当前位置:文档之家› 激光测量技术重点..

激光测量技术重点..

激光测量技术重点..
激光测量技术重点..

1、如何获得线偏正光?

利用偏振片获得偏振光、反射和折射产生的偏振、利用双折射产生偏振

2、反射和折射产生偏正光的原理

让自然光以布儒斯特角入射,透射光为P光,偏振方向实在入射面的,与入射面平行的光,反射光为S光,都为线偏光。

3、利用双折射产生偏振制造的棱镜,为了提高棱镜透过率,都选择透射光为P 光。

4、玻片

5、半波片:线偏振光通过半波片后,仍是线偏振光,但其偏振化方向转过了2α,圆偏振光入射时,出射光是旋向相反的圆偏振光,一般用于x,y两偏振方向间的转换。

四分之一波片:

1).线偏振光振动方向与1/4波片成45度,出射为圆偏振光;

2.)圆偏振光通过1/4波片后,变为线偏振光,其振动方向与光轴方向45度; 一般用于圆偏光与线偏光方向间的转换。

6、什么是受激辐射?

受激辐射:受激辐射产生的光子与引起受激辐射的外来光子具有相同的特征(频率、相位、振动方向及传播方向均相同)

7、泵浦分类:光泵、电泵浦、化学泵浦、热泵浦

8、激光产生的基本条件及阈值条件

三要素: 1. 泵浦2. 增益介质3. 谐振腔

阀值条件: 光在谐振腔来回往返一次所获得光增益必须大于或者等于所遭受的各种损耗之和.

9、激光的基本的物理性质。

方向性、高亮性、单色性、相干性

激光单色性的好坏可以用频谱分布的宽度 (线宽)描述。(线宽比较窄)

方向性最好的是气体激光器。

相干性:时间相干性(计算相干长度)、空间相干性

10、如何获得单模:短腔法

11、高斯光束

聚焦条件:短焦距透镜,束腰远离透镜

可利用倒置望远镜可实现激光光束的准直

12、稳频的必要性:在精密计量中,通常以波长为基准,测量精度很大程度上决定于波长的精确程度。

13、主动稳频的方法:1.兰姆(Lamb)下陷法2. 饱和吸收法3. 塞曼效应法4. 双纵模稳频5.无源腔稳频。双频激光器:由塞曼效应制成的激光器,还可以使用声光调制。获得频率稳定度最高的:饱和吸收法。

14、什么是塞曼效应,塞曼效应稳频的基本原理是什么?

塞曼效应:原子能级在磁场作用下发生分裂的现象。根据激光器输出的两圆偏振光光强的差别来判断谐振频率偏离中心频率的方向和程度。

15、以塞曼效应产生双频激光进行稳频用在干涉仪上有什么特点?(交流、外差干涉仪)

由双频激光器构成的干涉仪具有较强的抗干扰能力,可用于工业中的精密计量。

16、激光调制:声光、电光、磁光。磁光主要用在光学隔离器。声光调制由于是

布拉格声光衍射,可以使一级光产生平移,产生双激光。

17、左旋圆偏光和右旋圆偏光即使有相位差,合成后仍为线偏光。

18、单频激光干涉仪组成:1.激光干涉仪光路系统 2.干涉条纹计数和处理测量结果的电子系统3.机械系统

激光干涉仪光路系统主要包括:光源、分束器和反射器。常用的光源为He-Ne 激光器:(激光的功率和频率稳定性高、连续方式运转、在可见光和红外光区域有谱线)

19、激光干涉仪常用的分光方法(1)分波阵面法(2)分振幅法

(3)分偏振法(PBS)(4)衍射分光法

20激光干涉仪常用的反射器:平面反射器(特点:对偏转将产生附加的光程差)、角锥棱镜反射器(特点:可消除偏转将产生附加的光程差,抗偏摆和俯仰)、直角棱镜反射器(特点:只对一个方向的偏转敏感)、猫眼反射器(特点:透镜和反射镜一起绕C点旋转,光程保持不变;容易加工,不影响偏振光的传输)21、单频激光干涉仪为什么需要移相,移相后信号有何特点?双频激光干涉仪需要移相吗?

双频激光干涉仪不需要移相,因为它有一个载波信号,频率的变大和变小就对应着反射镜的移动的方向向近端移还是向远端移。

22、单频激光干涉仪有什么缺点,双频激光干涉仪有什么优点,设计的出发点是什么?

23、塞曼效应和声光调制是实现光学“拍”的常用方法。

24、利用激光移相干涉测试技术可以快速而高准确度地检测波面面形误差,可达到1/100波长的测试不确定度。是测量粗糙度的重要方法。

25、什么是全息?

透射光的一部分就能重新模拟出原物的散射波前,重现一个与原物非常逼真的三维图像。

26、全息技术两步成像即全息图的记录和物光波的再现。

27、全息干涉测量技术特点:

1)一般干涉测量只可用来测量形状比较简单的高度抛光表面的工件,

而全息干涉测量能够对具有任意形状和粗糙表面的三维表面进行测量,精度可达光波波长数量级。

2)由于全息图再现具有三维性质,故用全息技术就可以从许多不同

视角去观察一个形状复杂的物体,一个干涉测量全息图可相当于用一

般干涉测量进行的多次观察。

3)全息干涉测量可以对一个物体在两个不同时刻的状态进行比对,因而可以探测物体在一段时间内发生的任何改变。

4)不足:测量范围小,仅几十微米左右。

28、光学粗糙表面检测的干涉测量方法,散斑干涉测量。

概念:散斑:当一束激光照射到物体的粗糙表面(例如铝板)上时,在铝板前面的空间将布满明暗相间的亮斑与暗斑,这些亮斑与暗斑的分布杂乱,故称为散斑(Speckle)。

实质:经粗糙表面漫反射后的光,空间干涉的结果,所以不是物面的像,其分布与被照射的表面有关。

散斑形成条件:

1)必须有能发生散射的粗糙表面;为了使散射光较均匀,则粗糙表面的深度必

须大于光波波长。

2)入射光的相干度足够高,如使用激光。

散斑类型:自由空间散斑,像面散斑。有什么不同?

29、被激光照射的粗糙物面在透镜的像面上形成散斑图,此方法称散斑照相。同全息一样, 散斑照相并不能提供测量的一些信息。如果利用全息技术记录某一时刻的散斑信息, 利用变化前后形成的散斑干涉, 可以进行测量工作。

30、电子散斑技术:用视频摄像系统代替照相处理,用电子技术和计算机技术代替光学记录技术。

特点:原始的散斑干涉场由光电器件(一般为CCD探测器)转换成电信号记录下来,用电子技术方法实现信息的提取,形成的散斑场可以直接显示和保存,操作简单、实用性强,自动化程度高,可以进行静动态测量。

31、最常用的马赫-曾德尔(Mach-Zehnder)光纤干涉仪优点:无返回光,不影响光源的稳定性。输出的两路干涉信号反相,非常便于后续电路作辨向、细分等处理

32、萨格奈克(Sagnac)光纤干涉仪是严格共路的干涉系统。

当闭合光纤静止时,两光束传播路径相同。两光纤拳相对惯性空间以转速ω转动时,则两路光产生非互易性光程差,其干涉图样可反映出光程差和位相变化。测量角速度。灵敏度高、无机械转动部分、体积小、成本低、结构紧凑等。

33、法布里-珀罗(Fabry-Perot)光纤干涉仪特点:多光束干涉,在干涉条纹的峰值处衰减异常迅速,高灵敏度。

34、传统干涉仪的缺点:

需要导轨,计时从始态到终态全部过程,中间不允许掉电;

计数时间长,测量长度较大时耗时长,易受环境因素的影响;

无零位,增量式测量, 不能测量绝对位移。

合成波长法可以克服以上缺点。

采用小数重合法的典型仪器是柯氏(Kosters)干涉仪。当时主要用来测量量块。

35、拍波干涉仪的基本功能:求出合成波的条纹小数。

此处的合成波长法与第6章激光相位干涉测量技术合成波长不是一个概念,这个是干涉概念,最后产生干涉测量方法。那个是对光的强度进行调制,而不是干涉原理。

Chapter 3

36、光的波长短,对很小的孔/屏、狭缝/细丝才有明显的衍射现象;

37、单缝衍射测量仪器测量量程0.01mm-0.5mm。对于细丝为0.01-0.1mm.

38、激光衍射测量方法1、间隙测量法2、反射衍射测量法

3、分离间隙法

4、互补测屏法

5、爱里斑测量法

6、衍射频谱检测法

39、反射衍射测量法利用试件棱缘和反射镜构成的狭缝来进行衍射测量的。特点:1、灵敏度提高一倍2、入射光可以以一定角度入射,布置方便

40、测量细丝的直径的方法(ppt)

Chapter 4

41、直线度误差是指被测实际轮廓线相对于理想直线的变动量;

42、激光准直仪按工作原理可分为

1) 振幅测量法 2) 干涉测量法 3) 偏振测量法

43、振幅测量型准直仪提高基准精度的常用方法

1.菲涅耳波带片法

2. 位相板法

干涉测量法是在以激光束作为直线基准的基础上,又以光的干涉原理进行读数来进行直线度测量的。

44、激光器的漂移:平漂和角漂

45、平漂在近端测量,补偿元件采用平板玻璃角漂在远端测量,通过控制扩束镜的横向移动来补偿

46、四自由度测量系统及ppt36

47、为减小激光器输出光束的漂移,可以采取以下措施:1. 热稳定装置2. 光束补偿装置3. 主动温控加热器4. 其他措施

48、激光器准直扩束1)开普勒式望远镜2)伽利略式望远镜

49、第六章:什么是多普勒效应?

50、激光多普勒测速仪的组成

1.激光器:多普勒频移相对光源波动频率来说变化很小,因此必须用频带窄及能量集中的激光作光源;为便于连续工作,通常使用气体激光器。氩离子激光器: 功率较大,信号较强,用得最广。

2.光学系统;双散射型:散射光的频差与光电探测器的方向无关,使用时不受现

场条件的限制,可在任意方向测量,且可使用大口径的接收透镜,粒子散射的光能量极大地得到利用,信噪比高。

3.信号处理系统:1)频率跟踪法2)频率计数法.最常用的是频率计数法

49、多普勒全场测速技术(Doppler Global Velometer DGV)基本原理:利用了某些物质的选择吸收特性,把多普勒频移转换成光的强度,通过视频相机拍摄后进行处理,获得全场的速度信息,从而实现全场、实时的三维测量。核心鉴频器。

50、什么是光学鉴频器?

优点:鉴频通常使用电路,但是电路只能单路进行,不能并行工作,但是光学鉴频器可以并行工作,可以同时进行多点鉴频,得到频率差。

51、激光扫描测径技术

(1)转镜扫描测径原理

用一束平行光以恒定的速度扫描线材,并由放在线材对面的光电接收器接收,投射到光电接收器上的光线在光束扫描线材时被遮断,所以光电接收器输出的是一个方波脉冲,脉冲宽度与线材直径成正比。

测定直径范围 110mm~180mm,测定误差为30~40μm

(2)音叉扫描测径:对于线径在0.5mm以下的物体

(3)扫描镜电流计测径

(4)位相调制扫描测量技术

52、激光测距技术

常用的测距技术:雷达测距超声测距红外测距激光测距

远距离(几千米)测量的技术:激光相位测距脉冲激光测距

激光相位测距原理:通过对光的强度进行调制来实现的(与第二章比较)

脉冲激光测距:地形测量、战术前沿测距、导弹运行轨道跟踪,以及人造卫星、地球到月球距离的测量极远距离等

电子测量技术基础题库

绪论 一、填空 1、计量的主要特征是、和。 2、计量器具按用途可分为、和。 3、计量基准一般分为、和。 4、计量标准是按国家规定的作为检定依据用的或,它的量值由传递。 5、计量标准有两类:一类是,一类是。 6、电子测量通常包括的测量,的测量以及的测量。 7、目前利用电子仪器对进行测量精确度最高。 8、目前,电压测量仪器能测出从级到的电压,量程达个数量级。 9、智能仪器的核心是。 10、仪器中采用微处理器后,许多传统的硬件逻辑可用取代,其实质是实现了。 11、智能仪器有两个特点:其一是,其二是。 12、虚拟仪器实质上是和相结合的产物。 13、虚拟仪器的硬件部分通常应包括及和变换器。 14、虚拟仪器的软、硬件具有、、及等特点。 15、LabVIEW是一种软件开发平台。 16、测量电信号的仪器可分为仪器、仪器及仪器三大类。 17、数据域测试仪器测试的不是电信号的特性,而主要是。 二、名词解释 1、电子测量 2、计量 第一章答案 一、填空 1、统一性;准确性;法制性 2、计量基准;计量标准;工作用计量器具 3、国家基准;副基准;工作基准 4、准确度等级;计量器具;物质;工作基准 5、标准器具;标准物质 6、电能量;信号特性及所受干扰;元件和电路参数 7、频率和时间 8、纳伏;千伏;12 9、微处理器 10、软件;硬件软化 11、操作自动化;具有对外接口功能 12、软件;硬件 13、微型计算机;A/D;D/A 14、开放性;模块化;重复使用;互换性 15、虚拟仪器图形化 16、时域;频域;调制域 17、二进制数据流 第一章误差理论与测量不确定性 一、填空 1、测量值与之间的差别称为测量误差。 2、计量标准的三种类型分别是、和。 3、绝对误差在用测量值与真值表示时,其表达式为;在用测量值与约定真值表示时,其表达式为。 4、在绝对值相等的情况下,测量值越小,测量的准确程度;测量值越大,测量的准确程度。 5、相对误差是和之比,表示为。 6、通常相对误差又可分为、、和。 7、满度相对误差又称为引用误差,它定义为绝对误差ΔX和仪器满度值X m之比,记为。 8、满度相对误差给出的是在其量程下的的大小。 9、满度相对误差适合用来表示电表或仪器的。 10、电工仪表是按的值来进行分级的。 11、常用电工仪表分为七个等级,它们是。 12、1.0级的电表表明r m。 13、根据满度相对误差及仪表等级的定义,若仪表等级为S级,则用该表测量所引起的绝对误差|ΔX| ;若被测量实际 值为X0,则测量的相对误差|ΔX| 。 14、当一个仪表的等级选定以后,所产生的最大绝对误差与量程成。 15、在选择仪表量程时,一般应使被测量值尽可能在仪表满量程值的以上。

三维激光扫描测量技术及其在测绘领域的应用

三维激光扫描测量技术及其在测绘领域的应用 徐晓雄刘松林李白 随着信息技术研究的深入及数字地球、数字城市、虚拟现实等概念的出现,人们对空间三维信息的需求更加迫切。基于测距测角的传统工程测量方法,在理论、设备和应用等诸多方面都已相当成熟,新型的全站仪可以完成工业目标的高精度测量,GPS可以全天候、一天24小时精确定位全球任何位置的三维坐标,但它们多用于稀疏目标点的高精度测量。随着传感器、电子、光学、计算机等技术的发展,基于计算机视觉理论获取物体表面三维信息的摄影测量与遥感技术成为主流,但它在由三维世界转换为二维影像的过程中,不可避免地会丧失部分几何信息,所以从二维影像出发理解三维客观世界,存在自身的局限性。因此,上述获取空间三维信息的手段难以满足应用的需求,如何快速、有效地将现实世界的三维信息数字化并输入计算机成为解决这一问题的瓶颈。三维激光测量技术的出现和发展为空间三维信息的获取提供了全新的技术手段,为信息数字化发展提供了必要的生存条件。20世纪90年代,随着三维激光扫描测量装置在精度、速度、易操作性、轻便、抗干扰能力等性能方面的提升及价格的逐步下降,它在测绘领域成为研究的热点,应用领域不断扩展,逐步成为快速获取空间实体三维模型的主要方式之一。

使用国产地面激光扫描仪扫描的输电线三维模型 三维激光扫描测量技术的特点 三维激光扫描测量技术克服了传统测量技术的局限性,采用非接触主动测量方式直接获取高精度三维数据,能够对任意物体进行扫描,且没有白天和黑夜的限制,快速将现实世界的信息转换成可以处理的数据。它具有扫描速度快、实时性强、精度高、主动性强、全数字特征等特点,可以极大地降低成本,节约时间,而且使用方便,其输出格式可直接与CAD、三维动画等工具软件接口。目前,生产三维激光扫描仪的公司有很多,它们各自的产品在测距精度、测距范围、数据采样率、最小点间距、模型化点定位精度、激光点大小、扫描视场、激光等级、激光波长等指标会有所不同,可根据不同的情况如成本、模型的精度要求等因素进行综合考虑之后,选用不同的三维激光扫描仪产品。

电子测量技术课程总结

电子测量技术总结 班别:信息122 学号:1213232222 姓名:冯健 任课老师:康实

在第一章中我们可以学习到: 测量是无处不在的,日常生活、工农业发展、高新技术和国防现代化建设都离不开测量,科学的发展与进步更离不开测量。 俄国科学家门捷列(л.ц.Менделеев) 在论述测量的意义时曾说过:“没有测量,就没有科学”,“测量是认识自然界的主要工具”。 电子测量是泛指以电子技术为基础手段的一种测量技术,除了对各种电量、电信号以及电路元器件的特性和参数进行测量外、它还可以对各类非电量进行测量。按照测量的性质不同,可以将电子测量分为时域测量、频域测量、数据域测量和随机量测量四种类型;按照测量方法的不同,电子测量又可以分为直接测量、间接测量和组合测量三类。 电子测量要实现测量过程,必须借助一定的测量设备。电子测量仪器种类很多,一般分为专用仪器和通用仪器两大类。根据被测参量的不同特性,通用电子测量仪器有可以分为信号发生器、电压测量以前、示波器、频率测量仪器、电子元器件测试仪、逻辑分析仪、频谱分析仪等。高新技术的发展带动了电子测量仪器的发展,目前以软件技术为核心的虚拟仪器也得到了广泛应用。 它是测量学和电子学相互结合的产物。电子测量除具体运用电子科学的原理、方法和设备对各种电量、电信号及电路元器件的特性和参数进行测量外,还可以通过各种敏感器件和传感装置对非电量进行测量,这种测量方法往往更加方便、快捷、准确,有时是用用其他测量方法不可替代的。因此,电子测量不仅用于电学这专业,也广泛用于物理学,化学,机械学,材料学,生物学,医学等科学领域及生产、国防、交通、通信、商业贸易、生态环境保护乃至日常生活的各个方面。近几十年来计算机技术和微电子技术的迅猛发展为电子测量和测量仪器增添了巨大活力。电子计算机尤其是尤其是微型计算机与电子测量仪器相结合,构成了一代崭新的仪器和测试系统,即人们通常所说的“智能仪器”和“自动测试系统”,它们能够对若干电参数进行自动测量,自动量程选择,数据记录和处理,数据传输,误差修正,自检自校,故障诊断及在线测试等,不仅改变了若干传统测量的概念,更对整个电子技术和其他科学技术产生了巨大的推动作用。现在,电子测量技术(包括测量理论、测量方法、测量仪器装置等)已成为电子科学领域重要且发展迅速的分支学科。 在第二章我们讨论了测量误差和数据出来的基本知识。 测量误差是在所难免的,测量误差的表示方法有绝对误差和相对误差。绝对误差表明测量结果的准偏离实际值的情况,是一个既有大小又有符号和量纲的量。相对误差能够确切地反映测量结果的准确程度,其只有大小和符号,不带量纲。可以最大引用相对误差确定电子测量仪表的准确度等级。

电子测量技术基础知识点

第1章 电子测量的基本概念 测量环境是指测量过程中人员、对象和仪器系统所处空间的一切物理和化学条件的总和。 电子测量的特点: ①测量频率范围宽 ②测量量程广 ⑧测量准确度高低相差悬殊 ①测量速度快 ⑤可实现遥测 ⑥易于实现测量智能化和自动化 ⑦测量结果影响因素众多,误差分析困难 测量仪器的主要性能指标: ①精度;②稳定性;③输入阻抗;④灵敏度;⑤线性度;⑥动态特性。 精度: 精密度(精密度高意味着随机误差小,测量结果的重复性好) 正确度(正确度高则说明系统误差小) 准确度(准确度高,说明精密度和正确度都高) 第2章 测量误差和测量结果处理 修正值C = - 绝对误差Δx 示值相对误差(标称相对误差) % 100?= x x x ?γ 满度相对误差 % %100S x x m m m =??=γ 分贝误差

) )(1lg(20dB x dB γγ+= 当n 足够大时,残差得代数和等于零。 实验偏差与标准偏差: n n x n i i /111 2 σσυσ=-=∑= 极限误差 σ 3=? 常用函数的合成误差 和函数: ???? ??+++±=2 212 12 11x x y x x x x x x γγγ 差函数 ???? ??-+-±=2 212 12 11x x y x x x x x x γγγ 积商函数 () 21x x y γγγ+±= 数据修约规则: (1)小于5舍去——末位不变。 (2)大于5进1——在末位增1。 (3)等于5时,取偶数——当末位是偶数,末位不变;末位是奇数,在末位增1(将末位凑为

偶数) 第3章信号发生器 振荡器是信号发生器的核心。 通常用频率特性、输出特性和调制特性(俗称三大指标)来评价正弦信号发生器的性能。 合成信号发生器 相干式(直接合成):频率切换迅速且相位噪声很低 锁相式(间接合成):频率切换时间相对较长但易于集成化 和点频法相比,扫频法具有以下优点: 1.可实现网络的频率特性的自动或半自动测量 2.扫频信号的频率是连续变化的,不会出现由于点频法中的频率点离散而遗漏掉细节的问题 3.扫频测量法是在一定扫描速度下获得被测电路的动态频率特性,而后者更符合被测电路的应用实际 第4章电子示波器 示波器的核心部件是示波管,由电子枪、电子偏转系统和荧光屏三部分组成 电子示波器结构框图:

激光检测技术研究现状与发展趋势

激光检测技术研究现状与发展趋势 提要:激光检测学科发展现状在光电检测领域,利用光的干涉、衍射和散射进行检测已经有很长的历史。由泰曼干涉仪到莫尔条纹,然后到散斑,再到全息干涉,出现了一个个干涉场,物理量(如位移、温度、压力、速度、折射率等)的测量不再需要单独测量,而是整个物理量场一起进行测量。自从激光出现以后,电子学领域的许多探测方法(如外差、相关、取样平均、光子计数等)被引入,使测量灵敏度和测量精度得到大大提高。用激光检测关键技术(激光干涉测量技术、激光共焦测量技术、激光三角测量技术)实现的激光干涉仪、激光位移传感器等,可以完成纳米级非接触测量。可以说,超精密加工技术将随着高精密激光检测技术的发展而发展;在此基础上,提出了激光测量需解决的关键技术及今后的发展方向。 1.测量原理 1.1激光测距原理 先由激光二极管对准目标发射激光脉冲。经目标反射后激光向各方向散射。部分散射光返回到传感器接收器,被光学系统接收后成像到雪崩光电二极管上。雪崩光电二极管是一种内部具有放大功能的光学传感器,因此它能检测极其微弱的光信号。记录并处理从光脉冲发出到返回被接收所经历的时间,即可测定目标距离。

1.2激光测位移原理 激光发射器通过镜头将可见红色激光射向被测物体表面,经物体反射的激光通过接收器镜头,被内部的CCD线性相机接收,根据不同的距离,CCD线性相机可以在不同的角度下“看见”这个光点。根据这个角度及已知的激光和相机之间的距离,数字信号处理器就能计算出传感器和被测物体之间的距离。 2.激光测量系统的应用 激光功率和能量是描述激光特性的两个基本参数,激光功率计和能量计是最常用的两类激光测量仪器。随着激光技术的不断发展,对激光测试技术和测量仪器提出了更高要求。由于调Q和锁模激光的出现和应用,要求测量的激光功率已从毫瓦、瓦、千瓦、兆瓦直到千兆瓦以上。激光能量也从毫焦尔逐渐跨过千焦尔。脉冲激光的持续时间也由毫秒、微秒、毫微秒、而缩短至微微秒量级。光谱范围也从紫外、可见、红外扩展到近毫米波段。激光精密测量和某些生物医学方面的研究和应用(如眼科治疗、细胞手术器等)的发展,对激光测量的精度也提出了非常高的要求。 2.1激光非球面检测技术 长期以来,非球面检测技术一直制约着非球面制造精度的提高,尤其对于高精度非球面的检测。规的非球面检测方法如刀口阴影法、激光数字干涉法及接触式光栅测量法等,对于检测工件表面来说都有一定的局限性。原子力显微镜是利用纳米级的探针固定在可灵敏操控的微米级尺度的弹性悬臂上,当针尖很靠近样品时,其顶端的原子与

电子测量技术基础知识点

第1章电子测量的基本概念 测量环境是指测量过程中人员、对象和仪器系统所处空间的一切物理和化学条件的总和。 电子测量的特点: ①测量频率范围宽 ②测量量程广 ⑧测量准确度高低相差悬殊 ①测量速度快 ⑤可实现遥测 ⑥易于实现测量智能化和自动化 ⑦测量结果影响因素众多,误差分析困难测量仪器的主要性能指标: ①精度;②稳定性;③输入阻抗;④灵敏度;⑤线性度;⑥动态特性。 精度: 精密度(精密度高意味着随机误差小,测量结果的重复性好) 正确度(正确度高则说明系统误差小) 准确度(准确度高,说明精密度和正确度都高) 第2章测量误差和测量结果处理误差二测量值-応 修正值C =-绝对误差△ x 示值相对误差(标称相对误差) 满度相对误差 分贝误差

数据修约规则: (1) 小于5舍去——末位不变。 (2) 大于5进1 ――在末位增1。 (3) 等于5时,取偶数——当末位是偶数,末位不变;末位是奇数,在末位增 当n 足够大时,残差得代数和等于零。 实验偏差与标准偏差: 极限误差 常用函数的合成误差 和函数: y X 1 X1 X 2 x2 X 1 x 2 X 1 X 2 差函数 y X 1 X1 X 2 X2 | X 1 X 2 X 1 X 2 1 (将末位凑 )(dB) x 20 lg(1 积商函数

为偶数) 第3章信号发生器 振荡器是信号发生器的核心。 通常用频率特性、输出特性和调制特性(俗称三大指标)来评价正弦信号发生器的性能。 合成信号发生器 相干式(直接合成):频率切换迅速且相位噪声很低 锁相式(间接合成):频率切换时间相对较长但易于集成化 和点频法相比,扫频法具有以下优点: 1?可实现网络的频率特性的自动或半自动测量 2?扫频信号的频率是连续变化的,不会出现由于点频法中的频率点离散而遗漏掉细节的问题 3?扫频测量法是在一定扫描速度下获得被测电路的动态频率特性,而后者更符合被测电路的应用实际 第4章电子示波器 示波器的核心部件是示波管,由电子枪、电子偏转系统和荧光屏三部分组成 电子示波器结构框图:

激光测量技术总结

激光测量技术 第一章 激光原理与技术 1、简并度:同一能级对应的不同的电子运动状态的数目; 简并能级:电子可以有两个或两个以上的不同运动状态具有相同的能级,这样的能级叫 简并能级 2、泵浦方式:光泵浦,电泵浦,化学泵浦,热泵浦 3、激光产生三要素:泵浦,增益介质,谐振腔 阀值条件:光在谐振腔来回往返一次所获得光增益必须大于或者等于所遭受的各种 损耗之和. 4、He-Ne 激光器的三种结构:【主要结构:激光管(放电管,电极,光学谐振腔)+电源+光学元件】 1)内腔式;2)外腔式;3)半内腔式 5、激光器分类:1)工作波段:远红外、红外激光器;可见光激光器;紫外、真空紫外激光器;X 光激光器 2)运转方式:连续激光器;脉冲激光器;超短脉冲激光器 6、激光的基本物理性质:1)激光的方向性。不同类型激光器的方向性差别很大,与增益介质的方向性及均匀性、谐振腔的类型及腔长和激光器的工作状态有关。气体激光器的增益介质有良好的均匀性,且腔长大,方向性 ,最好! 例1:对于直径3mm 腔镜的632.8nmHe-Ne 激光器输出光束,近衍射极限光束发散角为 2)激光的高亮度。 3)单色性。激光的频率受以下条件影响:能级分裂;腔长变化←泵浦、温度、振 动 4)相干性:时间相干性(同地异时):同一光源的光经过不同的路径到达同一位置, 尚能发生干涉,其经过的时间差τc 称为相干时间。相干长度: 例 : He-Ne laser 的线宽和波长比值为10-7求Michelson 干涉仪的最大测量长度是 多少? 解: ,最大测量长度为Lmax=Lc/2=3.164m 。 空间相干性(同时异地):同一时间,由空间不同的点发出的光波的相 干性。 7、相邻两个纵模频率的间隔为 谐振腔的作用:(1)提供正反馈;(2)选择激光的方向性;(3)提高激光的单色性。 例 设He-Ne 激光器腔长L 分别为0.30m 、1.0m,气体折射率n~1,试求纵模频率间隔各为多 少? 8、激光的横模:光场在横向不同的稳定分布,激光模式一般用TEMmnq 表示 原因:激活介质的不均匀性,或谐振腔内插入元件(如布儒斯特窗)破坏了腔的旋转对称性。激光横模形成的主要因素是谐振腔两端反射镜的衍射作用,光束不再是平行光,光强也改变为非均匀的。 λ λν?=?=?=//2c t c L c 1 =?c ντm L c 328.6/2=?=λλrad d 4102/22.1-?≈≈λθnL C 2=?νHz 105.10.1121031.0m,Hz 1053 .012103,m 30.0288288 1?=???=?=?=???=?==?νννL L nL c

《激光雷达测量技术与应用》课程教学大纲

《激光雷达测量技术与应用》课程教学大纲 一、基本信息 二、教学目的与任务 通过本课程理论知识传授及实践教学,使学生能掌握激光雷达测量技术与三维建模技术的基本原理与方法,熟悉激光雷达测量技术的软、硬件环境,熟练掌握相关软件的功能和相关操作命令,并能够熟练运用相关软件构建实体三维仿真模型并在实际中进行应用,使学生掌握基本的创新方法,培养学生追求创新的态度和意识,提高学生不断学习和适应发展的能力,培养学生具有综合应用现代科技手段获取与处理信息的能力,并掌握现代计算机和信息技术在测绘工程中的应用,学生在掌握扎实的激光雷达测量技术相关的专业理论与技术知识基础上,通过实践教学培养学生设计和实施工程实验的能力,并能够对实验结果进行分析等。 主要教学任务包括:重点详细讲解激光雷达测量技术的基本原理及激光雷达测量系统的软硬件设备等;详细讲解利用三维激光扫描仪进行数据采集的方法、过程及注意事项等;重点详细讲解利用激光雷达数据建立点云模型的方法;详细讲解基于影像获取点云的原理及方法;重点详细讲解三维实体模型重构的理论与方法;详细讲解建立三维仿真模型的原理和方法;详细讲解激光雷达测量技术的应用等。 本课程支撑培养方案培养规格和基本要求的第3条、第5条。(第3条,具有较强的空间信息获取和数据处理分析能力;要求学生掌握控制测量、工程测量、不动产测量、地理信息工程、摄影测量以及遥感图象处理的理论和方法;具有综合利用地面测量和空间测量等现代测量方法与手段获取地球空间信息的能力;第5条,具有继续学习能力和国际交流能力,了解现代城市测绘、精密工程与工业测量等领域的理论前沿及发展动态;掌握文献检索、资料查询的基本方法,具有较高的工程素质、实践能力和较强的创新意识。)

激光测量技术研究现状与发展趋势

激光测量技术研究现状与发展趋势授课教师:冯其波谢芳 学院:理学院 专业:光信息科学与技术 班级:光科0704班 姓名:杨涛 07272111 (组长) 颜川力 07272110 杨一帆 07272112 戴瑞辰 07272094 (副组长) 赵晓军 07272117 激光测量技术研究现状与发展趋势 光科0704:杨涛戴瑞辰杨一帆颜川力赵晓军 提要:激光检测学科发展现状在光电检测领域,利用光的干涉、衍射和散射进行检测已经有很长的历史。由泰曼干涉仪到莫尔条纹,然后到散斑,再到全息干 涉,出现了一个个干涉场,物理量(如位移、温度、压力、速度、折射率等)的测量不再需要单独测量,而是整个物理量场一起进行测量。自从激光出现以后, 电子学领域的许多探测方法(如外差、相关、取样平均、光子计数等)被引入,使测量灵敏度和测量精度得到大大提高。用激光检测关键技术(激光干涉测量技 术、激光共焦测量技术、激光三角测量技术)实现的激光干涉仪、激光位移传感 器等,可以完成纳米级非接触测量。可以说,超精密加工技术将随着高精密激光

检测技术的发展而发展;在此基础上,提出了激光测量需解决的关键技术及今 后 的发展方向。 Developing Situation of laser detection .In the field of photoelectric detection, there`ve been a long history of making a detection by using the principle of interference, diffraction and scattering of light. Interference field such as Tieman interferometer, Moire fringe, speckle and Holographic interferometry were designed one after another. Form then on, instead of measuring every physical quantity (displacement, temperature, pressure, velocity, refractive index) in turn, people measure the physical field entirely. After the development of laser, a number of detection methods (heterodyne, correlation, sample averaging, photon-counting) were invented, which lead to the improvement of the sensitivity and accuracy of the detection. People use the laser interferometer and Laser Displacement Transducer with key technologies of the laser detection to make nano-scaling non-contact measurement. It is clear that Super Precision Technology will raise to a new level according to the development of the High Precision laser detection; take which as the foundation, we advance the key technologies which belongs to the laser detection field, and also development direction of the field. 关键词:激光测量,扫描隧道显微镜,激光干涉仪,激光共焦测量技术 1 激光测量系统

激光测量技术重点..

1、如何获得线偏正光? 利用偏振片获得偏振光、反射和折射产生的偏振、利用双折射产生偏振 2、反射和折射产生偏正光的原理 让自然光以布儒斯特角入射,透射光为P光,偏振方向实在入射面的,与入射面平行的光,反射光为S光,都为线偏光。 3、利用双折射产生偏振制造的棱镜,为了提高棱镜透过率,都选择透射光为P 光。 4、玻片 5、半波片:线偏振光通过半波片后,仍是线偏振光,但其偏振化方向转过了2α,圆偏振光入射时,出射光是旋向相反的圆偏振光,一般用于x,y两偏振方向间的转换。 四分之一波片: 1).线偏振光振动方向与1/4波片成45度,出射为圆偏振光; 2.)圆偏振光通过1/4波片后,变为线偏振光,其振动方向与光轴方向45度; 一般用于圆偏光与线偏光方向间的转换。 6、什么是受激辐射? 受激辐射:受激辐射产生的光子与引起受激辐射的外来光子具有相同的特征(频率、相位、振动方向及传播方向均相同) 7、泵浦分类:光泵、电泵浦、化学泵浦、热泵浦 8、激光产生的基本条件及阈值条件 三要素: 1. 泵浦2. 增益介质3. 谐振腔 阀值条件: 光在谐振腔来回往返一次所获得光增益必须大于或者等于所遭受的各种损耗之和. 9、激光的基本的物理性质。 方向性、高亮性、单色性、相干性 激光单色性的好坏可以用频谱分布的宽度 (线宽)描述。(线宽比较窄) 方向性最好的是气体激光器。 相干性:时间相干性(计算相干长度)、空间相干性 10、如何获得单模:短腔法 11、高斯光束 聚焦条件:短焦距透镜,束腰远离透镜 可利用倒置望远镜可实现激光光束的准直 12、稳频的必要性:在精密计量中,通常以波长为基准,测量精度很大程度上决定于波长的精确程度。 13、主动稳频的方法:1.兰姆(Lamb)下陷法2. 饱和吸收法3. 塞曼效应法4. 双纵模稳频5.无源腔稳频。双频激光器:由塞曼效应制成的激光器,还可以使用声光调制。获得频率稳定度最高的:饱和吸收法。 14、什么是塞曼效应,塞曼效应稳频的基本原理是什么? 塞曼效应:原子能级在磁场作用下发生分裂的现象。根据激光器输出的两圆偏振光光强的差别来判断谐振频率偏离中心频率的方向和程度。 15、以塞曼效应产生双频激光进行稳频用在干涉仪上有什么特点?(交流、外差干涉仪) 由双频激光器构成的干涉仪具有较强的抗干扰能力,可用于工业中的精密计量。 16、激光调制:声光、电光、磁光。磁光主要用在光学隔离器。声光调制由于是

电子测量技术基础课后习题答案_1-8章张永瑞(第二版)_

习题一 1.1 解释名词:① 测量;② 电子测量。 答:测量是为确定被测对象的量值而进行的实验过程。在这个过程中,人们借助专门的设备,把被测量与标准的同类单位量进行比较,从而确定被测量与单位量之间的数值关系,最后用数值和单位共同表示测量结果。从广义上说,凡是利用电子技术进行的测量都可以说是电子测量;从狭义上说,电子测量是指在电子学中测量有关电的量值的测量。 1.2 叙述直接测量、间接测量、组合测量的特点,并各举一两个测量实例。 答:直接测量:它是指直接从测量仪表的读数获取被测量量值的方法。如:用电压表测量电阻两端的电压,用电流表测量电阻中的电流。 间接测量:利用直接测量的量与被测量之间的函数关系,间接得到被测量量值的测量方法。如:用伏安法测量电阻消耗的直流功率P,可以通过直接测量电压U,电流I,而后根据函数关系P=UI,经过计算,间接获得电阻消耗的功耗P;用伏安法测量电阻。 组合测量:当某项测量结果需用多个参数表达时,可通过改变测试条件进行多次测量,根据测量量与参数间的函数关系列出方程组并求解,进而得到未知量,这种测量方法称为组合测量。例如,电阻器电阻温度系数的测量。 1.3 解释偏差式、零位式和微差式测量法的含义,并列举测量实例。 答:偏差式测量法:在测量过程中,用仪器仪表指针的位移(偏差)表示被测量大小的测量方法,称为偏差式测量法。例如使用万用表测量电压、电流等。

零位式测量法:测量时用被测量与标准量相比较,用零示器指示被测量与标准量相等(平衡),从而获得被测量从而获得被测量。如利用惠斯登电桥测量电阻。 微差式测量法:通过测量待测量与基准量之差来得到待测量量值。如用微差法测量直流稳压源的稳定度。 1.4 叙述电子测量的主要内容。 答:电子测量内容包括:(1)电能量的测量如:电压,电流电功率等;(2)电信号的特性的测量如:信号的波形和失真度,频率,相位,调制度等;(3)元件和电路参数的测量如:电阻,电容,电感,阻抗,品质因数,电子器件的参数等:(4)电子电路性能的测量如:放大倍数,衰减量,灵敏度,噪声指数,幅频特性,相频特性曲线等。 1.5 列举电子测量的主要特点.。 答:(1)测量频率范围宽;(2)测试动态范围广;(3)测量的准确度高;(4)测量速度快;(5)易于实现遥测和长期不间断的测量;(6)易于实现测量过程的自动化和测量仪器的智能化;(7)影响因素众多,误差处理复杂。 1.6 选择测量方法时主要考虑的因素有哪些? 答:在选择测量方法时,要综合考虑下列主要因素:① 被测量本身的特性; ② 所要求的测量准确度;③ 测量环境;④ 现有测量设备等。 1.7 设某待测量的真值为土0.00,用不同的方法和仪器得到下列三组测量数据。试用精密度、正确度和准确度说明三组测量结果的特点: ① 10.10,l0.07,10.l2,l0.06,l0.07,l0.12,10.11,10.08,l0.09, 10.11;

三维激光扫描测量技术探究及应用

三维激光扫描测量技术探究及应用 如何快速、准确、有效地获取空间三维信息,是许多学者深入研究的课题。随着信息技术研究的深入及数字地球、数字城市、虚拟现实等概念的出现,尤其在当今以计算机技术为依托的信息时代,人们对空间三维信息的需求更加迫切。基于测距测角的传统工程测量方法,在理论、设备和应用等诸多方面都已相当成熟,新型的全站仪可以完成工业目标的高精度测量,GPS可以全天候、一天24小时精确定位全球任何位置的三维坐标,但它们多用于稀疏目标 如何快速、准确、有效地获取空间三维信息,是许多学者深入研究的课题。随着信息技术研究的深入及数字地球、数字城市、虚拟现实等概念的出现,尤其在当今以计算机技术为依托的信息时代,人们对空间三维信息的需求更加迫切。基于测距测角的传统工程测量方法,在理论、设备和应用等诸多方面都已相当成熟,新型的全站仪可以完成工业目标的高精度测量,GPS可以全天候、一天24小时精确定位全球任何位置的三维坐标,但它们多用于稀疏目标点的高精度测量。随着传感器、电子、光学、计算机等技术的发展,基于计算机视觉理论获取物体表面三维信息的摄影测量与遥感技术成为主流,但它在由三维世界转换为二维影像的过程中,不可避免地会丧失部分几何信息,所以从二维影像出发理解三维客观世界,存在自身的局限性。因此,上述获取空间三维信息的手段难以满足应用的需求,如何快速、有效地将现实世界的三维信息数字化并输入计算机成为解决这一问题的瓶颈。 三维激光测量技术的出现和发展为空间三维信息的获取提供了全新的技术手段,为信息数字化发展提供了必要的生存条件。激光测量技术出现于上世纪80年代,由于激光具有单色性、方向性、相干性和高亮度等特性,将其引入测量装置中,在精度、速度、易操作性等方面均表现出巨大的优势,它的出现引发了现代测量技术的一场革命,引起相关行业学者的广泛关注,许多高技术公司、研究机构将研究方向和重点放在激光测量装置的研究中。随着激光技术、半导体技术、微电子技术、计算机技术、传感器等技术的发展和应用需求的推动,激光测量技术也逐步由点对点的激光测距装置发展到采用非接触主动测量方式快速获取物体表面大量采样点三维空间坐标的三维激光扫描测量技术。随着三维激光扫描测量装置在精度、速度、易操作性、轻便、抗干扰能力等性能方面的提升及价格方面的逐步下降,20世纪90年代,其在测绘领域成为研究的热点,扫描对象不断扩大,应用领域不断扩展,逐步成为快速获取空间实体三维模型的主要方式之一,许多公司都推出了不同类型的三维激光扫描测量系统。上世纪90年代中后期,三维激光扫描仪已形成了颇具规模的产业。 三维激光扫描测量技术克服了传统测量技术的局限性,采用非接触主动测量方式直接获取高精度三维数据,能够对任意物体进行扫描,且没有白天和黑夜的限制,快速将现实世界的信息转换成可以处理的数据。它具有扫描速度快、

电子测量技术试题

《电子测量》期末考试试卷 卷别:A卷命题人:满分:100分考试时间:120分钟班级:姓名:学号:成绩: 一、填空(每空1分,共20分): 1、电子测量是以为手段的测量。 2、绝对误差是指由测量所得到的与之差。 3、相对误差是指与之比。用表示。 4、MF-47型万用表具有个基本量程和7个附加参数量程。 5、万用表测量的对象包括:、、和等电 参量。同时,可测、、、。 6、指针式万用表的结构包括、转换开关、三部分组成。 7、电阻器按结构分可分为:、半可调式电阻器、。 8、指针式万用表的表头是仪表。 二、判断(每题2分,共10分): 1、一般直流电表不能用来测量交流电。() 2、测量时电流表要并联在电路中,电压表要串联在电路中。() 3、一般,万用表红表笔接正级,黑表笔接负级。() 4、使用万用表交流电压档测量时,一定要区分表笔的正负极。() 5、万用表广泛应用于无线电、通信和电工测量等领域。() 三、简答(每题5分,共15分): 1、在万用表的使用中,为了能准确读数,我们需注意那些方面? 2、常用的模拟电压表和数字电表各分为几类?

3、使用万用表的欧姆档测量电阻的操作步骤是? 四、读图(每空2分,共24分): 五、计算(共31分): 1、用量程是10mA的电流表测量实际值为8mA的电流,若读数是8.15mA。试求测量的绝对误差,实际相对误差和引用相对误差。( 6分) 2、有一块电压表,用它去测量一个最大电压为30V的电阻,需串联一个20欧的电阻,已知电压表内阻为10欧,求电压表表头允许流过的最大电压和最大电流。(6分)

3、如下图所示为万用表电流档的原理图,请根据图示的有关参量,计算I=250mA时的分流电阻Rx。(9分) 4、如下图所示为万用表电压档的电路原理图,请根据图示所标参量,计算Rx1、Rx2、Rx3、Rx4。(10分)

3D激光测量技术的发展及其应用

3D激光测量技术的发展及其应用 随着激光技术和电子技术的发展,激光测量已经从静态的点测量发展到动态的跟踪测量和3D 立体测量领域。上个世纪末,美国的CYRA 公司和法国的MENSI 公司率先将激光技术发展到三维测量领域。其中,CYRA 公司的3D 测量技术着重于中远距离(50 米-200 米)目标的测量应用,可以获得6 毫米到4 厘米的测量精度,是针对建筑模型,地面施工,电站,船舶设计等大型项目的建模,监测应用;而MENSI 公司则着重于短距离高精度的3D 测量应用,由于可以达到0.25 毫米的精度,为工业设计,设备加工,质量监测领域提供了全新的测量手段。在2000 年的时候,美国宇航局(NASA)就已经在设计加工过程中成功的应用了3D 测量技术。现在,3D 测量技术已经发展出更远的工作距离和更多的应用领域。I-SITE 公司的3D 激光扫描仪的工作距离已经达到了800 米,适用于更大规模的现场监测,如露天煤矿等。3D 激光测量也已经被应用到航空测量的领域,即激光雷达。传统的遥测技术包括卫星遥感,航空摄影测量等。但是卫星遥感技术规模浩大,成本高,约束条件多,缺乏灵活性。而航空摄影测量成本昂贵,设备要求高。相比之下,3D 激光扫描设备可以在低空100 米到450 米的范围内对地面目标进行准确的3D 测量,其精度可以达到10 厘米。其低成本和灵活性将航测技术拓展到更多更广的范围。激光雷达不仅在军事上有广泛的应用,在水利,电力,交通,防洪,滑坡监测,林业等领域都有着非常广泛的应用前景。 图为3D 激光测量技术 3D 激光测量对于软件处理有着很高的要求,需要使用专业的对测量信

电子测量技术基础知识

课题:第1章电子测量与仪器的基础知识 课时分配:四课时 教学目的要求: 1.明确电子测量的意义、内容、特点和分类。 2.了解电子测量仪器的分类和技术指标。 3.掌握测量误差的表示方法有:绝对误差、相对误差和容许误差。 4.明确测量误差按照性质分为系统误差、随机误差和粗大误差。 5.明确测量误差的来源是多方面的。 6.明确测量结果常用有效数字来表示,应根据实际情况,遵循有效数字位数取舍和有效数字舍入规则进行。 7.了解为了测得准确的结果,一般要进行多次测量,多次测量的算术平均值即测量值。数据处理过程中得到的不确定度具有测量误差的含义,是测量误差的极限值。不确定度越大,置信度越高,丢失真实数据的可能性越小。 教学重点: 1.电子测量的意义、内容、特点和分类。 2.电子测量仪器的分类和技术指标。 3.测量误差的表示方法 4.测量误差的来源分析 5.有效数字及有效数字位数取舍和有效数字舍入规则。 6.测量数据的处理 教学难点: 1.测量误差的表示方法与分类 2.测量误差的来源分析 3.有效数字的处理 教学方法: 演讲法、问题教学法、设计教学法、小组研讨法、辩论法、座谈研讨等 教学过程 导入新课: 测量是应用电子技术常常遇到的问题,本课程以生产实践中普遍使用的通用仪器为典型仪器,介绍测量方法和技术。 新课内容: 1.1电子测量概述

1.1.1电子测量的意义及内容 1. 电子测量的意义 测量的目的就是取得用数值和单位共同表示的被测量的结果,是人们借助于专门的设备,依据一定的理论,通过实验的方法将被测量与已知同类标准量进行比较而取得测量结果。被测量的结果必须是带有单位的有理数,例如,某测量结果为9.3V是正确的,而测得的结 果为9.3或 1 9 3 V 是错误的。 广义的电子测量是指利用电子技术进行的测量。狭义的电子测量是指对电子技术中各种电参量所进行的测量。 2.电子测量的内容 狭义电子测量的内容主要包括: (1)能量的测量 能量的测量指的是对电流、电压、功率、电场强度等参量的测量。 (2)电路参数的测量 电路参数的测量指的是对电阻、电感、电容、阻抗、品质因数、损耗率等参量的测量。(3)信号特性的测量 信号特性的测量指的是对频率、周期、时间、相位、调制系数、失真度等参量的测量。(4)电子设备性能的测量 电子设备性能的测量指的是对通频带、选择性、放大倍数、衰减量、灵敏度、信噪比等参量的测量。 (5)特性曲线的测量 特性曲线的测量指的是对幅频特性、相频特性、器件特性等特性曲线的测量。 上述各种参量中,频率、时间、电压、相位、阻抗等是基本参量,其他的为派生参量,基本参量的测量是派生参量测量的基础。电压测量是最基本、最重要的测量内容。 非电量的测量属于广义电子测量的内容,可以通过传感器将非电量变换为电量后进行测量。本书主要讨论狭义电子测量内容。 1.1.2电子测量的特点 电子测量技术及电子测量仪器的应用十分广泛、发展十分迅速,对科学技术的发展起着巨大的推动作用,从某个意义来说,电子测量水平代表着一个国家的科技水平的高低。这是因为电子测量有着其他测量无法相比的众多优点。其特点如下: (1)频率范围宽 电子测量的频率范围几乎可以覆盖整个电磁频谱。从直流一直可达100GHz以上。随着电子技术的发展,目前还在向着更宽频段乃至全频段发展。 (2)量程广

地面三维激光扫描测量技术及其应用分析

地面三维激光扫描测量技术及其应用分析 宋宏1,2 (1.武汉大学测绘学院 武汉 430079;2.中煤航测遥感局 西安 710054) 摘 要:三维激光扫描技术是国际上近期发展的一项高新技术。目前许多发达国家已将这一先进技术用于空对地观测及工业测量系统,快速获取特定目标的主体模型,我国在863计划中也重点支持了这一研究方向。本文论述地面三维激光扫描技术的原理分类和应用现状,比较了相关技术方法之异同,评价了地面扫描仪优缺点,指出该技术面临的诸多挑战。 关键词:三维激光扫描技术 LIDAR激光雷达 地面激光扫描仪 近景摄影测量 三维建模 1 引言 激光扫描系统平台分为机载和地面两大类型。地面三维激光扫描系统,与激光测距技术点对点的距离测量不同,激光扫描技术的发展为人们在空间信息获取方面提供了全新的技术手段,使人们从传统的人工单点数据获取变为连续自动获取批量数据,提高了量测的精度与速度。 2 地面三维激光扫描技术的基本原理,仪器技术指标和分类 2.1 三维激光扫描仪测量原理 径向三维激光扫描仪是一种集成了多种高新技术的新型三维坐标测量仪器,采用非接触式高速激光测量方式,以点云形式获取地形及复杂物体表面的阵列式几何图形的三维数据。仪器要包括激光测距系统、扫描系统和支架系统,同时也集成CCD数字摄影和仪器内部校正等系统。典型的径向三维激光扫描仪有很多,如Optech ILRIS-36D、Leica HDS 3000、Mensi GX RD 200+等。 目前三维激光扫描仪主要采用TOF脉冲测距法(Time of Flight),是一种高速激光测时测距技术,采用脉冲测距法的三维激光点坐标计算方法,如式(1)所示。三维激光扫描仪通过脉冲测距法获得测距观测值S,精密时钟控制编码器同步测量每个激光脉冲横向扫描角度观测值α和纵向扫描角度观测值θ。三维激光扫描测量一般使用仪器内部坐标系统,X轴在横向扫描面内,Y轴在横向扫描面内与X轴垂直,Z轴与横向扫描面垂直。由此可得三维光脚点P 坐标(X s,Ys,Zs)的计算公式: 图1三维激光扫描系统工作原理 图2 采用脉冲测距法的三维激光点坐标 2.2 地面扫描仪技术指标 1) 典型的地面三维激光扫描仪毫米级精度仪器见表1。 表1:中远距离的毫米级仪器装备主要技术指标 生产厂家 Optech Leica Mensi 产品 ILRIS-36D HDS3000 GX RD200+ 激光安全性 Class 1 1500nm Class 3 Class 3 532nm 距离精度 7mm@100m 单点4mm@50 单点7mm@100m 定位精度 8mm@100m 6mm@50 单点12mm@100m

《电子测量技术》课程教学大纲

《电子测量技术》课程教学大纲 一、课程的性质与任务 《电子测量技术》是电子信息、自动控制、测量仪器等专业的通用技术基础课程。该课程包括电子测量的基本原理、测量误差分析,主要电子仪器的工作原理,性能指标,电参数的测试方法,该领域的最新发展等。 电子测量是现代科学获取信息的重要手段,是从事现代电子科学研究的必备基础,也是培养学生“实践动手能力”的重要标志性课程。其特点是综合性强、实践性突出、应用面广泛。电子测量技术综合应用了电子、计算机、通信、控制等技术。 通过本课程的学习,培养学生具有电子测量技术和仪器方面的基础知识和应用能力;通过本课程的学习,可开拓学生思路,培养综合应用知识能力和实践能力;培养学生严肃认真,求实求真的科学作风,为后续课程的学习和从事研发工作打下基础。 二、课程的教学目标 (一)理论知识目标 (1)掌握近代电子测量的基本原理和方法。 (2)掌握测量误差分析和测量数据处理方法。 (3)熟悉常用电子测量仪器的应用技术。 (4)掌握正确选用测量仪器的基本方法。 (二)实践技能目标 (1)能够制订先进、合理的测量和测试方案。 (2)能够正确选用测量仪器。 (3)能够正确操作测量仪器。 (4)能够正确处理测量数据。 三、课程内容及教学要求 (一)绪论 1、主要内容

测量和电子测量;电子测量的内容与特点;电子测量的一般方法;电子测量仪器概述;计量的基本概念。 2、教学要求 了解常用测量方法和测量仪器的分类;掌握计量的概念;掌握电子测量的概念、特点;掌握电子测量常用仪器和常用方法。 3、作业要求 《思考与练习1》中的1.1,1.3,1.5。 4、实践性教学内容及要求 列举常用电子测量的实例,归纳电子测量方法及仪器的类别。 (二)测量误差和测量结果处理 1、主要内容 误差的相关概念;测量误差的来源;误差的分类;随机误差分析;系统误差分析;系统误差的合成;测量数据的处理;测量方案选择等。 2、教学要求 掌握误差的相关概念、分类、表示方法及公式;理解测量误差的来源;掌握随机误差分析方法,会熟练计算,掌握数学期望值、残差等的计算;掌握正态分布、平均分布,会熟练计算,能使用贝塞儿公式,掌握有限次测量的数据处理方法;掌握系统误差分析方法和合成方法,熟练相关计算;熟练消弱系统误差的典型测量技术、原理、计算。 3、作业要求 《思考与练习2》中的2.1,2.4,2.5,2.9,2.11,2.12。 3、实践性教学内容及要求 用万用表交流500V档测量教室内电源插座上的市电交流电压10次,记下每次测量值,最后根据这10个数据写出测量结果表达式。 (三)电路元件参数的测量 1、主要内容 电路元件集中参数测量方法简介;电桥测量元件参数;谐振法测量电感电容及Q值;测量电阻、电感和电容的数字化方法;晶体管特性图示仪测量常用晶体管。 2、教学要求 理解集中参数的几种测量方法的特点;掌握利用直接测量法、并联替代法和 串联替代法测量电容、电感的原理及各种测量方法的优缺点;理解直流、交流电 桥测量元件参数的基本原理;理解Q值的测量原理;理解晶体管参数测量的原理

相关主题
文本预览
相关文档 最新文档