当前位置:文档之家› 专题07 数列与不等式相结合问题(第二篇)(原卷版)

专题07 数列与不等式相结合问题(第二篇)(原卷版)

专题07 数列与不等式相结合问题(第二篇)(原卷版)
专题07 数列与不等式相结合问题(第二篇)(原卷版)

6 / 6

备战2020年高考数学大题精做之解答题题型全覆盖高端精品

第二篇 数列与不等式

专题07 数列与不等式相结合问题

【典例1】【2020届安徽省亳州市高三上学期期末教学质量检测】 记n S 为数列{}n a 的前n 项和.已知12n n S a +=. (1)求{}n a 的通项公式;

(2)求使得22020n n a S >+的n 的取值范围. 【思路引导】 (1)根据11,1

,2

n n n S n a S S n -=?=?

-≥?计算可得;

(2)由(1)可得2122n n a -=,21n

n S =-,从而得到不等式解得.

【典例2】【2020届重庆西南大学附属中学校高三第五次月考】

已知等比数列{}n a 的前n 项和为n S ,且当*n N ∈时,n S 是12n +与2m 的等差中项(m 为实数). (1)求m 的值及数列{}n a 的通项公式; (2)令(

)*

21log n n b a n N

=+∈,是否存在正整数k ,使得1111

210n n n k

b

b b n ++???+>+++对任意正整数

6 / 6

n 均成立?若存在,求出k 的最大值;若不存在,说明理由. 【思路引导】

(1)根据等差中项的性质列方程,求得n S 的表达式.利用11,1

,2n n

n S n a S S n -=?=?-≥?,结合{}n a 是等比数列,

求得m 的值及数列{}n a 的通项公式. (2)由(1)求得n b 的表达式,将不等式

1111210

n n n k

b b b n ++???+>+++左边看成()f n ,利用差比较法判断出()f n 的单调性,由此求得()f n 的最小值,进而求得k 的最大值.

【典例3】【2020湖北省武汉华中师大附中高三5月考试】

已知等差数列{}n a 中,公差0d ≠,735S =,且2a ,5a ,11a 成等比数列.

()1求数列{}n a 的通项公式;

()2若n T 为数列11n n a a +??

????的前n 项和,且存在*n N ∈,使得10n n T a λ+-≥成立,求实数λ的取值范围.

【思路引导】(1)由题意可得()()()121

1176735,2410,

a d a d a d a d ??

+=???+=++?解得1a d ,即可求得通项公式;(2)

1111

12

n n a a n n +=-++,裂项相消求和n T = ()112222n n n -=++,因为存在*N n ∈,使得10n n T a λ--≥成

立,所以存在*

N n ∈,使得()()2022n n n λ-+≥+成立,即存在*N n ∈,使得()

222n n λ≤+成立.求出

()

2

22n n +的最大值即可解得λ的取值范围.

【典例4】【2020届江西省南昌市上学期期末考试】

已知{}n a 是递增的等比数列,若3520a a +=,且1235

4

a a a ,,成等差数列.

6 / 6

(1)求{}n a 的前n 项和n S ; (2)设12n n b S =

+,且数列{}n b 的前n 项和为n T ,求证:1

13

n T ≤<. 【思路引导】 (1)利用等差中项可得2135

2

a a a =+,再利用等比数列的通项公式代入求得q ,可代回3520a a +=中求得1a ,进而由公式求解即可; (2)由(1)可得121n n

b =-,则11

32n

n

b ≤<,从而求和即可证明

【典例5】【陕西省安康市2019-2020学年高三上学期12月阶段性】 已知数列{}n a 为等差数列. (1)求证:()

2

12n n n a a a ++;

(2)设21n a n =-,且其前n 项和n S ,1n S ??

????

的前n 项和为n T ,求证:2n T <.

【思路引导】

(1)利用等差数列的性质122n n n a a a ++=+,再根据基本不等式即可证明. (2)由等差数列的求和公式求解n S ,再由裂项相消的缩放法求证即可.

【典例6】【2020届天津市第一中学高三上学期第二次月考】

已知等比数列{}n a 的各项均为正数,5462,,4a a a 成等差数列,且满足2

434a a =,数列{}n b 的前n 项和

(1)

2

n n n S b +=

,*n N ∈,且11b =. (1)求数列{}n a 和{}n b 的通项公式;

(2)设,,n n n

b n

c a n ??=???为奇数

为偶数,求数列{}n c 的前n 项和n P .

(3)设25

2123n n n n n b d a b b +++=

,*n N ∈,{}n d 的前n 项和n T ,求证:13

n T <.

6 / 6

【思路引导】

(1)根据题意列出方程组,求出1a 、q ,从而得到{}n a 的通项公式,当2n ≥时,

111

22n n n n n nb n b S S b --+=-=

-,化简可得{}n b n

是首项为1的常数列,即可求得{}n b 的通项公式; (2)分类讨论,当n 为偶数时,()()13124n n n p b b b a a a -=++?++++?+,分别利用等差数列、等比数列的前n 项和公式求和即可,当n 为奇数时,由1n n n P P b -=+可求得结果;(3)裂项法可得

【典例7】【河北省石家庄二中2019-2020学年高三年级上学期12月月考】 已知数列{}n a 满足125

a =

,且*

113220,N n n n n a a a a n ++-+=∈,数列{}n b 为正项等比数列,且123b b +=,34b =.

(1)求数列{}n a 和{}n b 的通项公式; (2)令2n

n n

b c a =

,12n n S c c c =+++,求证:1

01n

S <

<. 【思路引导】

(1)变形已知等式得数列2n a ??

????

为等差数列,从而可求通项公式,数列{}n b 是等比数列,用基本量法可求得通项公式;

(2)用错位相减法求得和n S ,即可证结论成立.

1. 【2020届北京市昌平区高三上学期期末数学试题】 已知等差数列{}n a 满足13428,4a a a a +=-=. (1)求数列{}n a 的通项公式及前n 项和n S ; (2)记数列1

{

}n S 的前n 项和为n T ,若99100

n T >,求n 的最小值.

6 / 6

2. 【天津市红桥区2019届高三二模数学】

已知数列{}n a 是公比大于1的等比数列(*)n N ∈,24a =,且21+a 是1a 与3a 的等差中项. I.求数列{}n a 的通项公式;

II.设2log n n b a =,n S 为数列{}n b 的前n 项和,记123

1111

=++++

n n

T S S S S ,证明:12n T ≤<. 3. 【2020届浙江省嘉兴市高三上学期期末考试】 已知数列{}n a 的前n 项和为n S ,(

)*

21n n S a n N +=∈.

(1)求数列{}n a 的通项公式; (2)若11111n n n c a a +=

++-,n T 为数列{}n c 的前n 项和.求证:123

n T n >-. 4. 【重庆市巴蜀中学2019-2020学年高考适应性月考卷】

已知数列{}n a ,是一个等差数列,且22a =,145a a +=,数列{}n b 是各项均为正数的等比数列,且满足:11

2

b =

,24164

b b ?=

. (1)求数列{}n a 与{}n b 的通项公式; (2)求证:11222n n a b a b a b ++???+<.

5. 【湖北省荆州中学、宜昌一中、龙泉中学三校2019-2020学年高三联考数学】

已知数列{}n a 中,11a =,其前n 项的和为n S ,且当2n ≥时,满足21

n

n n S a S =-.

(1)求证:数列1n S ??

?

???

是等差数列; (2)证明:22

21274

n S S S ++

+<

. 6. 【2020届重庆市云阳江口中学高三上学期第三次月考】

设数列{}n a 的前n 项和n S ,数列{}n S 的前n 项和为{}n T ,满足*

32,n n T S n n N =-∈.

(Ⅰ)求数列{}n a 的通项公式; (Ⅰ)求证:*

1,n S n N ≥∈.

6 / 6

7. 【湖南省邵阳市2019-2020学年高三第一次联考】 已知数列{}n a 的前n 项和12n n S a a =-,且满足1a ,21

2

a +,3a 成等差数列. (1)求数列{}n a 的通项公式; (2)设数列1

{

}n a 的前n 项和为n T ,求使1|2|500

n T -<成立n 的最小值. 8. 若数列{an}是的递增等差数列,其中的a 3=5,且a 1,a 2,a 5成等比数列, (1)求{a n }的通项公式; (2)设b n =

,求数列{b n }的前项的和T n .

(3)是否存在自然数m ,使得 <T n <

5

m

对一切n ∈N*恒成立?若存在,求出m 的值;若不存在,说明理由.

9. 【内蒙古呼和浩特市2019-2020学年高三上学期质量普查调研】

已知n S 为数列n a 的前n 项和,已知0n a >,2

243n n n a a S +=+,且1n n a b =.

(1)求数列{}n b 的通项公式n b ;

(2)求满足122311

...7

n n b b b b b b ++++<的n 的最大值. 10. 设()()1122,,,A x y B x y 是函数()21log 21x f x x =+-的图象上任意两点,且1

()2

OM OA OB =+,已

知点M 的横坐标为1

2

(1)求证:M 点的纵坐标为定值; (2)若*121...,,2n n S f f f n N n n n n -????

??=+++∈≥

? ? ???????

且求n S ; (3)已知

=12 131 2(1)(1)n

n n n S S +????=≥++???,其中*n N ∈,n T 为数列{}n a 的前n 项和,若()11n n T S λ+<+对一切*n N ∈都成立,试求λ的取值范围.

高中数学归纳法大全数列不等式精华版

§数学归纳法 1.数学归纳法的概念及基本步骤 数学归纳法是用来证明某些与正整数n有关的数学命题的一种方法.它的基本步骤是: (1)验证:n=n0 时,命题成立; (2)在假设当n=k(k≥n0)时命题成立的前提下,推出当n=k+1时,命题成立. 根据(1)(2)可以断定命题对一切正整数n都成立. 2.归纳推理与数学归纳法的关系 数学上,在归纳出结论后,还需给出严格证明.在学习和使用数学归纳法时, 需要特别注意: (1)用数学归纳法证明的对象是与正整数n有关的命题; (2)在用数学归纳法证明中,两个基本步骤缺一不可. 1.用数学归纳法证明命题的第一步时,是验证使命题成立的最小正整数n,注意n不一定是1. 2.当证明从k到k+1时,所证明的式子不一定只增加一项;其次,在证明命题对n=k+1成立时,必须运用命题对n=k成立的归纳假设.步骤二中,在 由k到k+1的递推过程中,突出两个“凑”:一“凑”假设,二“凑”结论.关键是明确n=k+1时证明的目标,充分考虑由n=k到n=k+1时命题 形式之间的区别与联系,若实在凑不出结论,特别是不等式的证明,还可以应用比较法、分析法、综合法、放缩法等来证明当n=k+1时命题也成立,这也是证题的常用方法. 3.用数学归纳法证命题的两个步骤相辅相成,缺一不可.尽管部分与正整数 有关的命题用其他方法也可以解决,但题目若要求用数学归纳法证明,则必须 依题目的要求严格按照数学归纳法的步骤进行,否则不正确. 4.要注意“观察——归纳——猜想——证明”的思维模式,和由特殊到一般的数学思想的应用,加强合情推理与演绎推理相结合的数学应用能力.

5.数学归纳法与归纳推理不同.(1)归纳推理是根据一类事物中部分事物具有某种属性,推断该类事物中每一个都有这种属性.结果不一定正确,需要进行严格的证明.(2)数学归纳法是一种证明数学命题的方法,结果一定正确. 6.在学习和使用数学归纳法时,需要特别注意: (1)用数学归纳法证明的对象是与正整数n 有关的命题,要求这个命题对所有的正整数n 都成立; (2)在用数学归纳法证明中,两个基本步骤缺一不可. 数学归纳法是推理逻辑,它的第一步称为奠基步骤,是论证的基础保证,即通过验证落实传递的起点,这个基础必须真实可靠;它的第二步称为递推步骤,是命题具有后继传递的保证,即只要命题对某个正整数成立,就能保证该命题对后继正整数都成立,两步合在一起为完全归纳步骤,称为数学归纳法,这两步各司其职,缺一不可.特别指出的是,第二步不是判断命题的真伪,而是证明命题是否具有传递性.如果没有第一步,而仅有第二步成立,命题也可能是假命题. 证明:12+122+123+…+12 n -1+12n =1-1 2n (其中n ∈N +). [证明] (1)当n =1时,左边=12,右边=1-12=1 2,等式成立. (2)假设当n =k (k ≥1)时,等式成立,即 12+122+123+…+12k -1+12k =1-12k , 那么当n =k +1时, 左边=12+122+123+…+12k -1+12k +1 2k +1 =1-12k +12k +1=1-2-12k +1=1-1 2k +1=右边. 这就是说,当n =k +1时,等式也成立. 根据(1)和(2),可知等式对任何n ∈N +都成立. 用数学归纳法证明:1-12+13-14+…+12n -1- 1 2n

利用放缩法证明数列型不等式压轴题

利用放缩法证明数列型不等式压轴题 惠州市华罗庚中学 欧阳勇 摘要:纵观近几年高考数学卷,压轴题很多是数列型不等式,其中通常需要证明数列型不等式,它不但可以考查证明不等式和数列的各种方法,而且还可以综合考查其它多种数学思想方法,充分体现了能力立意的高考命题原则。处理数列型不等式最重要要的方法为放缩法。放缩法的本质是基于最初等的四则运算,利用不等式的传递性,其优点是能迅速地化繁为简,化难为易,达到事半功倍的效果;其难点是变形灵活,技巧性强,放缩尺度很难把握。对大部分学生来说,在面对这类考题时,往往无从下笔.本文以数列型不等式压轴题的证明为例,探究放缩法在其中的应用,希望能抛砖引玉,给在黑暗是摸索的学生带来一盏明灯。 关键词:放缩法、不等式、数列、数列型不等式、压轴题 主体: 一、常用的放缩法在数列型不等式证明中的应用 1、裂项放缩法:放缩法与裂项求和的结合,用放缩法构造裂项求和,用于解决和式 问题。裂项放缩法主要有两种类型: (1)先放缩通项,然后将其裂成某个数列的相邻两项的差,在求和时消去中间的项。 例1设数列{}n a 的前n 项的和1412 2333n n n S a +=-?+,1,2,3, n =。设2n n n T S =, 1,2,3, n =,证明: 1 32 n i i T =< ∑。 证明:易得12(21)(21),3 n n n S +=--1132311()2(21)(21)22121n n n n n n T ++= =-----, 11223 111 31131111 11 ()()221212212121212121 n n i i i n n i i T ++===-=-+-++ ---------∑∑ = 113113()221212 n +-<-- 点评: 此题的关键是将12(21)(21)n n n +--裂项成1 11 2121 n n +---,然后再求和,即可达到目标。 (2)先放缩通项,然后将其裂成(3)n n ≥项之和,然后再结合其余条件进行二次放缩。 例2 已知数列{}n a 和{}n b 满足112,1(1)n n n a a a a +=-=-,1n n b a =-,数列{}n b 的

(浙江专用)2020高考数学二轮复习 专题三 数列与不等式 第3讲 数列的综合问题学案

第3讲 数列的综合问题 [考情考向分析] 1.数列的综合问题,往往将数列与函数、不等式结合,探求数列中的最值或证明不等式.2.以等差数列、等比数列为背景,利用函数观点探求参数的值或范围.3.与数列有关的不等式的证明问题是高考考查的一个热点,也是一个难点,主要涉及到的方法有作差法、放缩法、数学归纳法等. 热点一 利用S n ,a n 的关系式求a n 1.数列{a n }中,a n 与S n 的关系 a n =??? ?? S 1,n =1,S n -S n -1,n ≥2. 2.求数列通项的常用方法 (1)公式法:利用等差(比)数列求通项公式. (2)在已知数列{a n }中,满足a n +1-a n =f (n ),且f (1)+f (2)+…+f (n )可求,则可用累加法求数列的通项a n . (3)在已知数列{a n }中,满足 a n +1 a n =f (n ),且f (1)·f (2)·…·f (n )可求,则可用累乘法求数列的通项a n . (4)将递推关系进行变换,转化为常见数列(等差、等比数列). 例1 (2018·浙江)已知等比数列{a n }的公比q >1,且a 3+a 4+a 5=28,a 4+2是a 3,a 5的等差中项.数列{b n }满足 b 1=1,数列{(b n +1-b n )a n }的前n 项和为2n 2+n . (1)求q 的值; (2)求数列{b n }的通项公式. 解 (1)由a 4+2是a 3,a 5的等差中项, 得a 3+a 5=2a 4+4, 所以a 3+a 4+a 5=3a 4+4=28,解得a 4=8. 由a 3+a 5=20,得8? ?? ??q +1q =20, 解得q =2或q =1 2. 因为q >1,所以q =2. (2)设c n =(b n +1-b n )a n ,数列{c n }的前n 项和为S n . 由c n =? ?? ?? S 1,n =1, S n -S n -1,n ≥2,解得c n =4n -1(n ∈N * ). 由(1)可得a n =2 n -1 , 所以b n +1-b n =(4n -1)×? ?? ??12n -1 ,

数列与不等式知识点及练习唐

数列与不等式 一、看数列是不是等差数列有以下三种方法: ①),2(1为常数d n d a a n n ≥=--②211-++=n n n a a a (2≥n )③b kn a n +=(k n ,为常数). 二、看数列是不是等比数列有以下两种方法: ①)0,,2(1≠≥=-且为常数q n q a a n n ②112 -+?=n n n a a a (2≥n ,011≠-+n n n a a a ) (2)在等差数列{n a }中,有关S n 的最值问题:(1)当1a >0,d<0时,满足?? ? ≤≥+0 01m m a a 的项数m 使得m s 取最大值. (2)当1a <0,d>0时,满足?? ?≥≤+0 1m m a a 的项数m 使得m s 取最小值.在解含绝对 值的数列最值问题时,注意转化思想的应用。 四.数列通项的常用方法: (1)利用观察法求数列的通项.(2)利用公式法求数列的通项:①?? ?≥-==-) 2()111n S S n S a n n n (;② {}n a 等差、等比数列{}n a 公式.(3)应用迭加(迭乘、迭代)法求数列的通项:① )(1n f a a n n +=+;②).(1n f a a n n =+(4)造等差、等比数列求通项:q pa a n n +=+1;②n n n q pa a +=+1;③)(1n f pa a n n +=+;④n n n a q a p a ?+?=++12.第一节通项公式 常用方法题型1 利用公式法求通项 例1:1.已知{a n }满足a n+1=a n +2,而且a 1=1。求a n 。 2.已知n S 为数列{}n a 的前n 项和,求下列数列{}n a 的通项公式: ⑴ 1322 -+=n n S n ; ⑵12+=n n S .总结:任何一个数列,它的前n 项和n S 与通项n a 都存在关系: ???≥-==-)2()1(11n S S n S a n n n 若1a 适合n a ,则把它们统一起来,否则就用分段函数表示. 题型2 应用迭加(迭乘、迭代)法求通项 例2:⑴已知数列{}n a 中,)2(12,211≥-+==-n n a a a n n ,求数列{}n a 的通项公式; ⑵已知n S 为数列{}n a 的前n 项和,11=a ,n n a n S ?=2 ,求数列{}n a 的通项公式. 总结:⑴迭加法适用于求递推关系形如“)(1n f a a n n +=+”; 迭乘法适用于求递推关系形如 “ ) (1n f a a n n ?=+“;⑵迭加法、迭乘法公式:① 1 1232211)()()()(a a a a a a a a a a n n n n n n n +-++-+-+-=-----

证明数列不等式之放缩技巧及缩放在数列中的应用大全[精选.]

证明数列不等式之放缩技巧以及不等式缩放在数列中应用 大全 证明数列型不等式,其思维跨度大、构造性强,需要有较高的放缩技巧,充满思考性和挑战性。这类问题的求解策略往往是:通过多角度观察所给数列通项的结构,深入剖析其特征,抓住其规律进行恰当地放缩. 一、利用数列的单调性 例1.证明:当Z n n ∈≥,6时, (2) 12 n n n +<. 证法一:令)6(2) 2(≥+=n n n c n n , 则0232)2(2)3)(1(1211<-=+-++=-+++n n n n n n n n n n c c , 所以当6n ≥时,1n n c c +<.因此当6n ≥时,6683 1.644 n c c ?≤==< 于是当6n ≥时, 2 (2) 1.2n n +< 证法二:可用数学归纳法证.(1)当n = 6时, 66(62)483 12644 ?+==<成立. (2)假设当(6)n k k =≥时不等式成立,即(2) 1.2 k k k +< 则当n =k +1时, 1(1)(3)(2)(1)(3)(1)(3) 1.222(2)(2)2k k k k k k k k k k k k k k ++++++++=?<<++g 由(1)、(2)所述,当n ≥6时,2 (1) 12 n n +<. 二、借助数列递推关系 例2.已知12-=n n a .证明: ()23111123 n n N a a a *++++<∈L . 证明:n n n n n a a 1 21121212211211111?=-?=-<-=+++Θ , ∴3 2])21(1[321)21(...12111112122132<-?=?++?+<+++= -+n n n a a a a a a S Λ. 例3. 已知函数f(x)=52168x x +-,设正项数列{}n a 满足1a =l ,()1n n a f a +=. (1) 试比较n a 与 5 4 的大小,并说明理由; (2) 设数列{}n b 满足n b =54-n a ,记S n =1 n i i b =∑.证明:当n ≥2时,S n <14(2n -1). 分析:比较大小常用的办法是作差法,而求和式的不等式常用的办法是放缩法。 解:(1) 因为10,0,n n a a +>>所以1680,0 2.n n a a -><<

放缩法证明数列不等式经典例题

放缩法证明数列不等式 主要放缩技能: 1.211111111(1)(n 1)1n n n n n n n n -=<<=-++-- 2221144112()141(21)(21)21214 n n n n n n n <===--+--+- ==>= ==<= =<= == =< = = 5.121122211(21)(21)(22)(21)(21)2121n n n n n n n n n n ---<==-------- 6. 111 22(1)11(1)2(1)22(1)2n n n n n n n n n n n n n +++++-==-+?+??+?

例1.设函数2*2()1x x n y n N x -+=∈+的最小值为n a ,最大值为n b , 且n c =(1)求n c ;(2)证明: 4444123111174n c c c c ++++ < 例2.证明:1611780<+ +< 例3.已知正项数列{}n a 的前n 项的和为n s ,且12n n n a s a + =,*n N ∈; (1)求证:数列{} 2n s 是等差数列; (2)解关于数列n 的不等式:11()48n n n a s s n ++?+>- (3)记312311112,n n n n b s T b b b b ==++++,证明:312n T <<

例4.已知数列{}n a 满足:n a n ?????? 是公差为1的等差数列,且121n n n a a n ++=+; (1) 求n a ;(2 12n na +++< 例5.在数列{}n a 中,已知1112,2n n n n a a a a a ++==-; (1)求n a ;(2)证明:112233(1)(1)(1)(1)3n n a a a a a a a a -+-+-++-< 例6.数列{}n a 满足:11122,1()22 n n n n n a a a n a ++==++; (1)设2n n n b a =,求n b ;(2)记11(1)n n c n n a +=+,求证:12351162 n c c c c ≤++++<

数列与不等式的综合问题

数列与不等式的综合问题 测试时间: 120分钟 满分:150分 解答题(本题共9小题,共150分,解答应写出文字说明、证明过程或演算步骤 ) 1. [2016 ?银川一模](本小题满分15分)在等差数列{刘中,a i = 3,其前n 项和为S, 等比数 列{b n }的各项均为正数,b 1 = 1,公比为q (q z 1),且b 2+ S 2= 12, q = f 2. b 2 (1) 求 a n 与 b n ; …1 1 1 1 2 (2) 证明:3< S +§+…+ S <§. b 2 + S 2= 12 , 1 1 1 故 S +S +…+ s n = 1 —百.(12 1 1 因为n >2所以0<市三$于 1 2 1 2 所以21 —市<2, 1 1 1 1 2 即 3= S 1 + S 2+…+ s n <2.(15 分) 3 3a 2. [2017 ?黄冈质检](本小题满分15分)已知数列{◎}的首项a 1= , a n +1 = 二,n 5 2a n + 1 a 1 a 2 a n 2 1 1 (2) 记S = + — + ???+—,若$<100,求最大正整数 n . (1)设{a n }的公差为d ,因为 q + 6 + d = 12, 所以 6 + d q = 解得 q = 3 或 q =— 4(舍),d = 3.(4 分) 故 a n = 3+ 3( n — 1) = 3n , b n = 3n 1 .(6 分) ⑵证明:因为S n = n 3+ 3n (8分) 1 所以S n 3+ 3n 1 1 n n +1 .(10 分) 1 1 - 2 1 1 2- 3 1 1 3-4 + … + 1 1 n n +1

数列中的不等式的证明

数列中的不等式的证明 证明数列中的不等式的一般方法: 1.数学归纳法: ①直接应用数学归纳法:这是由于数学归纳法可以用来证明与正整数相关的命题,当然也包括与正整数 相关的不等式(即数列不等式); ②加强命题后应用数学归纳法:直接应用数学归纳法并不能证明所有数列不等式,有些数列不等式必须 经加强后才能应用数学归纳法证出. 2.放缩法: ①单项放缩:将数列中的每一项(通项)进行相同的放缩; ②裂项放缩:将数列中的每一项裂开放缩成某两项之差; ③并项放缩:将数列中的两项合并放缩成一项; ④舍(添)项放缩:将数列中的某些项舍去或添加; ⑤排项放缩:将数列中的项进行排序(即确定数列的单调性),从而求出数列中项的最值,达到证明不 等式的目的,能用排项放缩证明的数列不等式必能直接应用数学归纳法证明,反之亦然; ⑥利用基本不等式放缩:例如平均数不等式也可在数列不等式的证明中起作用. 一、直接应用数学归纳法证明 1.已知函数ax x x f +-=3 )(在)1,0(上是增函数. )1(求实数a 的取值集合A (2)当a 中取A 中最小值时,定义数列}{n a 满足:)(21n n a f a =+且)1,0(1∈=b a ,b 为常数,试比较n n a a 与1+的大小 (3)在(2)的条件下,问是否存在正实数c 使10<-n n a a (3)}{12-n a 递增. 4.(2004.辽宁理科高考第21题) 已知函数223)(x ax x f -=的最大值不大于6 1,又当.8 1)(,]21,41[≥∈x f x 时 (1)求a 的值; (2)设.1 1.),(,21011+<∈=<<++n a N n a f a a n n n 证明 5.(2005.重庆理科高考第22题)数列{a n }满足)1(21)11(1211≥+++==+n a n n a a n n n 且. (1)用数学归纳法证明:)2(2≥≥n a n ; (2) 已知不等式)1(:,0)1ln(2≥<><+n e a x x x n 证明成立对,其中无理数e=2.71828….

导数之数列型不等式证明

函数与导数解答题之数列型不等式证明 例1.已知函数()()ln 3f x a x ax a R =--∈ (1)讨论函数)(x f 的单调性; (2)证明:*1111ln(1)()23n n N n + +++>+∈ (3)证明:()*ln 2ln 3ln 4ln 5ln 12,2345n n n N n n ???<≥∈ (4)证明:()*22222ln 2ln 3ln 4ln 5ln 112,23452n n n n n N n n +?????

例3.已知函数()x f x e ax a =--(其中,a R e ∈是自然对数的底数, 2.71828e =…). (1)当a e =时,求函数()f x 的极值;(II )当01a ≤≤时,求证()0f x ≥; (2)求证:对任意正整数n ,都有2111111222n e ??????+ +???+< ??? ???????. 例4.设函数()ln 1f x x px (1)求函数()f x 的极值点; (2)当p >0时,若对任意的x >0,恒有0)(≤x f ,求p 的取值范围; (3)证明:).2,()1(212ln 33ln 22ln 2222222≥∈+--<+++n N n n n n n n 例5.已知函数()ln 1f x x x =-+? (1)求()f x 的最大值; (2)证明不等式:()*121n n n n e n N n n n e ??????+++<∈ ? ? ?-???? ??

高考专题数列与不等式放缩法

高考专题——放缩法 一、基本方法 1.“添舍”放缩 通过对不等式的一边进行添项或减项以达到解题目的,这是常规思路。 例1. 设a ,b 为不相等的两正数,且a 3-b 3=a 2-b 2,求证143 <+<a b 。 例2. 已知a 、b 、c 不全为零,求证: a a b b b b c c c ac a a b c 22222232 ++++++++++>() [变式训练]已知* 21().n n a n N =-∈求证: *12 231 1...().23n n a a a n n N a a a +-<+++∈ 2. 分式放缩 一个分式若分子变大则分式值变大,若分母变大则分式值变小,一个真分式,分子、分 母同时加上同一个正数则分式值变大,利用这些性质,可达到证题目的。 例3. 已知a 、b 、c 为三角形的三边,求证:12<++<a b c b a c c a b +++。 3. 裂项放缩 若欲证不等式含有与自然数n 有关的n 项和,可采用数列中裂项求和等方法来解题。 例4. 已知n ∈N*,求n 2n 13 12 11<…+ ++ + 。 例5. 已知* N n ∈且)1n (n 3221a n +++?+?= ,求证:2 )1(2)1(2 +< <+n a n n n 对所有正整数n 都成立。 4. 公式放缩 利用已知的公式或恒不等式,把欲证不等式变形后再放缩,可获简解。 例6. 已知函数1212)(+-=x x x f ,证明:对于* N n ∈且3≥n 都有1 )(+>n n n f 。 例7. 已知2x 1)x (f +=,求证:当a b ≠时f a f b a b ()()-<-。

基本不等式在最值问题中的应用归纳

不等式中最值问题全梳理 教师专用(2020.8.23) 题型一 基本不等式与函数相结合的最值问题 例题1 若方程 ln x m =有两个不等的实根1x 和2x ,则22 12x x +的取值范围是( ) A .()1,+∞ B . ) +∞ C . ()2,+∞ D .()0,1 【分析】由方程可得两个实数根的关系,再利用不等式求解范围. 【解析】因为 ln x m =两个不等的实根是1x 和2x ,不妨令()()120,1,1,x x ∈∈+∞,12,Inx m Inx m =-= 故可得()120In x x =,解得211x x = ,则22 12x x + =212112x x +>=,故选:C. 【小结】本题考查对数函数的性质,涉及均值不等式的使用,属基础题. 例题2 2291 sin cos αα +的最小值为( ) A .2 B .16 C .8 D .12 【分析】利用22sin cos 1αα+=将 22 91sin cos αα +变为积为定值的形式后,根据基本不等式可求得最小值. 【解析】∵2 2 sin cos 1αα+=,∴()22 2222 9191sin cos sin cos sin cos αααααα ??+=++ ??? 2222 sin 9cos 1010616cos sin αααα=+++=,当且仅当23sin 4α=,2 1cos 4α=时“=”成立,故22 91 sin cos αα +的最小值为16. 【小结】本题考查了利用基本不等式求和的最小值,解题关键是变形为积为定值,才能用基本不等式求最 值,属于基础题. 例题3 已知函数y =log a x +1(a >0且a ≠1)图象恒过定点A ,若点A 在直线x m +y n -4=0(m >0,n >0)上,则 m +n 的最小值为________. 【解析】由题意可知函数y =log a x +1的图象恒过定点A (1,1),∵点A 在直线x m +y n -4=0上,∴1m +1 n =4,

数列与不等式的综合问题突破策略1

数列与不等式的综合问题突破策略 类型1:求有数列参与的不等式恒成立条件下参数问题 求数列与不等式相结合恒成立条件下的参数问题主要两种策略:(1)若函数f (x )在定义域为D ,则当x ∈D 时,有f (x )≥M 恒成立?f (x )min ≥M ;f (x )≤M 恒成立?f (x )max ≤M ;(2)利用等差数列与等比数列等数列知识化简不等式,再通过解不等式解得. 【题1】 等比数列{a n }的公比q >1,第17项的平方等于第24项,求使a 1+a 2+…+a n > 1231111 n a a a a ++++……恒成立的正整数n 的范围. 【题1】 利用条件中两项间的关系,寻求数列首项a 1与公比q 之间的关系,再利用等比数列前n 项公式和及所得的关系化简不等式,进而通过估算求得正整数n 的取值范围. 【解】 由题意得:(a 1q 16)2=a 1q 23,∴a 1q 9=1. 由等比数列的性质知数列{ 1n a }是以11a 为首项,以1q 为公比的等比数列,要使不等式成立, 则须1(1)1n a q q -->111(1) 11n a q q --,把a 2 1=q -18代入上式并整理,得q -18(q n -1)>q (1-1n q ), q n >q 19,∵q >1,∴n >19,故所求正整数n 的取值范围是n ≥20. 【点评】 本题解答数列与不等式两方面的知识都用到了,主要体现为用数列知识化简,用不等式知识求得最后的结果.本题解答体现了转化思想、方程思想及估算思想的应用. 【题2】设数列{a n }的前n 项和为S n .已知a 1=a ,a n +1=S n +3n ,n ∈N *. (1)设b n =S n -3n ,求数列{b n }的通项公式;(2)若a n +1≥a n ,n ∈N *,求a 的取值范围. 【题2】 第(1)小题利用S n 与a n 的关系可求得数列的通项公式;第(Ⅱ)小题将条件a n +1≥a n 转化为关于n 与a 的关系,再利用a ≤f (n )恒成立等价于a ≤f (n )min 求解. 【解】 (1)依题意,S n +1-S n =a n +1=S n +3n ,即S n +1=2S n +3n , 由此得S n +1-3 n +1=2(S n -3n ). 因此,所求通项公式为b n =S n -3n =(a -3)2 n -1,n ∈N *, ① (2)由①知S n =3n +(a -3)2 n -1,n ∈N *, 于是,当n ≥2时,a n =S n -S n -1=3n +(a -3)2 n -1-3n -1-(a -3)2 n -2=2×3n -1+(a -3)2 n -2, a n +1-a n =4×3 n -1+(a -3)2 n -2=2 n -2·[12·(32 )n -2 +a -3], 当n ≥2时,a n +1≥a n ,即2 n -2·[12·(32)n -2+a -3]≥0,12·(32 )n -2 +a -3≥0, ∴a ≥-9, 综上,所求的a 的取值范围是[-9,+∞) 【点评】 一般地,如果求条件与前n 项和相关的数列的通项公式,则可考虑S n 与a n 的关系求解.本题求参数取值范围的方法也一种常用的方法,应当引起重视. 类型2:数列参与的不等式的证明问题 此类不等式的证明常用的方法:(1)比较法,特别是差值比较法是最根本的方法;(2)分析法与综合法,一般是利用分析法分析,再利用综合法分析;(3)放缩法,主要是通过分母分子的扩大或缩小、项数的增加与减少等手段达到证明的目的. 【题3】 数列{a n }是等差数列,其前n 项和为S n ,a 3=7,S 4=24. (1)求数列{a n }的通项公式; (2)设p 、q 都是正整数,且p ≠q ,证明:S p +q <1 2 (S 2p +S 2q ). 【题3】 根据条件首先利用等差数列的通项公式及前n 项公式和建立方程组即可解决第(1)小题;第(2)小题利用差值比较法就可顺利解决. 【解】 (1)设等差数列{a n }的公差是d ,依题意得,??? a 1+2d =74a 1+6d =24,解得??? a 1=3 d =2 ,

数列与不等式专题练习[1]

数列与不等式专题练习 一、选择题 1.等差数列9}{,27,39,}{963741前则数列中n n a a a a a a a a =++=++项的和9S 等于( ) A .66 B .99 C .144 D .297 2.等比数列{}n a 中, ,243,952==a a 则{}n a 的前4项和为( ) A .81 B .120 C .168 D .192 3.12+与12-,两数的等比中项是( ) A .1 B .1- C .1± D .2 1 4.已知一等比数列的前三项依次为33,22,++x x x ,那么2113 -是此数列的第( )项 A .2 B .4 C .6 D .8 5.在公比为整数的等比数列{}n a 中,如果,12,183241=+=+a a a a 那么该数列的前8项之和为( ) A .513 B .512 C .510 D .8 225 6.已知等差数列{}n a 的公差为2,若431,,a a a 成等比数列, 则2a =( ) A .4- B .6- C .8- D .10- 7.设n S 是等差数列{}n a 的前n 项和,若==5 935,95S S a a 则( ) A .1 B .1- C .2 D . 21 8.若)32lg(),12lg(,2lg +-x x 成等差数列,则x 的值等于( ) A .1 B .0或32 C .32 D .5log 2 9.已知三角形的三边构成等比数列,它们的公比为q ,则q 的取值范围是( ) A .15(0,)2+ B .15(,1]2- C .15[1,)2+ D .)2 51,251(++- 10.在ABC ?中,tan A 是以4-为第三项, 4为第七项的等差数列的公差,tan B 是以 13为第三项, 9为第六项的等比数列的公比,则这个三角形是( ) A .钝角三角形 B .锐角三角形 C .等腰直角三角形 D .以上都不对 11.在等差数列{}n a 中,设n a a a S +++=...211,n n n a a a S 2212...+++=++,n n n a a a S 322123...+++=++,则,,,321S S S 关系为( ) A .等差数列 B .等比数列 C .等差数列或等比数列 D .都不对 12.等比数列{}n a 的各项均为正数,且564718a a a a +=,则3132310log log ...log a a a +++=( ) A .12 B .10 C .31log 5+ D .32log 5+

数列与不等式的综合问题

数列与不等式的综合问题

数列与不等式的综合问题 测试时间:120分钟 满分:150 分 解答题(本题共9小题,共150分,解答应写出文字说明、证明过程或演算步骤) 1.[2016·银川一模](本小题满分15分)在等差数列{a n }中,a 1=3,其前n 项和为S n ,等比数列{b n }的各项均为正数,b 1=1,公比为 q (q ≠1),且b 2+S 2=12,q =S 2 b 2 . (1)求a n 与b n ; (2)证明:13≤1S 1+1S 2+…+1S n <2 3 . 解 (1)设{a n }的公差为d ,因为 ???? ? b 2+S 2=12,q =S 2 b 2 ,

所以? ???? q +6+d =12,q =6+d q .解得q =3或q = -4(舍),d =3.(4分) 故a n =3+3(n -1)=3n ,b n =3n -1 .(6分) (2)证明:因为S n = n 3+3n 2 ,(8分) 所以1 S n =2n 3+3n =23? ?? ??1 n - 1n +1.(10分) 故1 S 1+1 S 2+…+1 S n = 23???? ??? ????1-12+? ????12-13+? ???? 13-14+…+? ????1n -1n +1 =23? ? ???1- 1n +1.(12分) 因为n ≥1,所以0<1n +1≤12,于是1 2≤1- 1 n +1 <1,

所以13≤23? ? ???1- 1n +1<23, 即13≤1S 1+1S 2+…+1S n <2 3 .(15分) 2.[2017·黄冈质检](本小题满分15分)已知数列{a n }的首项a 1=35,a n +1=3a n 2a n +1 ,n ∈N *. (1)求证:数列???? ?? 1a n -1为等比数列; (2)记S n =1a 1+1a 2+…+1 a n ,若S n <100,求最 大正整数n . 解 (1)证明:因为1 a n +1=23+1 3a n , 所以1 a n +1-1=13a n -13=13? ?? ??1 a n -1. 又因为1a 1-1≠0,所以1 a n -1≠0(n ∈N * ), 所以数列???? ?? 1a n -1为等比数列.(7分)

2019高考数学二轮复习专题三数列与不等式第1讲等差数列与等比数列学案

第1讲 等差数列与等比数列 [考情考向分析] 1.等差、等比数列基本量和性质的考查是高考热点,经常以小题形式出现.2.等差、等比数列的判定及综合应用也是高考考查的重点,注意基本量及定义的使用,考查分析问题、解决问题的综合能力. 热点一 等差数列、等比数列的运算 1.通项公式 等差数列:a n =a 1+(n -1)d ; 等比数列:a n =a 1·q n -1 . 2.求和公式 等差数列:S n = n (a 1+a n ) 2 =na 1+ n (n -1) 2 d ; 等比数列:S n =????? a 1(1-q n )1-q =a 1-a n q 1-q (q ≠1),na 1(q =1). 3.性质 若m +n =p +q , 在等差数列中a m +a n =a p +a q ; 在等比数列中a m ·a n =a p ·a q . 例1 (1)(2018·全国Ⅰ)记S n 为等差数列{a n }的前n 项和,若3S 3=S 2+S 4,a 1=2,则a 5等于( ) A .-12 B .-10 C .10 D .12 答案 B 解析 设等差数列{a n }的公差为d ,由3S 3=S 2+S 4, 得3???? ??3a 1+3×(3-1)2×d =2a 1+2×(2-1)2×d +4a 1+4×(4-1)2×d ,将a 1=2代入上式,解得d =-3, 故a 5=a 1+(5-1)d =2+4×(-3)=-10.故选B. (2)(2018·杭州质检)设各项均为正数的等比数列{a n }中,若S 4=80,S 2=8,则公比q =________,a 5=________. 答案 3 162

专题3.3 数列与函数、不等式相结合问题(解析版)

一.方法综述 数列与函数、不等式相结合是数列高考中的热点问题,难度较大,求数列与函数、不等式相结合问题时会渗透多种数学思想.因此求解过程往往方法多、灵活性大、技巧性强,但万变不离其宗,只要熟练掌握各个类型的特点即可.在考试中时常会考查一些压轴小题,如数列中的恒成立问题、数列中的最值问题、数列性质的综合问题、数列与函数的综合问题、数列与其他知识综合问题中都有所涉及,本讲就这类问题进行分析. 二.解题策略 类型一数列中的恒成立问题 【例1】【安徽省毛坦厂中学2019届高三校区4月联考】已知等差数列满足,,数列满足,记数列的前项和为,若对于任意的,,不等式恒成立,则实数的取值范围为() A.B. C.D. 【答案】A 【解析】 由题意得,则,等差数列的公差, . 由, 得, 则不等式恒成立等价于恒成立, 而, 问题等价于对任意的,恒成立. 设,, 则,即,

解得或. 故选:A. 【指点迷津】对于数列中的恒成立问题,仍要转化为求最值的问题求解,解答本题的关键是由等差数列通项公式可得,进而由递推关系可得 ,借助裂项相消法得到,又 ,问题等价于对任意 的 , 恒成立. 【举一反三】已知数列{}n a 的首项1a a =,其前n 项和为n S ,且满足()2 142,n n S S n n n N -++=≥∈,若 对任意1,n n n N a a ++∈<恒成立,则a 的取值范围是( ) A .()3,5 B .()4,6 C .[)3,5 D .[)4,6 【答案】A 类型二 数列中的最值问题 【例2】【浙江省湖州三校2019年高考模拟】已知数列满足 , ,则使 的正整数的最小值是( ) A .2018 B .2019 C .2020 D .2021

专题五 数列不等式专题

专题五 数列不等式专题 【命题趋向】在历年高考中,往往把数列当作重要的内容来考查.在以考查等差数列和等比数列的定义、数列的通项公式、数列求和等基础知识为主的试题中,关注概念辨析以及等差、等比数列的“基本量法”;在考查数列的综合问题时,对能力有较高的要求,试题有一定的难度和综合性,常与单调性、最值、不等式、导数、数学归纳法等知识交织在一起,涉及化归与转化、分类与整合等数学思想.在考查相关知识内容的基础上,高考把对数列的考查重点放在对数学思想方法、推理论证能力以及应用意识和创新意识的考查上.使用选择题、填空题形式考查数列的试题,往往突出考查函数与方程、数形结合、特殊与一般、有限与无限等数学思想方法.使用解答题形式考查数列的试题,其内容往往是一般数列的内容,其方法是研究数列通项及前n 项和的一般方法,并且往往不单一考查数列知识,而是与其他内容相结合,体现对解决综合问题的考查力度.数列综合题有一定的难度,对能力有较高的要求,对合理区分出较高能力的考生起到重要作用.在高考试卷中一般有一个小题有针对性地考查数列的知识和方法,有一道综合解答题重点对数列、数列和函数导数、不等式进行综合考查考查. 由于新课标的考试大纲在必考部分删除了不等式的证明方法,分式不等式、带绝对值的不等式的解法,绝对值三角不等式等内容,高考对不等式的考查主要体现在其和其他知识的交汇考查上,重点是不等式和导数的结合、不等式和数列的结合、不等式和实际问题的结合,不等式与线性规划.高考试卷中一般有1-2个小题考查基本不等式的运用、简单的线性规划,在解答题中与其他知识交汇考查. 【考点透析】数列的主要考点有:数列的概念及其表示,等差数列、等比数列的概念、通项公式和前n 项和公式,数列的简单应用等.不等式的主要考点有:不等关系与不等式,一元二次不等式的解法,简单的线性规划,基本不等式及其应用. 【例题解析】 题型1 数列的一般问题 例1.(2009江苏泰州期末6)若数列{}n a 的前n 项和210(123)n S n n n =-=,,,,则 数列{}n na 中数值最小的项是第 项. 分析:根据数列中n a 与n S 的关系求出n a 后解决. 解析:当1n =时,119a S ==-;当2n ≥时,22110(1)10(1)211n n n a S S n n n n n -=-=---+-=-.可以统一为211n a n =-,故2211n na n n =-,该关于n 的二次函数的对称轴是114 n =,考虑到n 为正整数,且对称轴离3n =较近,故数列{}n na 中数值最小的项是第3项.答案3. 点评:数列问题中其通项公式、前n 项和公式都是关于正整数n 的函数,要善于从函数的观点认识和理解数列问题.数列的一般问题中通项n a 与前n 项和n S 的关系是重点,要注意把1n =和2n ≥分开讨论,再看能不能统一. 例2.(江苏扬州市2008-2009学年度第一学期期未调研测试第13题)数列{}n a 的

放缩法证明数列不等式经典例题

放缩法证明数列不等式 主要放缩技能: 1.211111111(1)(n 1)1n n n n n n n n -=<<=-++-- 2221144112()141(21)(21)21214 n n n n n n n <===--+--+- ==>= ==<= =<= == =< = = 5. 121122211(21)(21)(22)(21)(21)2121 n n n n n n n n n n ---<==-------- 6. 111 22(1)11(1)2(1)22(1)2n n n n n n n n n n n n n +++++-==-+?+??+?

例1.设函数2*2()1x x n y n N x -+=∈+的最小值为n a ,最大值为n b , 且n c =(1)求n c ;(2)证明: 4444123111174n c c c c ++++ < 例2.证明:1611780<+ ++< 例3.已知正项数列{}n a 的前n 项的和为n s ,且12n n n a s a + =,*n N ∈; (1)求证:数列{} 2n s 是等差数列; (2)解关于数列n 的不等式:11()48n n n a s s n ++?+>- (3)记312311112,n n n n b s T b b b b = = ++++,证明:312n T <<

例4. 已知数列{}n a 满足:n a n ?????? 是公差为1的等差数列,且121n n n a a n ++=+; (1) 求n a ;(2 12n na +++< 例5.在数列{}n a 中,已知1112,2n n n n a a a a a ++==-; (1)求n a ;(2)证明:112233(1)(1)(1)(1)3n n a a a a a a a a -+-+-++-< 例6. 数列{}n a 满足:11122,1()22 n n n n n a a a n a ++==++; (1)设2n n n b a =,求n b ;(2)记11(1)n n c n n a +=+,求证:12351162 n c c c c ≤++++<

相关主题
文本预览
相关文档 最新文档