,只是通过对有关运行参数的控制限制了产酸相中甲烷菌的增殖,强化了水解发酵菌群功能。因此,在产酸相中仍含有一定数量的产甲烷菌,由于产甲烷菌也消耗有机物,所以酸化段可以对COD有一定的去除率。

表3 产酸槽与产甲烷槽各菌群计数结果

3 结论

3.1酸化段的容积负荷达到30 kg COD/m3时,系统仍能正常运行,TOC去除率在35%以上,酸化段的SO42-去除率在70%左右。

3.2糖蜜酒精废水酸化率在30%以下,出水挥发酸却能占总TOC的50%左右,较好时可能达到70%。当酸化末端产物挥发酸的浓度达到一定数值后,酸化过程很难再深入进行。对于本试验乙酸、丁酸最高浓度均能达到占进水TOC的30%,但二者不能同时达到最大值。

3.3两相厌氧生物处理系统并未将产酸微生物与产甲烷微生物截然分开,只是通过对有关运行参数的控制限制了产酸相中甲烷菌的增殖,强化了水解发酵菌群功能。因此,在产酸相中仍含有一定数量的产甲烷菌,由于产甲烷菌对有机物的消耗,所以酸化段可以对TOC有一定的去除率。

陶瓷工业废水的净化回用工程

1 工程概况

在生产陶瓷的过程中会产生一部分泥浆废水,废水中的悬浮物主要是粒径<150μm的固体颗粒,其中具有很强的分散性且粒径<10 μm的微细颗粒比例很大。由于各陶瓷厂管理水平差异较大,车间布局乃至排水管道、沟渠的坡度、长短不同,造成各厂之总排水口陶瓷废水的悬浮物浓度普遍为1 000~1×104 mg/L左右,淤塞市政管道,污染水体,必须治理。

沈阳陶瓷厂用水量为100×104t/a,以自备深井水源为主。排水量为80×104t/a,其中属污染较重的陶瓷工业废水为20×104 t/a,主要污染物为悬浮物,浓度为500~1000mg/L。

针对该厂的废水水质,提出以陶瓷废水高效净水器和陶泥螺旋卸料沉降离心机为主体设备的综合治理方案,除了能够使污染物得到治理以外,还可以使宝贵的水资源、陶瓷泥浆回用于生产。

经与厂方共同确认,进入废水处理站的废水量Q=25m3/h,

SS=500~1000 mg/L。

陶瓷废水处理流程见图1。

2 处理机理

高效陶瓷废水净水器由通常称之为一元化净水器的设备发展而来,依陶瓷废水的性质和特点,其结构尺寸、运行参数有所变化,但是混凝反应、斜板沉淀和双层滤池过滤的机理相同。

2.1 净水器的混凝机理

陶瓷软质料以高岭土为主,经石磨机(俗称水碾子)中碎和湿式球磨机微碎处理后,在水中分散为微米级负电荷胶体。废水中胶体颗粒虽然作布朗运动,但彼此并不能碰撞、接触、聚集而沉降,主要原因在于它们带有同性电荷、胶体微粒间的静电斥力和水化膜。即使不受这种凝聚稳定性的影响,由于固体颗粒在水中的沉降速度遵从斯托克斯定律,大量直径为2~5μm的固体颗粒的沉降速度也是极其缓慢的。一旦加入絮凝剂电解质,压缩胶体结构的双电层,就会导致胶粒间相互凝聚脱稳,分散污泥形成矾花,粒径加大到肉眼可见的毫米级,才能大大改善沉降性能。根据混凝机理,电解质的凝聚能力大约与离子价数的六次方成正比。要达到同样凝聚效果,1价、2价、3价正离子投加量之比约为729∶64∶1;要使负电荷胶体脱稳,所需高价正离子远比低价正离子有效。只是必须注意,如果三价铝盐等高价正离子投加量过多,由于物理化学诸多作用影响,使胶核表面吸附过多正离子,同样会使胶体带有同性电荷,需重新稳定,从而不能形成易沉降的矾花,影响悬浮物去除效果。

2.2 变速波纹板混凝反应器

常规混凝反应构筑物的反应时间需20 min,容积较大,难以实现小型化、设备化。变速波形板反应采用两两相对的正弦波形板约束

水流,其加工工艺保证了水流通道忽宽忽窄,流速忽缓忽急,不断产生涡流,加强了混凝反应的效果。同时,水在反应器中,由开始流经等宽度的波形板所形成的单通道,进而扩大为双通道,到最后的四通道,使水流平均流速按V0→0.5V0→0.25V0规律变化,此乃使悬浮物颗粒经混凝反应所形成的矾花能够随着进程逐渐长大而不致破坏的重要技术措施(见图2)。

陶瓷废水高效净水器的体积只有常规混凝反应构筑物的25%~30%,相对于平面布置的重力流构筑物而言,由于采用了压力流,使之能按立体化、小型化、设备化设计制造,并便于室内安装。

沈阳陶瓷厂高效净水器的处理水量为25 m3/h,混凝反应器在正常负荷下停留时间为6min,而通常可以在过负荷20%的工况下即

Q=30m3/h下运行,停留时间为5min,出水亦可保证正常。变速混凝反应器制造尺寸为2.25m×0.45m×2.4 m,与斜板沉淀器和自反冲过滤器集成为“一元化”净水器,十分紧凑。

2.3 纵向波纹斜板沉淀器

将斜板加工成纵向平直、横向成正弦波形状,安装倾角为60°。布水管在下,集水管在上,为逆向流斜板沉淀。通常逆向流动的水流与泥流界面相互紊动有使分离效率降低的弊端,而纵向波纹形斜板可以使沉泥在向下滑的同时也会沿波纹弧面向两侧更低处滑动,泥流复合运动的结果是偏向波纹板两侧波谷向下流动,进而被收集到斜板组两侧凹槽下面垂直相对的集泥槽中。布水管居中均匀布水,与污泥各行其道,互不相扰,巧妙地提高了分离效果(见图3)。

集泥槽下的集泥斗设计成左右不对称而且偏向两侧的形状用以

接受沉降污泥,从而较大地缩短了排泥管长度,减小了阻力。

2.4 自反冲双层滤池

净水器前端并列四个双层滤池,由排列有序的进水阀和排污阀操作,布水装置由穿孔管和多孔布水板两次匀速,在四个滤池同时顺流过滤过程中,可以充分发挥滤层作用。

自反冲过程是关闭需要反冲的滤池进水阀门,在开启该滤池排污

阀门的同时,关闭净水器的总出水阀门。这样,其他三个正在顺流过滤的滤池底部净水区的净水只能反方向通过反冲滤池,携带大量污泥由排污管排出。每格滤池反冲洗时间为3~5 min左右,排污管出水清如净水时即可转换阀门,继续冲洗另外的滤池。通常情况下每班反冲一次,反冲过程方便、快捷、彻底。

利用双层滤料过滤技术,级配合理的双层滤料可以大大增加滤层的含污率,减少反冲次数,提高过滤速度,减小设备体积。用简单的蝶阀操作可以实现自反冲,使多格滤池实行交替反冲、连续工作,从而省却了反冲水箱及反冲泵等配套设备。

3 技术对策

3.1 絮凝剂用量

陶瓷泥浆生产工艺在中碎工序添加了增浓剂,泥浆分散均匀了,废水却因此更难以沉降。采用烧杯试验方法,或者用成型多杯试验仪器,确定絮凝剂的投加量,是陶瓷废水处理工艺长期稳定运行的重要措施。经过筛选、测试,确定该厂废水的聚合氯化铝投加量在20~30 mg/L范围内,通常可以使出水SS<20 mg/L,满足回用于湿磨工序用水水质的要求;如果处理水直接排放,悬浮物指标按辽宁省第二级第三类水域(SS<150 mg/L)标准,聚合氯化铝按加药量下限10~15 mg/L投加即可。需要说明的是试运行期间曾经试验不添加絮凝剂,即便使用高效净水器,出水也十分混浊,SS远远超过150 mg/L,可见陶瓷废水细微固体颗粒确实具有很强的凝聚稳定性和穿透能力。

3.2 排气阀门和视盅

陶瓷废水反应器的波纹板用2 mm厚PVC板热塑成型、焊接制造,水流属于压力流,水流通道为折返式垂直向,立式设计,占地面积小。为避免运行中空气聚集在反应器上部,阻塞水流通道,采取了两项技术措施:一是陶瓷废水泵采用液下泵,减少进水管吸入空气的条件;二是在反应室顶部法兰盖水流折返位置设有四组视盅和阀门,用以每次设备启动之前的注水排气,视盅的设置便于观察操作。

3.3 取样阀、注水阀和排泥阀

由于反应器波纹板由2 mm厚PVC板焊接制造,两侧水位差若超过一定高度,波纹板将承受不了静水压力而开裂破损,因此运行前应该使波纹板反应器内外同步充水。检修时,如果需要放空设备中的水,也需要反应器内外各部位同步排水,为此采取三项技术措施:

①浮子流量计设置在净水器出水口之后,水质清澈,便于观察;而且浮子流量计之后的出水管设置高度要求超过净水器最高点高度,以便设备停机时保持满水位;在出水干管最高点设DN25取样管阀一组,除作为处理水取样管之外,还要求净水器每次停机的同时打开该阀门,吸入空气,破坏虹吸。否则,虹吸形成会急剧排出设备中的水,净水器后部形成较高真空度进而造成反应器塑料波纹板损坏。

②在波纹板反应器各水室之间的间隔板上设置了反方向的逆止

阀片,由净水器尾部连出的DN20注水管阀一组,可以逆向向反应器各水室、斜板沉淀器同步注水,并且在达到沉淀池出水水位后,将同时向双层滤池注水(见图4)。

③如果需要排空净水器,必须从反应器前几个水室单独接出氵曳水排泥阀,与注水阀同步排水。否则,只开注水阀单独排水,反应器前几个水室的水被逆止阀片阻断,PVC波纹板也会遭到损坏。

3.4 避免超压运行

陶瓷废水高效净水器设计工作压力≤0.04 MPa,浮子流量计按大于1.5倍工作流量选用40m3/h的规格设置于出水端,便于观察浮子位置。但其对设备带来的超压危险却是我们始料不及的,如在试运行阶段,操作工人在水泵启动之后,开启净水器出水阀门过快,造成调节流量超负荷较多,另外由于惯性,浮子瞬间冲到流量计顶端,阻断水流,造成设备超压,外壳开裂损坏。对此,首先补充了操作规程:要求运行人员操作浮子流量计前的出水阀门时应缓慢平稳开启,而且保证处理水量不得超过30m3/h。另外,把反应室前端普通压力表改为电接点真空压力计,设定设备运行压力和真空度上下限值,将电接点控制信号引入液下水泵电控系统,在真空度或者压力值达到设计值时立即自动停泵,保证安全运行。此项改进减轻了运行人员启动设备时的顾虑,确保操作安全。

4 结论

采用集成变速波纹板混凝反应、纵向波纹斜板沉淀分离、自反冲过滤三种单元反应于一体的JS—25型高效陶瓷废水净水器处理沈阳陶瓷厂工业废水并得以回用,取得了良好的经济效益、环境效益和社会效益。显然,在新建厂、新建生产线时同步进行配套处理和回用设计,易于做到布局更为合理。

糖蜜酒精废水处理

糖蜜酒精废水治理技术 糖蜜酒精废水是一种高化学需氧量(COD)、高色度的有机废水,属于处理难度较大的废水。本文分析了糖蜜酒精废水的特点以及其对环境的危害,综述国内外糖蜜酒精废水治理的多种方法,分析了各种方法的特点、效果,并进行评价。 酒精是一种重要的工业原料,它广泛应用于化工、食品、军工、日用化工和医药卫生等领域;同时又是最有希望全部或部分替代石油的可再生能源,因此具有十分广泛的应用和发展前景。但同时酒精工业又是一个污染十分严重的行业,每产一吨酒精排放的高浓度有机废水约为14 吨—15 吨,含总有机物0.17吨—1吨[1],是造成水环境污染最为严重的轻工业废液之一。 1.糖蜜酒精废水的来源、特性及危害 糖蜜酒精废水是糖厂酒精车间用糖蜜发酵制取酒精之后排放出的高浓度高色度的有机废水[2],内含有丰富的蛋白质和其它有机物,也含有较多的N、P、K、Ca、Mg等无机盐和较高浓度的SO42- 等。通常情况,酒精废水的pH 值为4. 0~4. 8、COD 为10~13万mg/ l、BOD为5. 7~6. 7万mg /l 、SS为10. 8~82. 4mg/ l [3]。此外,此类废水大多呈酸性,并且色度很高,呈棕黑色,主要包括焦糖色素、酚类色素、美拉德色素等[4]。由于废液含固体物约10% ,浓度低无法利用,如不经过处理直接排出江河、农田中,会严重污染水质、环境,或造成土壤酸化板结、农作物病长等。如何处理和利用糖蜜酒精废液是当前制糖工业面临的一个严峻环保问题。 2. 糖蜜酒精废水治理及利用技术概况

目前, 国内外对于甘蔗糖蜜酒精工业废水主要有以下几种治理方法: ( 1) 农灌法( 2)浓缩法( 3) 厌氧—好氧法( 4) 生产生物制品(5) EM菌技术( 6) 其它方法, 如吸附法、化学絮凝法、磁处理法等。 2.1 农灌法 农灌法是最为简单的治理方法,由于糖蜜废水中含有丰富的有机成分以及氮、磷、镁等营养物质,特别是含大量钾盐。故经简单处理后可以用于灌溉农田,也可作为较好的肥料。一般,先将废水中有机物含量降到 0.6%-1.0%[5],以免对农作物造成伤害。澳大利亚、巴西等在这方面已有一套科学的管理方法,他们根据不同的土壤成分,制定出不同的农作物生长期的施放量。一般灌溉前采用的处理方法有以下几种:稀释废液,使有机物含量降低到适宜的程度(一般是冲释10倍-15倍),然后再用来灌溉;用适量的碱进行中和,再经大型氧化塘存放自然发酵15天后,再灌溉农田。农灌法可充分利用糖蜜废水中的有机质和营养物质[6],可以形成自然循环过程,此外其投资少,操作简单也是其一大优势,短期使用确实能够增产,是一种极为普遍的方法。 但是农灌法也有着自身的缺点:需要大量的废液贮存池收集保存废液,费用较高;废液的施用要参考土壤的类型,如果长期不加区分的施用,由于养分单一,破坏土壤结构,容易引起土壤板结[7],而且引起甘蔗糖分下降和水稻疯长。巴西就是典型的例子;而且,当酒精产量高,废液排放大,厂址附近农田少时,农灌法不适宜。此外,使用此法,必须注意防止地下水的污染。 2.2 浓缩法

机械铸造厂废水的处理工艺

2010级毕业生实习报告 学生: 学号: 班级: 学院: 时间:2014年2月24日至3月23日

机械铸造厂废水的处理工艺 一:实习过程简介 市旺源机械铸造厂,于2001年正式成立,公司位于省市解放区瓷路8号,公司资金实力雄厚,生产经营能力强大。加上公司总裁夏胜宝的英明领导,目前已发展成为业一家较具实力的生产型企业。公司主营铸钢件,铸铁件,机加工。我于2014年2月24日至3月23日在该厂进行为期一个月的毕业实习。二:具体实习容 在厂里师傅的带领下了解了铸造厂废水:铸造厂废水是在铸铁融熔时对化铁炉的冷却废水。这种冷却水受污染很小,经对污浊物加以去除并进行冷却处理后,废水即可循环使用。对于铸造车间受灰尘及烧土污染的废水,则常采用凝聚沉淀处理后回用于生产,有时也直接排往堆渣场处置。 1铸造废水回用 铸造水力清砂工艺是利用高压水产生的强烈射流,将铸件表面残存的型砂冲洗干净。其废水中主要含有制造砂型所使用的各种原料,其中SS最高可达几千mg/L,pH值偏高,而COD一般在40—50mg/L之间。 冲洗铸件后所产生的废水先落入地面的砂坑,渗过废砂层后进入地下贮水池中,再用水泵将其抽入废水箱后逐渐排放。 水力清砂工艺对用水水质的要,不损害工艺设备和设施,不影响铸件的质量,对喷枪、高压泵、阀门、管道等设备不造成堵塞。参考国外有关回用水水质的某些规定,并与厂方商定,将清砂回用水水质标准定为,浊度10度,COD20mg/L,其它指标以对生产工艺不产生不良影响为准。 铸造污水处理工艺流程高效污水处理工艺在废水处理污水处理应用效果好稳定,铸造污水处理工艺流程高效污水处理工艺经专家认定是废水处理污水处理领域的高新技术,铸造污水处理工艺流程图高效污水处理净化系统具有污水处理工程投资少、占地面积小、污水处理废水处理反应迅速、运行成本低、广

酒精废水处理工艺

酒精废水处理工艺 一、酒精废水生产的特点 酒精工业的污染以水的污染最为严重,生产过程中的废水主要来自蒸馏发酵成熟醪后排出的酒精糟,生产设备的洗涤水、冲洗水,以及蒸煮、糖化、发酵、蒸馏工艺的冷却水等。酒精废水是高浓度、高温度、高悬浮物的有机废水,处理技术起步较早,发展较快。废液中的废渣含有粉碎后的木薯皮、根茎等粗纤维,这类物质在废水中是不溶性的COD;木薯中的纤维素和半纤维素是多糖类物质,在酒精发酵中不能成为酵母菌的碳源而被利用,残留在废液中,表现为溶解性COD;无机灰分的泥砂杂质。这些物质增加了废水处理的难度。 二、酒精废水处理工艺 3.1 高效全混厌氧污泥罐 厌氧反应器采用钢结构,其外形结构类似于第三代厌氧反应器EGSB和IC,能承受高浓度的固体悬浮物(SS),是三代厌氧反应器EGSB和IC不具备的特点,采用高温发酵,容积负荷可高达7.0kgCOD/(m3.d),高于传统全渣厌氧发酵工艺的2~3倍,COD去除率高达90%。 3.2 UASB+缺氧池+接触氧化 上流式厌氧污泥反应器(UASB)技术在国内外已经发展成为厌氧处理的主流技术之一,在UASB中没有载体,污水从底部均匀进入,向上流动,颗粒污泥(污泥絮体)在上升的水流和气泡作用下处于悬浮状态。反应器下部是浓度较高的污泥床,上部是浓度较低的悬浮污泥层,有机物在此转化为甲烷和二氧化碳气体。在反应器的上部有三相分离器,可以脱气和使污泥沉淀回到反应器中。UASB的COD负荷较高,反应器中污泥浓度高达100~ 150g/L,因此COD去除效率比普通的厌氧反应器高三倍,可达80%~95%。 工艺流程如下所示: 缺氧池具有双重作用,一是对废水进行生物预处理,改善其生化性,并吸附、降解一部分有机物;二是对系统的污泥进行消化处理。可以与后续的接触氧化形成A/O模式,具有同步脱氮除磷作用,其中厌氧段主要作用是去除有机污染物和释放磷,缺氧段的主要作用是反硝化脱氮,由于具有同步去除有机污染物、脱氮、除磷作用,因而目前该工艺广泛应用在需要脱氮除磷的污水处理方案中。

甘蔗糖蜜酒精废液

甘蔗糖蜜酒精废液中总黄酮含量的测定 D eterm inati on of the to tal con ten t of flavono id s in w aste liqu id of alcoho l p roducti on from sugarcane m o lasses 张 吉,周文红,刘慧霞 Z hang J i,Z hou W enhong and L iu H u ix ia (广西大学轻工与食品工程学院,广西南宁市 530004) (L igh t Indu stry and Food Engineering In stitu te,Guangx iU n iversity,N ann ing,530004) 摘 要:以芦丁为标准物质,用分光光度法测定了甘蔗糖蜜酒精废液中黄酮类化合物的含量。此法排除了废液中其他物质的干扰,重现性好,平均回收率达97123%,是一种较为快速的测定废液中总黄酮含量的新方法。为废液中黄酮类化合物的提取和开发利用提供了理论依据。 关键词:糖蜜酒精废液;黄酮类化合物;分光光度法 中图分类号:T S26212 Abstract:T he con ten t of flavono ids in w aste liqu id of alcoho l p roducti on from sugarcane m o lasses w as determ ined by sp ectrop ho tom etry u sing ru tin as standard sub stance.T h is is a new m ethod fo r relatively rap id determ inati on of the to tal con ten t of flavono ids in w aste liqu id since it can eli m inate the in terfere of o ther com pounds,it has h igh rep etiti on rate,and the average recovery w as97. 23%.It p rovides the theo retical basis fo r the ex tracti on and exp lo itati on of flavono ids in w aste liqu id. Key words:W aste liqu id of alcoho l p roducti on from sugarcane m o lasses,F lavono ids,Sp ectrop ho tom e2 try 1 引言 甘蔗糖蜜酒精废液中的色素一般是大分子有机化合物,在溶液中呈现胶体状态。难以被微生物所降解,耐温、耐光照,放置时间延长其色值不减[1]。目前对甘蔗糖蜜酒精废液中色素的研究报导较少。这些色素主要来自糖蜜原料本身,其中最重要的色素是多酚类色素,其主要成份即是黄酮类化合物。黄酮类化合物是自然界存在的酚类化合物中最大的类别之一[2],有较强的抗氧化能力。由于其几乎存在于所有的绿色植物中,因此在涉及到植物提取的所有工作中都会遇到它们。甘蔗中含有大量黄酮类化合物,它们在澄清过程中有部分被除去,还有一部分仍留在糖汁中,并一直留存至最终产物废蜜和酒精废液中。如果能从废液中将黄酮类化合物提取出来,必定可获取良好的经济效益。据资料显示,对黄酮类化合物的化学分析测量研究,在水果,蔬菜的储藏和加工方面有广泛应用。但糖蜜酒精废液中黄酮类化合物的分析和分离方面的研究未见有报导,因此,探索研究用化学方法分析测定黄酮类化合物的含量,并试验研究将废液中的黄酮类提取出来,不仅有利于治理糖蜜酒精废液,还可以提高糖蜜酒精废液的资源利用附加值,具有重要的研究意义。本研究采用分光光度法,对几种典型的糖蜜酒精废液中的黄酮类物质进行化学分析方法的探索比较实验,旨在找到简便的方法测定废液中的黄酮类物质的含量,为进一步的分离回收色素有价资源提供参考依据。 2 实验过程[3,4] 211 实验原理 黄酮类化合物的母核由A、B两个芳香环组成,在母核某些位置上含有羟基时能与金属离子形成稳定络合物,在B环上任何有相邻的两个羟基存在时同样也能产生络合物。利用三价铝离子与黄酮发生反应,生成黄色络合物。该络合物在一定的吸收光波长下有一吸收峰值,不同浓度试样吸光度随浓度 81 广西轻工业 (2005年第2期 总第87期) G UAN GX I JOU RNAL O F L IGH T I N DU STR Y 收稿日期:2005202228

酒精废水处理流程

糟液中含有大量的有机物,并具有良好的可生物降解性能。所以,糟液的常规综合治理流程是以生物处理中的厌氧反应器为核心,以回收糟液中的潜有能源和其他资源。为了保证糟液通过厌氧反应器回收沼气的效果,糟液在进入反应器前应进行预处理。 通过厌氧反应器,将糟液中极大部分有机物转化为沼气,糟液的COD值也大幅度下降,但残存的有机物浓度仍不能满足国家规定的排放标准的要求。须接受进一步的处理,若先进行好氧生物处理,随后再进行以混凝过程和氧化吸附等技术后处理,满足排放标准的要求。混凝、过滤、氧化和吸附等处理方法称为深度处理。 糟液综合治理的常规流程可归纳为预处理,厌氧生物处理、好氧生物和深度处理等四部分组成。 1 预处理 厌氧反应器的糟液温度可分为三类,高温、中温和常温。高温,其适宜温度在50℃~56℃;中温,其适宜温度在35℃~40℃;常温,则随自然温度而变化。 新鲜的糟液,其温度在80℃以上,应先通过热交换器回收热能,将糟液降到适宜的温度再进入厌氧反应器。 糟液在接受厌氧反应器处理时,通常采用的操作温度是高温和中温。 厌氧反应器内的pH值是影响处理效果的主要因素之一,一般控制在Ph7左右。 进液的pH值不一定需要调整到反应器内控制的pH值范围,因为进入反应器后,经反应器内料液的稀释和生物化学反应可以改变进液的pH值。 糟液中的有机物主要是碳水化合物,在制取酒精过程中已被酸化,其中部分有机物是以挥发性有机酸的形式存在,使糟液的pH值偏酸性。但其进入厌氧反应器后,经稀释和生物化学反应等作用,糟液的pH值很快调整到反应器内控制的pH值范围。所以,糟液的pH值一般不需要进行预调整。 2 厌氧生物处理 糟液的厌氧处理是糟液综合治理的核心工艺,常用的厌氧反应器有UASB、AF 和厌氧接触工艺等。 糖蜜糟液中硫酸盐含量较高,一般采用中温厌氧接触工艺。因为在中温状态下,与高温状态时相比,反应器中硫酸盐还原菌与产甲烷菌之间竞争利用乙酸的速度基本相同。因此,采用中温厌氧反应器处理含高浓度的糖蜜酒糟时对反应器的甲烷产率影响不明显。 淀粉糟液的厌氧处理,有采用一段法的,有的采用二段法的。一段法的,一般使用高温UASB或高温厌氧接触工艺;采用二段法时,一般选用高温UASB 串联中温AF工艺,或高温厌氧接触工艺串联中温厌氧接触工艺。 厌氧处理可使糟液的COD值下降75%~90%,即由数万mg/L,下降到数千mg/L当环境允许时,可将厌氧反应器的出液灌溉农田,以增加土壤的肥力。但对排放标准比较严格的地区,厌氧反应器的出液需要好氧生物处理等工艺处置。 3 好氧生物处理 厌氧反应器的出液与厂内其他有机低温度的废水,如地面冲洗水、设备清洗水等合并,进行好氧生物处理。 由于混合废水有机物浓度偏高,又属酿造废水,为防止好氧生物处理装置出现污泥膨胀现象而影响正常运转,好氧生物处理装置一般选用生物膜类型的,如生物接触氧化装置、生物转筒等。这些装置可单一选用,也可多级串联选用。

酒精废液方案分解

本项目中超过该标准规定的第一、第二类污染物主要是SS、BOD5和CODcr。污水综合排放标准(GB8978—1996)根据中华人民共和国国家标准:《污水综合排放标准》GB8978—1996的规定,该标准规定这些污染物的最高充许排放浓度如下: 单位:mg/L 处理规模:年产5万吨优级食用酒精,酒精废液产出量为1750.5T/日,浓缩处理系统设计处理规模为2000T/日。 酒精废水处理方案 甘蔗制糖业废水包括糖蜜酒精废液、锅炉冲灰水、洗滤布水,其中主要污染源是糖蜜酒精废液,按全行业平均计,每吨甘蔗制糖约产生25-30公斤废糖蜜,每4~4.2吨废糖蜜可生产1吨酒精,同时产生9.5-10.5吨酒精废液,废液中主要污染物CODcr浓度高达11-13万毫克/升。甘蔗制糖酒精污水治理技术研究已有多年了,经过多年来科技工作者的努力,目前在糖蜜酒精废液处理技术上有很大的进步和突破,一些治理技术在国内乃至对一些发展中国家已具有了一定的影响。 废水处理工艺的比较、选择 一、生化处理技术 工艺方法主要是采用厌氧技术+好氧技术,并加上其它一些物理技术,主要原理是利用微生物(厌氧菌、好氧菌)降解水中CODcr、BOD5,其主要的工艺流程大至为:沉淀(固液分离)-脱硫-厌氧反应-好氧反应-沉淀-排放,该技术是国内外都普遍采用的环保治理成熟技术,其优点技术成熟,操作相对并不复杂,能回收反应生成的沼气。缺点是

难处理达到国家排放标准,处理后废水中CODcr还有几千毫克/升(国标一级排放标准为100毫克/升),投资大(20吨/日酒精生产线需要投资300-500万元)。另一方面,沼气含硫高,烟气必须经过专用脱硫设备处理才能达标排放,目前我区有覃塘糖厂还在使用该技术。本工程不推荐使用。 二、浓缩干燥制生物有机肥技术 工艺方法是将酒精废液通过浓缩反应器浓缩到一定的锤度(65°-68°BX),通过特制的喷嘴,在干燥炉中喷雾干燥,使其成为干粉状,然后根据需要与外购的氮、磷、钾肥捏合造粒,制成生物有机肥。其主要的工艺流程大至为:调节池-多效蒸发-喷雾干燥-(与化肥)混合-造粒,该技术优点是综合利用,化害为利,制成的生物有机肥售价可达1千多元/吨,有一定的经济效益。缺点是能耗大,将只有10多度(锤度)的废水制成干粉,其能耗可想而知;其次是投资大。我区曾使用该技术工艺的糖厂有贵糖、忻城糖厂等几家糖广。 三、浓缩燃烧技术 该技术是将废液浓缩至65°-68°BX后通过特制的炉子进行燃烧,使浓缩液全部彻底燃烧完全。燃烧完后的锅灰是具有一定经济价值一一含钾量较高的钾灰。该技术的优点是工艺流程简单,能治理彻底,且能回收热量(蒸汽)及钾灰(其热量除本身浓缩之用外,还有富余用于制糖生产)。其缺点是投资大达700万-1000万元。炉子设计有一定的难度,设计不好炉膛易结焦,运行费用偏高,尾气治理不好则产生二次污染。目前我区有邕宁糖厂、峦城糖厂、田东糖厂等几家糖厂在使用,值得一提的是,邕宁糖厂利用该技术的成果和经验已得到印度、巴西、南非等一些发展的产糖大国的注意,先后有几个国家派团参观或来函洽谈,目前已达成了数台锅炉向国外出口的协议。该技术具有一定的发展前景。邕宁糖厂酒精废液浓缩焚烧炉只提供酒精生产及废液浓缩的低压蒸汽,电力部分则由纸浆厂提供。考虑到本公司的实际

酒精废水处理工艺

酒精废水处理工艺 一.概述 酒精工业是国民经济重要的基础原料产业,酒精广泛应用于化工、食品工业、日化、医药卫生等领域,同时又是酒基、浸提剂、溶剂、洗涤剂和表面活性剂。我国酒精生产的原料比例为:淀粉质原料(玉米、薯干、木薯)占75%,废糖蜜原料占20%,合成酒精占5%。由此,我国酒精生产的原料主要是玉米、薯干等淀粉质原料。酒精企业酒精糟的污染是食品与发酵工业最严重的污染源之一,由于投资、生产规模、技术、管理等原因,大部分酒精企业的综合利用率较低。二.酒精生产废水特点 酒精工业的污染以水的污染最为严重,生产过程中的废水主要来自蒸馏发酵成熟醪后排出的酒精糟,生产设备的洗涤水、冲洗水,以及蒸煮、糖化、发酵、蒸馏工艺的冷却水等。酒精废水是高浓度、高温度、高悬浮物的有机废水,处理技术起步较早,发展较快。废液中的废渣含有粉碎后的木薯皮、根茎等粗纤维,这类物质在废水中是不溶性的COD;木薯中的纤维素和半纤维素是多糖类物质,在酒精发酵中不能成为酵母菌的碳源而被利用,残留在废液中,表现为溶解性COD;无机灰分的泥砂杂质。这些物质增加了废水处理的难度。 三、酒精废水处理主要方法 酒精糟虽然无毒,但是污染负荷高成酸性。根据酒精生产的原料不同,其酒精糟的综合利用和处理采用不同的方法。 1、玉米酒精糟的综合利用 玉米酒精糟生产DDGS,既能较彻底的消除污染,使废水处理达标,又能获得高质量的蛋白饲料。但是DDGS生产设备投资大,能耗高(1tDDGS需要200kw?h 电耗,蒸汽,水耗250t),技术要求高,所以国内只有一部分企业实现DDGS生产,部分企业仍采用先进行固液分离。 2、薯干酒精糟的综合利用

浓缩燃烧法处理糖蜜酒精废液技术

浓缩燃烧法处理糖蜜酒精废液技术 一、对糖蜜酒精废液治理原则 1、以严格保护水资源和环境为目的,对酒精废液进行综合治理; 2、治理酒精废液的工艺应考虑技术的实用性和可靠性,投资及工程运行的经济合理性 3、在治理废液同时可回收能源和其他用的物质,创造经济效益,从而达到环境效益、 社会效益、经济效益的统一。 二、甘蔗糖蜜酒精废液治理势在必行 综合目前国内外糖厂废水治理的情况来看,最难处理的是酒精生产废液,因此,解决酒精生产废液,是治理糖厂废水的关键。 酒精废液是指以甘蔗糖蜜为原料,经发酵后的醪液在酒精粗馏塔中蒸馏,在蒸出酒精后经粗馏塔底部排出的废液。酒精生产的方式不同,产生的废液量和浓度也不同,采用常压塔蒸馏,生产1吨酒精产生13~15 吨(平均按14吨)废液,浓度为8~12°BX,采用差压蒸馏(或常压塔加再沸器)生产一吨酒精产生11~13吨废液,锤度为15.50~16.80° BX,比用常压蒸馏的废水量要减少21%。 酒精废液属于特高的高浓度有机废水,COD含量一般都80000~120000mg/l,最高达到170000mg/l,硫酸根为5000-8000mg/l,有的甚至高达12000mg/l;废液中含有大量固体悬浮物外,还含有较高浓度的糖类、果胶和蛋白质等溶解性有机污染物。这类废水排入放水中,会大量消耗水体的溶解氧,使水体腐败,恶化水质,由于水体富营养化,使藻类大量繁殖,抑制了鱼、虾、贝类等生长繁殖,甚至大量死亡,从而严重地影响水体的利用价值。企业一不经意排入了河海,就会造成污染事故,引起农民、渔民不满,要求赔偿等。 糖蜜酒精废液是一种腐蚀性极强的废水,具有很强的渗透性。存储池塘时间过长,会渗入地下水,污染地下水源,致使地下水不能利用,尤其是在缺乏淡水的地区,会造成严重的后果。由此看来,生产酒精的企业要发展,彻底治理酒精废液势在必行。 三、甘蔗糖蜜酒精废液的特性及治理技术的选择 (一)糖蜜酒精废液具有如下特性:

酒精厂污水处理方案

污水处理方案 1 概述 1.1 概况 由于酒精厂过程中排出的有机废水,直接排放将造成对周围环境的严重污染,因此酒精厂拟建一套污水处理设施,对该厂排出的污水集中收集处理后,达标排放,做到社会效益、经济效益、环境效益的统一。 1.2公司简介 本公司是一家以水处理业务为核心、集环保技术开发、应用及制造为一体的高新技术企业,公司由一批致力于环保事业的专家和经验丰富的工程技术人员组成,在膜处理及中高浓度有机污水处理方面拥有多项达到国内先进水平的技术,在污水治理方面,本公司已完成多项,在污水处理设计、施工、调试等方面,不仅有丰富的工程经验,并依靠的设备质量及技术服务与用户建立良好的合作关系。 2设计依据和设计范围 2.1设计依据 2.1.2根据贵厂提供水质报告。 2.1.3《生活杂用水水质标准》(CJ/T48-1999) 2.1.4《生物接触氧化法设计规程》(GBS128-2002) 2.1.5《鼓风曝气系统设计规程》(CECS97.97) 2.1.6《城市区域噪音标准》(GB3096-93) 2.1.7《防腐技术条件》(SZD014-85) 2.1.8《污水综合排放标准》GB8978-1996

2.1.9《室外排水设计规范》GB50014-2006 2.1.10《建筑给排水设计规范》GB50015-2003 2.1.11《水处理设备制造技术文件》JB/T2932-1999 2.1.12《电器设备配电设计规范》GB50055-93 2.2设计范围 废水处理工程界区范围内工艺、土建、电气、仪表及给排水等专业的设计,但不包括处理站围墙、道路、绿化、规范化排污口等。 3 设计原则 3.1严格遵守国家及地方有关环保法律法规和技术政策,并符合当地环境保护有关规定。 3.2根据生产废水特点选择合理可行的处理工艺路线,做到工艺先进、技术可靠、操作方便、易于维护。 3.3合理确定各工艺参数,并分析以确定最佳值。 3.4采用新材料、新产品以延长设备的使用寿命。。 3.5在保证处理效果的前提下,尽量减少占地面积,降低基建投资及日常运行费用。 4 建设规模 4.1废水来源 需处理的排水主要为车间所排的废液及设备、管道等洗涤水、地面冲洗水。排水中主要含有淀粉、蛋白质、酵母菌残体、酒花残渣、少量酒精及洗涤用碱,属无毒有机废水。废水中主要污染指标为CODcr、BOD5、SS等,废水的BOD5/CODcr≈1.65,可生化性较好,易采用生化处理为主的工艺。

玉米酒精废水处理

玉米酒精废水处理 水处理技术:一、玉米酒精的特性 每生产1吨酒精需3吨玉米,排出糟液约为12立方米。淀粉质原料(玉米)酒精发酵产生的废糟液COD,BOD5值相对较低,COD大约3~5万mg/L,BOD5大约2~3万mg/L。糟液污染重要指标之一是总固体,它包括溶解性固体、悬浮固体和胶体,它是由有机物、无机物和生物菌体所组成。有机物的成分主要是碳水化合物、其次是含氮化合物、生物菌体和未完全分离出去的产品如丁醇,乙醇、丙酮等低沸点易挥发物;无机物主要来自原水(自来水)中各种离子和原料中的杂质、灰尘,如Ca2+、Mg2+、SiO2、HCO3-、CO32-、SO42-、Cl-、PO42-等。在总固体中悬浮固体(包括超胶体和部分胶体)约占60%~80%,溶解性固体和部分胶体(即粒径小于4.5um)占20%~40%。糟液具有很强的腐蚀性和较高的粘度。 二、玉米酒精糟液污染控制技术 玉米酒精糟中含有大量的蛋白质、脂肪等具有丰富的有机成分,是极好的畜、禽饲料,目前采用的主要污染控制技术有:玉米酒精糟制取全干燥蛋白饲料(DDGS);玉米酒精糟固掖分离、滤渣直接做饲料或生产DDG蛋白饲料、滤液稀释排放;玉米酒精固掖分离、滤渣直接做饲料或DDG蛋白饲料、滤液30%~50%回用于生产:玉米酒精糟固液分离、滤渣直接做饲料或生产DDG蛋白饲料、滤液厌氧发酵生产沼气等四种。酒糟中存在的对酵母酒精发酵有抑制作用的物质,大部分被湿渣带走,留下的只是极少部分,通过调整回流比完全有可能在回流系统中将其浓度控制在酵母能够忍受的范围之内。所以现在一般酒精厂所采用的酒精废糟液的综合处理工艺中都包含有将

部分或者全部返回生产系统作为拌料用水或液化、糖化添加水的回用路线。而且,若回流比恰当,酒精回流技术的应用不仅不会影响酵母的酒精发酵,反而有可能会提高酒精产量。 (一)、膜过滤法处理酒精废糟液 膜处理技术由于操作简便、分离效果理想而得以广泛应用,同时也是污水深度处理的重要手段之一。目前,国内外已普遍应用与膜技术处理纺织、造纸废水、胶粘剂生产废水、含油废水以及味精生产废水等,其中不少单位也正尝试把膜技术应用于酒精工业废水的处理。 酒精废糟液先经离心分离去除粗渣,再经膜过滤,除去大部分对酵母生长和酒精发酵有抑制作用的大分子有机物,最后滤液全部回流。 应用膜过滤技术处理玉米酒精浓醪发酵酒精废糟液的工艺流程示意图如下: 玉米粉—→拌料—→低温蒸煮—→糖化—→发酵 ↑↓ 滤液←—膜过滤←—酒糟液←—蒸馏 ↓↓ 滤渣酒精 玉米酒精浓醪发酵废糟液“全回流”工艺流程示意图 应用膜过滤技术能去除酒精槽液中主要的抑制副产物,大大降低了副产物对酵母生产及酒精发酵的抑制作用。在工艺上实现“全回流”是切实可行的。但在膜过滤过程中要注意膜的污染问题,以确保膜通量的稳定,并延长膜的使用寿命。

糖蜜酒精废水两相UASB处理工艺的酸化段特征

糖蜜酒精废水两相UASB处理工艺的酸化段特征两相厌氧消化法是根据参与酸性发酵和甲烷发酵的微生物不同,分别在两个反应器内完成这两个过程的方法。但二相厌氧生物处理工艺自1971年提出以后,由于学术界大多认为相分离会破坏厌氧发酵过程中各类菌群之间的协同作用,会对厌氧发酵产生不利影响,因此这一研究发展缓慢。目前,许多研究表明该法在处理富硫酸盐有机废水是有效的[1-4]。为了探讨二相厌氧UASB工艺处理糖蜜酒精废水的相分离特性,本文对产酸相的效能、运行状况、有机物的去除及微生物群体的组成等方面作了研究分析。 1 试验装置及方法 1.1 试验装置 本试验酸化段UASB反应器采用有机玻璃管制成,内径15 cm,高2 m,总有效容积为28.5 L,其中三相分离器容积为4 L,高度方向上每间隔10 cm设置一个采样口,以观测反应器中的情况。反应器夹套水保温在35±2℃左右。处理水经计量泵由底部进入反应器,在反应器顶部溢流出水。产气经脱硫后,由湿式气体流量计计量产气量。出水进入下一段处理装置。 1.2 接种污泥

接种污泥采自酒精厂EGSB反应器高温处理玉米酒精糟液的颗粒污泥,污泥浓度18.8 g/L,VSS/SS为0.93,接种量为18 L。1.3 废水性质 本试验用水来自广西某糖厂的糖蜜酒精糟液,其水质特征如表1所示。 表1 原水水质指标 1.4 分析项目及方法 TOC:TOC-10B pH:精密pH计 碱度:滴定法 挥发酸:气相色谱法 硫酸根:重量法 硫化物:离子选择电极法

1.5 试验条件控制 试验中,原水经过稀释后进水。通过调节进水流量来控制进水COD容积负荷;通过加入Na2CO3调节pH值;实验中不再另外加入各种营养盐。 2 结果与讨论 2.1 试验结果 在最初的15 d里,进水TOC控制在10 000 mg/L左右,但去除率直线下降。调整进水TOC至6 000 mg/L,连续运行50 d,负荷逐步提高,去除率逐渐上升,到第60 d,稳定在30%左右,同时,产气量也上升至80 L/d。继续提高进水浓度,到第87 d,达到17 000 mg/L,容积负荷达到30 kg COD/m3,系统仍能正常运行,去除率在35%以上,产气达到100 L/d以上。试验中,即使SO42->1 600 mg/L,出水中的硫化物也只有80 mg/L,所以在本试验中没有发现H2S 的抑制作用。酸化段的SO42-去除率在70%左右。根据气相色谱检测,酸化段产气中,CH4和CO2组分各占50%,证明在酸化段中,也发生产甲烷反应。 另外,随系统运行,体系的缓冲能力增强,系统的稳定性较好,即使进水pH在5.2左右,出水pH一直维持在7.7。 2.2 酸化反应器的运行效能分析

酒精废水处理技术

酒精废水处理技术 交 流 资 料 有限公司 目录 二.酒精生产废水特点................................................................. 三、酒精废水处理主要方法............................................................. 1、玉米酒精糟的综合利用.............................................................. 2、薯干酒精糟的综合利用.............................................................. 3、糖蜜酒精糟处理方法................................................................ 4、酒精废水常用处理工艺.............................................................. 4.1高效全混厌氧污泥罐(EASB) .................... 4.2UASB+HASB+接触氧化............................. 4.3EGSB+SBR....................................... 4.4IC+A/O.........................................

4.5UASB+氧化塘.................................... 四、酒精废水的资源化利用.............................................................

酒精废水处理工艺样本

酒精废水解决工艺 一.概述 酒精工业是国民经济重要基本原料产业,酒精广泛应用于化工、食品工业、日化、医药卫生等领域,同步又是酒基、浸提剂、溶剂、洗涤剂和表面活性剂。国内酒精生产原料比例为:淀粉质原料(玉米、薯干、木薯)占75%,废糖蜜原料占20%,合成酒精占5%。由此,国内酒精生产原料重要是玉米、薯干等淀粉质原料。酒精公司酒精糟污染是食品与发酵工业最严重污染源之一,由于投资、生产规模、技术、管理等因素,大某些酒精公司综合运用率较低。 二.酒精生产废水特点 酒精工业污染以水污染最为严重,生产过程中废水重要来自蒸馏发酵成熟醪后排出酒精糟,生产设备洗涤水、冲洗水,以及蒸煮、糖化、发酵、蒸馏工艺冷却水等。酒精废水是高浓度、高温度、高悬浮物有机废水,解决技术起步较早,发展较快。废液中废渣具有粉碎后木薯皮、根茎等粗纤维,此类物质在废水中是不溶性COD;木薯中纤维素和半纤维素是多糖类物质,在酒精发酵中不能成为酵母菌碳源而被运用,残留在废液中,体现为溶解性COD;无机灰分泥砂杂质。这些物质增长了废水解决难度。 三、酒精废水解决重要办法 酒精糟虽然无毒,但是污染负荷高成酸性。依照酒精生产原料不同,其酒精糟综合运用和解决采用不同办法。 1、玉米酒精糟综合运用 玉米酒精糟生产DDGS,既能较彻底消除污染,使废水解决达标,又能获得高质量蛋白饲料。但是DDGS生产设备投资大,能耗高(1tDDGS需要200kw?h电耗,蒸汽2.7t,水耗250t),技术规定高,因此国内只有一某些公司实现DDGS生产,某些公司仍采用先进行固液分离。 2、薯干酒精糟综合运用

某些公司将薯干酒精糟经厌氧+好氧解决,该办法COD去除率可达到80%。尚有公司将酒精糟采用固液分离,滤液回用生产或者经生化解决达标,滤渣直接做饲料。 用厌氧消化解决酒精废醪通过30近年研究实践,已证明是一种切实可行高效产能解决办法,得到国内外普遍承认和应用。国内现行酒精废醪治理工程中绝大多数采用了厌氧消化工艺。 3、糖蜜酒精废水解决办法 当前,对糖蜜酒精糟采用浓缩燃烧或者浓缩后制作颗粒肥料用,对综合废水仍采用二级生化解决技术。 4、酒精废水惯用解决工艺 4.1高效全混厌氧污泥罐(EASB) 厌氧反映器采用钢构造,其外形构造类似于第三代厌氧反映器EGSB和IC,能承受高浓度固体悬浮物(SS),是三代厌氧反映器EGSB和IC不具备特点,采用高温发酵,容积负荷可高达7.0kgCOD/(m3.d),高于老式全渣厌氧发酵工艺2—3倍,COD去除率高达90%。该工艺有如下长处: ①对高浓度污染物高SS酒精有机废水,耐冲击力高承受力强,可完全达到高浓度悬浮物废水解决规定。 ②在高浓度悬浮液状况下,虽不能或很难形成颗粒污泥,但高效厌氧装置可以培养出沉淀性能较好和活性很高污泥,这对于保证COD去除率是核心。 ③在高浓度悬浮液状况下,容积负荷比普通全渣反映罐高诸多,因此产沼气量很大,能产生较好经济效益。 4.2UASB+缺氧池+接触氧化 上流式厌氧污泥反映器(UASB)技术在国内外已经发展成为厌氧解决主流技术之一,在UASB中没有载体,污水从底部均匀进入,向上流动,颗粒污泥(污泥絮体)在上升水流和气泡作用下处在悬浮状态。反映器下部是浓度较高污泥床,

酒精废醪液(废水)处理技术汇总

酒精废醪液(废水)处理技 术汇总

酒精废醪液(废水)处理技术汇总 一.概述 酒精工业是国民经济重要的基础原料产业,酒精广泛应用于化工、食品工业、日化、医药卫生等领域,同时又是酒基、浸提剂、溶剂、洗涤剂和表面活性剂。 我国酒精生产的原料比例为:淀粉质原料(玉米、薯干、木薯)占75%,废糖蜜原料占20%,合成酒精占5%。由此,我国酒精生产的原料主要是玉米、薯干等淀粉质原料。 酒精企业酒精糟的污染是食品与发酵工业最严重的污染源之一,由于投资、生产规模、技术、管理等原因,大部分酒精企业的综合利用率较低。 二.酒精生产废水特点 酒精工业的污染以水的污染最为严重,生产过程中的废水主要来自蒸馏发酵成熟醪后排出的酒精糟,生产设备的洗涤水、冲洗水,以及蒸煮、糖化、发酵、蒸馏工艺的冷却水等。 酒精废水是高浓度、高温度、高悬浮物的有机废水,处理技术起步较早,发展较快。废液中的废渣含有粉碎后的木薯皮、根茎等粗纤维,这类物质在废水中是不溶性的COD;木薯中的纤维素和半纤维素是多糖类物质,在酒精发酵中不能成为酵母菌的碳源而被利用,残留在废液中,表现为溶解性COD;无机灰分的泥砂杂质。这些物质增加了废水处理的难度。 三、酒精废水处理主要方法 酒精糟虽然无毒,但是污染负荷高成酸性。根据酒精生产的原料不同,其酒精糟的综合利用和处理采用不同的方法。 1、玉米酒精糟的综合利用 玉米酒精糟生产DDGS,既能较彻底的消除污染,使废水处理达标,又能获得高质量的蛋白饲料。但是DDGS生产设备投资大,能耗高(1tDDGS需要200kw?h电耗,蒸汽2.7t,水耗250t),技术要求高,所以国内只有一部分企业实现DDGS生产,部分企业仍采用先

酒精废水的特点以及处理工艺

酒精废水的特点及处理工艺 酒精废水属于高浓度有机废水,其COD 可达30000-50000mg/L,某些废水如糖蜜酒精废水,COD可达130000-150000mg/L,其处理流程长,工艺复杂,处理难度大。今天,我们就简单分析酒精废水的特点,并介绍常见的酒精废水处理工艺。 1.酒精废水的来源及特点 酒精生产过程的废水主要来自蒸馏发酵成熟后排出的酒精糟,生产设备的洗涤水、冲洗水,以及蒸煮、糖化、发酵、蒸馏工艺的冷却水等。 酒精生产污染物的来源与排放见下图。酒精生产的废水排水量大,悬浮物含量高,属于高浓度有机废水、废水偏中酸性。 2. 酒精废水处理工艺 酒精酒糟废水在工程设计中,一般常使用厌氧工艺或厌氧—好氧联合工艺。

(1)厌氧工艺 酒精废液通过固液分离,分离后的滤渣含水量一般小于70%,再干燥作为饲料销售,分离后的滤液进入冷却塔,温度由80℃降低到55℃,再进行厌氧处理。经沼气发酵后的消化液,pH上升,COD和BOD去除率分别达84%和90%,悬浮物下降到700 mg/L。 (2)厌氧-好氧联合 酒精废水经过一般的厌氧处理后,其消化液的COD仍达8000 mg/L以上。因此仍需进一步处理。目前,一部分酒精厂采用了厌氧一好氧联合工艺。下图为某薯干酒糟废水处理工艺流程图。

薯干酒糟含砂量较多,为减少设备磨损,采用立式离心机除去部分悬浮物。经过离心分离后,滤液进入沉淀池沉淀一天后进入格栅除去大块杂物,防止立式水泵堵塞。随后废水进入集水池,内设回流搅拌及泥沙排除管,排除可能沉积的污泥。 污水经过冷却塔水温降至60℃后,进入UASB厌氧池,使有机酸转化为沼气,把剩余污泥排到污泥中间池。考虑到酒精糟液温度较高,故采用高温发酵,池温控制在50-55℃。 从厌氧池出来的污水自流到沉淀池,再进入中间池,这时污水的温度仍高达50~55℃不能直接进入曝气池,需经冷却至35℃以下。污水进入曝气池后,与池中的活性污泥混合,微生物分解污水中有机物,使污水得到净化。 经曝气池净化之后,曝气池的混合液流入沉淀池进行固液分离。沉于沉淀池底部的活性污泥用泵提升返回曝气池头部,另一部分进入污泥中间池。 澄清水从上方溢流进入生物过滤池进一步净化,在净化过程中生物膜新陈代谢,反应器停留时间1 h。来自生物过滤池的水过滤后进入回用水池。 厌氧池剩余污泥和曝气池—沉淀池系统剩余污泥均排放至污泥中间池,用泵把污泥送入浓缩池进行浓缩,澄清水排入站内下水道,浓缩污泥用泵提升送至脱水机进行脱水,脱水后的污泥外运作肥料。多余厌氧污泥及活性污泥通过污泥浓缩池浓缩后进入带式压滤机处理,脱水效果很好。

1001.酒精废水处理技术

酒精废水处理技术 酒精漕液废水属高浓度有机废水,采用现有技术进行处理,通过工艺流程和费用分析,可以看出,处理效率低下,成本高,而采用本文提出的新技术进行处理,效率可提高四倍以上。 1 概述 1.1 生产原料及其水质特征 采用液体发酵法生产酒精,其原料一般以薯干、木薯、玉米和高粱等为主。淮河流域地区的山东省和安徽省等以采用薯干为原料者居多。其生产过程中所产生的高浓度有机污水主要为酒精蒸馏塔的釜底残液,即酒精蒸馏塔所排出的酒精糟液。糟液的排出量一般为10~15m3/t酒精,其水质特征为(1)温度高,一般在70℃以上;(2)所含悬浮物浓度高,一般在3万mg/L 以上;(3)有机物(COD)浓度高,一般在4万mg/L~5万mg/L;(4)pH低,一般为4~5。因此是一种高温,高悬浮物的高浓度有机污水。 对于污水中溶解性的有机污染成分来说,薯干类污水主要以糖类和脂肪酸类化合物为主,玉米、高粱等污水中含有较多的蛋白质。前者容易进行厌氧沼气发酵处理,后者较难。 1.2 现有处理技术的缺陷 目前,在酒精糟液处理方面主要采取固体物(悬浮物)分离作饲料厌氧产沼气处理法。固体物分离采用离心机或沉淀过滤池,产沼气则采用全混式沼气发酵罐。由于投资和国产设备的性能所限,糟液中的固体物分离很低,残存在分离液中的悬浮物浓度仍在1万mg/L水平上,同时,这种老式的沼气发酵罐效率很低,体积很大,一般水力停留时间要在10天左右,而且要靠水泵循环进行搅拌动力消耗大,搅拌不均匀。 从环保角度看,这种处理工艺所存在的最重要的问题是处理水质不达标。一般,经这种厌氧大罐处理后的水,COD浓度仍在1.0~1.4万mg/L以上,悬浮物浓度

生物发酵法制燃料乙醇生产中废气废液的处理方法及系统

生物发酵法制燃料乙醇生产中废气废液的处理方法及系统 燃料乙醇作为一种较为清洁的能源,生产成本较低,得到广泛应用,暂时解决了能源需 求的矛盾。为了推动可持续发展,实现绿色发展,在加强人们生态环保意识的同时,还要就 燃料乙醇的制造工艺、合理加工以及燃料乙醇产生的废气废液处理办法进行改进和创新,完 善燃料乙醇作为新型能源的功效,推动社会和经济发展。 二、生物发酵法制燃料乙醇 现阶段燃料乙醇制造的工艺已出现三代,第一代燃料乙醇分为糖基乙醇和淀粉基乙醇, 主要以玉米、甘蔗中所含的酵糖作为原料,进行生物发酵制乙醇,是目前最为常见的制燃料 乙醇方法。第二段燃料乙醇是纤维素乙醇,以木质纤维素类为主的生物物质,主要来源包括 农业废料、林业产物及废弃物、(藻类)和城市垃圾等,第三代燃料乙醇就是主要以藻类为 原料通过生物法生产的燃料乙醇。 生物法又称生物发酵法,是通过生物物质所含的物质,经过水解、发酵等一系列工序制 成燃料乙醇。生物发酵法是现阶段制燃料乙醇最主要,也是最普遍的一种方法。根据不同原 料所含的物质不同,生产工艺和工序都有相应的变化。粮食作物作为原料以碾磨、液化和糖 化工艺为必须内容,木质纤维的步骤则必备预处理和水解工序,本身高糖类物质则可以省去 部分步骤。值得注意的是,一些物质在操作过程或者运输时沾染了金属或有毒物质,还需要 进行先解读再提取,以防不良化学反应的产生。 燃料乙醇的一般生产工艺,如图1所示: 生物发酵法在粉碎原料之后需要进行蒸煮的工作,因为物质原料富含植物细胞,蒸煮后,会促进原料中的淀粉酶与淀粉发生化学反应,发生水解,进行发酵。 生物发酵法要确保酵母菌的酒精发酵环境,视情况而定,进行相应的高压、高温环境蒸 煮操作。 三、生物发酵法制燃料乙醇生产中废气废液的处理方法 生物发酵法制燃料乙醇生产中不可避免的会出现相应的废气废料,纤维素乙醇废液是一 种高温度、高悬浮物、粘度大、呈酸性的有机废水,其主要含有残余的糖、纤维素、木质素、各种无机盐及菌蛋白等物质。一般来源于制燃料乙醇各个工序中,要想妥善处理相关问题, 需要优化制造工艺,从源头解决;或是加强后续补救措施,解决废气废液的排放问题。 (一)源头处理方法 在生产过程中优化处理就是指在提高燃料制乙醇的液化效果,使得原料物质中所含有的 糖被全部利用。因为没有被完全利用的糖分会随着水解过程中产生的水排除,形成废液。并 且未被利用的糖也是一种资源浪费。通过对液化的温度、时间和工艺方法的优化,使得生物 发酵法进行连续发酵,提高燃料乙醇的制作效率。通过连续发酵法,把发酵罐之间的串联起来,使得总会有发酵反应进行。 优化蒸馏工序也是减少制燃料乙醇废气废液的办法之一,通过燃料乙醇直接加热气体的 方法,进行蒸馏后排出,这种方法既不环保,又造成资源浪费。需要优化蒸馏技术,通过差 压蒸馏,使得两边蒸馏塔中的压强有一定差异,使得负压塔能够排出二氧化碳等有害物质,

相关主题
文本预览
相关文档 最新文档