当前位置:文档之家› 金属玻璃

金属玻璃

金属玻璃
金属玻璃

金属玻璃

摘要文章简要地介绍了金属玻璃的定义、分类、机理、结构及性能间的关系、用途、应用领域和特点,以及目前国内外的研究内容及研究进展。

关键词金属玻璃

正文

一、定义

将熔融的合金喷射到冷的铜板上,降温速度在一百万摄氏度每秒以上,由于冷凝速度极高,液态合金来不及形成结晶就凝固了,结果获得了如同玻璃一样的非晶态合金。用X射线衍射法进行测试,发现这种急冷的合金与平常的金属不同,它不是晶体而是玻璃体,故非晶态合金又称为金属玻璃。

二、机理

金属玻璃是一种特殊的合金材料。通常金属原子都是有序排列的晶体结构,而在金属玻璃中,原子的排列如同液体或者玻璃一样杂乱无章。虽然从严格意义上来说,金属玻璃并不是液体,但是由于它没有固定的外形,可以像液体一样随意流动。金属玻璃的原子都无规律地紧密排列,内在组合没有缝隙,因此它的硬度更大,即使遭到外力重击,原子也很容易回复原位,同时还具有很强的抗腐蚀能力,不变质,重量轻;也正是由于没有晶粒的体积限制,金属玻璃很容易被制成仅10纳米的微型器件。而且,金属玻璃的非晶体结构使得它可以在低温下熔化,如同塑料般易于塑造成型。阻碍原子结合与重排的势垒△U对于金属玻璃的形成尤其是它的稳定性起着重大的影响。位形熵是考虑金属玻璃形成与稳定性的最适合的参数,而组元原子的势垒△U则是对金属玻璃的形成与稳定性起重要作用,其次是尺寸差效应,第二是过冷度。金属玻璃是具有亚稳液态结构金属,对于一个长程有序的金属,材料的力学性能在很大程度上取决于金属中缺陷的性质、数量和分布;金属玻璃的等离子体密度与晶态差异不大,说明金属玻璃的结构与稳定性主要取决于组成原子之间的键合、电子状态,而不是它们的原子尺寸:在一个没有产生晶化的无序结构中.局部原子可以通过单个原子的位移,重新组合或通过集体结构重排而产生另一种无序结构,不完全相同的无序结构可能表现有不同的性能。金属玻璃在急冷过程中可能引入夹杂,孔洞等缺陷,此外由于自由体积的大小和分布不均匀,产生具有高度动性的活动区,该区范围的大小、位置和动性都没有点阵的限制,在外力和温度等外界条件作用下,它们的状态和分布都可能发生变化,等离子体电荷及其场分布也跟着变化,影响金属玻璃的力学行为。

三、结构与性能

这些非晶态金属材料内部原子作不规则排列,这样的结构特征使它具有许多晶态材料所没有的性能。主要包括:

(1) 原子排列长程无序,这导致金属玻璃的X射线衍射不会出现晶态金属那样的衍射线,也不存在亚微观(即微米数量级)的各向异性(如磁畴结构等性质)。(2) 短程有序,即金属原子的周围配位情况彼此相似,也和晶态中原子的情况相近。

(3) 无晶界,晶态金属一般由微米量级的小晶粒组成,晶粒间存在晶界。从亚微观来看金属玻璃是均匀的固体,不存在晶粒和晶界,这一特点大大提高了金属玻璃的力学性能和电磁性能,使它具有很高的强度,例如抗拉强度、硬度、断裂强度和弹性模量等都比晶态合金强得多。金属玻璃为非晶态结构,显微组织均匀,不含晶界、位错等缺陷,使腐蚀金属的液体“无缝可钻”,具有高度抗腐蚀性。

(4) 不稳定性,金属玻璃在热力学上是不稳定的,它有向晶态转化的趋势。

(5) 卓越的硬度和机械度,拉丝后纤维化的非晶态铁钽硅硼合金线材,拉伸强度高达400公斤每平方毫米,为钢琴丝的1.4倍,为一般钢丝的10倍。

(6) 优越的磁学性能。

四、制备

金属玻璃的制备方法可归纳为原子沉积法和液体急玲法两大类。用原子沉积法制备金属玻璃时的玲却速度,一般要比用液体急冷法的要高,故较易保留那些其自由能比平衡相的自由能要大的相,这种方法包括溅射法、真空蒸发法,辉光放电分解法,化学沉积法等。液体急冷法是将液态金属以大于lO~C/sec的速度急冷,在液体金属中比较紊乱的原子排列保留到固体则可获得金属玻璃;为提高冷却速度,除采用良好的导热体作基板外,还必须使液体与基板接触良好,液体层须相当地薄,液体与基板接触开始至凝固终止的时间尽可能缩短;现有液体急冷法有喷枪法、离心法等。

五、应用领域

金属玻璃是一种优异的磁性材料,具有高饱和磁感应、低铁损等优点,同时还具有较高的耐磨性和耐犒蚀的特点。来制造收录机的磁头,可以避免磁头尖部的脱落现象、降低磁头与磁带摩擦发出的噪声,这将会给人们带来优美、清晰的音质和理想的音响效果。90年代初期,皮·杜威的学生威廉·约翰逊在这种方法的基础上,终于研制出一种合金,并创建了液态金属技术公司。这种被命名为Vitreloy的新材料中包含了锆、钛、铜、镍等大金属原子以及较小的铍金属原子。它比钢更具弹性,锻造温度仅在400摄氏度左右,而锻造钢需要达到1000摄氏度的高温,这使得它有可能成为一种理想的制造业用材。该公司利用Vitreloy制造的第一件产品是高尔夫球杆,Vitreloy良好的反弹性可以将球击得更远。,目前科学家已经能够用一些贱金属,比如铁或铜来制造金属玻璃。2003年,美国维吉尼亚大学的约瑟夫·普恩和加里·西弗赖特宣布,他们利用碳、铁和少量锰,成功研制出“钢玻璃”,这也是首次研制出没有磁性的钢。对于军事而言,这是一个重大突破,因为用这种钢材料建造的轮船将更易于躲避雷达的探测。此外,产品的尺寸也比过去大。2004年,美国橡树岭国家实验室的研究人员以50%的铁,加上钼、锰、碳、硼、铬和钴等元素,并在混合物中加入1.5%的钇,研制出直径为12毫米的钢管。其超强度、重量轻、弹性好、不变质、不易断裂的特性,开拓了金属玻璃空前的应用前景。液态金属技术公司也正在利用其开发的铂金属玻璃制造解剖刀等医疗器械以及专业网球拍等。该公司还与韩国三星公司签署协议,为其提供手机零部件的原材料。除了作为飞行器零部件和轮船船体材料外,美国国防部还考虑用无毒的金属玻璃取代资源日益贫乏的铀来制作穿甲弹头等军事装备。

六、国内外的研究内容和研究进展

美国利用金属玻璃出色的弹性进行防弹车身和战舰的研制。日本考虑到这种材料的成本昂贵,目前还没考虑用于普通轿车的计划,但是他们正在研究用于汽车刹车器等压力传感器上。还有金属玻璃在纳米领域内的研究,使得金属玻璃能够像玻璃那样自由变形加工。材料科学家们 20年来一直在寻找便宜的大块金属玻璃,直到现在才取得突破性进展。目前他们研究出来的这代金属玻璃以50%的铁,加上钼、钇、锰、碳、硼、铬和钴等化学元素,混合而成。其突破在于:首先是在技术上,合金的玻璃形成能力大为增强。还有诸如性能改善的研究:大块金属玻璃基复合材料制备技术研究进展等。

玻璃纤维复合材料的十大应用领域

玻璃纤维复合材料的十大应用领域 玻璃纤维(英文原名为:glassfiber或fiberglass )是一种性能优异的无机非金属材料,种类繁多,优点是绝缘性好、耐热性强、抗腐蚀性好,机械强度高,但缺点是性脆,耐磨性较差。它是以玻璃球或废旧玻璃为原料经高温熔制、拉丝、络纱、织布等工艺制造成的,其单丝的直径为几个微米到二十几米个微米,相当于一根头发丝的1/20-1/5 ,每束纤维原丝都由数百根甚至上千根单丝组成。玻璃纤维通常用作复合材料中的增强材料,电绝缘材料和绝热保温材料,电路基板等国民经济各个领域。 一、船艇 玻璃纤维复合材料具有耐腐蚀性、重量轻、增强效果优越等特点,被广泛用于制造游艇船体、甲板等。 二、电子电气

玻璃纤维增强复合材料在电子电气方面的运用主要是利用了它的电绝缘性、防腐蚀性等特点。复合材料在电子电气领域的应用主要有以下几个部分: 1、电器罩壳:包括电器开关盒、电器配线盒、仪表盘罩等。 2、电器原件与电部件:如绝缘子、绝缘工具、电机端盖等。 3、输线电包括复合电缆支架、电缆沟支架等。 三、风能

风能是无污染、可持续的能源之一,采用风能发电是开发新能源的一种途径。玻璃纤维具有优越的增强效果、重量轻等特点,是用于制造玻璃钢叶片和机组罩的一种良好材料。 四、航空航天、军事国防 由于航空航天、军事等领域对材料的特殊要求,玻纤复合材料所具有的重量轻,强度高,耐冲击及阻燃性好等特色能为这些领域提供了广泛的解决方案。 复合材料在这些领域的应用如下: --小飞机机身 --直升机外壳和旋翼桨叶 --飞机次要结构部件(地板、门、座椅、辅助油箱) --飞机发动机零件 --头盔 --雷达罩 --救援担架

金属玻璃

金属玻璃材料 专业:材料学 课程:材料科学研究 学号: 2014021383 姓名:王莉 老师:杨敏

金属玻璃材料 摘要:主要介绍了金属玻璃的定义、分类、机理、结构及性能间的关系、用途、应用领域和特点,以及目前国内外的研究内容及研究进展。 关键词:发展简史、金属玻璃、研究进展、用途 Abstract: this paper mainly introduces the definition, classification,mechanism of the metallic glass, the relationship between structure and performance, usage, characteristics and application fields, as well as the research content and research progress at home and abroad. Keywords: development brief history, metal, glass, research progress and applications 一、发展简史 金属玻璃的出现可以追溯到20世纪30年代,Kramer第一次报道用气相沉积法制备出金属玻璃,在1950年,冶金学家学会了通过混入一定量的金属——诸如镍和锆一去显出结晶体,1960年,美国加州理工学院的Klement和Duwez 等人采用急冷技术制备出Au75Si25金属玻璃。当合金的薄层在每秒一百摄氏度的速率下冷却时,它们形成金属玻璃。但因为要求迅速冷却,它们只能制造成很薄的条状物、导线或粉末。最近,科学家通过混合四到五种不同大小原子的元素,去形成诸如条状的多种多样的金属玻璃。变化原子大小使它混合而形成玻璃从而变得更韧。这些新合金的用途之一是在商业上用来制造高尔夫球棍的头。 二、金属玻璃的定义 将熔融的合金喷射到冷的铜板上,降温速度在一百万摄氏度每秒以上,由于冷凝速度极高,液态合金来不及形成结晶就凝固了,结果获得了如同玻璃一样的非晶态合金。用X射线衍射法进行测试,这种急冷的合金与平常的金属不同,它不是晶体而是玻璃体,故非晶态合金又称为金属玻璃。 三、金属玻璃的机理 金属玻璃是一种特殊的合金材料。通常金属原子都是有序排列的晶体结构,而在金属玻璃中,原子的排列如同液体或者玻璃一样杂乱无章。虽然从严格意义上来说,金属玻璃并不是液体,但是由于它没有固定的外形,可以像液体一样随意流动。金属玻璃的原子都无规律地紧密排列,内在组合没有缝隙,因此它的硬度更大,即使遭到外力重击,原子也很容易回复原位,同时还具有很强的抗腐蚀能力,不变质,重量轻;也正是由于没有晶粒的体积限制,金属玻璃很容易被制成仅10纳米的微型器件。而且,金属玻璃的非晶体结构使得它可以在低温下熔

玻璃纤维增强塑料成型工艺

玻璃纤维增强塑料成型工艺 第一章绪论 FRP(Fiberglass Reinforced Plastics)或GRP(GlassReinforced Plastics)或GFRP(Glass fibre reinforced plastics)。玻璃钢是玻璃纤维增强塑料的习惯叫法,是一种新型工程材料。它是以玻璃纤维及其制品作为增强材料,以合成树脂作基体材料,通过一定的成型工艺而制成的一种复合材料。三十年代在美国出现后,到二次世界大战期间由于战争的需要才发展起来。战后逐渐转到了民用工业方面,并获得了迅速发展。由于玻璃钢具有许多特殊优良的性能(如机械强度高、比重小、耐化学腐蚀、绝缘性能好等等)。因此被普遍应用于火箭、导弹、航空、造船、汽车、化工、电器、铁路以及一般民用等工农业部门中。目前世界各国都非常重视研究和发展玻璃钢材料,迄今为止,人们不但研究试制成功各种各样有特殊性能的玻璃钢材料产品,而且研究成功各种各样的成型工艺。 第二章玻璃钢基础知识 1、玻璃钢的发展历史 1940年,美国一家实验室的技术人员不小心将加有催化剂的不饱和聚酯树脂倾倒在玻璃布上,第二天发现固化后的这种复合材料强度很高,玻璃钢遂应运而生。 1942年第一艘玻璃钢渔船问世;玻璃钢管试制成功并投入使用。二战其间,美国以手工接触成型与抽真空固化工艺,制造了收音机雷达罩与副油箱;利用胶接技术制作了玻璃钢夹芯结构的收音机机翼。 1946年发明了以纤维缠绕法生产压力容器的方法。 1949年预混料DMC(BMC)模压玻璃钢面试。 1950年真空袋与压力袋成型工艺研究成功;手糊环氧玻璃钢直升收音机旋翼面市。 20世纪50年代末,前苏联成功将玻璃钢用于炮弹引信体等军品及化工器材的生产。 1961年德国率先开发片状模塑料(SMC)及其模压技术。 1963年玻璃钢波形瓦开始机械化生产,美、法、日先后有高生产率的边疆生产线投生。 1972年美国研究成功干法生产的热塑性片状模塑料。 20世纪80年代,开发了湿法生产的热塑性片大辩论模塑料。瑞士、奥地利离心法成型玻璃钢管得到发展;意大利工业化纤维缠绕玻璃钢管生产线技术成熟,产品大量使用于石化、轻工、轮船等领域。 1956年,时任重工业部副部长、后任建材工业部长的赖际发同志赴前苏联考察玻璃钢。俄文称玻璃钢为“玻璃塑料”(CTEKJIOIIJIACTHHK),当时中文里没有相应的词。想到材料内有玻璃,强度又高,就叫“玻璃钢”。这就是“玻璃钢”一词的由来。

玻璃纤维成份和性能

玻璃纤维行业基本概念: 玻璃纤维成份和性能 生产玻璃纤维的基本原料是:石英砂、腊石、石灰石、白云石,为了熔化以上物质,还要加入硼酸和萤石作助熔剂。玻璃纤维按所含Na2O成分的多少分三类:无碱玻璃纤维、中碱玻璃纤维、高碱玻璃纤维。无碱玻璃纤维中含有SiO2 55~57%,Al2O3 10~17%,CaO 12~25%,MgO 0~8%,B2O3 8.5%,Na2O 0.5%。中碱玻璃纤维Na2O含量为12%,高碱玻璃纤维Na2O含量为15%,其它成分一样,含量稍微变动。从性能上看,无碱、中碱、高碱玻璃纤维其强度依次降低、耐久性依次变差、绝缘性依次减弱,只是耐酸性依次增强。无碱玻璃纤维多用于增强和绝缘材料,高碱玻璃纤维多用于稀酸环境,如蓄电池隔板、电镀槽、酸贮罐、酸过滤材料等,中碱玻璃纤维因价格优势在中国得到普遍使用。玻璃纤维与金属相比具有高强度、耐腐蚀、透光性和绝缘性好等特点。 玻璃纤维生产工艺 生产玻璃纤维常用的方法有两种:池窑法直接拉丝、球法坩锅拉丝。池窑法直接拉丝是将矿物原料磨细配制送入单元窑,用重油燃烧加热熔化物料后直接拉丝,具有产量大、质量稳、能耗低的特点,球法坩锅拉丝是从市场上购进玻璃球然后再通过电加热熔化拉丝,所用坩锅有陶土坩锅、全铂坩锅、代铂坩锅之分,前者只能用平板碎玻璃生产高碱玻璃纤维,全铂坩锅能耐高温且能制出干净纯净玻璃纤维,但单炉需铂铑合金3~4公斤,造价昂贵,现在主要用代铂坩锅,即熔化部分为耐高温陶土材料,拉丝漏板用铂銠合金材料,单炉用贵金属0.6 公斤既可,节省造价,但质量不如全铂坩锅,适合我国。球法坩锅拉丝所用漏板为50~800孔,单丝直径在9微米以下,一般需经过加捻纺织后制成各种玻璃纤维制品,此法能耗大、质量不稳定,但非常灵活,可补充池窑拉丝的一切空白。池窑拉丝用漏板为800~4000孔,单丝直径在11微米以上。 单丝用浸润剂涂油保护后集束成原丝,如果用于增强塑料则必需涂覆偶联剂。浸润剂的作用是:A浸润保护作用B粘结集束作用C防止玻璃纤维表面静电荷的积累D为玻璃纤维提供进一步加工和应用所需要的特性E使玻璃纤

铜玻璃复合材料的制备和性能分析

铜/玻璃复合材料的制备和性能分析 材料094班:王波指导教师:郭宏伟 陕西科技大学材料科学与工程学院陕西西安710021 摘要:本文采用铝硼硅酸盐玻璃粉与铜粉,经过不同铜玻璃配比用高温烧结的方法得到铜/玻璃复合材料。通过抗折强度测试,得出不同烧结温度、不同配比与强度的关系。再通过XRD、SEM、热膨胀等方法对复合材料进行探究。结果表明:铜/玻璃复合材料中主要是由玻璃相、铜相、亚铜相组成,玻璃完全包裹铜相和亚铜相,烧结致密,没有气泡,复合材料的强度高。 关键词:玻璃粉,导电性,复合材料 Preparation and P erformance of C opper-glass ABSTRACT:In this paper,aluminum borosilicate glass powder and copper powder,copper glass ratio through different methods used to obtain high-temperature sintering of copper-glass composite materials.By flexural strength tests,the different sintering temperatures and in different proportions and intensity relationships.Through XRD,SEM,and other methods of thermal expansion composites were explored.The results showed that:Copper-glass composite material is mainly made of glass phase and copper phase, cuprous phase composition,the glass completely wrapped cuprous copper phase and phase sintering,no bubbles,high strength composite material. KEY WORDS:Glass frit,conductive,composite materials 近几年块状金属玻璃(BMG)引起了人们的广泛关注,其主要原因是金属玻璃作为高强度结构材料表现出的应用潜力[1]。然而铜/玻璃复合材料的研究在国内外的研究还不是很多,都停留在以前理论的基础之上。此次在结合前人的基础上,选用铜粉与铝硼硅酸盐玻璃粉在高温下烧结,得到一种新的复合材料,分析工艺条件对复合材料性能的影响,并通过XRD、SEM、硬力分析、热膨胀分析来研究铜玻璃复合材料的性能。 1实验 第一步:玻璃粉的制备 1)首先,按质量分数将50%的SiO2,13%的Al2O3,20%的CaO,5%的MgO,10%的B2O3,2%的Na2O,0.5%的Sb2O3混合均匀后,形成配合料; 2)然后,将配合料的加入已经升温至1400℃的刚玉坩埚中通过10min升温至1550℃,并保温20min;再将剩余配合料再加入刚玉坩埚中,并通过10min升温至1550~1600℃,保温60min后,将熔制好的玻璃液倒入水中水淬; 3)最后,将水淬后的玻璃渣捞出,烘干球磨后过400目标准筛,既得玻璃/金属复合材料用玻璃粉末; 第二步:玻璃/金属复合材料的制备 1)首先,玻璃粉末与铜粉末按照一定配比混合均匀形成混合料; 2)然后,再向混合料中加入混合料质量分数1~3%蒸馏水,并混合均匀; 3)然后,将加水的混料放入密闭的容器中,室温下放置8h备用;

玻璃纤维与碳纤维区别

玻璃纤维/碳纤维有什么区别 玻璃纤维是一种性能优异的无机非金属材料。英文原名为:glass fiber 。它是以玻璃球或废旧玻璃为原料经高熔制、拉丝、络纱、织布等工艺。最后形成各类产品,玻璃纤维单丝的直径从几个微米到二十几米个微米,相当于一根头发丝的 1/20-1/5 ,每束纤维原丝都有数百根甚至上千根单丝组成,通常作为复材料中的增强材料,电绝缘材料和绝热保材料,电路基板等,广泛应用于国经济各个领域。 玻璃纤维之特性: 玻璃一般人之观念为质硬易碎物体,并不适于作为结构用材但如其抽成丝后,则其强度大为增加且具有柔软性,故配合树脂赋与形状以后终于可以成为优良之结构用材。玻璃纤维随其直径变小其强度增高。作为补强材玻璃纤维具有以下之特点,这些特点使玻璃纤维之使用远较其他种类纤维来得广泛,发展速度亦遥遥领先 特性用途如下: (1)拉伸强度高,伸长小(3%)。如作外墙 (2)弹性系数高,刚性佳。 (3)弹性限度内伸长量大且拉伸强度高,故吸收冲击能量大。 (4)为无机纤维,具不燃性,耐化学性佳。 (5)吸水性小。 (6)尺度安定性,耐热性均佳。 (7)加工性佳,可作成股、束、毡、织布等不同形态之产品。 (8)透明可透过光线. (9)与树脂接着性良好之表面处理剂之开发完成。 (10)价格便宜。 碳纤维是一种纤维状碳材料。它是一种强度比钢的大、密度比铝的小、比不锈钢还耐腐蚀、比耐热钢还耐高、又能像铜那样导电,具有许多宝贵的电学、热学和力学性能的新型材料。用碳纤维与塑料制成的复合材料所做的飞机不但轻巧,而且消耗动力少,推力大,噪音小;用碳纤维制电子计算机的磁盘,能提高计算机的储存量和运算速度;用碳纤维增强塑料来制造卫星和火箭等宇宙飞行器,机械强度高,质量小,可节约大量的燃料。1999年发生在南联盟科索沃的战争中,北约使用石墨弹破坏了南联盟大部分电力供应,其原理就是产生了覆盖大范围地区的碳纤维云,这些导电性纤维使供电系统短路。 碳纤维可通过高分子有机纤维的固相碳化或低分子烃类的气相热解来制取。上前世界上产生的销售的碳纤维绝大部分都是用聚丙烯腈纤维的固相碳化制得的。其产生的步骤为A预氧化:在空气中加热,维持在200-300度数十至数百分钟。预氧化的目的为使聚丙烯腈的线型分子链转化为耐热的梯型结构,以使其在高碳化时不熔不燃而保持纤维状态。B碳化:在惰性气氛中加热至1200-1600度,维持数分至数十分钟,就可生成产品碳纤维;所用的惰性气体可以是高纯的氮气、氩气或氦气,但一般多用高纯氮气。C石墨化:再在惰性气氛(一般为高纯氩气)加热至2000-3000度,维持数秒至数十秒钟;这样生成的碳纤维也称石墨纤维。 碳纤维有极好的纤度(纤度的表示法之一是9000米长的纤维的克数),一般仅约为19克;拉力高达300KG/MM2;还有耐高、耐腐蚀、导电、传热、彭胀系数小等一系列优异性能。目前几乎没有其他材料像碳纤维那样具有那么多的优异性能。

金属玻璃

金属玻璃 摘要文章简要地介绍了金属玻璃的定义、分类、机理、结构及性能间的关系、用途、应用领域和特点,以及目前国内外的研究内容及研究进展。 关键词金属玻璃 正文 一、定义 将熔融的合金喷射到冷的铜板上,降温速度在一百万摄氏度每秒以上,由于冷凝速度极高,液态合金来不及形成结晶就凝固了,结果获得了如同玻璃一样的非晶态合金。用X射线衍射法进行测试,发现这种急冷的合金与平常的金属不同,它不是晶体而是玻璃体,故非晶态合金又称为金属玻璃。 二、机理 金属玻璃是一种特殊的合金材料。通常金属原子都是有序排列的晶体结构,而在金属玻璃中,原子的排列如同液体或者玻璃一样杂乱无章。虽然从严格意义上来说,金属玻璃并不是液体,但是由于它没有固定的外形,可以像液体一样随意流动。金属玻璃的原子都无规律地紧密排列,内在组合没有缝隙,因此它的硬度更大,即使遭到外力重击,原子也很容易回复原位,同时还具有很强的抗腐蚀能力,不变质,重量轻;也正是由于没有晶粒的体积限制,金属玻璃很容易被制成仅10纳米的微型器件。而且,金属玻璃的非晶体结构使得它可以在低温下熔化,如同塑料般易于塑造成型。阻碍原子结合与重排的势垒△U对于金属玻璃的形成尤其是它的稳定性起着重大的影响。位形熵是考虑金属玻璃形成与稳定性的最适合的参数,而组元原子的势垒△U则是对金属玻璃的形成与稳定性起重要作用,其次是尺寸差效应,第二是过冷度。金属玻璃是具有亚稳液态结构金属,对于一个长程有序的金属,材料的力学性能在很大程度上取决于金属中缺陷的性质、数量和分布;金属玻璃的等离子体密度与晶态差异不大,说明金属玻璃的结构与稳定性主要取决于组成原子之间的键合、电子状态,而不是它们的原子尺寸:在一个没有产生晶化的无序结构中.局部原子可以通过单个原子的位移,重新组合或通过集体结构重排而产生另一种无序结构,不完全相同的无序结构可能表现有不同的性能。金属玻璃在急冷过程中可能引入夹杂,孔洞等缺陷,此外由于自由体积的大小和分布不均匀,产生具有高度动性的活动区,该区范围的大小、位置和动性都没有点阵的限制,在外力和温度等外界条件作用下,它们的状态和分布都可能发生变化,等离子体电荷及其场分布也跟着变化,影响金属玻璃的力学行为。 三、结构与性能

玻璃纤维基础知识

玻璃纤维小知识 1 玻璃纤维是以二氧化硅为主要原料的天然矿物,添加特定的金属氧化物矿物原料,混合均匀后,在高温下熔融,熔融玻璃液流经漏嘴流出,在高速拉引力的作用被牵伸并急速冷却固化成为极细的连续的纤维。 2 玻璃纤维的基本性质 2.1 外观特性 玻璃纤维为表面光滑的圆柱状,截面呈完整的圆形。这主要是成形时熔融玻璃液表面张力所致。有机纤维为非圆形结构的截面,且表面有较深的皱纹。 玻璃纤维圆形截面承受载荷能力强;气体和液体通过阻力小,但表面光滑使纤维的抱合力小,不利于与树脂的结合。 2.2 密度 玻璃纤维密度一般在2.50-2.70 g/cm3,主要取决于玻璃成分。所以有时工厂生产控制时也用密度的变化来考察成分的波动。 2.3 抗拉强度 玻璃纤维的抗拉强度比其他天然纤维、合成纤维要高。 玻璃纤维强度情况比较复杂,通常一些资料中给出的数据是“新生态纤维”的强度,即在漏嘴下直接取出的纤维所测的强度。缠绕在绕丝筒上后强度很快下降。通常认为绕丝筒上纤维的强度低于新生态15%-25%。 格里菲斯微裂纹缺陷理论:玻璃纤维的理论强度取决于分子之间的引力(与玻璃成分和结构有关),其理论强度很高。但由于玻璃纤维中存在着数量不等、尺寸不同的微裂纹,使实际强度大大降低。微裂纹分布在玻璃纤维的整个体积内,但以表面裂纹危害最大,在外力作用下,微裂纹处产生应力集中而发生破坏。 2.3 影响玻璃纤维强度的因素 (1)化学成分:玻璃组成不同,制成的纤维强度也不同。 (2)玻璃纤维的直径:直径越细强度越大。 (3)存放时间增加,强度下降。 (4)玻璃液的缺陷,如化学不均匀、结晶杂质、结石、气泡等影响纤维强度。研究结果认为:当玻璃中存在结晶物时会降低强度,最大降低52%:当存在微小气泡时,强度降低20%,玻璃液质量对保证纤维强度至关重要。 (5)成型温度影响:当温度从1200℃升高到1 370℃,纤维强度可提高一倍。“玻璃是一定状态下的无机物质,这种状态是该物质液态的继续,并与液态类似”,也就是说玻璃是具有液态结构的坚硬材料。由于玻璃纤维是在高速急冷条件下成形,所以具有接近于高温熔体的微观结构。通常说玻璃结构是远程无序,近程有序。近程有序的程度本身取决于熔融玻璃液的温度和从熔融玻璃液冷却为固态的速度,因此玻璃纤维的物理性质不仅受其成分的影响,还受其热历史的影响。 (6)冷却的速度:冷却速度越快,玻璃纤维的结构越接近熔融体的结构,析出的超显微晶体的数量和尺寸越少,缺陷和微裂纹也越少,强度越高。 (7)拉丝张力:拉丝作业不可避免地会产生微裂纹,在拉丝力的作用下每根纤维都受到一定的应力,这种应力作用于先硬化的纤维外壳时就产生了表面微裂纹。减少纤维成形时的张力,有利于提高纤维的强度。 2.4 弹性模量

块体金属玻璃的研究与应用

块体金属玻璃的研究与应用 姓名:李义锋1 概述 块体金属玻璃的出现,使玻璃合金由过去单一的功能材料应用向集优异的物理、化学与力学性能于一体的功能性结构材料的跨跃成为可能;还为解决材料科学与凝聚态物理中若干重大科学问题提供了新的机遇。 金属玻璃是指金属合金的熔体在从高温冷却到熔点以下没有通过结晶的方式而直接被“冷冻”形成的固体。虽然人类到目前为止对“冷冻”形成玻璃的过程还不清楚,但已知玻璃中的原子或分子排列如同它们在高温那样杂乱无章。过去,人们要采用至少每秒10万度的冷却速度才能获得厚度为微米尺度的金属玻璃。现在,通过成分设计及采用小于每秒100度的冷却速度能够获得厚度为毫米到厘米尺度的金属玻璃,即块体金属玻璃。由于金属玻璃具有许多独特和优异的物理、力学和化学特性,因而在很多领域具有重要应用价值。金属玻璃的形成机理和结构以及金属玻璃在物理、力学与化学方面的本征特性等一直是现代材料与凝聚态物理的重要研究课题。 2 块体金属玻璃的发展 块体金属玻璃(bulk metallic glass)通常是指3维尺寸都在毫米以上的金属玻璃,20世纪70年代,陈鹤寿及其合作者用简单的吸铸法在相当低的冷速(103K /s范围内)下制备出毫米直径的Pd-Cu-Si金属玻璃棒。该体系是最先发现的块体金属玻璃体系。20世纪80年代初,Turnbull和他的学生翟显荣采用一种叫助溶剂包裹的方法(Fluxing方法),制备出最大尺寸近厘米的PdNiP非晶合金。随后用同样的方法又发现一系列毫米级Pd基,Pt基金属玻璃。Pd基非晶合金具有很强的非晶形成能力,可以称之为第一代大块金属玻璃。但是Pd,Pt都很昂贵,加上制备工艺复杂,难以工业化推广。这类大块金属玻璃只能用于非晶物理的基础研究,应用价值较小。但这项工作证明,在合金中可以获得大块金属玻璃材料。寻找大块金属玻璃新体系的工作是相当艰苦的。 金属玻璃材料及物理的研究在20世纪80年代曾一度从热门变成冷门研究课题。那时候,只有为数不多的研究组仍在这一领域坚持工作。日本东北大学金属研究所

第六章 金属、玻璃、陶瓷材料

第六章 金属、玻璃、陶瓷包装材料及容器 第一节金属包装材料与容器 金属材料(metal m aterial )用于食品包装有近200年的历史,是现代最重要的四大包装材料之一。 金属包装材料以金属板或箔材为原材料,再加工成各种形式的容器来包装食品。 金属包装材料的性能 1、高阻隔性能;阻隔气、汽、水、油、光的透过 2、优良的机械性能;抗拉、抗压、抗弯、韧性及硬度 3、容器成型加工性好且生产效率高 4、具有良好的耐高低温性, 良好的导热性、耐热冲击性 5、表面装饰性好 6、包装废弃物易回收处理。 缺点:化学稳定性差,不耐酸碱腐蚀; 价格较贵;重量较大。 食品包装常用金属材料主要分类 1 、钢基包装材料 镀锡薄钢板(马口铁)、镀铬薄钢板(TFS 板)、 涂料板、镀锌板、不锈钢板。 2 、铝质包装材料 铝合金薄板、铝箔、铝丝等。 一、镀锡薄钢板(马口铁tinplate ) 镀锡薄钢板是低碳薄钢板表面镀锡而制成的产品,简称镀锡板,俗称马口铁板。它大量用于制造包装食品的各种容器,也可为其他材料制成的容器配制容器盖或底。 镀锡板由五部分组成,由内向外依次为钢基板、锡铁合金层、锡层、氧化膜和油膜组成。 (一)镀锡薄钢板(马口铁tinplate )) 镀锡薄钢板结构组成

T 50 可塑性好,用于拉伸容器如拉伸罐罐身。 T 52 拉伸性能中等,稍有刚性用于盖、圆环、螺旋盖、一次拉伸罐 T 57 刚性好,可用于大直径瓶盖、皇冠盖。T61 刚性稍高,可用于较大容器罐身、罐盖、罐底。 T 65 刚性高,可用于三片罐的罐身、罐盖、罐底。T 70 刚性很强,用于罐底、盖。 镀锡薄钢板的性能与使用 镀锡板由于露铁点等因素,具有的耐腐蚀性有时不能满足某些食品的需要,采用镀锡板上涂覆涂料,将食品与镀锡板隔离,以减少它们的接触反应。如富 含蛋白质的鱼、肉食品在高温加热中蛋白质分解产生硫化氢对镀锡罐产生化学腐蚀作用,与露铁点发生作 用形成硫化铁,将对食品产生污染;高酸性食品对罐壁腐蚀产生氢胀和穿孔;有色果蔬因罐内壁溶出二价锡离子的作用将发生褪色现象等等。 (二)涂料镀锡板 镀铬板是由钢基板、铬层、水合氧化铬层和油膜构成。 (一)镀铬薄钢板TFS (tin of free steel ) 二、无锡薄钢板 各层成分成分厚度性能特点 油膜 水合氧化铬层金属铬层 钢基板葵二酸二辛酯 水合氧化铬金属铬低碳钢 22mg/m 27.5~27mg/m 2 32.3~140mg/m 2制罐用0.2~0.3mm 防锈、润滑 保护金属铬层,便于涂料和印铁,防止产生孔眼 有一定腐蚀性,但比纯锡差 提供板材必须的强度,加工 性良好 镀铬板各层厚度、成分及性能特点 镀铬薄钢板性能与使用 (1)机械性能与镀锡钢板相差不大;(2)耐腐蚀性 有较好的耐腐蚀性,但比镀锡板稍差。 (3)加工性能镀铬板不能锡焊,制罐时接缝需采用熔接或黏结。适宜用于制造罐底、盖和两片罐。(4)价格便宜镀铬板加涂料后具有的耐腐蚀性比镀锡板高,价格便宜低10%左右,具有较好的经济性,其使用量逐渐扩大。

玻璃纤维表面特性及物理

玻璃纤维表面特性及物理、化学性能 玻璃纤维表面比内部结构的活性大得多,因此其表面上就容易吸附各种气体、水蒸气、尘埃等,容易发生表面化学反应。一般玻璃纤维表面上往往有弱酸性的基团存在,这就会影响其表面张力,引起与粘结剂基体间的粘结力的改变。以高倍的电子显微镜观察,就会发现其表面具有很多的凹穴和微裂纹,这会影响其复合材料性能的下降。因此,应该防止玻璃纤维表面的水分及羟基离子浓度的增加,以避免该复合材料受水浸蚀后强度的下降,所以一般玻璃纤维增强塑料的耐酸性好而耐碱性差。玻璃纤维比玻璃的强度高是因为玻璃纤维经高温拉丝成型时减少了玻璃融液的不均一性,使其具有危害性的微裂纹大大少于玻璃。从而减少了应力集中,使纤维具有较高的强度。玻璃纤维的单丝直径一般为3~10μm,密度为2.4~2.7g/cm3。玻璃纤维的横断面几乎是完整的圆形,由于其表面光滑,故纤维间的抱合力小,不利于与树脂的粘合。玻璃纤维力学性能的最大特点是拉伸强度高,影响玻璃纤维拉伸强度的因素很多,主要有: 1、纤维直径和长度对拉伸强度的关系。一般说来,玻璃纤维直径减小,其拉伸强度会迅速增加。玻璃纤维的拉伸强度也和纤维的长度有关,随着长度增加,其拉伸强度也会显著地下降。 2、纤维强度与玻璃化学成分的关系。一般来说,含K2O和PbO成分多的玻璃纤维强度较低。 3、存放时间对纤维强度的影响。玻璃纤维存放一定时间后,会出现强度下降的现象,这主要是由于空气中水分的作用。有碱玻璃纤维比无碱玻璃纤维对大气中水分的化学稳定性差,前者拉伸强度在开始时下降迅速,以后逐渐慢,而后者基本不变。 4、负荷时间对强度的影响。玻璃纤维的强度随着施加负荷时间的增长而降

玻璃纤维术语及定义(原GB 5434—1985)

玻璃纤维术语及定义(原GB 5434—1985) 中华人民共和国国家标准JC/T 767—1985(1996)纺织玻璃纤维术语及定义(原GB 5434—1985)本标准适用于纺织玻璃纤维专业。 本标准规定的专用术语主要供各有关部门在国内和国际技术、贸易交往中;在制定、修定标准中使用。并为科研、设计、教学、生产部门编写技术文件和书刊时参考。 凡在本标准中未作规定的术语,需要时可在有关各类标准中给予规定。 本标准参照采用国际标准ISO6355-19800《纺织玻璃纤维-----术语》。 1 、一般术语 1.1、纤维 fibre;fiber 一种长径比很大而长度较短的物质单元。 1.2、玻璃纤维 fibreglass;glassfibre 一般指硅酸盐熔体制成的玻璃态纤维或丝状物。 1.3、连续纤维 continuous filament;multifilaments 由多根单丝集合成的一类纺织材料。 1.4、定长纤维 staple fibre;discontinuous fibre 一种直径细、长度短的纺织材料。 1.5、纺织玻璃纤维 textile glass 以连续玻璃纤维或定长玻璃纤维为基材制成的纺织制品的通称。 1.6、玻璃纤维涂覆制品 coatedglass,fibre products 涂有塑料或其他胶质物料的纺织玻璃纤维制品。 1.7、玻璃纤维;无碱玻璃纤维 E fibre glass 碱金属氧化物含量很少,具有良好电绝缘性的玻璃纤维(其碱金属氧化物含量一般小于1%)。 1.8、中碱玻璃纤维

medium-alkali glass fibre 我国生产的一种玻璃纤维。其碱金属氧化物含量在12%左右。 1.9、S玻璃纤雏:高强玻璃纤维 S glass fibre:high strength glass fibre 用硅-铝-镁系统的玻璃拉制的玻璃纤维,其新生态强度比无碱玻璃纤维高25%以上。1.10、M玻璃纤维:高模量玻璃纤维 M glass fibre;high modulus glass fibre 用高模量玻璃拉制成的玻璃纤维。其弹性模量一般比无碱玻璃纤维高25%以上。 1.11、高硅氧玻璃纤维 Vitreous silica fibre;high silica glass fibre 用钠硼硅酸盐玻璃拉丝后,经酸处理,烧结而成的玻璃纤维。其二氧化碳含量在95%以上。 1.12、D玻璃纤维;低介电玻璃纤维 D glass fibre;dielectric glass fibre 用低介电玻璃拉制而成的玻璃纤维。其介电常数及介质损耗因素都小于无碱玻璃纤维。 1.l3、AR玻璃纤维;耐用玻璃纤维 alKali -resistant glass fibre 用于增强硅酸盐水泥的玻璃纤维。能耐水泥水化时析出的水化物的长期浸蚀。 1.14半导体玻璃纤维 semiconducting glass fibre 含氧化银或氧化铜的玻璃拉制成纤维,经处理后,使其表面电阻率达半导体范围的玻璃纤维。 1.15、涂金属玻璃纤维 metal coated glass fibre 单根纤维表面涂有一层金属膜的玻璃纤维。 1.l6、玻璃纤维增强塑料;玻璃钢 glass fibre reinforced plastics;GRP 以玻璃纤维或其制品作增强材料的增强塑料。 2 、纤维、纱。 2.1、单丝 filament

玻璃纤维复合材料的十大应用领域

玻璃纤维复合材料的十大应用领域 令狐采学 玻璃纤维(英文原名为:glassfiber或fiberglass )是一种性能优异的无机非金属材料,种类繁多,优点是绝缘性好、耐热性强、抗腐蚀性好,机械强度高,但缺点是性脆,耐磨性较差。它是以玻璃球或废旧玻璃为原料经高温熔制、拉丝、络纱、织布等工艺制造成的,其单丝的直径为几个微米到二十几米个微米,相当于一根头发丝的1/20-1/5 ,每束纤维原丝都由数百根甚至上千根单丝组成。玻璃纤维通常用作复合材料中的增强材料,电绝缘材料和绝热保温材料,电路基板等国民经济各个领域。 一、船艇 玻璃纤维复合材料具有耐腐蚀性、重量轻、增强效果优越等特点,被广泛用于制造游艇船体、甲板等。 二、电子电气 玻璃纤维增强复合材料在电子电气方面的运用主要是利用了它的电绝缘性、防腐蚀性等特点。复合材料在电子电气领域的应用主要有以下几个部分:

1、电器罩壳:包括电器开关盒、电器配线盒、仪表盘罩等。 2、电器原件与电部件:如绝缘子、绝缘工具、电机端盖等。 3、输线电包括复合电缆支架、电缆沟支架等。 三、风能 风能是无污染、可持续的能源之一,采用风能发电是开发新能源的一种途径。玻璃纤维具有优越的增强效果、重量轻等特点,是用于制造玻璃钢叶片和机组罩的一种良好材料。 四、航空航天、军事国防 由于航空航天、军事等领域对材料的特殊要求,玻纤复合材料所具有的重量轻,强度高,耐冲击及阻燃性好等特色能为这些领域提供了广泛的解决方案。 复合材料在这些领域的应用如下: --小飞机机身 --直升机外壳和旋翼桨叶 --飞机次要结构部件(地板、门、座椅、辅助油箱) --飞机发动机零件 --头盔

玻璃纤维种类、性能及用途

玻璃纤维是一种无机非金属材料,以天然矿石为原料,按设计的配方进行配比后,进行高温熔制、拉丝、络纱、织布等工序形成各类产品,配合树脂赋予形状后,就可以成为优良性能的结构用材了。 (1)玻璃纤维种类 如果玻璃纤维按照单丝直径分类的话,玻璃纤维单丝呈圆柱形,它的粗细可以用直径来表示。通常根据直径范围,把拉制成型的玻璃纤维分成几种(其直径值以um为单位): 粗纤维:其单丝直径一般为30um; 初级纤维:其单丝直径大于20um; 中级纤维:单丝直径10-20um;

高级纤维:(亦称纺织纤维)其单丝直径3-10um。对于单丝直径小于4um的玻璃纤维又称为超细纤维。 单丝直径不同,不仅纤维的性能有差异,而且影响到纤维的生产工艺、产量和成本。一般5-10um的纤维作为纺织制品用,10-14um的纤维一般做无捻粗纱、无纺布、短切纤维毡等较为适宜。 (2)玻璃纤维性能 1、玻璃纤维布用于低温-196℃,高温300℃之间,具有耐气候性。 2、玻璃纤维布具有非粘着性,不易粘附任何物质。 3、玻璃纤维布耐化学腐蚀,能耐强酸、强碱、王水及各种有机溶剂的腐蚀,能够承受药物作用。 4、玻璃纤维布摩擦系数低,是无油自润滑的最佳选择。

5、玻璃纤维布透光率达6~13 %。 6、玻璃纤维布具有高绝缘性能、防紫外线、防静电。 7、玻璃纤维布强度高,具有良好的机械特性。 8、玻璃纤维布耐药剂性。 (3)玻璃纤维用途 1、玻璃纤维布通常用作复合材料中的增强材料,电绝缘材料和绝热保温材料,电路基板等国民经济各个领域。 2、玻璃纤维布多用于手糊成型工艺,玻璃纤维布主要是在船体、贮罐、冷却塔、船舶、车辆、槽罐等方面应用。 3、玻璃纤维布广泛应用于墙体增强、外墙保温、屋面防水等方面,还可以应用于水泥、塑料、沥青、大理石、马赛克等墙体材料的增强,是建筑行业理想的工程材料。 4、玻璃纤维布在工业上主要用于:隔热、防火、阻燃。该材料在遭到火焰燃烧时吸收大量热量并能阻止火焰穿过、隔绝空气。 芜湖白云玻纤有限公司是一家专业从事玻璃纤维及其制品研发、生产、销售的公司,主要生产高、中、无碱玻璃纤维及其制品,产品函盖中、无碱玻璃纤维无捻粗纱、短切原丝、短切毡、电子级玻纤纱和玻纤布、缠绕纱、拉挤纱、喷射纱、SMC、等各种规格不同种类的产品。其中特别注重对改性塑料增强产品的研发与升级。白云推行“品牌+服务”

金属、塑料、玻璃的表面处理

表面处理 目录 一、金属 (4) (一)阳极氧化 (4) 1. 阳极氧化 (4) 2. 工艺流程 (5) 3. 技术特点 (5) 4. 技术难点及改善关键点 (5) 5. 阳极氧化处理相关厂商 (5) (二)电泳(ED-Electrophoresis deposition ) (6) 1. 电泳 (6) 2. 工艺流程 (6) 3. 技术特点 (6) 4. 电泳处理相关厂商 (6) (三)微弧氧化(MAO) (7) 1. 微弧氧化 (7) 2. 工艺流程 (7) 3. 技术特点 (7) 4. 微弧氧化处理相关厂商 (8) (四)PVD真空镀 (8) 1. 物理气相沉积(Physical vapor deposition,PVD) (8) 2. 工艺流程 (9) 3. 技术特点 (9) 4. PVD加工厂商 (9) (五)电镀(Electroplating) (9) 1. 电镀 (10) 2. 工艺流程 (10) 3. 技术特点 (10) 4. 电镀相关厂商 (10) (六)粉末喷涂(Powder coating) (10) 1. 粉末喷涂 (10) 2. 工艺流程 (11) 3. 技术特点 (11) 4. 粉末喷涂相关厂商 (11) (七)金属拉丝 (12)

(八)喷砂 (13) 1. 喷砂 (13) 2. 技术特点 (13) 3. 喷砂相关厂商 (13) (九)抛光 (14) 1. 抛光 (14) 2. 工艺流程 (14) 3. 技术特点 (15) 4. 抛光相关厂商 (15) (十)蚀刻 (15) 1. 蚀刻 (15) 2. 工艺流程 (16) 3. 技术特点 (16) 4. 蚀刻相关厂商 (16) 二、表面处理塑料 (17) (一)模内装饰技术(IMD) (17) 1. 模内装饰技术(In-Mold Decoration-IMD) (18) 2. 技术特点 (18) 3. IMD加工厂商 (19) (二)喷涂(Painting ) (19) 1. 喷涂 (19) 2. 工艺流程 (19) 3. 技术特点 (19) 4. 喷涂相关企业 (20) (三)NCVM不导电真空镀 (20) 1. NCVM (20) 2. 工艺流程 (21) 3. 技术特点 (21) 4. NCVM加工厂商 (21) (四)电镀 (21) 1. 电镀 (22) 2. 工艺流程 (22) 3. 技术特点 (22) 4. 电镀相关厂商 (22)

金属玻璃论文

摘要:Zr基合金和Cu基大块非晶合金都是目前很有前途的结构材料,也是目前研究的一个热点。而Zr-Cu基金属玻璃同时具备Zr基金属玻璃比强度、比刚度高,耐蚀性好等优点和Cu基金属玻璃很高的抗拉、抗压强度,很好的塑性等优点。针对非晶态合金的形成机理形成金属玻璃,从纯属类的金属玻璃中选择出相应的高、低玻璃转变温度差异明显的体系,很不适用。目前缺乏一种令金属玻璃形成过程中处于一种中间状态,既快速冷却又恒温低温催化。本文研究渗碳对Zr-Cu基合金(例如:Zr-Cu-Al合金)组织形貌和相组成的影响。 关键字:金属玻璃;Zr基合金; Cu基大块非晶合金; 非晶态合金 (Amorphous alloys)是指以金属元素作为主要成分,并保持金属键特性的非晶态固体。与相应的晶体材料相比较,非晶态合金具有许多优异的性能:如高强度、良好的软磁性及耐腐蚀性能等,在许多领域有广泛的应用前景,因而得到了广泛的关注和研究。金属玻璃 (Metallic glass) 一般特指通过熔体过冷形成的非晶态合金。美国加州理工学院的Duwez教授是金属玻璃研究的先驱。金属玻璃领域早期的研究工作主要集中在二元合金体系,最近,研究者在简 单的Cu-Zr二元合金体系中制备出大块金属玻璃[30-33], Cu 64Zr 36 、Cu 64.5 Zr 35.5 和 Cu 50Zr 50 合金成分可以制备出最大直径达2mm的金属玻璃棒。这一发现给金属玻 璃研究领域带来了全新的概念,并将推动大块金属玻璃理论和应用的发展。 本文基于ZrCuAl(三种元素的摩尔比为1:1:1)合金可能与十八电子规则有一定的相关性,且十八电子规则的非金属簇化物类一般具有特殊的催化性,基于 对金属玻璃类合金的考虑,Zr 42Cu 46 Al 7 Y 5 合金是目前所报导的典型Zr-Cu基金属 玻璃中具有较好玻璃形成能力的典范,因此选取ZrCuAl合金和选取Zr 42Cu 46 Al 7 Y 5 合金进行渗碳处理。 1渗碳对ZrCuAl合金组织结构和相组成的影响 1.1相图分析 图1-1为Zr-Cu-Al三元系的等温截面图。由图可知,Zr、Cu、Al三种元素 可以形成的合金有AlCuZr、AlCu 2Zr、Al 5 CuZr 2 、Al 5 Cu 7 Zr。此图还可以看出,Zr、 Cu、Al三种元素还有可能形成Al 13Cu 5 Zr 2 、Al 50 Cu 8 Zr 42 、 Al 51 Cu 12 Zr 37 合金。图中星 形处为AlCuZr初始合金的成分标定点。图中圆形处为AlCu 2 Zr相的成分标定点。

金属与玻璃封接方式

玻璃种类繁多,可以满足不同场合的不同需求。通过调整玻璃的材质和工艺,可以使玻璃材料的性能发生很大的变化,使其更加稳定耐用。比如,一些写字楼常用的钢化玻璃不仅比普通玻璃坚固得多,而且碎片不会伤人,安全可靠。玻璃和金属有没有特殊的反应呢? 一、玻璃和金属间的封接方法 玻璃与金属封接过程是一个复杂的物理化学反应过程。必须根据整个封接过程中玻璃与金属氧化反应来确定烧结参数。除了要保证玻璃在固化过程中的膨胀系数与金属膨胀系数基本保持一致外,金属预氧化、玻璃液粘度变化、2次再结晶及冷却时的玻璃分相现象都必须充分考虑。 玻璃与金属的封接方式有两种:匹配封接和压缩封接。 匹配封接是选用膨胀系数比较接近的玻璃和金属,在高温封接后的逐渐冷却过程中使玻璃和金属收缩保持一致,从而减少由于玻璃与

金属收缩差而产生的内应力。 压缩封接是指选用的金属材料的膨胀系数比玻璃膨胀系数大,在封接冷却时由于金属收缩比玻璃收缩大,从而使金属对玻璃产生一个压应力(利用玻璃承受抗压能力远大于抗拉能力的特性),以此达到封接目的。目前的压缩封接工艺还有待完善。封接所选取的材料和控制参数都有待进一步探讨,而且采用压缩封接存在电性能较差的致命弱点。 二、玻璃材料与金属焊接方法 可以焊接. 将一个通过狭长的隧道式加热炉或者类似装置中移动的单玻璃板,经过切断和必要时的冲洗,至少进行边缘部分磨光,相互矫平,并在预热到玻璃变形温度之下的预热温度后,呈直立状态将玻璃板的水平边缘和垂直边缘彼此焊接起来. 其特征是,经过切断和必要时冲洗的单玻璃板,单个地加热形成多玻璃板的玻璃板之间的转向表面;接着矫平单玻璃板,将制造多玻璃板的单玻璃板组放在一起,实现边缘处的焊接. 玻璃与金属连接,目前常用的几种主要形式:机械连接、采用密封胶或者密封条以及采用高温烧结的办法。

玻璃包装材料问题及答案

第三篇玻璃包装材料与制品 第一章概论 1.优点:透明,坚硬耐压,良好的阻隔、耐蚀、耐热和光学性质; 能够用多种成形和加工方法制成各种形状和大小的包装容器; 玻璃的原料丰富,价格低廉,并且具有回收再利用性能。 缺点:较低的耐冲击性和较高的比重,以及熔制玻璃时较高的能耗。 2. 玻璃的主要原料种类较多,按其向玻璃中引入的氧化物的性质,可分为酸性氧化物原料、碱金属氧化物原料、碱土金属和二价氧化物原料及多价氧化物原料;按这些氧化物在玻璃结构中的作用,又将其分为玻璃形成体氧化物原料、玻璃中间体氧化物原料和玻璃改变体氧化物原料。 3. 本身可以单独形成玻璃的氧化物,称为玻璃形成体(网络形成体)氧化物,有SiO2、B2O3、P2O5等。本身不能单独形成玻璃但能改变玻璃性质(或结构)的氧化物,称为改变体(网络外体)氧化物,如:Li2O 、Na2O、K2O、CaO、MgO、BaO等。介于这二者之间的,即在一定条件下可以成为玻璃形成体(进入结构网络)的氧化物,称为中间体氧化物,如Ai2O3、ZnO、PbO等。 SiO2是用量最大的玻璃形成体氧化物,在玻璃结构中,SiO2以硅氧四面体[SiO4]为结构单元形成不规则的连续网络,成为玻璃的主体骨架。 玻璃中间体氧化物向玻璃中引入的是Al2O3,Al2O3能降低玻璃的结晶能力,提高玻璃的化学稳定性、热稳定性、强度、硬度和光泽性,并有利于玻璃的乳浊,是制造乳浊玻璃不可缺少的原料。Al2O3也能提高玻璃的粘度。 Na2O是网络外体氧化物,它可以降低玻璃熔体的粘度,使玻璃易于熔融,有降低熔制温度、节约能源的作用,是玻璃熔制中最好的助溶剂。含Na2O 的玻璃易于加工成形。 4. 熔制玻璃的主要辅助原料有:澄清剂、着色剂、脱色剂、助熔剂、乳浊剂等。 5. 石英玻璃在组成上与石英晶体一样,都是由单一的二氧化硅组成的,但二者却以不同的结构状态存在――玻璃与晶体。二氧化硅在石英晶体与石英玻璃中都是以硅氧四面体[SiO4]为结构单元存在的,即每个硅原子被4个氧原子包围组成四面体。各结构单元之间通过四面体的顶角相连接,连续发展形成立体网络结构。在网络中,每个四面体顶角氧原子为相邻结构单元所共用,通过化学健与2个硅原子相连,形成(≡Si-O-Si≡)结构。这些氧原子将相邻的硅原子连接

相关主题
文本预览
相关文档 最新文档