当前位置:文档之家› 数列中的不等式问题_opt

数列中的不等式问题_opt

数列中的不等式问题_opt
数列中的不等式问题_opt

高考数列与不等式压轴题(难题)

高考数列与不等式压轴题 1. 已知数列{}n a 为等差数列,且满足211n n n a a na +=-+,*n N ∈。 1) 求数列{}n a 的通项公式; 2) 求证: 12321 1111 ...ln 2n n n n a a a a ++++++++<. 3) 当01λ<<时,设1 ()2n n b a λ=-,(1)n n c a λ=-,数列1n n b c ?????? 的前n 项和为n T ,求证: 91 43 n n T n -> +。 2. (2013?蓟县一模)已知数列{}n a 中,11a =,*12311 23()2 n n n a a a na a n N +++++???+= ∈ 1) 求数列{}n a 的通项n a ; 2) 求数列2 {}n n a 的前n 项和n T ; 3) 若存在* n N ∈,使得(1)n a n λ≥+成立,求实数λ的取值范围. 3. (2010?无锡模拟)已知数列{}n a 的前n 项和为n S ,数列是公比为2的等比数列. 1) 证明:数列{}n a 成等比数列的充要条件是13a =; 2) 设*5(1)()n n n b n a n N =--∈,若1n n b b +<对*n N ∈恒成立,求1a 的取值范围. 4. 已知数列{}n a 中,2 2(a a a =+为常数),n S 是{}n a 的前n 项和,且n S 是n na 与na 的等差中项. 1) 求数列{}n a 的通项公式; 2) 设数列{}n b 是首项为1,公比为2 3 - 的等比数列,n T 是{}n b 的前n 项和,问是否存在常数a ,使1012n a T ?<恒成立?若存在,求出a 的取值范围;若不存在,说明理由. 5. 已知数列{}n a 满足11a =,2*123()1 n n n n a a m a n N a +++=∈+。 1) 若恒有1n n a a +≥,求m 的取值范围. 2) 在31m -≤<时,证明: 121111 11112 n n a a a ++???+≥-+++ 3) 设正项数列{}n a 的通项n a 满足条件:*() 10()n n n a na n N +-=∈,求证:1 02 n a ≤≤ 。

高中数学归纳法大全数列不等式精华版

§数学归纳法 1.数学归纳法的概念及基本步骤 数学归纳法是用来证明某些与正整数n有关的数学命题的一种方法.它的基本步骤是: (1)验证:n=n0 时,命题成立; (2)在假设当n=k(k≥n0)时命题成立的前提下,推出当n=k+1时,命题成立. 根据(1)(2)可以断定命题对一切正整数n都成立. 2.归纳推理与数学归纳法的关系 数学上,在归纳出结论后,还需给出严格证明.在学习和使用数学归纳法时, 需要特别注意: (1)用数学归纳法证明的对象是与正整数n有关的命题; (2)在用数学归纳法证明中,两个基本步骤缺一不可. 1.用数学归纳法证明命题的第一步时,是验证使命题成立的最小正整数n,注意n不一定是1. 2.当证明从k到k+1时,所证明的式子不一定只增加一项;其次,在证明命题对n=k+1成立时,必须运用命题对n=k成立的归纳假设.步骤二中,在 由k到k+1的递推过程中,突出两个“凑”:一“凑”假设,二“凑”结论.关键是明确n=k+1时证明的目标,充分考虑由n=k到n=k+1时命题 形式之间的区别与联系,若实在凑不出结论,特别是不等式的证明,还可以应用比较法、分析法、综合法、放缩法等来证明当n=k+1时命题也成立,这也是证题的常用方法. 3.用数学归纳法证命题的两个步骤相辅相成,缺一不可.尽管部分与正整数 有关的命题用其他方法也可以解决,但题目若要求用数学归纳法证明,则必须 依题目的要求严格按照数学归纳法的步骤进行,否则不正确. 4.要注意“观察——归纳——猜想——证明”的思维模式,和由特殊到一般的数学思想的应用,加强合情推理与演绎推理相结合的数学应用能力.

5.数学归纳法与归纳推理不同.(1)归纳推理是根据一类事物中部分事物具有某种属性,推断该类事物中每一个都有这种属性.结果不一定正确,需要进行严格的证明.(2)数学归纳法是一种证明数学命题的方法,结果一定正确. 6.在学习和使用数学归纳法时,需要特别注意: (1)用数学归纳法证明的对象是与正整数n 有关的命题,要求这个命题对所有的正整数n 都成立; (2)在用数学归纳法证明中,两个基本步骤缺一不可. 数学归纳法是推理逻辑,它的第一步称为奠基步骤,是论证的基础保证,即通过验证落实传递的起点,这个基础必须真实可靠;它的第二步称为递推步骤,是命题具有后继传递的保证,即只要命题对某个正整数成立,就能保证该命题对后继正整数都成立,两步合在一起为完全归纳步骤,称为数学归纳法,这两步各司其职,缺一不可.特别指出的是,第二步不是判断命题的真伪,而是证明命题是否具有传递性.如果没有第一步,而仅有第二步成立,命题也可能是假命题. 证明:12+122+123+…+12 n -1+12n =1-1 2n (其中n ∈N +). [证明] (1)当n =1时,左边=12,右边=1-12=1 2,等式成立. (2)假设当n =k (k ≥1)时,等式成立,即 12+122+123+…+12k -1+12k =1-12k , 那么当n =k +1时, 左边=12+122+123+…+12k -1+12k +1 2k +1 =1-12k +12k +1=1-2-12k +1=1-1 2k +1=右边. 这就是说,当n =k +1时,等式也成立. 根据(1)和(2),可知等式对任何n ∈N +都成立. 用数学归纳法证明:1-12+13-14+…+12n -1- 1 2n

高中不等式的证明方法

不等式的证明方法 不等式的证明是高中数学的一个难点,证明方法多种多样,近几年高考出现较为形式较为活跃,证明中经常需与函数、数列的知识综合应用,灵活的掌握运用各种方法是学好这部分知识的一个前提,下面我们将证明中常见的几种方法作一列举。 注意ab b a 22 2 ≥+的变式应用。常用2 222b a b a +≥ + (其中+ ∈R b a ,)来解决有关根式不等式的问题。 一、比较法 比较法是证明不等式最基本的方法,有做差比较和作商比较两种基本途径。 1、已知a,b,c 均为正数,求证: a c c b b a c b a ++ +++≥++1 11212121 证明:∵a,b 均为正数, ∴ 0) (4)(44)()(14141)(2 ≥+=+-+++=+-+-b a ab b a ab ab b a a b a b b a b a b a 同理 0)(41 4141)(2 ≥+= +-+-c b bc c b c b c b ,0) (414141)(2 ≥+=+-+-c a ac a c a c a c 三式相加,可得 01 11212121≥+-+-+-++a c c b b a c b a ∴a c c b b a c b a ++ +++≥++111212121 二、综合法 综合法是依据题设条件与基本不等式的性质等,运用不等式的变换,从已知条件推出所要证明的结论。 2、a 、b 、),0(∞+∈c ,1=++c b a ,求证: 31222≥ ++c b a 证:2 222)(1)(3c b a c b a ++=≥++?∴ 2222)()(3c b a c b a ++-++0 )()()(222222222222≥-+-+-=---++=a c c b b a ca bc ab c b a 3、设a 、b 、c 是互不相等的正数,求证:)(4 4 4 c b a abc c b a ++>++ 证 : ∵ 2 2442b a b a >+ 2 2442c b c b >+ 2 2442a c a c >+∴ 222222444a c c b b a c b a ++>++ ∵ c ab c b b a c b b a 2 2222222222=?>+同理:a bc a c c b 222222>+ b ca b a a c 222222>+ ∴ )(222222c b a abc a c c b b a ++>++ 4、 知a,b,c R ∈,求证: )(22 2 2 2 2 2 c b a a c c b b a ++≥++ ++ + 证明:∵ ) (2 2 2 2 2 2 2 2)(22b a b a b a b a ab ab +≥++≥+∴≥+

利用放缩法证明数列型不等式压轴题

利用放缩法证明数列型不等式压轴题 惠州市华罗庚中学 欧阳勇 摘要:纵观近几年高考数学卷,压轴题很多是数列型不等式,其中通常需要证明数列型不等式,它不但可以考查证明不等式和数列的各种方法,而且还可以综合考查其它多种数学思想方法,充分体现了能力立意的高考命题原则。处理数列型不等式最重要要的方法为放缩法。放缩法的本质是基于最初等的四则运算,利用不等式的传递性,其优点是能迅速地化繁为简,化难为易,达到事半功倍的效果;其难点是变形灵活,技巧性强,放缩尺度很难把握。对大部分学生来说,在面对这类考题时,往往无从下笔.本文以数列型不等式压轴题的证明为例,探究放缩法在其中的应用,希望能抛砖引玉,给在黑暗是摸索的学生带来一盏明灯。 关键词:放缩法、不等式、数列、数列型不等式、压轴题 主体: 一、常用的放缩法在数列型不等式证明中的应用 1、裂项放缩法:放缩法与裂项求和的结合,用放缩法构造裂项求和,用于解决和式 问题。裂项放缩法主要有两种类型: (1)先放缩通项,然后将其裂成某个数列的相邻两项的差,在求和时消去中间的项。 例1设数列{}n a 的前n 项的和1412 2333n n n S a +=-?+,1,2,3, n =。设2n n n T S =, 1,2,3, n =,证明: 1 32 n i i T =< ∑。 证明:易得12(21)(21),3 n n n S +=--1132311()2(21)(21)22121n n n n n n T ++= =-----, 11223 111 31131111 11 ()()221212212121212121 n n i i i n n i i T ++===-=-+-++ ---------∑∑ = 113113()221212 n +-<-- 点评: 此题的关键是将12(21)(21)n n n +--裂项成1 11 2121 n n +---,然后再求和,即可达到目标。 (2)先放缩通项,然后将其裂成(3)n n ≥项之和,然后再结合其余条件进行二次放缩。 例2 已知数列{}n a 和{}n b 满足112,1(1)n n n a a a a +=-=-,1n n b a =-,数列{}n b 的

数列与不等式知识点及练习唐

数列与不等式 一、看数列是不是等差数列有以下三种方法: ①),2(1为常数d n d a a n n ≥=--②211-++=n n n a a a (2≥n )③b kn a n +=(k n ,为常数). 二、看数列是不是等比数列有以下两种方法: ①)0,,2(1≠≥=-且为常数q n q a a n n ②112 -+?=n n n a a a (2≥n ,011≠-+n n n a a a ) (2)在等差数列{n a }中,有关S n 的最值问题:(1)当1a >0,d<0时,满足?? ? ≤≥+0 01m m a a 的项数m 使得m s 取最大值. (2)当1a <0,d>0时,满足?? ?≥≤+0 1m m a a 的项数m 使得m s 取最小值.在解含绝对 值的数列最值问题时,注意转化思想的应用。 四.数列通项的常用方法: (1)利用观察法求数列的通项.(2)利用公式法求数列的通项:①?? ?≥-==-) 2()111n S S n S a n n n (;② {}n a 等差、等比数列{}n a 公式.(3)应用迭加(迭乘、迭代)法求数列的通项:① )(1n f a a n n +=+;②).(1n f a a n n =+(4)造等差、等比数列求通项:q pa a n n +=+1;②n n n q pa a +=+1;③)(1n f pa a n n +=+;④n n n a q a p a ?+?=++12.第一节通项公式 常用方法题型1 利用公式法求通项 例1:1.已知{a n }满足a n+1=a n +2,而且a 1=1。求a n 。 2.已知n S 为数列{}n a 的前n 项和,求下列数列{}n a 的通项公式: ⑴ 1322 -+=n n S n ; ⑵12+=n n S .总结:任何一个数列,它的前n 项和n S 与通项n a 都存在关系: ???≥-==-)2()1(11n S S n S a n n n 若1a 适合n a ,则把它们统一起来,否则就用分段函数表示. 题型2 应用迭加(迭乘、迭代)法求通项 例2:⑴已知数列{}n a 中,)2(12,211≥-+==-n n a a a n n ,求数列{}n a 的通项公式; ⑵已知n S 为数列{}n a 的前n 项和,11=a ,n n a n S ?=2 ,求数列{}n a 的通项公式. 总结:⑴迭加法适用于求递推关系形如“)(1n f a a n n +=+”; 迭乘法适用于求递推关系形如 “ ) (1n f a a n n ?=+“;⑵迭加法、迭乘法公式:① 1 1232211)()()()(a a a a a a a a a a n n n n n n n +-++-+-+-=-----

证明数列不等式之放缩技巧及缩放在数列中的应用大全[精选.]

证明数列不等式之放缩技巧以及不等式缩放在数列中应用 大全 证明数列型不等式,其思维跨度大、构造性强,需要有较高的放缩技巧,充满思考性和挑战性。这类问题的求解策略往往是:通过多角度观察所给数列通项的结构,深入剖析其特征,抓住其规律进行恰当地放缩. 一、利用数列的单调性 例1.证明:当Z n n ∈≥,6时, (2) 12 n n n +<. 证法一:令)6(2) 2(≥+=n n n c n n , 则0232)2(2)3)(1(1211<-=+-++=-+++n n n n n n n n n n c c , 所以当6n ≥时,1n n c c +<.因此当6n ≥时,6683 1.644 n c c ?≤==< 于是当6n ≥时, 2 (2) 1.2n n +< 证法二:可用数学归纳法证.(1)当n = 6时, 66(62)483 12644 ?+==<成立. (2)假设当(6)n k k =≥时不等式成立,即(2) 1.2 k k k +< 则当n =k +1时, 1(1)(3)(2)(1)(3)(1)(3) 1.222(2)(2)2k k k k k k k k k k k k k k ++++++++=?<<++g 由(1)、(2)所述,当n ≥6时,2 (1) 12 n n +<. 二、借助数列递推关系 例2.已知12-=n n a .证明: ()23111123 n n N a a a *++++<∈L . 证明:n n n n n a a 1 21121212211211111?=-?=-<-=+++Θ , ∴3 2])21(1[321)21(...12111112122132<-?=?++?+<+++= -+n n n a a a a a a S Λ. 例3. 已知函数f(x)=52168x x +-,设正项数列{}n a 满足1a =l ,()1n n a f a +=. (1) 试比较n a 与 5 4 的大小,并说明理由; (2) 设数列{}n b 满足n b =54-n a ,记S n =1 n i i b =∑.证明:当n ≥2时,S n <14(2n -1). 分析:比较大小常用的办法是作差法,而求和式的不等式常用的办法是放缩法。 解:(1) 因为10,0,n n a a +>>所以1680,0 2.n n a a -><<

放缩法证明数列不等式经典例题

放缩法证明数列不等式 主要放缩技能: 1.211111111(1)(n 1)1n n n n n n n n -=<<=-++-- 2221144112()141(21)(21)21214 n n n n n n n <===--+--+- ==>= ==<= =<= == =< = = 5.121122211(21)(21)(22)(21)(21)2121n n n n n n n n n n ---<==-------- 6. 111 22(1)11(1)2(1)22(1)2n n n n n n n n n n n n n +++++-==-+?+??+?

例1.设函数2*2()1x x n y n N x -+=∈+的最小值为n a ,最大值为n b , 且n c =(1)求n c ;(2)证明: 4444123111174n c c c c ++++ < 例2.证明:1611780<+ +< 例3.已知正项数列{}n a 的前n 项的和为n s ,且12n n n a s a + =,*n N ∈; (1)求证:数列{} 2n s 是等差数列; (2)解关于数列n 的不等式:11()48n n n a s s n ++?+>- (3)记312311112,n n n n b s T b b b b ==++++,证明:312n T <<

例4.已知数列{}n a 满足:n a n ?????? 是公差为1的等差数列,且121n n n a a n ++=+; (1) 求n a ;(2 12n na +++< 例5.在数列{}n a 中,已知1112,2n n n n a a a a a ++==-; (1)求n a ;(2)证明:112233(1)(1)(1)(1)3n n a a a a a a a a -+-+-++-< 例6.数列{}n a 满足:11122,1()22 n n n n n a a a n a ++==++; (1)设2n n n b a =,求n b ;(2)记11(1)n n c n n a +=+,求证:12351162 n c c c c ≤++++<

数列与不等式复习题

数列与不等式复习题(一) 1.数列 ,8,5,2,1-的一个通项公式为 ( ) A .43-=n a n B .43+-=n a n C .()43)1(--=n a n n D .()43) 1(1 --=-n a n n 2、在数列{}n a 中,122,211=-=+n n a a a ,则101a 的值为( ) A .49 B .50 C .51 D .52 3、已知等比数列{a n }的公比为2, 前4项的和是1, 则前8项的和为( ) A .15. B .17. C .19. D .21 4.不等式01 31 2>+-x x 的解集是 ( ) A .}21 31|{>-x x D .}3 1 |{->x x 5.已知某等差数列共有10项,其奇数项之和为15,偶数项之和为30,则其公差为( ) A.5 B.4 C. 3 D. 2 6.数列 ,16 1 4 ,813,412,21 1前n 项的和为( ) A .2212n n n ++ B .122 12+++-n n n C .22 12n n n ++- D . 2 2121 n n n -+- + 7.f x ax ax ()=+-2 1在R 上满足f x ()<0,则a 的取值范围是( ) A .a ≤0 B .a <-4 C .-<<40a D .-<≤40a 8.在等比数列{}n a 中,12a =,前n 项和为n S ,若数列{}1n a +也是等比数列,则n S 等于( ) (A)1 2 2n +- (B) 3n (C) 2n (D)31n - 9.已知在等比数列{}n a 中,各项均为正数,且,7,13211=++=a a a a 则数列{}n a 的通项公式是_________=n a . 10.若方程x x a a 2 2 220-+-=lg()有一个正根和一个负根,则实数a 的取值范围是 __________________.

数列中的不等式的证明

数列中的不等式的证明 证明数列中的不等式的一般方法: 1.数学归纳法: ①直接应用数学归纳法:这是由于数学归纳法可以用来证明与正整数相关的命题,当然也包括与正整数 相关的不等式(即数列不等式); ②加强命题后应用数学归纳法:直接应用数学归纳法并不能证明所有数列不等式,有些数列不等式必须 经加强后才能应用数学归纳法证出. 2.放缩法: ①单项放缩:将数列中的每一项(通项)进行相同的放缩; ②裂项放缩:将数列中的每一项裂开放缩成某两项之差; ③并项放缩:将数列中的两项合并放缩成一项; ④舍(添)项放缩:将数列中的某些项舍去或添加; ⑤排项放缩:将数列中的项进行排序(即确定数列的单调性),从而求出数列中项的最值,达到证明不 等式的目的,能用排项放缩证明的数列不等式必能直接应用数学归纳法证明,反之亦然; ⑥利用基本不等式放缩:例如平均数不等式也可在数列不等式的证明中起作用. 一、直接应用数学归纳法证明 1.已知函数ax x x f +-=3 )(在)1,0(上是增函数. )1(求实数a 的取值集合A (2)当a 中取A 中最小值时,定义数列}{n a 满足:)(21n n a f a =+且)1,0(1∈=b a ,b 为常数,试比较n n a a 与1+的大小 (3)在(2)的条件下,问是否存在正实数c 使10<-n n a a (3)}{12-n a 递增. 4.(2004.辽宁理科高考第21题) 已知函数223)(x ax x f -=的最大值不大于6 1,又当.8 1)(,]21,41[≥∈x f x 时 (1)求a 的值; (2)设.1 1.),(,21011+<∈=<<++n a N n a f a a n n n 证明 5.(2005.重庆理科高考第22题)数列{a n }满足)1(21)11(1211≥+++==+n a n n a a n n n 且. (1)用数学归纳法证明:)2(2≥≥n a n ; (2) 已知不等式)1(:,0)1ln(2≥<><+n e a x x x n 证明成立对,其中无理数e=2.71828….

数列不等式的证明方法

数列型不等式的证明 数列型不等式问题在近年逐渐成为高考热点,数列型不等式问题常被设置为高考压轴题,能力要求较高。因其仍然是不等式问题,可用处理不等式的方法:基本不等式法;比较法;放缩法,函数单调性法等都是常用的方法;但数列型不等式与自然数有关,因而还有一种行之有效的方法:数学归纳法。 1、重要不等式法 若数列不等式形如下式,可用均值不等式法求证。 (1)),(222R b a ab b a ∈≥+; (2) ),(2 +∈≥+R b a ab b a (3) ),,,(2121321+∈???????????≥+??????+++R x x x x x x n n x x x x n n n n 2、比较法 比较法是证明不等式的基本方法,可以作差比较也可以作商比较,是一种易于掌握的方法。 3、放缩法 常用的放缩结论: ①、 ,111)1(11)1(11112k k k k k k k k k --=-<<+=+-其中(2≥k ) ②、 ;)12)(12(1)12(12+->-n n n ;)12)(32(1)12(12--<-n n n ) 22(21 )12(12+<+n n n ③、 1 211 2-+< < ++k k k k k 用放缩法解题的途径一般有两条,一是先求和再放缩,二是先放缩再求和。 (1)、先求和再放缩 一般先分析数列的通项公式,如果此数列的前n 项和能直接求和或通过变形后可以求和,则采用先求和再放缩的方法证明不等式。数列求和的方法较多,我们在数列求和的专题中有具体的讲解,主要用的有公式法、裂项法、倒序相加法、分组求和法等方法。 例1、已知函数)(x f 对任意实数q p ,都满足)()()(q f p f q p f ?=+,且3 1 )1(=f , (1)当+∈N n 时,求)(n f 的表达式;(2)设))((+∈=N n n nf a n ,n T 是其前n 项和,试证明4 3

数列与不等式专题练习[1]

数列与不等式专题练习 一、选择题 1.等差数列9}{,27,39,}{963741前则数列中n n a a a a a a a a =++=++项的和9S 等于( ) A .66 B .99 C .144 D .297 2.等比数列{}n a 中, ,243,952==a a 则{}n a 的前4项和为( ) A .81 B .120 C .168 D .192 3.12+与12-,两数的等比中项是( ) A .1 B .1- C .1± D .2 1 4.已知一等比数列的前三项依次为33,22,++x x x ,那么2113 -是此数列的第( )项 A .2 B .4 C .6 D .8 5.在公比为整数的等比数列{}n a 中,如果,12,183241=+=+a a a a 那么该数列的前8项之和为( ) A .513 B .512 C .510 D .8 225 6.已知等差数列{}n a 的公差为2,若431,,a a a 成等比数列, 则2a =( ) A .4- B .6- C .8- D .10- 7.设n S 是等差数列{}n a 的前n 项和,若==5 935,95S S a a 则( ) A .1 B .1- C .2 D . 21 8.若)32lg(),12lg(,2lg +-x x 成等差数列,则x 的值等于( ) A .1 B .0或32 C .32 D .5log 2 9.已知三角形的三边构成等比数列,它们的公比为q ,则q 的取值范围是( ) A .15(0,)2+ B .15(,1]2- C .15[1,)2+ D .)2 51,251(++- 10.在ABC ?中,tan A 是以4-为第三项, 4为第七项的等差数列的公差,tan B 是以 13为第三项, 9为第六项的等比数列的公比,则这个三角形是( ) A .钝角三角形 B .锐角三角形 C .等腰直角三角形 D .以上都不对 11.在等差数列{}n a 中,设n a a a S +++=...211,n n n a a a S 2212...+++=++,n n n a a a S 322123...+++=++,则,,,321S S S 关系为( ) A .等差数列 B .等比数列 C .等差数列或等比数列 D .都不对 12.等比数列{}n a 的各项均为正数,且564718a a a a +=,则3132310log log ...log a a a +++=( ) A .12 B .10 C .31log 5+ D .32log 5+

数列型不等式的证明.docx

数列型不等式证明的常用方法 一. 放缩法 数列型不等式证明是前见年高考中的一个热点,在多 省试题中常常作为压轴题出现。放缩法是数列不等式证明的 一个重要方法,它具有很强的技巧性的特点,学生往往无从 下手,下面总结放缩法证明的一些常用技巧, 例如 归一技巧、 抓大放小技巧、回头追溯技巧、利用函数性质技巧 ,仅供参 考 . 1 归一技巧 归一技巧,指的是将不容易求和的和式中的所有项或 若干项全部转化为 同一项 ,或是将和式的通项中的一部分转 化为 同一个式子 (或数值),既达到放缩的目的,使新的和 式容易求和 . 归一技巧有 整体归一、分段归一。 例如 1 1 1 1 设 n 是正整数,求证 n 1 n 2 1. 2 2n 1 1 1 【证明】 n 1 n 2 L 2n 1 1 1 1 1 . 2n 2n 2n 2n 2 14444244443 个 1 n 2n 1 1 L 1 另外: n 1 n 2 2n 1 1 1 1 n n n n 1 . 144424443 n 个 1 n 1 1 【说明】在这个证明中,第一次我们把 n 1 、 n 2 、

1 1 L 2n 这些含 n 的式子都 “归一” 为 2n ,此时式子同时变小, 1 1 L 1 1 顺利把不易求和的 n 1 n 2 2n 变成了 n 个 2n 的 和,既将式子缩小,同时也使缩小后的式子非常容易求和, 这就是 “归一” 所达到的效果。 而不等式右边的证明也类似 . 1.1 整体归一 放缩法中,如果通过将所有项转化为同一项而达到放缩目的的,称之为“整体归一” . 例 1. 数列 a n 的各项均为正数, S n 为其前 n 项和,对于任 意 n N * ,总有 a n , S n ,a n 2 成等差数列 . ( Ⅰ ) 求数列 a n 的通项公式; ( Ⅱ ) 设数列 b n 的前 n 项和为 T n ,且 b n ln n x ,求证:对 2 a n 任意实数 x 1, e ( e 是常数, e = )和任意正整数 n , 总有 T n 2 ; (Ⅰ)解:由已知:对于 n N * ,总有 2S n a n a n 2 ①成立 ∴ 2S n 1 a n 1 a n 1 2 (n ≥ 2 )② ① -- ②得 2a n a n a n 2 a n 1 a n 1 2 ∴ a n a n 1 a n a n 1 a n a n 1 ∵ a n , a n 1 均为正数, ∴ a n a n 1 1 (n ≥ 2) ∴数列 a n 是公差为 1 的等差数列

2017高考数列与不等式

2017高考数列与不等式 1.【2017课标1,文7】设x,y满足约束条件 33, 1, 0, x y x y y +≤ ? ? -≥ ? ?≥ ? 则z=x+y的最大值为 A.0 B.1 C.2 D.3 2.【2017课标II,文7】设,x y满足约束条件 2+330 2330 30 x y x y y -≤ ? ? -+≥ ? ?+≥ ? ,则2 z x y =+的最小值是 A.15 - B.9- C.1 D 9 3.【2017课标3,文5】设x,y满足约束条件 3260 x y x y +-≤ ? ? ≥ ? ?≥ ? ,则z x y =-的取值范围是() A.[–3,0] B.[–3,2] C.[0,2] D.[0,3] 4.【2017北京,文4】若,x y满足 3, 2, , x x y y x ≤ ? ? +≥ ? ?≤ ? 错误!未找到引用源。则2 x y +的最大值为 (A)1(B)3 (C)5 (D)9 5.【2017山东,文3】已知x,y满足约束条件 250 30 2 x y x y -+≤ ? ? +≥ ? ?≤ ? ,则z=x+2y的最大值是 A.-3 B.-1 C.1 D.3 6.【2017浙江,4】若x,y满足约束条件 30 20 x x y x y ≥ ? ? +-≥ ? ?-≤ ? ,则y x z2 + =的取值范围是 A.[0,6] B.[0,4] C.[6,)∞ +D.[4,)∞ + 7.【2017浙江,6】已知等差数列{a n}的公差为d,前n项和为S n,则“d>0”是“S4 + S6>2S5”的A.充分不必要条件B.必要不充分条件 C.充分必要条件D.既不充分也不必要条件

导数之数列型不等式证明

函数与导数解答题之数列型不等式证明 例1.已知函数()()ln 3f x a x ax a R =--∈ (1)讨论函数)(x f 的单调性; (2)证明:*1111ln(1)()23n n N n + +++>+∈ (3)证明:()*ln 2ln 3ln 4ln 5ln 12,2345n n n N n n ???<≥∈ (4)证明:()*22222ln 2ln 3ln 4ln 5ln 112,23452n n n n n N n n +?????

例3.已知函数()x f x e ax a =--(其中,a R e ∈是自然对数的底数, 2.71828e =…). (1)当a e =时,求函数()f x 的极值;(II )当01a ≤≤时,求证()0f x ≥; (2)求证:对任意正整数n ,都有2111111222n e ??????+ +???+< ??? ???????. 例4.设函数()ln 1f x x px (1)求函数()f x 的极值点; (2)当p >0时,若对任意的x >0,恒有0)(≤x f ,求p 的取值范围; (3)证明:).2,()1(212ln 33ln 22ln 2222222≥∈+--<+++n N n n n n n n 例5.已知函数()ln 1f x x x =-+? (1)求()f x 的最大值; (2)证明不等式:()*121n n n n e n N n n n e ??????+++<∈ ? ? ?-???? ??

数列与不等式的综合问题

数列与不等式的综合问题

数列与不等式的综合问题 测试时间:120分钟 满分:150 分 解答题(本题共9小题,共150分,解答应写出文字说明、证明过程或演算步骤) 1.[2016·银川一模](本小题满分15分)在等差数列{a n }中,a 1=3,其前n 项和为S n ,等比数列{b n }的各项均为正数,b 1=1,公比为 q (q ≠1),且b 2+S 2=12,q =S 2 b 2 . (1)求a n 与b n ; (2)证明:13≤1S 1+1S 2+…+1S n <2 3 . 解 (1)设{a n }的公差为d ,因为 ???? ? b 2+S 2=12,q =S 2 b 2 ,

所以? ???? q +6+d =12,q =6+d q .解得q =3或q = -4(舍),d =3.(4分) 故a n =3+3(n -1)=3n ,b n =3n -1 .(6分) (2)证明:因为S n = n 3+3n 2 ,(8分) 所以1 S n =2n 3+3n =23? ?? ??1 n - 1n +1.(10分) 故1 S 1+1 S 2+…+1 S n = 23???? ??? ????1-12+? ????12-13+? ???? 13-14+…+? ????1n -1n +1 =23? ? ???1- 1n +1.(12分) 因为n ≥1,所以0<1n +1≤12,于是1 2≤1- 1 n +1 <1,

所以13≤23? ? ???1- 1n +1<23, 即13≤1S 1+1S 2+…+1S n <2 3 .(15分) 2.[2017·黄冈质检](本小题满分15分)已知数列{a n }的首项a 1=35,a n +1=3a n 2a n +1 ,n ∈N *. (1)求证:数列???? ?? 1a n -1为等比数列; (2)记S n =1a 1+1a 2+…+1 a n ,若S n <100,求最 大正整数n . 解 (1)证明:因为1 a n +1=23+1 3a n , 所以1 a n +1-1=13a n -13=13? ?? ??1 a n -1. 又因为1a 1-1≠0,所以1 a n -1≠0(n ∈N * ), 所以数列???? ?? 1a n -1为等比数列.(7分)

导数与数列型不等式

关于导数与数列型不等式的解法 导数与数列型不等式的交汇问题,体现了导数的工具性,凸显了知识之间的纵横联系,一些题构思精巧、新颖,加强对能力的考察,逐渐成为高考的新亮点。本文就2014年高考陕西理数第21题谈起,总结解决此类问题的一般思路和方法。 例1 (2014年高考陕西卷 理21)设函数()ln(1)f x x =+,()'()g x xf x =,0x ≥,其中'()f x 是()f x 的导函数. (1)11()(),()(()),n n g x g x g x g g x n N ++==∈,求()n g x 的表达式; (2)若()()f x ag x ≥恒成立,求实数a 的取值范围; (3)设n N +∈,比较(1)(2)()g g g n +++ 与()n f n -的大小,并加以证明. 解:(1))1ln( )(x x f += ,)(')(x xf x g =,0≥x ,x x f +=∴11)(',x x x g +=1)(, )()(1x g x g = ,))(()(1x g g x g n n =+,x x x g +=1)(∴1,x x x x x x x g 21111)(2+=+++=, 假设当1≥k n =时,kx x x g k +=1)(,则x k x kx x kx x x g k )1(1111)(1++=+++=+ ∴当1+=k n 时,x k x x g k )1(1)(1++=+也成立.综上,nx x x g n +=1)(,+N n ∈ (2))(≥)(x ag x f ,x x x g += 1)(,0≥1)1ln(∴x ax x +-+,0≥x . 令x ax x x h +-+=1)1ln()(,0≥x ,易知0)0(=h ,则22) 1(1)1()1(11)('x a x x x x a x x h +-+=+-+-+=,0≥x . 当1≤a 时,0)('≥x h 在0≥x 上恒成立,∴)(x h 在),0[+∞上单调递增,0)0()(=≥h x h ,满足条件; 当1>a 时,令0)('>x h ,解得1->a x ,令0)('+++ ,证明如下: 要证)1ln()113121(13221)()2()1(+->++++-=++++= +++x n n n n n n g g g , 只需证)1ln()1 1312 1(+<++++n n . 在(2)中取1=a ,可得x x x +>+1)1ln(,0>x , 令n x 1=,*N n ∈,则n n n +>+11)1ln(,

放缩法证明数列不等式经典例题

放缩法证明数列不等式 主要放缩技能: 1.211111111(1)(n 1)1n n n n n n n n -=<<=-++-- 2221144112()141(21)(21)21214 n n n n n n n <===--+--+- ==>= ==<= =<= == =< = = 5. 121122211(21)(21)(22)(21)(21)2121 n n n n n n n n n n ---<==-------- 6. 111 22(1)11(1)2(1)22(1)2n n n n n n n n n n n n n +++++-==-+?+??+?

例1.设函数2*2()1x x n y n N x -+=∈+的最小值为n a ,最大值为n b , 且n c =(1)求n c ;(2)证明: 4444123111174n c c c c ++++ < 例2.证明:1611780<+ ++< 例3.已知正项数列{}n a 的前n 项的和为n s ,且12n n n a s a + =,*n N ∈; (1)求证:数列{} 2n s 是等差数列; (2)解关于数列n 的不等式:11()48n n n a s s n ++?+>- (3)记312311112,n n n n b s T b b b b = = ++++,证明:312n T <<

例4. 已知数列{}n a 满足:n a n ?????? 是公差为1的等差数列,且121n n n a a n ++=+; (1) 求n a ;(2 12n na +++< 例5.在数列{}n a 中,已知1112,2n n n n a a a a a ++==-; (1)求n a ;(2)证明:112233(1)(1)(1)(1)3n n a a a a a a a a -+-+-++-< 例6. 数列{}n a 满足:11122,1()22 n n n n n a a a n a ++==++; (1)设2n n n b a =,求n b ;(2)记11(1)n n c n n a +=+,求证:12351162 n c c c c ≤++++<

专题五 数列不等式专题

专题五 数列不等式专题 【命题趋向】在历年高考中,往往把数列当作重要的内容来考查.在以考查等差数列和等比数列的定义、数列的通项公式、数列求和等基础知识为主的试题中,关注概念辨析以及等差、等比数列的“基本量法”;在考查数列的综合问题时,对能力有较高的要求,试题有一定的难度和综合性,常与单调性、最值、不等式、导数、数学归纳法等知识交织在一起,涉及化归与转化、分类与整合等数学思想.在考查相关知识内容的基础上,高考把对数列的考查重点放在对数学思想方法、推理论证能力以及应用意识和创新意识的考查上.使用选择题、填空题形式考查数列的试题,往往突出考查函数与方程、数形结合、特殊与一般、有限与无限等数学思想方法.使用解答题形式考查数列的试题,其内容往往是一般数列的内容,其方法是研究数列通项及前n 项和的一般方法,并且往往不单一考查数列知识,而是与其他内容相结合,体现对解决综合问题的考查力度.数列综合题有一定的难度,对能力有较高的要求,对合理区分出较高能力的考生起到重要作用.在高考试卷中一般有一个小题有针对性地考查数列的知识和方法,有一道综合解答题重点对数列、数列和函数导数、不等式进行综合考查考查. 由于新课标的考试大纲在必考部分删除了不等式的证明方法,分式不等式、带绝对值的不等式的解法,绝对值三角不等式等内容,高考对不等式的考查主要体现在其和其他知识的交汇考查上,重点是不等式和导数的结合、不等式和数列的结合、不等式和实际问题的结合,不等式与线性规划.高考试卷中一般有1-2个小题考查基本不等式的运用、简单的线性规划,在解答题中与其他知识交汇考查. 【考点透析】数列的主要考点有:数列的概念及其表示,等差数列、等比数列的概念、通项公式和前n 项和公式,数列的简单应用等.不等式的主要考点有:不等关系与不等式,一元二次不等式的解法,简单的线性规划,基本不等式及其应用. 【例题解析】 题型1 数列的一般问题 例1.(2009江苏泰州期末6)若数列{}n a 的前n 项和210(123)n S n n n =-=,,,,则 数列{}n na 中数值最小的项是第 项. 分析:根据数列中n a 与n S 的关系求出n a 后解决. 解析:当1n =时,119a S ==-;当2n ≥时,22110(1)10(1)211n n n a S S n n n n n -=-=---+-=-.可以统一为211n a n =-,故2211n na n n =-,该关于n 的二次函数的对称轴是114 n =,考虑到n 为正整数,且对称轴离3n =较近,故数列{}n na 中数值最小的项是第3项.答案3. 点评:数列问题中其通项公式、前n 项和公式都是关于正整数n 的函数,要善于从函数的观点认识和理解数列问题.数列的一般问题中通项n a 与前n 项和n S 的关系是重点,要注意把1n =和2n ≥分开讨论,再看能不能统一. 例2.(江苏扬州市2008-2009学年度第一学期期未调研测试第13题)数列{}n a 的

相关主题
文本预览
相关文档 最新文档