当前位置:文档之家› 矩阵方程的解法

矩阵方程的解法

矩阵方程的解法
矩阵方程的解法

矩阵方程的解法

本文首先介绍了行对称矩阵的定义及性质,利用矩阵的广义逆,奇异值分解,给出了矩阵方程AX=B有行对称解的充分必要条件及有解时通解的表达式;并给出了矩阵方程解集合中与给定矩

阵的最佳逼近解的表达式。最后利用奇异值分解给出了矩阵方程

有行对称解的充分必要条件及有解时通解的表达式。矩阵方程问

题是指在满足一定条件的矩阵集合中求矩阵方程的解的问题。不

同的约束条件,不同的矩阵方程,就导致了不同的约束矩阵方程

问题。约束矩阵方程问题在结构设计,参数识别,主成分分析,

勘测,遥感,生物学,电学,固体力学,结构动力学,分子光谱学,自动控制理论,振动理论,循环理论等领域都有重要应用。

约束矩阵方程问题的内容非常广泛、约束矩阵方程问题又分为线性约束矩阵方程问题和非线性约束矩阵方程问题、有关线性约束矩阵方程问题的研究成果相当丰富、其中最简单的矩阵方程AX = B是研究最透彻的一类问题、求解线性矩阵方程一般会遇到两种情况:一是当矩阵方程有解时,如何求它的解及最佳逼近;二是

当矩阵方程无解时,如何求它的最小二乘解。对于本文所研究的AX=

B、这两类简单矩阵方程,国内外学者已经作了大量研究。都在相应的文献中对其进行了大量的研究,解决了求此方程的一些

约束解和最小二乘解的问题。自从针对工程应用领域提出了行对

称矩阵概念之后,这方面研究已经取得了一些成果,如对行对称矩阵的一些性质,行对称矩阵的QR分解。本文先对行对称矩阵进行介绍,再将行对称矩阵与约束矩阵方程结合起来,先研究了矩阵方程AX=B有行对称实矩阵解的充要条件,有解时,用奇异值分解及广义逆求出解及最佳逼近。再对矩阵方程有行对称实矩阵解的充要条件进行了研究,利用奇异值分解得出了有解时的充要条件及解的表达式。设表示全体n*m阶实矩阵集合,rank(A)表示矩阵A的秩,表示次对角线上元素全为1,其余元素全为0的方阵,即=,显然有成立。表示n阶正交矩阵全体。本文要讨论以下问题:问题1 给定矩阵A,B,求实行对称方阵X,使得AX=B。问题2 给定,求,使得。其中为问题1的解集。问题3 给定矩阵,求实行对称方阵X,使得=B。

定义设A = (),若A满足,则称A为n *m行对称矩阵、所有n *m行对称矩阵的全体记为。考查满足的矩阵A,不难发现A 是关于行具有某种对称性的矩阵,即当阶数n为奇数时,以将行为对称线,矩阵A的行关于该线对称;当阶数n为偶数时,在行与行间做一条直线,则A的行关于该直线对称。或简单的说,将A 进行上下翻转后矩阵不变,我们就称这种矩阵为行对称矩阵。为了更好的了解行对称矩阵,我们介绍一下行对称矩阵的性质:(1)当n=2k时,=、(2)当n=2k+1时,=定义设A=,r(A)=r,的大于零的特征值为。则称为A的奇异值。定义设矩阵A ,若矩阵X满足如下四个Penrose方程:

AXA=A XAX=X =AX =XA则称X为A的Penrose广义逆,记为。设矩阵A ,若矩阵X满足:AX= ,XA=,其中是子空间L上的正交投影矩阵,则称X为A的Moore广义逆矩阵。Moore广义逆矩阵与Penrose广义逆矩阵是等价的。因此通常称为Moore-Penrose广义逆。显然,当A为非奇异矩阵时,有=。定义设A=,令,则称为上的Frobenius范数。引理 A,当且仅当A=。证明:

的第i行为的第i行j列位置的元素为 A设A=,且为A的奇异值分解,则A有如下分解:

A=UD,D=,其中U,V分别为m阶和n阶的正交矩阵。上式称为A的奇异值分解。。对任意A,存在并且唯一。给定矩阵A,B,若矩阵A的奇异值分解为A=U其中=diag,>0,(i=1,2,…,r),r

=rank(A),U=,V=(),U为m阶正交矩阵,V为n阶正交矩阵,, ,则矩阵方程AX=B有解的充分必要条件是B=0,且有解时的一般表达式为 X= 其中是任意的。

在上,矩阵乘上一个正交矩阵后,它的Frobenius范数不变。

2、问题1的解先对后面证明要用到的两个矩阵做奇异值分解:矩阵A的奇异值分解为A=U (1)其中

=diag,>0,(i=1,2,…,r),r =rank(A),U=,V=(),U为m阶正交矩阵,V为n阶正交矩阵,,。矩阵W=的奇异值分解为W=P (2)其中=diag(),>0,(i=1,2,,t),t=rank(W),P=(),Q=(),,、给定矩阵A,B,求实行对称方阵X,使得AX=B。

将A,W分别按(1),(2)进行分解,则问题1有解的充分必要条件是B=0,N=()=0 (3)且有解时的一般表达式为 X=()(4)其中是任意的。证明:由引理4,AX=B有解的充要条件为B=0,它的通解为X=。由引理1,X为行对称矩阵的充要条件为X=X即()=()()=令 W= ,N= ,由引理4,则问题1有解的充要条件是B=0,N=()=0 当问题1有解时,可以解得=,是任意的。所以有解时,方程的行对称矩阵解为X=(),是任意的。问题2 给定,求,使得。其中为问题1的解集。给定,若问题1的解集合非空,则问题2在中存在唯一解,并且 = (3)其中

M=。证明:

因为问题1的解集合非空,则是Hilbert空间中一个非空闭凸锥。所以问题2有唯一解。

把(4)代入,有左乘,利用引理5,上式= = = 因为=0,所以上式 =+ =+ 左乘,上式 =++因此,要使得=min则 G=,其中

M=,所以=,其中M=。

矩阵方程求解方法

矩阵方程求解方法 本文所述的矩阵方程是指形如Ax=b的方程,其中A是一个mxn的矩阵,称为方程的系数 矩阵。x和b是mx1的矩阵。特别的,当b=0时,这种方程又称为其次方程。本文将讨论 这种矩阵的有解条件和求解方法。 矩阵方程的有解条件 为了解释矩阵方程的有解条件,我们首先要熟悉一些概念。 一个矩阵方程的增广矩阵是系数矩阵A和b并在一起构成的矩阵,记作(A,b)。 假定 , ,则矩阵方程的增广矩阵就是 矩阵的秩定义为其行向量中极大线性无关组中包含向量的个数,等价的说法是,矩阵的秩 是r,则矩阵通过行列初等变换,变换成左上角是一个r阶单位矩阵,其他都是0的矩阵。矩阵A的秩记作r(A),其中r是英文单词rank的缩写。 有了这两个基本概念,我们就可以准确描述矩阵方程的有解条件了:矩阵方程Ax=b的有 解条件是矩阵A的秩等于增广矩阵(A,b)的秩,也就是r(A)=r(A,b)。 证明很简单,既然矩阵A的秩是r,那么肯定可以找到两个可逆的矩阵P,Q,满足 --1) 其中I r表示r阶单位矩阵。 应用到原来的方程,可以得到: --2) 我们把Q-1x当作一个未知的变量,PAQ当作系数,这就构成一个新的矩阵方程。而这个矩 阵方程的左侧系数除了前r行是有1的之外,其余行是0。为了它有解,Pb的后m-r行必 须也是0。这样(A,b)的秩必然是r。 必须注意到Q-1是可逆的,因此以Q-1x为未知变量的方程有解意味着以x为未知变量的原 方程也是有解的。

矩阵方程的解 对于矩阵方程Ax=b,如果满足r(A)=r(A,b),则矩阵方程是有解的。为了求它的解,我们首先把矩阵方程通过行列初等变换变化成前文2)式的形式,代入1)式后得到: --3) 其中Q-1x和Pb是一个列向量,我们可以把它们分割成rx1和(n-r)x1的两个矩阵,分别记作x’1和x’2,及b’1和b’2。则很显然我们可以得到: --4) 很显然,b’2必须为0,因为展开后b’2等于0 x’1 +0 x’2 =0 而由4式可以看出,x’1= b’1,x’2可以为任意向量。 所以方程最后的解为: --5) 从解的形式可以看出解空间有如下特性: 1.方程Ax=b的解空间的秩是n=r(A) 2.如果A是满秩的,则方程的解唯一。

矩阵运算与方程组求解

附录Ⅰ 大学数学实验指导书 项目五 矩阵运算与方程组求解 实验1 行列式与矩阵 实验目的 掌握矩阵的输入方法. 掌握利用Mathematica (4.0以上版本) 对矩阵进行转置、加、减、 数乘、相乘、乘方等运算, 并能求矩阵的逆矩阵和计算方阵的行列式. 基本命令 在Mathematica 中, 向量和矩阵是以表的形式给出的. 1. 表在形式上是用花括号括起来的若干表达式, 表达式之间用逗号隔开. 如输入 {2,4,8,16} {x,x+1,y,Sqrt[2]} 则输入了两个向量. 2. 表的生成函数 (1) 最简单的数值表生成函数Range, 其命令格式如下: Range[正整数n]—生成表{1,2,3,4,…,n }; Range[m, n]—生成表{m ,…,n }; Range[m, n, dx]—生成表{m ,…,n }, 步长为d x . 2. 通用表的生成函数Table. 例如,输入命令 Table[n^3,{n,1,20,2}] 则输出 {1,27,125,343,729,1331,2197,3375,4913,6859} 输入 Table[x*y,{x,3},{y,3}] 则输出 {{1,2,3},{2,4,6},{3,6,9}} 3. 表作为向量和矩阵 一层表在线性代数中表示向量, 二层表表示矩阵. 例如,矩阵 ??? ? ??5432 可以用数表{{2,3},{4,5}}表示. 输入 A={{2,3},{4,5}} 则输出 {{2,3},{4,5}}

命令MatrixForm[A]把矩阵A 显示成通常的矩阵形式. 例如,输入命令: MatrixForm[A] 则输出 ??? ? ??5432 注:一般情况下,MatrixForm[A]所代表的矩阵A 不能参与运算. 下面是一个生成抽象矩阵的例子. 输入 Table[a[i,j],{i,4},{j,3}] MatrixForm[%] 则输出 ???? ?? ? ??]3,4[]2,4[]1,4[]3,3[]2,3[]1,3[]3,2[]2,2[]1,2[]3,1[]2,1[]1,1[a a a a a a a a a a a a 注:这个矩阵也可以用命令Array 生成,如输入 Array[a,{4,3}]//MatrixForm 则输出与上一命令相同. 4. 命令IdentityMatrix[n]生成n 阶单位矩阵. 例如,输入 IdentityMatrix[5] 则输出一个5阶单位矩阵(输出略). 5. 命令DiagonalMatrix[…]生成n 阶对角矩阵. 例如,输入 DiagonalMatrix[{b[1],b[2],b[3]}] 则输出 {{b[1],0,0},{0,b[2],0},{0,0,b[3]}} 它是一个以b[1], b[2], b[3]为主对角线元素的3阶对角矩阵. 6. 矩阵的线性运算:A+B 表示矩阵A 与B 的加法;k*A 表示数k 与矩阵A 的乘法; A.B 或 Dot[A,B]表示矩阵A 与矩阵B 的乘法. 7. 求矩阵A 的转置的命令:Transpose[A]. 8. 求方阵A 的n 次幂的命令:MatrixPower[A,n]. 9. 求方阵A 的逆的命令:Inverse[A]. 10.求向量a 与b 的内积的命令:Dot[a,b]. 实验举例 矩阵的运算

Hilbert矩阵病态线性代数方程组的求解

实验一病态线性代数方程组的求解 1.估计Hilbert矩阵2-条件数与阶数的关系 运行tiaojianshu.m 输入m=10 可以得到如下表的结果 2.选择不同维数,分别用Guass消去(LU分解),Jacobi迭代,GS 迭代,SOR迭代求解,比较结果。 说明:Hx=b,H矩阵可以由matlab直接给出,为了设定参考解,我们先设x为分量全1的向量,求出b,然后将H和b作为已知量,求x,与设定的参考解对比。 对于Jacobi迭代,GS迭代,SOR迭代,取迭代初值x0为0向量,迭代精度eps=1.0e-6,迭代次数<100000, SOR迭代中w=1.2和0.8分别计算。 a. n=5 b. n=8

c. n=10 d. n=15

取不同的n值,得到如下结果: 对于Guass法,可以看出来,随着n的增大,求解结果误差变大,这是因为随着n增大,系数矩阵的条件数变大,微小的扰动就容易造成很大的误差。最后得不到精确解。 对于Jacobi迭代,计算结果为Inf,说明是发散的。 对于GS迭代和SOR迭代,结果是收敛的,但是可以看出迭代次数比较多,并且对于不同维数GS和SOR收敛速度不一样,有时候GS快,有时SOR快。对SOR取不同的w迭代速度也不一样,存在一个最优的松弛因子w。并且可以知道,迭代次数多少跟初值x0也有关系。 3.讨论病态问题求解的算法。 通过上面的实验分析,可以看出,求解病态矩阵的时候要小心,否则可能得不到所要求的精确度。可以采用高精度运算,用双倍多倍字长,使得由于误差放大而损失若干有效数字位之后,还能保留一些有效位。 另外可以通过对原方程作某些预处理,降低系数矩阵的条件数,因为cond(aA)=cond(A),所以不能通过将每一个方程乘上相同的常数来达到这个目标,可考虑将矩阵的每一行和每一列分别乘上不同的常数,亦即找到可逆的对角阵D1和D2将方程组化为 D1AD2y=D1b,x=D2y 这称为矩阵的平衡问题,但是这样计算量比原问题本身要多。 或者通过变分原理将求解线性方程组的问题转化为等价的求解无约束函数最优化问题的极小值等等,可以参考 [1]郑洲顺,黄光辉,杨晓辉求解病态线性方程组的混合算法

矩阵方程的解法

矩阵方程的解法 本文首先介绍了行对称矩阵的定义及性质,利用矩阵的广义逆,奇异值分解,给出了矩阵方程AX=B有行对称解的充分必要条件及有解时通解的表达式;并给出了矩阵方程解集合中与给定矩 阵的最佳逼近解的表达式。最后利用奇异值分解给出了矩阵方程 有行对称解的充分必要条件及有解时通解的表达式。矩阵方程问 题是指在满足一定条件的矩阵集合中求矩阵方程的解的问题。不 同的约束条件,不同的矩阵方程,就导致了不同的约束矩阵方程 问题。约束矩阵方程问题在结构设计,参数识别,主成分分析, 勘测,遥感,生物学,电学,固体力学,结构动力学,分子光谱学,自动控制理论,振动理论,循环理论等领域都有重要应用。 约束矩阵方程问题的内容非常广泛、约束矩阵方程问题又分为线性约束矩阵方程问题和非线性约束矩阵方程问题、有关线性约束矩阵方程问题的研究成果相当丰富、其中最简单的矩阵方程AX = B是研究最透彻的一类问题、求解线性矩阵方程一般会遇到两种情况:一是当矩阵方程有解时,如何求它的解及最佳逼近;二是 当矩阵方程无解时,如何求它的最小二乘解。对于本文所研究的AX= B、这两类简单矩阵方程,国内外学者已经作了大量研究。都在相应的文献中对其进行了大量的研究,解决了求此方程的一些 约束解和最小二乘解的问题。自从针对工程应用领域提出了行对

称矩阵概念之后,这方面研究已经取得了一些成果,如对行对称矩阵的一些性质,行对称矩阵的QR分解。本文先对行对称矩阵进行介绍,再将行对称矩阵与约束矩阵方程结合起来,先研究了矩阵方程AX=B有行对称实矩阵解的充要条件,有解时,用奇异值分解及广义逆求出解及最佳逼近。再对矩阵方程有行对称实矩阵解的充要条件进行了研究,利用奇异值分解得出了有解时的充要条件及解的表达式。设表示全体n*m阶实矩阵集合,rank(A)表示矩阵A的秩,表示次对角线上元素全为1,其余元素全为0的方阵,即=,显然有成立。表示n阶正交矩阵全体。本文要讨论以下问题:问题1 给定矩阵A,B,求实行对称方阵X,使得AX=B。问题2 给定,求,使得。其中为问题1的解集。问题3 给定矩阵,求实行对称方阵X,使得=B。 定义设A = (),若A满足,则称A为n *m行对称矩阵、所有n *m行对称矩阵的全体记为。考查满足的矩阵A,不难发现A 是关于行具有某种对称性的矩阵,即当阶数n为奇数时,以将行为对称线,矩阵A的行关于该线对称;当阶数n为偶数时,在行与行间做一条直线,则A的行关于该直线对称。或简单的说,将A 进行上下翻转后矩阵不变,我们就称这种矩阵为行对称矩阵。为了更好的了解行对称矩阵,我们介绍一下行对称矩阵的性质:(1)当n=2k时,=、(2)当n=2k+1时,=定义设A=,r(A)=r,的大于零的特征值为。则称为A的奇异值。定义设矩阵A ,若矩阵X满足如下四个Penrose方程:

矩阵方程的数值解法开题报告

毕业论文开题报告 信息与计算科学 矩阵方程的数值解法 一、选题的背景、意义 1.选题的背景 在科学、工程计算中,求解矩阵方程的任务占相当大的份额。这是因为,矩阵方程不仅能以完整的形式作为许许多多实际问题的模型之一,而且还能作为不少其他数值方法处理过程中转化而成的组成部分。例如,在电路网络、弹性力学、潮流计算、热传导、振动等领域,其基本模型就是矩阵方程,而求微分方程边值问题的差分法和有限元法等数值计算本身,也导致求解某些矩阵方程。在系统控制等工程研究领域经常遇到矩阵方程的求解问题。自动控制系统最重要的一个特征是稳定性问题,它表示系统能妥善地保持预定工作状态,耐受各种不利因素的影响,因此矩阵方程在系统的稳定性理论,极点配置等方面具有重要的意义。在常微分方程的定性研究以及数值求解常微分方程的隐式Rung-kwtta方法和块方法中,也需要求解矩阵方程。此外,在广义特征值问题的摄动研究中及隐式常微分方程的数值解中,经常遇到矩阵方程的求解问题。 1.1.2选题的意义 随着科学技术的迅速发展,矩阵方程越来越多地出现在科学与工程计算领域,关于这类问题的研究也日益受到人们的高度重视.对矩阵方程的研究具有很重要的理论意义和很高的应用价值.所以,学会如何更好的解矩阵方程就显得非常重要。本文主要介绍了解矩阵方程的高斯消元法、Jacobi迭代法、Gauss-Seidcl迭代法和SOR迭代方法。在这些方法的基础上,利用matlab软件,快速求出矩阵方程的解。通常熟练使用这些工具或编写程序,而这通常是一项入门缓慢、熟练精通时间较长的工作。MATLAB在提供强大的计算功能,也为我们用数值方法求解矩阵方程提供了很大的方便。 1.1.3求解线性方程组 由于线性方程组是矩阵方程的一个特例,所以本文试图将解线性方程组的一些经典方法推广用来解矩阵方程。 记线性方程组为

线性方程组的矩阵求法.

线性方程组的矩阵求法 摘要: 关键词: 第一章引言 矩阵及线性方程组理论是高等代数的重要内容, 用矩阵 方法解线性方程组又是人们学习高等代数必须掌握的基本 技能,本文将给出用矩阵解线性方程组的几种方法,通过对线性方程组的系数矩阵(或增广矩阵)进行初等变换得到其解,并列举出几种用矩阵解线性方程组的简便方法。 第二章用矩阵消元法解线性方程组 第一节预备知识 定义1:一个矩阵中不等于零的子式的最大阶数叫作这个矩阵的秩。定理1:初等变换把一个线性方程组变为一个与它同解的线性方程组。 定义2:定义若阶梯形矩阵满足下面两个条件: (1)B的任一非零行向量的第一个非零分量(称为的 一个主元)为1; (2)B中每一主元是其所在列的唯一非零元。 则称矩阵为行最简形矩阵。 第二节 1.对一个线性方程组施行一个初等变换,相当于对它的增广矩

阵施行一个对应的行初等变换,而化简线性方程组相当于用行初等变换化简它的增广矩阵,因此,我们将要通过花间矩阵来讨论化简线性方程组的问题。这样做不但讨论起来比较方便,而且能给我们一种方法,就一个线性方程组的增广矩阵来解这个线性方程组,而不必每次都把未知量写出来。 下面以一般的线性方程组为例,给出其解法: (1) 11112211 21122222 1122 , , . n n n n m m mn n m a x a x a x b a x a x a x b a x a x a x b +++= +++= +++ = 根据方程组可知其系数矩阵为: (2) 11121 21222 12 n n m m mn a a a a a a a a a ?? ? ? ? ? ??? 其增广矩阵为: (3) 111211 212222 12 n n m m mn m a a a b a a a b a a a b ?? ? ? ? ? ??? 根据(2)及矩阵的初等变换我们可以得到和它同解的线性方程组,并很容易得到其解。 定理2:设A是一个m行n列矩阵

矩阵及方程组求解

第1章矩阵及其基本运算 MATLAB,即“矩阵实验室”,它是以矩阵为基本运算单元。因此,本书从最基本的运算单元出发,介绍MATLAB的命令及其用法。 1.1 矩阵的表示 1.1.1 数值矩阵的生成 1.实数值矩阵输入 MATLAB的强大功能之一体现在能直接处理向量或矩阵。当然首要任务是输入待处理的向量或矩阵。 不管是任何矩阵(向量),我们可以直接按行方式输入每个元素:同一行中的元素用逗号(,)或者用空格符来分隔,且空格个数不限;不同的行用分号(;)分隔。所有元素处于一方括号([ ])内;当矩阵是多维(三维以上),且方括号内的元素是维数较低的矩阵时,会有多重的方括号。如: >> Time = [11 12 1 2 3 4 5 6 7 8 9 10] Time = 11 12 1 2 3 4 5 6 7 8 9 10 >> X_Data = [2.32 3.43;4.37 5.98] X_Data = 2.43 3.43 4.37 5.98 >> vect_a = [1 2 3 4 5] vect_a = 1 2 3 4 5 >> Matrix_B = [1 2 3; >> 2 3 4;3 4 5] Matrix_B = 1 2 3 2 3 4 3 4 5 >> Null_M = [ ] %生成一个空矩阵 2.复数矩阵输入 复数矩阵有两种生成方式: 第一种方式 例1-1 >> a=2.7;b=13/25; >> C=[1,2*a+i*b,b*sqrt(a); sin(pi/4),a+5*b,3.5+1] C= 1.0000 5.4000 + 0.5200i 0.8544 0.7071 5.3000 4.5000

矩阵方程的解法

两类矩阵方程的行对称矩阵解 及AX=B的最佳逼近 摘要本文首先介绍了行对称矩阵的定义及性质,利用矩阵的广义 逆,奇异值分解,给出了矩阵方程AX=B有行对称解的充分必要条件及有解时通解的表达式;并给出了矩阵方程解集合中与给定矩阵的最佳 逼近解的表达式。最后利用奇异值分解给出了矩阵方程T 有行 AXA B 对称解的充分必要条件及有解时通解的表达式。 矩阵方程问题是指在满足一定条件的矩阵集合中求矩阵方程的 解的问题。不同的约束条件,不同的矩阵方程,就导致了不同的约束矩阵方程问题。约束矩阵方程问题在结构设计,参数识别,主成分分析,勘测,遥感,生物学,电学,固体力学,结构动力学,分子光谱学,自动控制理论,振动理论,循环理论等领域都有重要应用。 约束矩阵方程问题的内容非常广泛. 约束矩阵方程问题又分为 线性约束矩阵方程问题和非线性约束矩阵方程问题. 有关线性约束 矩阵方程问题的研究成果相当丰富. 其中最简单的矩阵方程AX = B 是研究最透彻的一类问题. 求解线性矩阵方程一般会遇到两种情况:一是当矩阵方程有解时,如何求它的解及最佳逼近;二是当矩阵方程无解时,如何求它的最小

二乘解。对于本文所研究的AX=B 、T AXA B =这两类简单矩阵方程,国 内外学者已经作了大量研究。都在相应的文献中对其进行了大量的研究,解决了求此方程的一些约束解和最小二乘解的问题。 自从针对工程应用领域提出了行对称矩阵概念之后,这方面研究已经取得了一些成果,如对行对称矩阵的一些性质,行对称矩阵的QR 分解。 本文先对行对称矩阵进行介绍,再将行对称矩阵与约束矩阵方程结合起来,先研究了矩阵方程AX=B 有行对称实矩阵解的充要条件,有解时,用奇异值分解及广义逆求出解及最佳逼近。再对矩阵方程 T AXA B =有行对称实矩阵解的充要条件进行了研究,利用奇异值分解 得出了有解时的充要条件及解的表达式。 设*m n R 表示全体n*m 阶实矩阵集合,rank(A)表示矩阵A 的秩,n J 表示 次对角线上元素全为1,其余元素全为0的方阵,即n J =*0 101n n ?? ? ? ?? ? ,显然有1 ,T n n n n J J J J -==成立。*n n OR 表示n 阶正交矩阵全体。 本文要讨论以下问题: 问题1 给定矩阵A,B ∈*m n ,求实行对称方阵X ,使得AX=B 。

线性方程组的矩阵求解算法

线性方程组的矩阵求解算法 摘要 线性方程组的矩阵求解算法,只需在约当消元法的基础上,再对方程组的 增广矩阵的行最简形进行行(列)删除和增加行,交换行等运算即可得到方程组的解,并且这种方法既可求解有唯一解的方程组.因而算法简单,易于实现. 关键词 线性方程组;解向量;解法;约当消元法 1 矩阵求解算法 设有线性方程组m n A X b ?=,其增广矩阵())(1,m n A A b ?+=,算法的步骤如下: 第一步:利用约当消元法,把增广矩阵A 化为行最简形,设行最简形为()1m n B ?+.若()t i (),r A r =则方程组无解;否则设(),r A R =并执行以下步骤; 第二步:删除B 中的所有零行和每一行第一个非零元素(这个非零元素一定是1)所在的列,得到矩阵()1,r n r D ?-+并记录每行的第一个非零元所在的列标,放在一维数组()1, ,t r 中,如第i 行的第一个非零元在第j 列,则()t i j =; 第三步:构造矩阵() 1m n r D H F ?-+?? = ? ??,其中 ()() 1100001 0000 1 0n r n r F -?-+-?? ?- ? = ? ? -? ? 第四步:对矩阵H 中的行作交换运算:把H 中的第i 行(,1,1,i r r =-即从第r 行开始直到第一行)依次与其下一行交换,使之成为第()t i 行,交换运算结果后的矩阵记为G ,则G 中的前n r -个n 维列向量即为方程组的一个基础解系,最后一列向量即为方程组的一个特解; 第五步:写出方程组的通解. 2 算法证明 先证一个特殊情形,增广矩阵A 的行最简形矩阵B 的左上角为一r 阶的单位矩阵,即第i 行的第一个非零元的列标为i ,即()()1t i i i r =≤≤,所以设B 为

解矩阵方程

解矩阵方程 我们知道,矩阵方程的解与线性方程组的解有一定的关系,但比线性方程组的解复杂.下面,对矩阵方程AZ=B(YA=B)的解的情况作如下的讨论. 定理l:设A是n阶可逆矩阵,那么Z=Aˉ1B(Y=BAˉ1)是矩阵方程AZ=B(YA=B)的唯一解.这样一个定理,容易证明.那么,当矩阵方程AZ=B中的A不是可逆矩阵时,方程解的情况怎样,将是我们所关心的问题. 定理2设A是m×x”矩阵,B是m×s矩阵,矩阵方程AZ=B有解的充要条件是秩A=秩(A,B)。(A,B)是把矩阵A和B放在一起所得的矩阵. 证明“=>”AZ=B有解就是说线性方程组AZ(j)=B(j),j=l,2,……s,分别有解,所以系数矩阵A的秩和增广矩阵(A ,B(j))的秩相同(z(j),B(j)表示矩阵Z和B的第j个列向量).即秩A=秩(A,B(j)),j=1,2,……s,从而秩A=秩(A,B).若不然,必定有某jo,使秩A≠秩(A ,B(jo)).“<=”设秩A=秩(A ,B),则有秩A=秩(A ,B(j)),j=1,2,…s,这也就是说,对每个线性方程组AZ(j)=B(j),j=1,2,…s有解,从而矩阵方程AZ=B有解,证毕.推论l假如矩阵方程AZ=B 有解,那么,当秩A=n”时有唯一解. 下面我们给出该唯一解的求法.首先给出一个引理:引理设A是m×n”矩阵(m≥n),秩A= n,那么存在一个m x(m—n)矩阵H,秩H=m一n,使得(A ,H)是一个m阶可逆矩阵. 证明当m=n时A本身就是可逆矩阵,引理成立.当m>n时,秩A=n就是说A 的n个m 维列向量的秩是n.那么总可以添加m一n个线性无关的m维列向量,使之成为m个列向量,而这m个列向量的秩为m.令H为添加的这m一n个列向量所作成,则H为所求,且有秩H=m一n, (A ,H)是一个m阶可逆矩阵.定理3设A是m×n矩阵,B是m×s矩阵.假设AZ=B有唯一解,那么该解的公式为z=(A ,H) ˉ1B的前n行.其中m≥n,H为引理所述.证明把矩阵(A ,H)写为分块矩阵的形式:(A ,H)〔A1C1/A2C2 〕。其中A1是n阶方阵A2是(m—n)×n 矩阵,亦即A1是A的前n行.A2是A的后m一n行.C1、C2分别是H的前n 行和后m一n行.Cl是n×(m一n)矩阵,C2是m一n阶方阵.再作一个m×s 矩阵:(Z/0),0是m—n行s列零矩阵,于是有:(A,H)(Z/0)=(A1C1/A2C2)(Z/0)=(A1Z/A2Z)=(A1/Z1)Z=AZ=B.

矩阵方程的求解问题

矩阵方程的求解问题 白秀琴 (平顶山工业职业技术学院,基础部,河南 平顶山 467001) 摘要:主要考察了矩阵方程的求解问题,给出了一般矩阵方程当系数矩阵满足不同 条件时的两种求解方法。 关键词:矩阵;矩阵的逆;矩阵方程 矩阵是线性代数中的最重要的部分,它贯穿于线性代数的始终,可以说线性代数就是矩阵的代数,矩阵是处理高等数学很多问题的有力工具。矩阵方程是矩阵运算的一部分,这里我们主要讨论如何求解矩阵方程的问题。掌握简单的矩阵方程的求法,对于求解复杂的矩阵方程有很大帮助。 简单的矩阵方程有三种形式:.,,C AXB C XA C AX ===如果这里的A 、B 都是可逆矩阵,则求解时需要找出矩阵的逆,注意左乘和右乘的区别。它们的解分别为: .,,1 1 1 1 ----===B A X CA X C A X 例如,求解方程C AC =先考察A 是否可逆,如果A 可逆时,方程两边同时左乘1-A ,得,11C A AX A --=即,1C A X -=这里要注意只能左乘不能右乘,因为矩阵的乘法不满足交换律。同样,对于方程,C XA =只能右乘1-A ,得,1 1 --=CA XAA 即.1 -=CA X 而对 于方程,C A X B =只能是左乘1-A 而右乘1-B ,得,1 1 1 1----=CB A ACBB A 即 .1 1 --=CB A X 看下面解矩阵方程例题: 例1:???? ? ?? ???=???????? ??3154 32 34 3 122 321 X 解:先求出1-A ,则,11 1 25323231 34 3122 3211 ??????????--- -=???? ? ??? ??-则 ???? ? ?????--=????????? ???????????----=??????? ???-???????? ??=3321 23315432 11 12 532 3231 3154 32 134 3122 321 X 例2:??????-=???? ? ??? ??21210134 3 122 321X

用C语言求解N阶线性矩阵方程Ax=b的简单解法

用C语言求解N阶线性矩阵方程Ax=b的简单解法 一、描述问题: 题目:求解线性方程组Ax=b,写成函数。其中,A为n×n的N阶矩阵,x为需要求解的n 元未知数组成的未知矩阵,b为n个常数组成的常数矩阵。即 运行程序时的具体实例为: 转化为矩阵形式(为检验程序的可靠性,特意选取初对角线元素为0的矩阵方程组)即为: 二、分析问题并找出解决问题的步骤: 由高等代数知识可知,解高阶线性方程组有逆矩阵求解法、增广矩阵求解法等,而在计算机C语言中,有高斯列主消元法、LU分解法、雅克比迭代法等解法。 为了与所学的高等代数知识相一致,选择使用“高斯简单迭代消元法”,与高等代数中的“增广矩阵求解法”相一致。以下简述高斯消元法的原理: 算法基本原理:

首先,为了能够求解N阶线性方程组(N由用户输入),所以需要定义一个大于N维的数组a[dim+1][dim+1](dim为设定的最大维数,防止计算量溢出),当用户输入的阶数N超过设定值时提示重启程序重新输入。 进而,要判断方程组是否有解,无解提示重启程序重新输入,有解的话要判断是有无数不定解还是只有唯一一组解,在计算中,只有当原方程组有且只有一组解时算法才有意义,而运用高等代数的知识,只有当系数矩阵对应的行列式|A|≠0 时,原方程组才有唯一解,所以输入系数矩阵后要计算该系数矩阵的行列式 |A|(定义了getresult(n)函数计算),当行列式 |A|=0 时同样应提示重启程序重新输入,|A|≠0 时原方程组必然有且仅有唯一一组解。 判断出方程组有且仅有唯一一组解后,开始将系数矩阵和常数矩阵(合并即为增广矩阵)进行初等行变换(以a11 为基元开始,将第j列上j行以下的所有元素化为0),使系数矩阵转化为上三角矩阵。这里要考虑到一种特殊情况,即交换到第j-1列后,第j行第j列元素a jj=0 ,那此时不能再以a jj 为基元。 当变换到第j列时,从j行j列的元素a jj 以下的各元素中选取第一个不为0的元素,通过第三类初等行变换即交换两行将其交换到a jj 的位置上,然后再进行消元过程。交换系数矩阵中的两行,相当于两个方程的位置交换了。 再由高斯消元法,将第j列元素除a jj外第j行以下的其他元素通过第二种初等行变换化为0,这样,就能使系数矩阵通过这样的行变换化为一个上三角矩阵,即 , 当系数矩阵A进行初等行变换时,常数矩阵也要进行对应的初等行变换,即此 时 那么有

矩阵方程的简化求解方法

矩阵方程的简化求解方法 来源:文都教育 与通常意义上的方程类似,矩阵方程是指以矩阵为未知量的矩阵等式. 求解矩阵方程本质上就是矩阵的运算特别是矩阵乘法和求逆矩阵的运算,因此求解矩阵方程,求出未知矩阵的表达式应充分地利用矩阵的运算及其性质先化简,将其化为矩阵方程的以下几种基本形式: (1),(2),(3).AX B XA B AXB C === 若A 和B 均可逆,那么可求得待求矩阵分别为1111,,.X A B X BA X A CB ----===当A 和B 均不可逆时,常将矩阵方程用待定元素法转化为解线性方程组. 在实际的计算中,往往不可能恰好给出以上三种形式,需要经过一番整理和化简,再应用相关知识使其露出“庐山真面目”. 本文将就典型的情况,加以说明,为这类题目的简化求解提供帮助. 1. 对已知2 A aA bE O ++=,需求1()A kE -+或()A kE +(其中k 为常数)的矩阵方程常用凑因子矩阵的方法来求解. 可将原方程化为()A kE B E +=或者()B A kE E +=的形式,从而B 就是待求的A kE +的逆矩阵. 下面举例加以说明. 例1 设矩阵方程满足24A A E O +-=,其中E 为单位矩阵,则1()A E --= . 解 先对2 A 与A 两项分别凑出因子A E -,过程如下: 24A A E O +-=222()()4A E E A E E E O ?-++-+-= ()()()2A E A E A E E ?-++-= ()()2A E A E E E ?-++=. 所以,1()A E --=(2)2A E +. 2. 求解AX B =或XA B =,其中A 为不可逆矩阵 常用解方程组的方法来求解这类问题,通常设出所求矩阵的行数、列数及其待定元素,

矩阵方程的数值解法

矩阵方程的数值解法 摘要:本文首先介绍了解线性方程组的常用的几种数值解法-直接法和迭代法,然后把线性代数方程组的解法推广用来解矩阵方程。接着,详细介绍了解矩阵方程的高斯消元法、Jacobi迭代法、Gauss-Seidel迭代法和SOR迭代方法的具体的步骤,并举例说明了Jacobi迭代法、Gauss-Seidel迭代法。最后,应用MATLAB工具编写了以上几种方法的程序求解矩阵方程,并通过数值算例比较了几种方法的优劣。 关键词:高斯消元法;Jacobi迭代法;Gauss-Seidel迭代法;SOR迭代方法;矩阵方程。

Some Numerical Methods of Matrix Equation Abstract:Firstly, this paper introduces the numerical method of linear system the direct method and iterative methods, and then generalizes these numenical methods to solve matrix equation solution. Then,for matrix equation we describe the specifice steps in detail of the Gaussian elimination method, Jacobi iterative method, Gauss-Seidel iteration and SOR iterative methods, respectively.Finally, these above algorithms for solving matrix equations are coded by Matlab software. And the advantages and disadvantages of them are compared by numerical examples. Keywords:Gaussian elimination method; Jacobi iterative method; Gauss-Seidel iteration;SOR iterative method;Matrix equation.

相关主题
文本预览
相关文档 最新文档