当前位置:文档之家› 数值分析简明教程0-1 (14)

数值分析简明教程0-1 (14)

数值分析_数值计算小论文

Runge-Kutta 法的历史发展与应用 摘要Runge-Kutta 法是极其重要的常微分方程数值解法,本文仅就其起源及发展脉络加以简要研究。对Runge 、Heun 以及Kutta 等人的贡献做出适当评述,指出Runge-Kutta 方法起源于Euler 折线法。同时对Runge-Kutta 法的应用做简要研究。 关键词 Euler 折线法 标准四阶Runge-Kutta 法 应用 一、发展历史[1] 1.1 Euler 折线法 在微分方程研究之初,瑞士数学家L.Euler(1707.4—1783.9)做出了开创性的工作。他和其他一些数学家在解决力学、物理学问题的过程中创立了微分方程这门学科。在常微分方程方面,Euler 在1743年发表的论文中,用代换kx y e =给出了任意阶常系数线性微分方程的古典解法,最早引入了“通解”和“特解”的概念。 1768年,Euler 在其有关月球运行理论的著作中,创立了广泛用于求初值问题 00 (,), (1.1)() (1.2)y f x y x x X y x a '=<≤??=? 的数值解的方法,次年又把它推广到二阶方程。欧拉的想法如下:我们选择0h >,然后在00x x x h ≤≤+情况下用解函数的切线 0000()()(,)l x y x x f x y =+- 代替解函数。这样对于点 10x x h =+ 就得到 1000(,)y y hf x y =+。 在11(,)x y 重复如上的程序再次计算新的方向就会得到所谓的递推公式: 11, (,),m m m m m m x x h y y hf x y ++=+=+

数值分析思考题1

% 数值分析思考题1 1、讨论绝对误差(限)、相对误差(限)与有效数字之间的关系。 答:(1)绝对误差(限)与有效数字:将x 的近似值x * 表示成 x *=±10m ×(a 1×10﹣1+a 2×10﹣2+ …a n ×10﹣n +…+a k ×10﹣k +…),其中m 是整数,a 1≠0,a 1,a 2,…,a k 是0到9中的一个数字。若绝对误差,那么x *至少有n 个有效数字,即a 1,a 2,…,a n 为有效数字,而a n+1,…,a k ,…不一定是有效数字。因此,从有效数字可以算出近似数的绝对误差限;有效数字位数越多,其绝对误差限也越小。 (2)相对误差(限)与有效数字:将x 的近似值x * 表示成 x *=±10m ×(a 1×10﹣1+a 2×10﹣2+ …a n ×10﹣n +…+a k ×10﹣k +…),其中m 是整数,a 1≠0,a 1,a 2,…,a k 是0到9中的一个数字。若a k 是有效数字,那么相对误差不超过 ;反之,如果已知相对误差r ,且有 ,那么a k 必为有效数字。 2、相对误差在什么情况下可以用下式代替 ' 答:在实际计算时,由于真值常常是未知的,当较小时, r e x x e x x *****-==

通常用代替。 3、查阅何谓问题的“病态性”,并区分与“数值稳定性”的不同点。 答:(1)病态问题:对于数学问题本身,如果输入数据有微小变化,就会引起输出数据(即问题真解)的很大变化,这就是病态问题。 (2)不同点:数值稳定性是相对于算法而言的,算法的不同直接影响结果的不同;而病态性是数学问题本身性质所决定的,与算法无关,也就是说对病态问题,用任何算法(或方法)直接计算都将产生不稳定性。 4、 取 ,计算 ,下列方法中哪种最好为什么 (1)(3322-,(2)(2752-,(3)()31 322+,(4)()61 21,(5) 99702-答:(1)( 332-==; (2)(2752-==; , (3) ()31322+=; (4)()6121=; (5)99702-=; 由上面的计算可以看出,方法(3)最好,因为计算的误差最小。 2141.≈)6 21

数值分析小论文 董安

数值分析作业 课题名称代数插值法-拉格朗日插值法班级Y110201 研究生姓名董安 学号S2******* 学科、专业机械制造及其自动化 所在院、系机械工程及自动化学院2011 年12 月26日

代数插值法---拉格朗日插值法 数值分析中的插值法是一种古老的数学方法,它来自生产实践。利用计算机解决工程问题与常规手工计算的差异就在于它特别的计算方法.电机设计中常常需要通过查曲线、表格或通过作图来确定某一参量,如查磁化曲线、查异步电动机饱和系数曲线等.手工设计时,设计者是通过寻找坐标的方法来实现.用计算机来完成上述工作时,采用数值插值法来完成。因此学好数值分析的插值法很重要。 插值法是函数逼近的重要方法之一,有着广泛的应用 。在生产和实验中,函数f(x)或者其表达式不便于计算复杂或者无表达式而只有函数在给定点的函数值(或其导数值) ,此时我们希望建立一个简单的而便于计算的函数 (x),使其近似的代替f(x),有很多种插值法,其中以拉格朗日(Lagrange)插值和牛顿(Newton)插值为代表的多项式插值最有特点,常用的插值还有Hermit 插值,分段插值和样条插值.本文着重介绍拉格朗日(Lagrange)插值法。 1.一元函数插值概念 定义 设有m+1个互异的实数1x ,2x ,···,m x 和n+1 个实值函数()0 x j , ()1 x j , ···()n x j ,其中n £m 。若向量组 k f =(()0k x j ,()1k x j ,···,() k m x j )T (k=0,1,,n ) 线性无关,则称函数组{()k x j (k=0,1, ,n )}在点集{i x (i=0,1, ,m)}上线性无关;否 则称为线性相关。 例如,函数组{2+x ,1-x ,x+2 x }在点集{1,2,3,4}上线性无关。 又如,函数组{sin x ,n2x ,sin 3x }在点集{0, 3p ,2 3 p ,p }上线性相关。 给点n+1个互异的实数0x ,1x ,···,n x ,实值函数() f x 在包含0x ,1x ,···,n x 的某个区间[] ,a b 内有定义。设函数组 {()k x j (k=0,1, ,n )} 是次数不高于n 的多项式组,且在点集{0x ,1x ,···,n x }上线性无关。

数值分析小论文

“数值分析”课程 第一次小论文 郑维珍2015210459 制研15班(精密仪器系)内容:数值分析在你所在研究领域的应用。 要求:1)字数2500以上;2)要有摘要和参考文献;3)截至10.17,网络学堂提交,过期不能提交! 数值分析在微流控芯片研究领域的应用 摘要: 作者在硕士期间即将参与的课题是微流控芯片的研制。当前,微流控芯片发展十分迅猛,而其中涉及到诸多材料学、电子学、光学、流体力学等领域的问题,加上微纳尺度上的尺寸效应,理论研究和数值计算都显得困难重重。发展该领域的数值计算,成为重中之重。本文从微流体力学、微传热学、微电磁学、微结构力学等分支入手,简要分析一下数值分析方法在该领域的应用。 微流控芯片(Microfluidic Chip)通常又称芯片实验室(Lab-On-a-Chip ),它是20世纪90年代初由瑞士的Manz和Widmer提出的[1-2],它通过微细加工技术,将微管道、微泵、微阀、微电极、微检测元件等功能元件集成在芯片材料(基片)上,完成整个生化实验室的分析功能,具有减少样品的消耗量、节省反应和分析的时间、高通量和便携性等优点。 通常一个微流控芯片系统都会执行一个到多个微流体功能,如泵、混合、热循环、扩散和分离等,精确地操纵这些流体过程是微流控芯片的关键。因此它的研究不仅需要生命科学、MEMS、材料学、电子学、光学、流体力学等多学科领域的基础理论的支持,还需要很多数学计算。

1)微流体力学计算[3]: 对微管里的流体动力的研究主要包含了以下几个方面:(1)微管内流体的粘滞力的研究;(2)微管内气流液流的传热活动;(3)在绝热或传热的微管内两相流的流动和能量转换。这三方面的研究涵盖了在绝热、传热和多相转换条件下,可压缩和不可压缩流体在规则或不规则的微管内的流动特性研究。 由此,再结合不同的初值条件和边界条件,我们可以得到各种常微分方程或偏微分方程,而求解这些方程,就是需要很多数值分析的知识。例如,文献[4]里就针对特定的初值和边界条件,由软件求解了Navier-Stodes方程: 文献[4]专门有一章节讨论了该方程的离散化和数值求解。 微流体力学主要向两个方面发展:一方面是研究流动非定常稳定特性、分叉解及微尺寸效应下的湍流流动的机理,更为复杂的非定常、多尺度的流动特征,高精度、高分辨率的计算方法和并行算法;另一方面是将宏观流体力学的基本模型,结合微纳效应,直接用于模拟各种实际流动,解决微纳芯片生产制造中提出来的各种问题。 2)微传热方程计算: 常微分、偏微分方程的数值求解应用较为广泛的另一问题就是微流体传热问题。由传热学的相关知识,我们可以达到如下的传热学基本方程: 该方程在二维情况下经过简化和离散,可以得到如教材第三章所讲的“五点差分格式”的方程组,从而采取数值方法求解[5]。 除此之外,微结构芯片在加工和制造过程中也会有很多热学方面的问题,例如文献[6]所反映的注塑成型工艺中,就有大量的类似问题的解决。 3)微电磁学计算: 由于外加电场的作用,电渗流道中会产生焦耳热效应。许多研究者对电渗流道中的焦耳热效应进行了数值模拟研究。新加坡南洋理工大学的G. Y. Tang等在电渗流模型的基础上,考虑了与温度有关的物理系数,在固一液祸合区域内利用

数值分析-第一章-学习小结

数值分析 第1章绪论 --------学习小结 一、本章学习体会 通过本章的学习,让我初窥数学的又一个新领域。数值分析这门课,与我之前所学联系紧密,区别却也很大。在本章中,我学到的是对数据误差计算,对误差的分析,以及关于向量和矩阵的范数的相关内容。 误差的计算方法很多,对于不同的数据需要使用不同的方法,或直接计算,或用泰勒公式。而对于二元函数的误差计算亦有其独自的方法。无论是什么方法,其目的都是为了能够通过误差的计算,发现有效数字、计算方法等对误差的影响。 而对误差的分析,则是通过对大量数据进行分析,从而选择出相对适合的算法,尽可能减少误差。如果能够找到一个好的算法,不仅能够减少计算误差,同时也可以减少计算次数,提高计算效率。 对于向量和矩阵的范数,我是第一次接触,而且其概念略微抽象。因此学起来较为吃力,仅仅知道它是向量与矩阵“大小”的度量。故对这部分内容的困惑也相对较多。 本章的困惑主要有两方面。一方面是如何能够寻找一个可靠而高效的算法。虽然知道算法选择的原则,但对于很多未接触的问题,真正寻找一个好的算法还是很困难。另一方面困惑来源于范数,不明白范数的意义和用途究竟算什么。希望通过以后的学习能够渐渐解开自己的疑惑。 二、本章知识梳理

2.1 数值分析的研究对象 方法的构造 研究对象 求解过程的理论分析 数值分析是计算数学的一个重要分支,研究各种数学问题的数值解法,包括方法的构造和求解过程的理论分析。它致力于研究如何用数值计算的方法求解各种基本数学问题以及在求解过程中出现的收敛性,数值稳定性和误差估计等内容。 2.2误差知识与算法知识 2.2.1误差来源 误差按来源分为模型误差、观测误差、截断误差、舍入误差与传播误差五种。其中模型误差与观测误差属于建模过程中产生的误差,而截断误差、舍入误差与传播误差属于研究数值方法过程中产生的误差。 2.2.2绝对误差、相对误差与有效数字 1.(1)绝对误差e指的是精确值与近似值的差值。 绝对误差:

数值分析论文 (8)

牛顿迭代法及其应用 [摘要]本文研究应用泰勒展开式构造出牛顿迭代法,论证了它的局部收敛性和收敛阶。分别讨论了单根情形和重根情形,给出了实例应用。最后给出了离散牛顿法的具体做法。 [关键词] 关键词:泰勒展开式,牛顿迭代法及其收敛性,重根,离散牛顿法。 1.牛顿法及其收敛性 求方程f(x)=0的根,如果已知它的一个近似,可利用Taylor展开式求出f(x)在附近的线性近似,即 ,ξ在x与之间 忽略余项,则得方程的近似 右端为x的线性方程,若,则解,记作,它可作为的解的新近似,即 (2.4.1) 称为解方程的牛顿法.在几何上求方程的解,即求曲线y=f(x)与x轴交点.若已知的一个近似,通过点(,f())作曲线y=f(x)的切线,它与 x轴交点为,作为的新近似,如图1所示

图1 关于牛顿法收敛性有以下的局部收敛定理. 定理1设是f(x)=0的一个根,f(x)在附近二阶导数连续,且,则牛顿法(2.4.1)具有二阶收敛,且 (2.4.2) 证明由式(2.4.1)知迭代函数,, ,而,由定理可知,牛顿迭代(2.4.1)具有二阶收敛,由式可得到式(2.4.2).证毕. 定理表明牛顿法收敛很快,但在附近时才能保证迭代序列收敛.有关牛顿法半局部收敛性与全局收敛定理.此处不再讨论. 例1用牛顿法求方程的根. ,牛顿迭代为 取即为根的近似,它表明牛顿法收敛很快.

例2设>0,求平方根的过程可化为解方程.若用牛顿法求解,由式(2.4.1)得 (2.4.3) 这是在计算机上作开方运算的一个实际有效的方法,它每步迭代只做一次除法和一次加法再做一次移位即可,计算量少,又收敛很快,对牛顿法我们已证明了它 的局部收敛性,对式(2.4.3)可证明对任何迭代法都是收敛的,因为当 时有 即,而对任意,也可验证,即从k=1开始,且 所以{}从k=1起是一个单调递减有下界的序列,{}有极限.在式(2.4.3) 中令k→∞可得,这就说明了只要,迭代(2.4.3)总收敛到,且是二阶收敛. 在例2.4的迭代法(3)中,用式(2.4.3)求只迭代3次就得到 =1.732 051,具有7位有效数字. 求非线性方程f(x)=0的根x*,几何上就是求曲线y=f(x)与x轴交点x*,若已知曲线上一点过此点作它的切线。方程为 此切线与x轴交点记作,它就是(2,4,1)给出的牛顿迭代法,由图2-3 看到牛顿法求根就是用切线近似曲线,切线与x轴交点xk+1作为方程f(x)=0 根x*的新近似。 根据定理2.3可以证明牛顿法是二阶收敛的,这就是定理4.1给出的结果,牛顿法由于收敛快,它是方程求根最常用和最重要的方法,在计算机上用牛顿法解方程的计算步骤: 算法如下:(牛顿法) 步0: 给初始近似,计算精度最大迭代步数N,0→k.

数值分析第一章思考题

《数值分析》第一章思考题 1.算法这一概念,数学上是如何描述的? 答:算法的概念:算法是指解题方案的准确而完整的描述,是一系列解决问题的清晰指令,算法代表着用系统的方法描述解决问题的策略机制。也就是说,能够对一定规范的输入,在有限时间内获得所要求的输出。 算法在数学上的主要描述方式有:自然语言、结构化流程图、伪代码和PAD图 2.数值分析中计算误差有哪些?举列说明截断误差来源。 答:在数值分析中的计算误差主要有: (1)模型误差(2)观测误差(3)截断误差(4)舍入误差 求解数学模型所用的数值方法通常是一种近似方法,因近似方法产生的误差称为截断误差或者方法误差。例如在函数的泰勒展开式,我们在实际的计算时只能截取有限项代数和计算。 3.浮点数由哪两部分组成?指出各部分重点。 答:浮点数主要由:尾数+阶数两部分组成的。 在机器中表示一个浮点数时,一是要给出尾数,用定点小数形式表示,尾数部分给出有效数字的位数,决定了浮点数的表示精度。二是要给出阶码,用整数形式表示,阶码指明小数点在数据中的位置,决定了浮点数的表示范围。 4.有效数字的概念是如何抽象而来的,简单给予叙述。 答:有效数字是一个数据在保证最小误差的情况下,取的一个能够在计算中发挥其有效作用的近似值。有效数字的作用在于,最大精度地去发挥这个数值在计算中的作用,而又不会对计算结果造成太大影响,使计算过程简化。 5.何谓秦九韶算法,秦九韶算法有何优点? 答:秦九韶算法是一种多项式简化算法,将一元n次多项式的求值问题转化为n 个一次式的算法,大大简化了计算过程,对于一个n次多项式,至多做n次乘法和n次加法。。 6.在数值计算中,会发生大数吃小数现象,试对这一现象做解释 答:一个绝对值很大的数和一个绝对值很小的数直接相加时,很可能发生所谓“大数吃小数”的现象,从而影响计算结果的可靠性,这主要是计算机表示的数的位数是有限的这一客观事实引起的。 例如在12位浮点数计算机中进行浮点数相加,系统只保留前12位作为有效数字,小的那个数化成浮点数中的有效数字被舍去,出现大数吃小数的现象,对计算结果造成了影响。

第五章习题解答_数值分析

第五章习题解答 1、给出数据点:0134 19156 i i x y =?? =? (1)用012,,x x x 构造二次Lagrange 插值多项式2()L x ,并计算15.x =的近似值215(.)L 。 (2)用123,,x x x 构造二次Newton 插值多项式2()N x ,并计算15.x =的近似值215(.)N 。 (3)用事后误差估计方法估计215(.)L 、215(.)N 的误差。 解: (1)利用012013,,x x x ===,0121915,,y y y ===作Lagrange 插值函数 2 20 2 1303011915 01031013303152933 ()()()()()() ()()()()()()()() i i i x x x x x x L x l x y x x =------== ?+?+?-------++= ∑ 代入可得2151175(.).L =。 (2)利用 134,,x x x ===,9156,,y y y ===构造如下差商表: 229314134196()()()()()N x x x x x x =+-+---=-+- 代入可得215135(.).N =。 (3)用事后误差估计的方法可得误差为 ()()()02222 03-x 150 x x x -=117513506563-04.()()()(..).x f L R L x N x x x --≈= -≈- ()()()3222203-154 x x -=1175135-1.0938-04 .()()()(..)x x f N R x L x N x x x --≈=-≈- 2、设Lagrange 插值基函数是 0012()(,,,,)n j i j i j j i x x l x i n x x =≠-==-∏ 试证明:①对x ?,有 1()n i i l x ==∑ ②00110001211()()(,,,)()()n k i i i n n k l x k n x x x k n =?=?==??-=+? ∑ 其中01,,,n x x x 为互异的插值节点。 证明: ①由Lagrange 插值多项式的误差表达式10 1()()()()()!n n i i f R x x x n ξ+==-+∏知,对于函数1()f x =进行

数值分析论文

插值方法总结 摘 要:本文是对学过的插值方法进行了总结使我们更清楚的知道那一种方法适合那一种型。 关键词:插值;函数;多项式;余项 (一)Lagrange 插值 1.Lagrange 插值基函数 n+1个n 次多项式 ∏≠=--= n k j j j k j k x x x x x l 0)( n k ,,1,0 = 称为Lagrange 插值基函数 2.Lagrange 插值多项式 设给定n+1个互异点))(,(k k x f x ,n k ,,1,0 =,j i x x ≠,j i ≠,满足插值条件 )()(k k n x f x L =,n k ,,1,0 = 的n 次多项式 ∏∏ ∏=≠==--==n k n k j j j k j k k n k k n x x x x x f x l x f x L 0 00 ))(()()()( 为Lagrange 插值多项式,称 ∏=+-+=-=n j j x n n x x n f x L x f x E 0)1()()!1()()()()(ξ 为插值余项,其中),()(b a x x ∈=ξξ (二)Newton 插值 1.差商的定义 )(x f 关于i x 的零阶差商 )(][i i x f x f = )(x f 关于i x ,j x 的一阶差商 i j i j j i x x x f x f x x f --= ][][],[ 依次类推,)(x f 关于i x ,1+i x ,……,k i x +的k 阶差商

i k i k i i k i i k i i i x x x x f x x f x x x f --= +-+++++] ,,[],,[],,,[111 2.Newton 插值多项式 设给定的n+1个互异点))(,(k k x f x ,n k ,,1,0 =,j i x x ≠,j i ≠, 称满足条件 )()(k k n x f x N =,n k ,,1,0 = 的n 次多项式 )()](,,,[)](,[][)(10100100---++-+=n n n x x x x x x x f x x x x f x f x N 为Newton 插值多项式,称 ],[,)(],,,[)()()(0 10b a x x x x x x f x N x f x E n j j n n ∈-=-=∏= 为插值余项。 (三)Hermite 插值 设],[)(1b a C x f ∈,已知互异点0x ,1x ,…,],[b a x n ∈及所对应的函数值为 0f ,1f ,…,n f ,导数值为'0f ,' 1f ,…,' n f ,则满足条件 n i f x H f x H i i n i i n ,,1,0,)(,)(' '1212 ===++ 的12+n 次Hermite 插值多项式为 )()()(0 '12x f x f x H j n j j j n j i n βα∏∏=++= 其中 )())((,)]()(21[)(2 2'x l x x x l x l x x x j j j j j j j j ---=βα 称为Hermite 插值基函数,)(x l j 是Lagrange 插值基函数,若],[22b a C f n +∈,插值误差为 220) 22(12)()()! 22() ()()(n x n n x x x x n f x H x f --+= -++ ξ,),()(b a x x ∈=ξξ (四)分段插值 设在区间],[b a 上给定n+1个插值节点 b x x x a n =<<<= 10 和相应的函数值0y ,1y ,…,n y ,求作一个插值函数)(x ?,具有性质

郑州大学数值分析重点考察内容及各章习题

《数值分析》 重点考察内容及各章作业答案 学院: 学号: 姓名:

重点考察内容 基本概念(收敛阶,收敛条件,收敛区域等), 简单欧拉法。 第一章基础 掌握:误差的种类,截断误差,舍入误差的来源,有效数字的判断。 了解:误差限,算法及要注意的问题。 第二章插值 掌握:Hermite插值,牛顿插值,差商计算,插值误差估计。 了解:Lagrange插值 第三章数据拟合 掌握:给出几个点求线性拟合曲线。 了解:最小二乘原理 第四章数值积分微分 掌握:梯形公式,Simpson公式,代数精度,Gauss积分,带权Gauss积分公式推导,复化梯形公式推导及算法。 了解:数值微分,积分余项 第五章直接法 掌握:LU分解求线性方程组,运算量 了解:Gauss消去法,LDL,追赶法 第六章迭代法 掌握:Jacobi,Gauss-Seidel迭代格式构造,敛散性分析,向量、矩阵的范数、谱半径 了解:SOR迭代 第七章Nolinear迭代法 掌握:牛顿迭代格式构造,简单迭代法构造、敛散性分析,收敛阶。 了解:二分法,弦截法 第八章ODE解法 掌握:Euler公式构造、收敛阶。 了解:梯形Euler公式、收敛阶,改进Euler公式 题目类型:填空,计算,证明综合题

第一章 误差 1. 科学计算中的误差来源有4个,分别是________,________,________,________。 2. 用Taylor 展开近似计算函数000()()'()()f x f x f x x x ≈+-,这里产生是什么误差? 3. 0.7499作 3 4 的近似值,是______位有效数字,65.380是舍入得到的近似值,有____几位有效数字,相对误差限为_______. 0.0032581是四舍五入得到的近似值,有_______位有效数字. 4. 改变下列表达式,使计算结果比较精确: (1)11,||1121x x x x --++ (2 ||1x (3) 1cos ,0,|| 1.x x x x -≠ (4)sin sin ,αβαβ-≈ 5. 采用下列各式计算61)时,哪个计算效果最好?并说明理由。 (1) (2 )99-3 )6 (3-(4 6. 已知近似数*x 有4位有效数字,求其相对误差限。 上机实验题: 1、利用Taylor 展开公式计算0! k x k x e k ∞ ==∑,编一段小程序,上机用单精度计算x e 的函数 值. 分别取x =1,5,10,20,-1,-5,-10,-15,-20,观察所得结果是否合理,如不合理请分析原因并给出解决方法. 2、已知定积分1 ,0,1,2,,206 n n x I dx n x ==+? ,有如下的递推关系 111 110 0(6)61666 n n n n n x x x x I dx dx I x x n ---+-===++-? ? 可建立两种等价的计算公式 (1) 1016,0.154n n I I I n -= -=取; (2) 12011),0.6n n I nI I n -=-=(取

中北大学数值分析小论文

中北大学 《数值分析》 常微分方程初值问题的数值解法 专业: 班级: 学号: 姓名: 日期: 2012.12.26

常微分方程初值问题的数值解法 摘 要 微分方程的数值解法在科学技术及生产实践等多方面应用广泛. 文章分析了构造常微分方程初值问题数值解法的三种常用基本方法,差商代替导数法,数值积分法及待定系数法,推导出了Euler 系列公式及三阶龙格-库塔公式,指出了各公式的优劣性及适用条件,并对Euler 公式的收敛性、稳定性进行了分析。 Abstract The numerical solution of differential equations is widely used in science, technology, production practices and many other fields. This paper analyzed three kinds of basic methods for constructing numerical solutions for initial value problem of ordinary differential equations :difference quotient instead of derivative method, numerical integral method and undetermined coefficients method. At the same time, the paper deduces the Euler series formula and the classical third order Runge-Kutta formula. In addition, the paper pointed out the advantages and disadvantages of each formula and application condition, it also analyzed the convergence and stability of the Euler formula. 1.引言 科学技术及实际生产实践中的许多问题都可归结为微分方程的求解问题,使用较多的是常微分方程初值问题的求解。对于一阶常微分方程的初值问题 000dy /dx f (x,y),y(x )y ,x x b ==<<,其中f 为已知函数,0y 是初始值。如 果函数f 关于变量y 满足Lipschitz 条件,则初值问题有唯一解。只有当f 是一些特殊类型的函数时,才能求出问题的解析解,但一般情况下都满足不了生产实践与科学技术发展的需要,因此通常求其数值解法。 2.主要算法 数值解法是一种离散化的方法,可以求出函数的精确解在自变量一系列离散点处的近似值。基本思想是离散化,首先要将连续区间离散化,对连续区域[]0x ,b 进行剖分01n 1n x x x x b -<<Λ<<=,n n 1n h x x +=-为步长;其次将其函离散

数值分析思考题[综合]

1、讨论绝对误差(限)、相对误差(限)与有效数字之间的关系。 2、相对误差在什么情况下可以用下式代替? 3、查阅何谓问题的“病态性”,并区分与“数值稳定性”的不同点。 4、 取 ,计算 ,不用计算而直接判断下列式子中哪 种计算效果最好?为什么? (1)(3 3-,(2)(2 7-,(3) (3 1 3+,(4) ) 6 11 ,(5)99-5. 应用梯形公式 ))()((2b f a f a b T +-= 计算积分1 0x I e dx -=?的近似值,在整个计算过程中按四舍五入规则取五位小数。计算中产生的误差的主要原因是截断误差还是舍入误差?为什么? 6. 下列各数都是经过四舍五入得到的近似值,试指出他们有几位有效数字,并给出其绝对误差限与相对误差限。 (1) 1021.1*1=x ;(2) 031.0*2=x ;(3) 40.560*3=x 。 7. 下列公式如何计算才比较准确? (1) 212 x e -,1x <<;(2) 12 1 N N dx x ++? ,1>>N ;(3) ,1x >>。 8. 序列{}n y 满足递推关系1101n n y y -=-,12,,n =,若0141.y =≈,计算到10y 时误差有多大?这个计算过程数值稳定吗? r e x x e x x ***** -== 141.≈) 6 1

1、怎样确定一个隔根区间?如何求解一个方程的全部实根?如:已知方程:1020()x f x e x =+-=在(),-∞+∞有实数根,用二分法求它的全部实根,要求误差满足210*k x x --<?若要求6*10k x x --<,需二分区 间多少次? 2、求解一个非线性方程的迭代法有哪些充分条件可以保障迭代序列收敛于方程的根?对方程3210()f x x x =--=,试构造两种不同的迭代法,且均收敛于方程在[]12,中的唯一根。 3、设0a >,应用牛顿法于方程30x a -= 确定常数,p q 和r 使得迭代法 2 125k k k k qa ra x px x x +=++, 012,, , k = 4、对于不动点方程()x x ?=,()x ?满足映内性和压缩性是存在不动点的充分条件,他们也是必要条件吗?试证明:(1)函数21()x x ?=-在闭区间[]02,上不是映内的,但在其上有不动点;(2)函数 1()ln()x x e ?=+在任何区间[],a b 上都是压缩的,但没有不动点。 5、设*x 是方程0()f x =的根,且0*'()f x ≠,''()f x 在*x 的某个邻域上连续。试证明:Newton 迭代序列{}k x 满足 12122**()''() lim () '()k k k k k x x f x x x f x -→∞---=-- 6. 设有方程1 12 sin x x =+。对于迭代法1112 ()sin()k k k x x x ?+==+,试证:对 任何15.b ≥,迭代函数()x ?在闭区间[0.5,b]上满足映内性和压缩性。用所给方

数值分析小论文

基于MATLAB曲线拟合对离散数据的处理和研究 摘要:曲线拟合是数值分析中的一种普遍且重要的方法,求解拟合曲线的方法也有很多,这里主要介绍利用MATLAB曲线拟合工具箱对离散数据点做你和处理,并与利用最小二乘法求相应的拟合曲线的方法做对比,突出MATLAB曲线拟合工具箱的优点,并阐述了其适用的范围,最后通过利用MATLAB曲线拟合工具箱对实例中离散数据点的拟合来具体说明它的使用方法和优点。 关键字:数值分析;MATLAB;曲线拟合;最小二乘法 一问题探究 在很多的实际情况中,两个变量之间的关系往往很难用具体的表达式把它表示出来,通常只能通过实际测量得到一些互不相同的离散数据点,需需要利用这些已知的数据点估计出两个变量的关系或工件的具体轮廓,并要得到任意未知数据点的具体数据,这个过程就需要用到拟合或差值方法来实现,这里主要讨论拟合的方法。 曲线拟合可以通过MATLAB编程来完成,通常为了达到更好的讷河效果需要做多次重复修改,对于非线性曲线拟合还需要编写复杂的M-文件,运用MATLAB曲线拟合工具箱来实现离散数据点的曲线拟合是一种直观并且简洁的方法。 二曲线拟合的最小二乘法理论 假设给定了一些数据点(Xi,Yi),人们总希望找到这样的近似的函数,它既能反映所给数据的一般趋势,又不会出现较大的偏差,并且要使构造的函数与被逼近函数在一个给定区间上的偏差满足某种要求。这种思想就是所谓的“曲线拟合”的思想。 曲线拟合和差值不同,若要求通过所有给定的数据点是差值问题,若不要求曲线通过所有给定的数据点,而只要求反映对象整体的变化趋势,拟合问题,曲线拟合问题最常用的解决方法是线性最小二乘法[1],步骤如下: 第一步:先选定一组函数r1(x),r2(x),…,rm(x),m

第一章复习与思考题

第一章复习与思考题 1. 什么是数值分析?它与数学科学和计算机的关系如何? 答:数值分析也称计算数学,是数学科学的一个分支,主要研究的是用计算机求解各种数学问题的数值计算方法及其理论与软件实现. 数值分析以数学问题为研究对象,但它并不像纯数学那样只研究数学本身的理论,而是把理论与计算紧密结合,着重研究数学问题的数值方法及其理论. 2. 何谓算法?如何判断数值算法的优劣? 答:一个数值问题的算法是指按规定顺序执行一个或多个完整的进程,通过算法将输入元变换成输出元. 一个面向计算机,有可靠理论分析且计算复杂性好的算法就是一个好算法. 因此判断一个算法的优劣应从算法的可靠性、准确性、时间复杂性和空间复杂性几个方面考虑. 3. 列出科学计算中误差的三个来源,并说出截断误差与舍入误差的区别. 答:用计算机解决实际问题首先要建立数学模型,它是对被描述的实际问题进行抽象、简化而得到的,因而是近似的,数学模型与实际问题之间出现的误差叫做模型误差. 在数学模型中往往还有一些根据观测得到的物理量,如温度、长度等,这些参量显然也包含误差,这种由观测产生的误差称为观测误差. 当数学模型不能得到精确解时,通常要用数值方法求它的近似解,其近似解和精确解之间的误差称为截断误差或方法误差.

有了求解数学问题的计算公式以后,用计算机做数值计算时,由于计算机字长有限,原始数据在计算机上表示时会产生误差,计算过程又可能产生新的误差,这种误差称为舍入误差. 截断误差和舍入误差是两个不同的概念,截断误差是由所采用的数值方法而产生的,因而也称方法误差,舍入误差是由数值计算而产生的. 4. 什么是绝对误差与相对误差?什么是近似数的有效数字?它与绝对误差和相对误差有何关系? 答:设 为准确值, 为 的一个近似值,称 为近似值 的绝对误差,简称误差. 近似值的误差 与准确值 的比值 称为近似值 的相对误差,记作 . 通常我们无法知道误差的准确值,只能根据测量工具或计算情况估计出误差绝对值的一个上界 ,

数值分析小论文论文

对于牛顿型方法的改进 对于函数f(x),假定已给出极小点* x 的一个较好的近似点0x ,则在0x 处将f(x)泰勒展开到二次项,得二次函数()x φ。按极值条件'()0x φ=得()x φ的极小点,用它作为*x 的第一个近似点。然后再在1x 处进行泰勒展开,并求得第二个近似点2x 。如此迭代下去,得到一维情况下的牛顿迭代公式'k 1''k ()() k k f x x x f x +=- (k=0,1,2,…) 对于多元函数f(x),设k x 为f(x)极小点*x 的一个近似值,在k x 处将f(x)进行泰勒展开,保留到二次项得21()()()()()()()()2T T k k k k k k f x x f x f x x x x x f x x x ?≈=+?-+ -?-, 式中 2()k f x ?—f(x)在k x 处的海赛矩阵。 设1k x +为()x ?的极小点,它作为f(x)极小点*x 的下一个近似点,根据极值必要条件 1()0k x ?+?=即21()()()k k k k f x f x x x +?+?-得1 21()()k k k k x x f x f x -+??=-???? (k=0,1,2,…) 上式为多元函数求极值的牛顿法迭代公式。 对于二次函数,f(x)的上述泰勒展开式不是近似的,而是精确地。海赛矩阵是一个常矩阵,其中各元素均为常数。因此,无论从任何点出发,只需一步就可以找到极小点。因为若某一迭代法能使二次型函数在有限次迭代内达到极小点,则称此迭代方法是二次收敛的,因此牛顿方法是二次收敛的。 从牛顿法迭代公式的推演中可以看到,迭代点的位置是按照极值条件确定的,其中并未含有沿下降方向搜寻的概念。因此对于非二次函数,如果采用上述牛顿法公式,有时会使函数值上升,即出现1>k k f f +(x )(x ) 现象。为此对上述牛顿方法进行改进,引入数学规划法的概念。 如果把1 2()()k k k d f x f x -??=-????看作是一个搜索方向,则采取如下的迭代公式 121()()k k k k k k k k x x a d x a f x f x -+??=-=-???? (k=0,1,2,…) 式中 k a —沿牛顿方向进行以为搜索的最佳步长k a 可通过如下极小化过程求得1()()()min k k k k k k k a f x f x a d f x a d +=+=+。由于此种方法每次迭代都在牛顿方向上进 行一维搜索,这就避免了迭代后函数值上升的现象,从而保持了牛顿法二次收敛的特性,而对初始点的选取并没有苛刻的要求。其计算步骤如下:

数值分析最佳习题(含答案)

第一章 绪论 姓名 学号 班级 习题主要考察点:有效数字的计算、计算方法的比较选择、误差和误差限的计算。 1 若误差限为5105.0-?,那么近似数有几位有效数字(有效数字的计算) 解:2*103400.0-?=x ,325*102 1102 1---?=?≤-x x 故具有3位有效数字。 2 14159.3=π具有4位有效数字的近似值是多少(有效数字的计算) 解:10314159.0?= π,欲使其近似值*π具有4位有效数字,必需 41*102 1 -?≤-ππ,3*3102 1102 1--?+≤≤?-πππ,即14209.314109.3*≤≤π 3 已知2031.1=a ,978.0=b 是经过四舍五入后得到的近似值,问b a +, b a ?有几位有效数字(有效数字的计算) 解:3*1021 -?≤-a a ,2*102 1-?≤-b b ,而1811.2=+b a ,1766.1=?b a 2123****102 1 10211021)()(---?≤?+?≤ -+-≤+-+b b a a b a b a 故b a +至少具有2位有效数字。 2123*****102 1 0065.01022031.1102978.0)()(---?≤=?+?≤ -+-≤-b b a a a b b a ab

故b a ?至少具有2位有效数字。 4 设0>x ,x 的相对误差为δ,求x ln 的误差和相对误差(误差的计算) 解:已知δ=-* *x x x ,则误差为 δ=-= -* **ln ln x x x x x 则相对误差为 * * ** * * ln ln 1ln ln ln x x x x x x x x δ = -= - 5测得某圆柱体高度h 的值为cm h 20*=,底面半径r 的值为cm r 5*=, 已知cm h h 2.0||*≤-,cm r r 1.0||*≤-,求圆柱体体积h r v 2π=的绝对误差 限与相对误差限。(误差限的计算) 解:*2******2),(),(h h r r r h r r h v r h v -+-≤-ππ 绝对误差限为 πππ252.051.02052)5,20(),(2=??+????≤-v r h v 相对误差限为 %420 1 20525) 5,20() 5,20(),(2 ==??≤ -ππv v r h v 6 设x 的相对误差为%a ,求n x y =的相对误差。(函数误差的计算) 解:%* *a x x x =-, )%(* **** *na x x x n x x x y y y n n n =-≤-= - 7计算球的体积,为了使体积的相对误差限为%1,问度量半径r 时允许的相对误差限为多大(函数误差的计算)

数值分析论文

题目:论数值分析在数学建模中的应用 学院: 机械自动化学院 专业: 机械设计及理论 学号: 学生姓名: 日期: 2011年12月5日

论数值分析在数学建模中的应用 摘要 为了满足科技发展对科学研究和工程技术人员用数学理论解决实际的能力的要求,讨论了数值分析在数学建模中的应用。数值分析不仅应用模型求解的过程中,它对模型的建立也具有较强的指导性。研究数值分析中插值拟合,解线性方程组,数值积分等方法在模型建立、求解以及误差分析中的应用,使数值分析作为一种工具更好的解决实际问题。 关键词 数值分析;数学建模;线性方程组;微分方程 the Application of Numerical Analysis in Methmetical Modeling Han Y u-tao 1 Bai Y ang 2 Tian Lu 2 Liu De-zheng 2 (1 College of Science ,Tianjin University of Commerce ,Tianjin ,300134 2 College of Science ,Tianjin University of Commerce ,Tianjin ,300134) Abstract In order to meet the technological scientific researchers who use mathematical theory to solve practical problems, the use of numerical analysis in mathematical modeling is discussed.Numerical analysis not only solve the model,but also relatively guide the model.Research on some numerical methods in numerical analysis which usually used in mathmetical modeling and error analysis will be a better way to solve practical problems. Key Words Numerical Analysis ;Mathematical Modeling; Linear Equations ;differential equation 1. 引言 数值分析主要介绍现代科学计算中常用的数值计算方法及其基本原理,研究并解决数值问题的近似解,是数学理论与计算机和实际问题的有机结合[1]。随着科学技术的迅速发展,运用数学方法解决科学研究和工程技术领域中的实际问题,已经得到普遍重视。数学建模是数值分析联系实际的桥梁。在数学建模过程中,无论是模型的建立还是模型的求解都要用到数值分析课程中所涉及的算法,如插值方法、最小二乘法、拟合法等,那么如何在数学建模中正确的应用数值分析内容,就成了解决实际问题的关键。 2. 数值分析在模型建立中的应用 在实际中,许多问题所研究的变量都是离散的形式,所建立的模型也是离散的。例如,对经济进行动态的分析时,一般总是根据一些计划的周期期末的指标值判断某经济计划执行的如何。有些实际问题即可建立连续模型,也可建立离散模型,但在研究中,并不能时时刻刻统计它,而是在某些特定时刻获得统计数据。例如,人口普查统计是一个时段的人口增长量,通过这个时段人口数量变化规律建立离散模型来预测未来人口。另一方面,对常见的微分方程、积分方程为了求解,往往需要将连续模型转化成离散模型。将连续模型转化成离散模型,最常用的方法就是建立差分方程。 以非负整数k 表示时间,记k x 为变量x 在时刻k 的取值,则称k k k x x x -=?+1为k x 的一阶差分,称k k k k k x x x x x +-=??=?++1222)(为k x 的二阶差分。类似课求出k x 的n 阶差分k n x ?。由k ,k x ,及k x 的差分给出的方程称为差分方程[2]。例如在研究节食与运动模型时,发现人们往往采取节食与运动方式消耗体内存储的脂肪,引起体重下降,达到减肥目的。通常制定减肥计划以周为时间单位比较方便,所以采用差分方程模型进行讨论。记第k 周末体重为)(k w ,第k 周吸收热量为)(k c ,热量转换系数α,代谢消耗系数β,在不考虑运动情况下体重变化的模型

相关主题
文本预览
相关文档 最新文档