当前位置:文档之家› 高边电流检测电路的一些体会

高边电流检测电路的一些体会

高边电流检测电路的一些体会
高边电流检测电路的一些体会

高边电流检测电路的一些体会

2010-01-13 12:25

前一段做一个项目,是关于高边电流检测,所谓高边电流检测,也就是在电源和负载之间进行电流检测;

我们选择的MAXIM 的MAX9937.下面是他的介绍:

Maxim Integrated Products推出微型高边检流放大器MAX9937,采用外部电阻设置电压增益,大大提高了设计灵活性。MAX9937提供电池反向(错误)连接保护,还具有-20V至+40V感应

电压及瞬态(抛负载)保护。这些安全措施主要用于汽车电子控制单元(ECU),可检测控制电动助力转向、4轮驱动和防抱死刹车系统模块的电流,还可检测保险丝盒以监测故障。

MAX9937的输入共模范围为4V至28V,与VCC电

源电压(2.7V至5.5V)无关。当VCC为5V时,电源电流低至20 当VCC为0V时,检流电阻上的输入偏置电流仅为1^A,以使ECU关断期间电池消耗最小。

电压增益由两个外部电阻的分压比设置,精度与电阻有关。输入失调电压(VOS)非常小,仅

为±1.2mV(最大值)。

MAX9937提供微型、3mn K 3mm、5引脚SC70封装,封装无铅及卤化物,符合RoHS标准。该放大器工作在-40 C至+125 C汽车级温度范围。芯片起价为$0.58 (1000片起,美国离岸价)。

设计时一定要注意:1.采样输入端的电阻选择精度要高,如果不匹配容易产生误差。 2.该芯片是电流输出,所以输出管脚后面要加精密一点的电阻,电阻后面最好在加一个滤波电容。

其典型电路如下:

高端电流检测放大器性能分析

发布者:techshare 发布时间:2010-9-19 15:41

关键字:电流检测,放大器

在讨论器件功能时,检流放大器可以看作一个输入级浮空的仪表/差分放大器。这意味着即

使器件采用VCC=3.3V 或5V单电源供电,在输入共模电压远高于电源电压的条件下,器件仍然能够正常放大差分输入信号。检流放大器的共模电压可以很高,例如可以高达

28V(MAX4372 和MAX4173)或76V(MAX4080 和MAX4081)。

检流放大器的这一特性使其非常适合高端电流检测应用,这类应用往往需要对高压侧检流电

阻两端的微小电压进行放大,并馈入到低压ADC或低压模拟控制环路进行处理。这种情况

下,通常需要在信号源端(例如检流电阻两端)对电流检测信号进行滤波。可以采用差分滤波

器(图1)滤除负载电流和检流电压的毛刺”,也可以采用共模滤波器(图2)以增强在出现共

模电压尖峰或瞬时过压时的ESD保护能力。合理选择元件构建滤波器,如果元件选择不当,则会引入一些无法预知的失调电压和增益误差,降低电路性能。

滤波器的选择

MAX4173 检流放大器如图3所示,该器件的检流电阻可直接连接到芯片的RS+和RS-端。

器件内部的运算放大器将检流电阻两端的差分电压恢复成RG1两端的差分电压,即

ILOAD XRSENSE=VSENSE=IRG1 X RG1。然后,内部电流镜对电流IRG1进行电平转换和放大,产生输出电流IRGD。MAX4173 的内部电路中RGD=12k Q,而RG1=6k Q。

因此,

图1:采用差分滤波器消除负载电流的 毛刺

氏 i”【畑DhRtjDxGairi - liKH=Rc[vCfciirr V 泪就/Rm

由于RGD 和RG1为片上电阻,实际阻值会因不同的半导体工艺而产生多达 ±30%的差异。

但是,因为最终增益精度取决于

RGD 和RG1的比例,所以可以很好地控制增益,并在生

产过程中灵活调整。

/共模滤波器(如图1和图2所示)时,需要在检流电阻的 RSENSE+和RSENSE- 勺RS+和RS-引脚之间接入串联电阻,此时相当于改变了芯片的

由上面的等式可知,改变后的 RG1将引入增益误差。同时,由于

RG1的绝对误差最大可

,因此增益误差最大将达到 ±30%,由于这种误差的引入是随机的,所以无法控制 算误差。由此可见,控制增益误差的唯一办法是保证输入串联电阻 于 RG1 o

SENSE

LOAD

RS+

RS-

MAXIM

CURRENT-SENSE

AMPLIFIER

TO ADC

RG1 和 RG2。

RSENSE+远远小

RESISTOR

W\r

RSENSE-

RSERIES*

RSENSE+

SENSE

RESISTOR Ww

RSENSE-

RSERIES*

RSERfES-

LOAD

MAXIM CURRENT^SENSE AMPLIFIER

R$+

TO ADC

图2 :采用共模滤波器改善电压尖峰或出现共模过压时的ESD保护能力。

图3 : MAX4173 的内部功能框图。

另外,由于输入偏置电流的存在,电阻 根据MAX4173 和MAX4372 的数据资料,偏置IRS-等于两倍的IRS+,因此与RG1串 联的电阻RSERIES+应等于与RG2串联的电阻RSERIES-的两倍,以消除输入失调电压。 综上所述,只有在满足以下条件的情况下,在 RS+和RS-弓I 脚之间接入串联电阻后所构成

的滤波器可以获得最佳性能:

1. RSENSE+ 与RS+之间的串联电阻远小于 RG1 ;

VSOURCE

0 TO +28V

R SENSE

llOAD

—? TO LOAD BAKERY

+3V TO +28V

S+

G1

R 1 R

G

V

cc

RS RG

/ui/jxi/ki

MAX4173

CURRENT MIRROR

GND

VoUT

RG1和RG2之间的不匹配将会引入输入失调电压。

2. RSENSE+ 与RS+之间的串联电阻应等于RSENSE-与RS-之间的串联电阻的两倍。

注意,由于RSERIES+等于RSERIES-的两倍,应相应增大共模滤波器的电容,以满足交流和瞬态性能的要求。

表1 : MAX4173 串联电阻的测试结果。

表2 : MAX4372 串联电阻的测试结果。

表1给出了MAX4173T 的实验室测试结果,用于验证上述推论。VOS的最小值和最大值

可由数据资料给出的偏置电流的最小值和最大值推算,取RG仁6k Q^30%用于计算最小值

和最大增益误差。同样,表2给出MAX7372F 的测试结果(RG1=100k Q)。最小、最大增益误差以及最小-最大VOS的计算推导如下:

Old Gai n

=Constant XRGD / RG1 = 20(T-version MAX4173)

New Gain

=Constant X RGD / RG1new

=RG1 + RSERIES+

=Old Ga in X RG1 / RG1 new |

=20 X RG1 /(RG1 + RSERIES+)

Gai n Error

=(20 —New Gai n) / 20%

=RSERIES+ / (RG1 + RSERIES+)

Min Gain Error

=RSERIES+ / (1.3 XRG1 + RSERIES+)

Max Gai n Error

=RSERIES+ / (0.7 X RG1 + RSERIES+)

RG1 = 6k(MAX4173)

VOS = IBIAS2 X RG2 new —IBIAS1 X RG1 new =IBIAS1 X(2 X RSERIES-) —RSERIES+) IBIAS2 = 2 X BIAS1

IBIAS1(mi n) = 0

IBIAS1(max) = 50uA(MAX4173)

高边电流检测原理和电路

作者:Maxim公司Gert N.Helles 来源:《电子产品世界》 高端电流检测的原理和电路 摘要:本文介绍低端、高端检流电路的结构和它们的应用。 关键词:电流检测限流 电流测量技术具有极为广泛的应用,许多系统中都需要检测流入、流出电流的大小。例如,电流保护/电流监测 设备、4-20mA电流环系 统、可编程电流源、线 性/开关模式电源、以及 需要掌握流入流出电流比 例的充电器或电池电量计 量器。由于很多应用是便 携式的,因此电流检测电 路还必须具有小体积、低 功耗的特性。 高端/低端检流电路 低端检流电路的检 流电阻串联到地(图1), 而高端检流电路的检流电 阻是串联到高电压端(图 2)。两种方法各有特 点:低端检流方式在地线 回路中增加了额外的电 阻,高端检流方式则要处 理较大的共模信号。 图1所示的低端检流 运放以地电平作为参考电 平,检流电阻接在正相 端。运放的输入信号中 的共模信号范围为: (GND-RSENSE*ILOAD)。 尽管低端检流电路比较简 单,但有几种故障状态是 低端检流电路检测不到 的,这会使负载处于危险 的情况,利用高端检流电 路则可解决这些问题。 高端检流电路直接连到电源端,能够检测到后续回路的任何故障并采取相应的保护措施,特别适合于自动控制应用领域,因为在这些应用电路中通常采用机壳作为参考地。 传统高端检流电路 传统的高端/低端检流方式有多种实现方案,绝大多数基于分立或半分立元件电路。高端检流电路通常需要用一个精密运放和一些精密电阻电容,最常用的高端检流电路采用差分运放做增益放大并将信号电平从高端移位到参考地(图3): VO=IRS*RS; R1=R2=R3=R4 该方案已广 泛应用于实际系 统中,但该电路 存在三个主要缺 点: 1)输入电 阻相对较低,等 于R1; 2)输入端 的输入电阻一般 有较大的误差值; 3)要求电阻的匹配度要高,以保证可接受的CMRR。任何一个电阻产生1%变化就会使CMRR降低到46dB;0.1%的变化使CMRR达到66dB,0.01%的变化使CMRR达到86dB。高端电流检测需要较高的测量技巧,这促进了高端检流集成电路的发展。而低端电流检测技术似乎并没有相应的进展。 采用集成差分运放实现高端电流检测 采用差分运放进行高端电流检测的电路更便于使用,因为近期推出了许多种集成电路解

总结高精度定位难点与解决办法

安全是企业生存发展的首要基础。在电力、化工等大型复杂作业环境中,现场设备多,作业过程多变,对现场人员的安全防护管理更是重中之重的首要任务。 人员的位置管控是安全管理的主要因素。必须严格管理作业人员按照安全规定的位置和路线进行作业,危急情况下更需要准确获知人员的实时位置,以便及时准确施救。 但是,在这些场合,受现场环境的限制,通用的室外GPS定位或普通的室内定位技术很难达到预期的精度和要求,迫切需要研制特定的定位设备和系统,实现作业人员的实时定位和追踪管理,保障作业安全。 技术难点 1、电厂、化工厂厂区建筑物复杂,大型设备多,建筑物的遮挡、金属电磁干扰反射等因素使得常见的技术方案难以实现精准定位。 2、作业人员活动的随机性高,包括室内、室外、管廊等位置,无法采取路径吸附等位置纠正算法。 3、人员的活动状态、姿态等安全信息也需要感知。 4、对设备的防爆性、携带和使用的方便性、待机时间等要求高。 人员定位解决方案 针对电厂、化工厂的定位需求,云酷科技采用UWB精准定位、激励器存在性检测定位、车辆采用GPS定位技术相结合的定位方案。 整体定位方案运用业内领先的TOA算法,同时结合定位大数据分析,解决了传统定位模式抗干扰能力差、定位准确度低、安装布线困难、成本费用高等问题;针对不同区域提供不同定位解决方式,达到定位精准度适宜,投入性价比高的建设目标。同时考虑到不同电厂的业务需求不同,系统拥有两票管理、缺陷/隐患管理、到岗到位管理、外委管理、工器具管理、车辆管理、手机APP等多种功能模块。支持电子围栏、人脸识别、视频监控联动、智能门禁

联查、各类报警预警等功能。 该方案可帮助中电厂厂区实现现场操作的更加规范化、协同化、科学化和智能化,人员安全监控和管理变得更加主动、及时和准确,大大提升企业精细化管理水平和企业人员安全,成功搭建事前预防、事中及早发现、事后可追溯的安全防范机制,成为智慧电厂的代表性项目之一。

电流检测最的三个最基础知识点

电流检测最的三个最基础知识点 目前,电流检测的阻值非常低,其主要用于测量流经其山的电流。通过该电阻的电流主要是通过电阻两端的电压反映出来,所以通过应用公式l=V/R该公式是由某著名学校的老师乔治西蒙欧姆提出的:即 电阻上的电流与电压成正比。 上面简单的介绍就当作抛砖引玉了,本文的主题一一阻选择、高边或低边监测以及检测放大器的选择—— 都是以这个电气工程基本公式为基础的。 电流检测监控有助于提高一些系统的效率,减少损失。例如,许多手机实现了电流检测监控,提高电池寿命, 同时提高可靠性。如果电流消耗太大,手机可以做岀决定,降低CPU频率来减少电池负载以此延长电池寿命,同时防止手机过热来增加稳定性。甚至有手机应用程序可以访问电流检测并且对优化手机的性能做出决策。除了电流检测监控使用了一个电阻,另外两个不太常用的方法也使用了电阻。其一是使用霍尔效应传感器来测量产生通量场的电流。虽然这是非侵入性的,并且具有非插入损耗的优点。它相对来说有点贵, 并且要求一个相对大的PCB基板。另一种方法,使用变压器测量感应的交流电流,也属于面积和成本密集型;并且同时只对交流电流有用。 本文将介绍使用一个电阻进行电流检测监控的三个基本方面: 1、选择一个低阻值精度采样电阻。如果说基板是基于位置,位置,位置”,然而选择一个电阻就是基于精度,精度,精度”原则。 2、选择一个检测放大器芯片。当感应到在小于1欧姆电阻,电压很小的变化也会产生一个很大的结果。检测放大器将电压变化放大,使无意义的事情变的更有意义。 3、检测电阻的位置,位置,位置”。这个若检测参考电源,称为高边检测,或者如果连接地,又叫作低边检测。 精密电流传感应用程序不再是自制食物电路;制造商已经做了所有的研究和现代设计的大部分工作。 电阻选择 选择电阻值,精度和物理尺寸都取决于预期的电流测量值。电阻值越大,测量可能就越精确,但大的电阻值 也会导致更大的电流损失。对于低功率电池驱动的设备,必须减少损失,电阻大约一毫米的长度值并且带有 成百上千欧姆的电阻经常被使用。对于一个或更多的放大器的更高电流,电阻可以使用更大的阻值,这将得 到更准确的测量与可接受的损失。 尽管电阻器通常认为是一个简单的二端设备,为准确测量当前的四端电阻比如VishayWSK系列,在每个 电阻的末端都使用了二端。这为二端提供了应用电路的电流路径,和另一对感测放大器的电压检测路径。 这四端设置,也称为开尔文传感,确保在每个连接尽可能最小的阻力,确保感测放大器的测量电压就是电阻两端的的实际电压并且包括小电阻的组合连接。这将使得更加容易相互连接并且减少电阻温度系数造成的影响(TCR)。TCR是一个电阻随着温度的升高而阻值增加的效果。电源接到检测电阻上通常都会使电阻加热并且可能连接到100°C或者远远高于该温度的环境温度下。尽管检测电阻设计成具有非常低的 TCR,但是有线或PCB布线连接起来组合的TCR可能使阻值增加5%到10%。开尔文传感通过改进传感系统温度的稳定性

浅谈霍尔电流传感器ACS785ACS712系列电流检测方式

浅谈霍尔电流传感器ACS785/ACS712系列电流检测方式 浅谈电流检测方式 一、检测电阻+运放 优势:成本低、精度较高、体积小 劣势:温漂较大,精密电阻的选择较难,无隔离效果。 分析: 这两种拓扑结构,都存在一定的风险性,低端检测电路易对地线造成干扰;高端检测,电阻与运放的选择要求高。检测电阻,成本低廉的一般精度较低,温漂大,而如果要选用精度高的,温漂小的,则需要用到合金电阻,成本将大大提高。运放成本低的,钳位电压低,而特殊工艺的,则成本上升很多。 二、电流互感器CT/电压互感器PT 在变压器理论中,一、二次电压比等于匝数比,电流比为匝数比的倒数。而CT 和PT 就是特殊的变压器。基本构造上,CT 的一次侧匝数少,二次侧匝数多,如果二次开路,则二次侧电压很高,会击穿绕阻和回路的绝缘,伤及设备和人身。PT 相反,一次侧匝数多,二次侧匝数少,如果二次短路,则二次侧电流很大,使回路发热,烧毁绕阻及负载回路电气。 CT,电流互感器,英文拼写Current Transformer,是将一次侧的大电流,按比例变为适合通过仪表或继电器使用的,额定电流为5A 或1A 的变换设备。它的工作原理和变压器相似。也称作TA 或LH(旧符号). 工作特点和要求: 1、一次绕组与高压回路串联,只取决于所在高压回路电流,而与二次负荷大小无关。 2、二次回路不允许开路,否则会产生危险的高电压,危及人身及设备安全。 3、CT 二次回路必须有一点直接接地,防止一、二次绕组绝缘击穿后产生对地高电压,但仅一点接地。 4、变换的准确性。 PT,电压互感器,英文拼写Phase voltage Transformers,是将一次侧的高电压按比例变为适合仪表或继电器使用的额定电压为100V 的变换设备。电磁式电压互感器的工作原理和变压器相同。也称作TV 或YH(旧符号)。 工作特点和要求: 1、一次绕组与高压电路并联。 2、二次绕组不允许短路(短路电流烧毁PT),装有熔断器。 3、二次绕组有一点直接接地。 4、变换的准确性

基于高边电流检测的大功率LED驱动芯片研究_图文(精)

第42卷第12期2008年12月 电力电子技术 PowerElectronics V01.42No.12 December,2008 基于高边电流检测的大功率LED驱动芯片研究 谢治中,丁扣宝,何杞鑫 (浙江大学,微电子与光电子研究所,浙江杭州310027) 摘要:研究了采用高边电流检测方案的大功率LED恒流驱动芯片。基于25 V,1.5txm BCD工艺,运用Cadence的SpectreS 工具对电路进行了仿真。结果表明,LED驱动电流为滞环变化的三角波,在8~23V输入电压范围内,:芯片输出驱动电流变化小于4%。芯片的实测数据与仿真结果基本二致,实现了恒流驱动大功率LED的功能。关键词:发光二极管;驱动/高边电流检测 中图分类号:TN312 文献标识码:A 文章编号:1000—100X(2008)12—0008—02 Study on

the HighPowerLEDDriverwithHighSideCurrentSenseTopology XIEZhi—zhong,DINGKou—bao,HE Qi—xin 310027,China) on (InstituteofMicroelectronics&Photoelectronics,Zhejiang Abstract:ThehighpowerLEDdriverusinghighside current sense University,Hangzhou topologyis studied.Basedthe25V1.5umBCD LEDdrivingcurrentishysteresis,andtheoutputdriving process,thesimulationbyusingCadenceSpectreSshowsthatthe

电流检测电阻

高精度电流检测电阻 作者:北京航空航天大学方佩敏 关键词:电流,精密电流检测电阻,集成电路 摘要:本文介绍了VISHAY公司的一些产品,它们都是精密电流检测电阻。 在一些电子测量仪器、装置或产品中,经常有测量电路中直流电流的需要,因此研发人员开发出各种各样的电流检测集成电路。它是一种I/V转换器,将测量的电流转换成相应的电压,即V=kI,其中k为比例常数。另外,在一些电子产品中要限制输出电流,以防止有故障时(负载发生局部短路或输出端短路、电源输出电压升高等)产生过流而造成更大损失。检测到有过流发生时,可以控制关断电源或负载开关,或以限制的电流输出。 图1 电流检测电路 图1是一种电流检测电路。RS是电流检测电阻,RL是负载(通常为直流电机、电磁阀或加热器等)。当电流流过电流检测电阻时产生一个电压降VRS,此电压输入电流检测IC,经放大器放大后输出与电流I成比例的电压V。为减小在RS上的电压降VR,检测电阻一般取很小阻值(几毫欧到几百毫欧)。 图2 过流保护的负载开关结构框图 图2是一种带过流保护的负载开关结构框图,图2中,RL是负载,RS是电流检测电阻。流过RS的电压降VRS与电流I成比例,此电压VRS输入负载开关VI端。若内部电流检测电路检测出有过流状态,输出过流信号(电平信号)给通、断控制电路,关断负载开关。一旦

开关断开,RS上电压VRS=0,开关又接通,产生振荡,如图3所示。输出电流将小于限制电流。更好的办法是通过FLAG端输出过流信号给μC,使μC输出低电平给负载开关ON端,关断负载开关。图2中未画出μC及μC与负载开关的连线。 从图1及图2可看出:无论电流测量或电流限制控制电路都需要外接电流检测电阻RS。RS 的选择是否正确及RS的质量好坏,对电流测量精度有很大的影响。 电流检测电阻的要求及特点 电流检测电阻是随电流测量、电流控制的要求开发出来的一种特殊电阻。电流的测量范围很广,从几毫安到几十安;测量的精度要求不同,电流检测电阻也有不同的规格以满足不同的需要。本文主要介绍高精度电流检测电阻,其主要要求及特点如下。 表1 CSM2512与CSM3637的主要性能参数 1.RS的阻值小于10? 为减少在RS上的电压降及减小在RS上的功率损耗,RS的阻值要求小。一般在大电流测量时(几安到几十安)要采用毫欧级的RS。例如,检测电流为12A,若RS=0.1?(100m?),则在RS上的压降VRS=1.2V,其功耗为14.4W。如果电源电压为12V,则在负载上的工作电压已降到10.8V;并且在检测电阻RS上的损耗也太大。若采用5m?的RS,则RS上的压降减小到0.075V,其功耗减少为0.72W。测量电流小时(如几十毫安到几百毫安),RS 值可取零点几欧姆到几欧姆。所以电流检测电阻RS的阻值是小于10?的。目前已开发出超小阻值的系列,有1m?、0.5m?、及0.3m?系列的电流检测电阻。 图3 内部电流检测电路产生振荡 2.四引线结构

MAX4080高精度单向电流检测放大器电路

MAX4080高精度单向电流检测放大器电路 时间:2010-01-04 11:51:02 来源:作者: 检流放大器在放大微弱的差分电压的同时能够抑制输入共模电压,该功能类似于传统的差分放大器,但两者有一个关键区别:对于检流放大器而言,所允许的输入共模电压范围可以超出电源电压(VCC)。例如,当MAX4080检流放大器工作在VCC = 5V时,能够承受76V的输入共模电压。采用独立的放大器架构,电流检测放大器不会受电阻不匹配造成的共模抑制(CMRR)的影响。MAX4080具有100dB (最小值)的直流CMRR,而基于传统运放的差分放大器则受CMRR限制,其有效输入VOS通过信号链路是被放大。 图1. MAX4080高精度单向电流检测放大器 通过校准提高精度 MAX4080检流放大器具有精密的输入失调电压(VOS),25°C时最大值为±0.6mV,在整个-40°C至+125°C温度范围内,最大值为±1.2mV。但是,许多应用需要更高的电流测量精度,因此需要对输入VOS做进一步校准。这种校准通过在生产过程中测量VOS并将结果存储在固件中实现。利用所存储的数据,当设备在现场投入实际使用时,可以在数字域调整VOS。 为便于生产,校准的首选方案是:在负载电流为零(零输入差分电压)时测量VOS。可以测量输出VOS并在以后的测量数据中减去该电压。不幸的是这种方法存在一个缺点,由于VOL (最低输出电压)和输入VOS相互影响,输出电压可能无法精确地反映输入VOS。所有单电源供电放大器均存在这一问题。 以增益为20的MAX4080T为例,并假设输入VOS为零,此时放大器输出的测量值应该为零。而实际情况是:即使在零输入差分电压下,放大器也不能保证输出电压低于15mV (10μA吸电流)。如果直接把测量到输出电压用于VOS校准,放大器的输入VOS为0.75mV (15mV/20 = 0.75mV)。 同样,如果MAX4080T具有VOL = 0,则正电压输入VOS应该产生正的输出VOS。而负电压输入VOS则不会“反映到”输出端,因为放大器不能产生低于地电位的输出电压。这样,在零输入差分电压下,不能通过“直接”测量输出电压来校准输入VOS。

STMC 高端电流检测芯片

Application Circuit STMC109 SOT23 109 DC Motor Control Programmable Current Source Level Translating Over Current Monitor SOT23 Package SOT23 packages. The STMC109is a high side current sense monitor.STMC109 1 DESCRIPTION Using this device eliminates the need to disrupt the ground plane when sensing a load current. It takes a high side voltage developed across a current shunt resistor and translates it into a proportional output current. A user defined output resistor scales the output current into a ground-referenced voltage. The wide input voltage range of 20V down to as low as 2.5V make it suitable for a range of applications.A minimum operating current of just 4μA,combined with its SOT23package make it a unique solution,suitable for portable battery equipment.FEATURES ?Low cost, accurate high-side current sensing.?Output voltage scaling.?Up to 2.5V sense voltage.? 2.5V – 20V supply range.?4μA quiescent current.?1% typical accuracy.? APPLICATIONS ?Battery Chargers ?Smart Battery Packs ???Power Management ?? HIGH-SIDE CURRENT MONITOR V To Load R ORDERING INFORMATION PART NUMBER PACKAGE PARTMARKING Top View I out Load V in 3 2 1 CONNECTION DIAGRAMS ABSOLUTE MAXIMUM RATINGS Voltage on any pin -0.6V to 20V (relative to I out )Continuous output current 25mA Continuous sense voltage V in + 0.5V > V sense ?> V in – 5V Operating Temperature -40 to 85°C Storage Temperature -55 to 125°C Package Power Dissipation (T A = 25°C)SOT23 450mW

变频器电压电流典型检测方法

变频器电压电流典型检测方法 1.前言 变频器最主要的特点是具有高效率的驱动性能及良好的控制特性。简单地说变频器是通过改变电机输入电压的频率来改变电机转速的。从电机的转速公式可以看出,调节电机输入电压的频率f,即可改变电机的转速n。目前几乎所有的低压变频器均采用图1所示主电路拓扑结构。 部分1为整流器,作用是把交流电变为直流电,部分2为无功缓冲直流环节,在此部分可以采用电容作为缓冲元件,也可用电感作为缓冲元件。部分3是逆变器部分,作用是把直流电变为频率可调整的三相交流电。中间环节采用电容器的这种变频器称之为交直交电压型变频器,这种方式是目前通用型变频器广泛应用的主回路拓扑。本文将重点讨论这种结构在电压、电流检测设计中应注意的一些问题。变频器在运行过程中为什么要对电压、电流进行检测呢这就需要从电机的结构和控制特性上说起: ①三相异步电动机的转矩是由电机的磁通与转子内流过电流之间相互作用而产生的,在额定频率下,如果电压一定而只降低频率,那么磁通就过大,磁回路饱和,严重时将烧毁电机。因此,频率与电压要成比例地改变,即改变频率的同时控制变频器输出电压,使电动机的磁通保持一定,避免弱磁和磁饱和现象的产生。 ②变频器运行中,过载起动电流为额定电流的~倍;过流保护为额定电流的~3倍(根据不同性质的负载要求选择不同的过流保护点);另外还有电流闭环无跳闸、失速防止等功能都与变频器运行过程中的电流有关。 ③为了改善变频器的输出特性,需要对变频器进行死区补偿,几种常用的死区补偿方法均需检测输出电流。 ④电动机在运转中如果降低指令频率过快,则电动状态将变为发电状态运行,再生出来的能量贮积在变频器的直流电容器中,由于电容器的容量和耐压的关系,就需要对电压进行及时、准确地检测,给变频器提供准确、可靠的信息,使变频器在过压时进行及时、有效的保护处理。同时变频器上电过程、下电过程都需要判断当前直流母线电压的状态来判断程序下一步的动作。 鉴于电压、电流检测的重要性,在变频器设计中采用对电压、电流进行准确、有效检测的方法是十分必要的。 2.在线测量电压的几种方案设计 变频器的过电压或欠电压集中表现在直流母线的电压值上。正常情况下,变频器直流电压为三相全波整流后的平均值。若以380V线电压计算,则平均直流电压。在过电压发生时,直流母线的储能电容将被充电,主电路内的逆变器件、整流器件以及滤波电容等都可能受到损害,当电压上升至约800V左右时,变频器过电压保护功能动作;另外变频器发生欠压时(350V左右)也不能正常工作。对变频器而言,有一个正常的工作电压范围,当电压超过或低于这个范围时均可能损坏变频器,因此,必须在线检测母线电压,常用的电压检测方案有三种。 1)变压器方案 图2中,P为直流母线电压正(+),N为直流母线电压负(-)。 变频器控制回路的电源电压一般采用开关电源的方式来获得,利用开关变压器的特点,在副边增加一组绕组N4(匝数根据实际电路参数决定)作为母线电压的采样输出,开关变压器的原边电压为母线电压,而副边输出电压随着原边输入电压的变化而线性地发生变化,这样既能起到强弱电隔离作用又能起到降压作用,把此采样信号经过处理可以送到DSP内进行A/D采样实现各种保护工作。 2)线性光耦方案

直线运动定位精度检测方法及测量工具(经济实用可靠)

三种定位精度测量工具的比较 (个人理解、供交流参考) 关键词:数控轴线、定位精度、经济、实用、可靠、测量方法 通过对三种测量工具的比较,得出结论:用光栅尺测定位精度,是一种经济、实用、高效的办法 Q:定位精度是什么? A:指坐标轴在数控装置控制下运动所能达到的位置精度,实际位置与理想位置之间的误差称为定位误差。 简单理解:工人希望滑台按照控制指令运动到位置A(45mm),实际滑台运动到位置A’(45.03mm)。那么,目标位置A与实际位置A’之间的差异就是定位误差(即0.03mm)。(实际检测中,需要按照一定的取样规律、多点重复多次测量,并按照统计学方法计算系统定位精度。有国标参考,不在罗嗦) Q:定位精度这个概念、这个参数代表着什么? A:在数控机床中,这个数值越小,表示床子的精度越高,能用于加工高精度要求的工件。(例如:图纸要求钻2个孔,孔间距尺寸要求是50±0.01mm,显然这个尺寸要求对一台0.03mm定位误差的床子来说,相当艰难!这个零件需要在更高精度的床子上加工) Q:如何测量定位精度?(三种不同测量工具的对比) A:关键在于选什么样的工具去测出滑台的实际位置?要根据实际情况选一把合适的“尺子”。 1>激光干涉仪(雷尼绍、安捷伦等品牌) 优点:这是国际标准中首选的测量工具,相当的高大上。准确、权威、自动数据处理并出报告,而且是非接触式测量。当前所有的三坐标测量仪出厂前都要用激光干涉仪检测定位精度并在系统螺距补偿参数中进行μ级精度的补偿。 据说可以测0.0001精度等级的设备!!!保守分析,测±0.002mm级别的定位精度不在话下。 缺点:贵!价格大概是¥20w左右。(土豪可优选) 2>标准尺(三丰)+光学读数显微镜

DC-DC转换器中的电流检测电路设计方案

DC/DC转换器中的电流检测电路设计方案 设计了一个高精度的电流检测电路,基于华润上华CSMC 0. 5 um B iCMOS工艺库,利用Cadence Spectre软件进行电路仿真,经仿真得知所设计的电路电流取样精度达到1 000:1, 具有很高的采样精度。该电流检测电路性能良好,已经成功应用于一款电流模式控制DC /DC转换器芯片的设计之中。 电流检测电路是电流模式控制所必需的,通过检测功率开关管上的电流,然后输出一个电流感应信号与斜坡补偿信号进行叠加并转换成一个电压信号,再与误差放大器的输出进行比较,从而实现电流模式开关转换器电流内环的控制。其实现方法有很多种,常见的有两种,一种是与功率管串联一个电阻Rsen,另一种是与功率管并联一个并联检测管复制比例电流,并联检测管复制比例电流的检测方法,又有两种主要的实现结构,一种是采用运放的结构,另一种是利用反馈的方式。如果采用运放,显然会增加电路的复杂性,而且也会增加功耗。本文根据具有反馈控制电流源的原理来设计电流检测电路中的反馈网络。 1 反馈控制电流源的原理 电路原理图及电流源动态特性曲线如图1( a)、( b)所示。根据电流源的特性曲线,偏置电路中各相关元件的电流特性只有线性与非线性电流源相结合才可能有唯一的交点(原点除外),这样才能保证偏置电路有唯一稳定的工作点。 图1 具有反馈控制的电流源的原理图 设电阻上的压降为VR, M3 管的过驱动电压为△,由M3、M4 电流相等的条件,得到: 由此解出:

其中,VR = VGS3 - V GS4, 因此VGS的压差决定了电阻上所形成的微电流,即输出电流I0 满足的非线性关系为: 由此解出的输出电流已与电源电压无关。 2 电流检测电路的具体电路设计实现 根据前面的分析,可以看出,R 固定时,当图1所示的电路可以提供唯一的偏置偏流。但是在电流检测电路中,由于电感电流一直在变,很显然,固定的电阻不再适用,将图1 的改进电路运用到电流检测电路中,如图2所示,图中电阻用工作在线性区的MOS管MR 代替。

电流检测电路

MAX471电流检查电路 摘要:MAX471/MAX472是MAXIM公司生产的精密高端电流检测放大器,利用该器件可以实现以地为参考的电流/电压的转换,本文介绍了用MAX471/472高端双向电流检测技术来实现对电源电流的监测和保护的方法,并给出了直流电源监测与保护的实现电路关键词:高端电流监测I/V转换MAX471 MAX472 1 电源电流检测 长期以来,电源电流的检测都是利用串联的方法来完成的。而对于磁电仪表,一般都必须外加分流电阻以实现对大电流的测量,在量程范围不统一时,分流电阻的选择也不标准,从而影响到测量精度。对于互逆电源,由于测量必须利用转换开并来实现,因而不能随机地跟踪测量和自动识别。 在教学和实验室使用的稳压电源中,为了能够进行电流/电压的适时测量,可用两种方法来实现。一种方法是彩双表法显示,此法虽好,但成本较高,同时体积也较大;另一种方法是采用V/I复用转换结构,这种方法成本低,体积小,因而为大多数电源所采用,但它在测量中需要对电压/电流进行转换显示,也不方便。那么,如何对电源进行自动监测呢?笔者

在使用中发现,稳压电源的电压在初始调节状态时,往往显示出空载,而在接入负载后,则需要适时显示负载电流,因此,利用负载电流作为监测信号来完成I/V的测量转换,可实现一种电量用两种方法表示,并可完成自动监测转换功能。 为了实现I/V的转换,笔者利用MAX271/MAX472集成电路优良的I/V转换特性、完善的高端双向电流灵敏放大器和内置检流电阻来实现对稳压电流电流的检测。 2 MAX471/MAX472的特点、功能 美国美信公司生产的精密高端电流检测放大器是一个系列化产品,有MAX471/MAX472、MAX4172/MAX4173等。它们均有一个电流输出端,可以用一个电阻来简单地实现以地为参考点的电流/电压的转换,并可工作在较宽的电压和较大的电流范围内。 MAX471/MAX472具有如下特点: ●具有完美的高端电流检测功能; ●内含精密的内部检测电阻(MAX471); ●在工作温度范围内,其精度为2%; ●具有双向检测指示,可监控充电和放电状态; ●内部检测电阻和检测能力为3A,并联使用时还可扩大检测电流范围; ●使用外部检测电阻可任意扩展检测电流范围(MAX472); ●最大电源电流为100μA; ●关闭方式时的电流仅为5μA; ●电压范围为3~36V; ●采用8脚DIP/SO/STO三种封装形式。 MAX471/MAX472的引脚排列如图1所示,图2所示为其内部功能框图。表1为 MAX471/MAX472的引脚功能说明。MAX471的电流增益比已预设为500μA/A,由于2kΩ的输出电阻(ROUT)可产生1V/A的转换,因此±3A时的满度值为3V.用不同的ROUT电阻可设置不同的满度电压。但对于MAX471,其输出电压不应大于VRS+-1.5V,对于MAX472,则不能大于VRG-1.5V。

位置检测装置

位置检测装置 一、测试目的 位置检测装置 位置检测装置是数控系统的重要组成部分,在闭环或半闭环控制的数控机床中,必须利用位置检测装置把机床运动部件的实际位移量随时检测出来,与给定的控制值(指令信号)进行比较,从而控制驱动元件正确运转,使工作台(或刀具)按规定的轨迹和坐标移动。一、数控机床对检测装置的基本要求: 1)稳定可靠、抗干扰能力强。数控机床的工作环境存在油污、潮湿、灰尘、冲击振动等,检测装置要能够在这样的恶劣环境下工作稳定,并且受环境温度影响小,能够抵抗较强的电磁干扰。 2)满足精度和速度的要求。为保证数控机床的精度和效率,检测装置必须具有足够的精度和检测速度,位置检测装置分辨率应高于数控机床的分辨率一个数量级。 3)安装维护方便、成本低廉。受机床结构和应用环境的限制,要求位置检测装置体积小巧,便于安装调试。尽量选用价格低廉,性能价格比高的检测装置。 数控机床加工精度,在很大程度上取决于数控机床位置检测装置的精度,因此,位置检测装置是数控机床的关键部件之一,它对于提高数控机床的加工精度有决定性的作用。 二、组成部分 位置检测装置的主要性能指标:

1. 精度符合输出量与输入量之间特定函数关系的准确程度称作精度,数控机床用传感器要满足高精度和高速实时测量的要求。 2. 分辨率位置检测装置能检测的最小位置变化量称作分辨率。分辨率应适应机床精度和伺服系统的要求。 分辨率的高低,对系统的性能和运行平稳性具有很大的影响。检测装置的分辨率一般按机床加工精度的1 /3~1/10选取,也就是说,位置检测装置的分辨率要高于机床加工精度。 3. 灵敏度输出信号的变化量相对于输入信号变化量的比值为灵敏度。实时测量装置不但要灵敏度高,而 且输出、输入关系中各点的灵敏度应该是一致的。 4. 迟滞对某一输入量,传感器的正行程的输出量与反行程的输出量的不一致,称为迟滞。数控伺服系统 的传感器要求迟滞小。 5. 测量范围和量程传感器的测量范围要满足系统的要求,并留有余地。 6. 零漂与温漂零漂与温漂是在输入量没有变化时,随时间和温度的变化,位置检测装置的输出量发生了 变化。传感器的漂移量是其重要性能标志,零漂和温漂反映了随时间和温度的改变,传感器测量精度的微小变化。

高低边电流检测

高边和低边电流检测技术分析 时间:2010-01-15 10:45:40 来源:电子工程专辑作者:Arpit Mehta 当代电子系统中的电源管理可以通过高效的电源分配优化系统效率。电流检测是电源管理的关键技术之一,它不仅有助于保持理想的电压等级,而且能通过提供伺服调整保持电子系统处于正常状态,同时还能防止发生电路故障和电池过度放电。 电流的检测有两种基本的方案。一种是测量电流流过的导体周围的磁场,另一种是在电流路径中插入一个小电阻,然后测量电阻上的压降。第一种方法不会引起干扰或引入插损,但成本相对比较昂贵,而且容易产生非线性效应和温度系数误差。因此磁场检测方法通常局限于能够承受与无插损相关的较高成本的应用。 本文主要讨论半导体行业中已经得到应用的电阻检测技术,它能为各种应用提供精确且高性价比的直流电流测量结果。本文还介绍了高边和低边检测原理,并通过实际例子帮助设计师选择适合自己应用的最佳方法。 电阻检测 在电流路径中以串联的方式插入一个低阻值的检测电阻会形成一个小的电压降,该压降可被放大从而被当作一个正比于电流的信号。然而,根据具体应用环境和检测电阻的位置,这种技术将对检测放大器造成不同的挑战。 比如将检测电阻放在负载和电路地之间,那么该电阻上形成的压降可以用简单的运放进行放大(见图1B)。这种方法被称为低边电流检测,与之相对应的方法为高边检测,即检测电阻放在电源和负载之间(见图1A)。 图1:上面简化的框图描述了一种基本的高边检测电路(图1A)和一种基本的低边检测电路(图1B)。 检测电阻值应尽可能低,以保持功耗可控,但也要足够大,以便产生能被检测放大器检测到并在目标精度内的电压。值得注意的是,在检测电阻上得到的这种差分检测信号寄生在一个共模电压上,这个共模电压对低边检测方法来说接近地电平(0V),但对高边检测方法来说就接近电源电压。这样,测量放大器的输入共模电压范围对低边方案来说应包含地,对高边方案来说应包含电源电压。 由于低边检测时的共模电压接近地电平,因此电流检测电压可以用一个低成本、低电压的运放进行放大。低边电流检测简单且成本低,但许多应用不能容忍由于检测电阻引入的地线干扰。较高的负载电流会使问题更加严重,因为系统中地电平被低边电流检测偏移的某个模块可能需要与地电位没变的其他模块进行通信。 为了更好地理解这个问题,可以看一下图2中采用低边电流检测技术的“智能电池”充电器,其中AC/DC转换器的输出连接到了“2线”智能电池。

电流检测电路

电流检测电路 摘要:MAX471/MAX472是MAXIM公司生产的精密高端电流检测放大器,利用该器件可以实现以地为参考的电流/电压的转换,本文介绍了用MAX471/472高端双向电流检测技术来实现对电源电流的监测和保护的方法,并给出了直流电源监测与保护的实现电路 1 电源电流检测 长期以来,电源电流的检测都是利用串联的方法来完成的。而对于磁电仪表,一般都必须外加分流电阻以实现对大电流的测量,在量程范围不统一时,分流电阻的选择也不标准,从而影响到测量精度。对于互逆电源,由于测量必须利用转换开并来实现,因而不能随机地跟踪测量和自动识别。 在教学和实验室使用的稳压电源中,为了能够进行电流/电压的适时测量,可用两种方法来实现。一种方法是彩双表法显示,此法虽好,但成本较高,同时体积也较大;另一种方法是采用V/I复用转换结构,这种方法成本低,体积小,因而为大多数电源所采用,但它在测量中需要对电压/电流进行转换显示,也不方便。那么,如何对电源进行自动监测呢?笔者在使用中发现,稳压电源的电压在初始调节状态时,往往显示出空载,而在接入负载后,则需要适时显示负载电流,因此,利用负载电流作为监测信号来完成I/V的测量转换,可实现一种电量用两种方法表示,并可完成自动监测转换功能。 为了实现I/V的转换,笔者利用MAX271/MAX472集成电路优良的I/V转换特性、完善的高端双向电流灵敏放大器和内置检流电阻来实现对稳压电流电流的检测。 2 MAX471/MAX472的特点、功能

美国美信公司生产的精密高端电流检测放大器是一个系列化产品,有MAX471/MAX472、MAX4172/MAX4173等。它们均有一个电流输出端,可以用一个电阻来简单地实现以地为参考点的电流/电压的转换,并可工作在较宽的电压和较大的电流范围内。 MAX471/MAX472具有如下特点: ●具有完美的高端电流检测功能; ●内含精密的内部检测电阻(MAX471); ●在工作温度范围内,其精度为2%; ●具有双向检测指示,可监控充电和放电状态; ●内部检测电阻和检测能力为3A,并联使用时还可扩大检测电流范围; ●使用外部检测电阻可任意扩展检测电流范围(MAX472); ●最大电源电流为100μA; ●关闭方式时的电流仅为5μA; ●电压范围为3~36V; ●采用8脚DIP/SO/STO三种封装形式。 MAX471/MAX472的引脚排列如图1所示,图2所示为其内部功能框图。表1为MAX471/MAX472的引脚功能说明。MAX471的电流增益比已预设为500μA/A,由于2kΩ的输出电阻(ROUT)可产生1V/A的转换,因此±3A时的满度值为3V.用不同的ROUT电阻可设置不同的满度电压。但对于MAX471,其输出电压不应大于VRS+-1.5V,对于MAX472,则不能大于VRG-1.5V。

电流电压检测方法

电流电压检测方法 一,电压检测 1电压检测相对比较简单,电压传感器并接在待测电压的线端就行。 0.1V以上的精度的话比较简单,简单芯片就可以,比较器。或电压跟随器;放大器来满足精度不够的问题,不同的放大器有不通的精度A) 以下为电压范围检测,输出状态: 常用器件:LM358,TL431等 B) 使用分压电路,将0--100V转换成0—5V ,然后通过ADC取样转换成数字信号,1024或更高位。精度在10-3方,这种办法可以测定连续线性电压。

常用芯片AD536、AD637、LTC1966、LTC1967、LTC1968等等。 C)高精度一般采用专门的ADC转换芯片,带有专用接口。常见于 0.05V以上的精度,要考虑到漂移。常用专门芯片转换,ADC转换 芯片。可以对连续的线性电压进行取样检测。 常用芯片如CS1232 ADC 0808/0809 ,AD574A , ADS1110, MAX4080/MAX4081 INA270 INA271 注意:电压电流转换的时候,根据需要为了防止干扰,有带隔离的芯片。 二,电流检测 电流检测分为接触与非接触式, 接触式:互感检测法、电阻检测法; 非接触式:霍尔电流传感器等 电流检测,实际上也依赖电压检测,再计算出电流。 1、交流互感检测法。损耗低。互感检测法,一般用在高电压大电

流场合(交流)。当主绕组流过大小不同电流时,副绕组就感应出相应的高低不同的电压。将互绕组的电压数值读出,就可计算出流经主绕组的电流。比如变压器中常用。为了减少损耗,常采用电流互感器检测。在电流互感器检测电路的设计中,要充分考虑电路拓扑对检测效果的影响,综合考虑电流互感器的饱和问题和副边电流的下垂效应,以选择合适的磁芯复位电路、匝比和检测电阻。电流互感器检测在保持良好波形的同时还具有较宽的带宽,电流互感器还提供了电气隔离,并且检测电流小损耗也小,检测电阻可选用稍大的值,如一二十欧的电阻

各种电流检测方式的比较

浅谈电流检测方式 一、检测电阻+运放 优势: 成本低、精度较高、体积小 劣势: 温漂较大,精密电阻的选择较难,无隔离效果。 分析: 这两种拓扑结构,都存在一定的风险性,低端检测电路易对地线造成干扰;高端检测,电阻与运放的选择要求高。 检测电阻,成本低廉的一般精度较低,温漂大,而如果要选用精度高的,温漂小的,则需要用到合金电阻,成本将大大提高。运放成本低的,钳位电压低,而特殊工艺的,则成本上升很多。 二、电流互感器CT/电压互感器PT 在变压器理论中,一、二次电压比等于匝数比,电流比为匝数比的倒数。而CT和PT就是特殊的变压器。基本构造上,CT的一次侧匝数少,二次侧匝数多,如果二次开路,则二次侧电压很高,会击穿绕阻和回路的绝缘,伤及设备和人身。PT相反,一次侧匝数多,二次侧匝数少,如果二次短路,则二次侧电流很大,使回路发热,烧毁绕阻及负载回路电气。 CT,电流互感器,英文拼写Current Transformer,是将一次侧的大电流,按比例变为适合通过仪表或继电器使用的,额定电流为5A或1A的变换设备。它的工作原理和变压器相似。也称作TA 或LH(旧符号)工作特点和要求: 1、一次绕组与高压回路串联,只取决于所在高压回路电流,而与二次负荷大小无关。 2、二次回路不允许开路,否则会产生危险的高电压,危及人身及设备安全。 3、CT二次回路必须有一点直接接地,防止一、二次绕组绝缘击穿后产生对地高电压,但仅一点接地。

4、变换的准确性。 PT,电压互感器,英文拼写Phase voltage Transformers,是将一次侧的高电压按比例变为适合仪表或继电器使用的额定电压为100V的变换设备。电磁式电压互感器的工作原理和变压器相同。也称作TV或YH(旧符号)。 工作特点和要求: 1、一次绕组与高压电路并联。 2、二次绕组不允许短路(短路电流烧毁PT),装有熔断器。 3、二次绕组有一点直接接地。 4、变换的准确性 模块型霍尔电流传感器 模块型霍尔电流传感器分开环模式与闭环模式。 开环模式又称为直接测量式霍尔电流传感器,输入为电流,输出为电压。这种方式的优点是结构简单,测量结果的精度和线性度都较高。可测直流、交流和各种波形的电流。但它的测量范围、带宽等受到一定的限制。在这种应用中,霍尔器件是磁场检测器,它检测的是磁芯气隙中的磁感应强度。电流增大后,磁芯可能达到饱和;随着频率升高,磁芯中的涡流损耗、磁滞损耗等也会随之升高。这些都会对测量精度产生影响。当然,也可采取一些改进措施来降低这些影响,例如选择饱和磁感应强度高的磁芯材料;制成多层磁芯;采用多个霍尔元件来进行检测等等。 开环模式的结构原理见下图 根据检测量程的需求,一般分为以下两种绕线模式,左图为小量程的结构图,右图为大量程的结构图。 闭环模式又称为零磁通模式或磁平衡模式,其输入与输出端均为电流信号。原理见下图

通过利用差动放大器与电流检测放大器执行高边电流检测功能

通过利用差动放大器与电流检测放大器执行高边电流检测功能在许多应用中都需要精确的高端电流检测,包括电机控制,电磁阀控制和电源管理(例如,DC-DC转换器和电池监控)。在这些应用中,高端电流监测- 而不是返回- 可以提高诊断能力,例如确定接地短路和连续监测再循环二极管电流- 并通过避免引入来保持接地路径的完整性分流电阻。图1,2和3描述了用于电磁阀和电机控制的典型高侧电流分流配置。 在上面显示的所有配置中,分流电阻上的脉冲宽度调制(PWM)共模电压- 监视负载电流- 从整个范围从地面到电池摆动。该PWM输入信号将具有由功率级到FET的控制信号建立的周期,频率和上升/下降时间。因此,监测分流电阻两端电压的差分测量电路需要非常高的共模抑制和高压处理能力的严格组合,以及高增益,高精度和低偏移- 所有这些都是为了提供负载电流值的真实表示。 在使用单个控制FET的电磁阀控制(图1)中,电流始终以相同方向流动,因此单向电流传感器就足够了。在电机控制配置中(图2和图3),将分流器置于电机相位意味着分流电阻器中的电流可以双向流动;因此,双向电流传感器是必要的。 研究高端电流检测功能选择的设计人员将从许多半导体供应商那里找到各种选择。然而,一个关键的发现是,这些集成电路器件中的选择可以根据两种截然不同的高压架构进行分类:电流检测放大器和差分放大器 我们将在这里确定并解释这些架构之间的一些关键差异,以帮助需要高端电流检测的设计人员选择最适合应用的器件。我们将比较两个高压部件,AD8206双向差动放大器和AD8210双向电流检测放大器。两款器件均提供相同的引脚排列,均可执行高端电流分流监控,但其规格和架构不同。那么,如何考虑哪种设备最适合应用? 工作原理

相关主题
文本预览
相关文档 最新文档