当前位置:文档之家› 氧化镁的主要用途

氧化镁的主要用途

氧化镁的主要用途

氧化镁的主要用途

氧化镁主要用于橡胶制品及氯丁胶胶粘剂的生产,在橡胶制造中氧化镁起吸酸剂及促进剂作用,在氯丁胶粘剂中起硫化交联、防焦剂与树脂螯合作用。氧化镁在陶瓷和搪瓷中起降低烧结温度作用。在砂轮、油漆中的制造中作为填充剂,在医药上用作抗酸剂与轻泻剂用于治疗胃酸过多,胃和十二指肠溃疡病,在食品加工中可作为增白剂或砂糖精致脱色剂。

在农业上最大用途是用作肥料和牲畜的饲料,是植物和动物代谢过程中的主要元素,用作奶牛的饲料时,可防止因缺镁而引起的神经系统机能失调。另外也可以用于玻璃钢,染化药剂、电子工业、绝缘材料工业以及石油添加剂,铸造、酚醛塑料等行业.

纳米氢氧化镁的制备

纳米氢氧化镁的制备 1 前言 氢氧化镁为新型镁质无机阻燃剂, 具有无毒、无烟、阻燃效果好等特点, 近年来已成为减烟、抑烟、阻燃等方面重要的无机阻燃剂。随着我国高分子合成材料工业快速发展及阻燃法规不断健全和完善, 对阻燃剂需求随之增加, 作为无毒、抑烟型的环保无机阻燃剂Mg( OH) 2 的需求更是十分迫切, 我国无机阻燃剂占整个阻燃剂用量的50% , 其中氢氧化镁阻燃剂 占无机阻燃剂30% 左右, 每年需要氢氧化镁阻燃剂9 万t, 但我国目前氢氧化镁阻燃剂年生产能力约为1. 3 万t , 故我国氢氧化镁发展潜力巨大[1~ 2] 。我国是镁矿资源大国, 具有得天独厚的资源优势和良好的市场前景。因此, 我国应改进Mg(OH) 2 现有生产工艺、规模化生产, 并加强Mg(OH) 2 应用研究, 以促进我国Mg ( OH) 2 阻燃剂的生产和发展。我国生产的氢氧化镁纯度低, 粒度分布较宽, 而目前国外都需要高纯微细氢氧化镁产品, 特别是 高纯纳米级的氢氧化镁产品, 用于各种高档复合材料的阻燃成分[ 3~ 4] 。纳米氢氧化镁是指颗粒粒度介于1~ 100 nm 的氢氧化镁, 作为一种纳米材料, 它具有纳米材料所具有的共性特点, 即小尺寸效应、量子尺寸效应、表面效应、宏观量子效应等, 用它充填于复合材料中能大大提高材料的阻燃性能、力学性能和其它性能。 2 氢氧化镁与其他碱类的比较 质言之,氢氧化镁毕竟是一种“碱”,与其他传统碱相比当然是一种弱碱。具有独特的缓冲能力。氢氧化镁除在作为阻燃剂领域应用外,在其他领域应用特别是作为中和剂应用都基于这种特性。现将氢氧化镁比其他传统碱类物质所具有的优点综述如下。使用Mg(OH)2做中和剂时,溶液的pH值一般不会超过9,这恰好是美国环保局的“清洁水条例(CleanwaterAet)”中允许排放物pH值的最高限度[5],而其他碱类物质一般都大于12;与用生石灰、消石灰不同,用Mg(OH)2中和含硫酸的液体时形成可溶性的硫酸镁,可作为硫镁肥代替水镁矾(Kieserite),而用前者则会形成难溶的硫酸钙;Mg(OH)2中和能力强,中和同体积和同浓度的含酸废液,Mg(OH)2用量比通常碱的用量减少30%。由于中和速度慢,形成的砖泥致密,体积小,沉降快,过滤时间缩短,龄泥的处理和排人费用也比传统的处理方法减少30%,在温度零度时不结冰,从而可降低人工和维修费用。属弱碱性物质,作业处理和使用均安全可靠[6]。关于氢氧化镁的这些优点,国外有很多议论,如美国DOW化学公司氢氧化镁市场部经理Mark Tomik说:“这种化学品正在敦促越来越多的厂家对酸性液体进行处理时加以采用,以取代传统方法。他还说,用户通过使用氢氧化镁而不用其他碱类物质,在沉淀物处理和清除方面可节省60%的费用[5]。” 3 纳米氢氧化镁的制备技术[ 7] 3. 1 直接沉淀法 直接沉淀法制备纳米氢氧化镁是向含有Mg2+的溶液中加入沉淀剂, 使生成的沉淀从溶液中析出,最常见的是氢氧化钠法和氨法[ 8- 11] , 反应过程为: Mg2+ + 2NaOH Mg(OH)2 + 2Na+ ( 1) Mg2+ + 2NH3.H2O Mg(OH)2 + 2NH4+ ( 2) 直接沉淀法操作工艺简单, 控制反应条件可制得片状、针状和球形的纳米氢氧化镁粉体。东北大学林慧博等[7]研究了用NaOH 和MgC l2.6H2O制备纳米氢氧化镁的最佳工艺条件为:反应 温度80℃, 反应时间20 min, Mg2+ 和OH- 物质的量比为1 :2 ,Mg2+ 浓度为0. 5 mol/ L, 制得产品粒径约为90nm的片状均匀分散的氢氧化镁。由于氨的挥发性较强, 所以氨法制备纳米氢氧化镁容易造成环境污染。但用氢氧化钠方法制备纳米氢氧化镁成本相对较高,而且制备分散性良好的纳米氢氧化镁所需反应条件苛刻。

氢氧化镁阻燃剂

氢氧化镁阻燃剂 简介 氢氧化镁简称MH,分子式Mg(OH)2,分子量重58.33.白色粉末,相对密度2.39。折射率1.561-1.581。在300℃以下稳定,320℃开始分解,生成氧化镁和水,430℃时分解速度最快,490℃时分解完结。溶于烯酸和铵盐溶液,不溶于水、乙醇。氢氧化镁不仅有阻燃作用,还有一眼功能,无毒、无腐蚀性,多种性能优于氢氧化铝,安全廉价,属于环保型无机阻燃剂。 阻燃机理 氢氧化镁在受热时(340-490度)发生分解吸收燃烧物表面热量到阻燃作用;同时释放出大量水分稀释燃物表面的氧气,分解生成的活性氧化镁附着于可燃物表面又进一步阻止了燃烧的进行。氢氧化镁在整个阻燃过程中不但没有任何有害物质产生,而且其分解的产物在阻燃的同时还能够大量吸收橡胶、塑料等高分子燃烧所产生的有害气体和烟雾,活性氧化镁不断吸收未完全燃烧的熔化残留物,从使燃烧很快停止的同时消除烟雾、阻止熔滴,是一种新兴的环保型无机阻燃剂。 分类 阻燃剂按化学成份可以分为有机阻燃剂和无机阻燃两大类。有机阻燃剂又分为磷系和卤系两个系列。由于有机阻燃剂存在着分解产物毒性大、烟雾大等缺点,正逐步被无机阻燃剂所替代。

无机阻燃剂主要品种有氢氧化铝、氢氧化镁、红磷、氧化锑、氧化锡、氧化钼、钼酸铵、硼酸锌等,其中以氢氧化铝和氢氧化镁因分解吸热量大,并产生H2O可起到隔绝空气作用,其分解后氧化物又是耐高温物质,故二种阻燃剂不仅可起到阻燃作用,而且可以起到填充作用,它所具有不产生腐蚀性卤气及有害气体、不挥发、效果持久、无毒、无烟、不滴等特点。 涂料等高分子材料中,特别是对矿用导风筒涂覆布、PVC整芯运输带、阻燃胶板、蓬布、PVC电线电缆料、矿用电缆护套、电缆附件的阻燃、消烟抗静电,可代替氢氧化铝,具有优良的阻燃效果。 种类间比较 目前国内氢氧化铝用量较多,但随着高聚物加工温度的提高,氢氧化铝易分解,降低阻燃作用,氢氧化镁较氢氧化铝具有如下优点: ①氢氧化镁热分解温度达330℃,比氢氧化铝高100℃,故有利于塑料加工温度的提高,加快挤塑速度,缩短模塑时间; ②氢氧化镁与酸的中和能力强,可较快地中和塑料燃烧过程产生的酸性气体SO2、NOx、CO2等; ③氢氧化镁分解能高,有利于吸收燃烧热,提高阻燃效率; ④氢氧化镁抑烟能力强、硬度小,对设备摩擦小,有助于延长生产设备

纳米氧化镁的国内外研究现状

纳米氧化镁的国内外研究现状 目前,日、美、德等国都进行了纳米氧化镁的研究,其中日本处于领先地位。日本在80年代就己经制取了纳米氧化镁产品。日本以金属镁为原料,采用气相氧化技术,开发了纯度在99.95%以上,平均粒径为10mn的高纯纳米氧化镁,产品分散性、绝缘性耐热性、透光性等良好。在集成电路板。红外线透过材料等领域得到很好的应用。日本科学技术厅无机材质研究所采用液相滴下法开发成功纳米氧化,纯度高达99.99%。 在应用方面,日本一些化学公司开发成功纳米氧化镁材质的透明薄板陶瓷,该产品韧性好,耐热温度高达2800度,该公司己向航空、电子、光学元件等产业提供样品。2002年11月,美国Nnaosacle公司研制了一种纳米氧化镁杀菌材料,粒径为4nm-8nm,并投入小规模工业化生产,生产能力约为10吨每年,目前,该公司产品己供应市场,并在医疗、公共卫生、化学武器和生化武器(主要用于分解化学和生物毒气)等领域迅速得到推广。特别是非典在全球流行以来,该公司的产品受到了美国政府的高度重视,据悉,目前己在医院和公共场所推荐使用。 目前国内纳米氧化镁的制备和表征仍处于实验室探索阶段,尤其是由实验室向工业化的过渡方面,还无法提供完善坚实的理论基础,还有大量的研究工作要作。因此,纳米氧化镁粒子的制备和表征以及改性研究在今后一定时期内仍是国内的主要研究内容和主攻方向。我国镁资源十分丰富,是世界上生产镁化合物的主要国家之一。虽然我国矿产资源丰富、品位高,但盐湖化工行业对镁盐的利用尚很薄弱,镁盐的生产仍处于粗制初级产品的生产阶段,还远不能满足国民经济发展的需要。为开辟镁盐的新用途,要大力发展镁盐精细产品的生产,特别是开发各种不同用途的特种氧化镁产品。纳米氧化镁由于其独特的用途,成为开发镁资源的首选产品之一,它的研究开发必将大大推动我国丰富镁资源的综合利用和高附加值镁产品的开发。

年生产1500吨轻质碳酸镁、氧化镁生产线建设项目可行性研究报告

年生产1500吨轻质碳酸镁、氧化镁 项 目 建 议 书 二〇一一年六月

WORD格式-专业学习资料-可编辑 目录 第一章项目概况 (4) 第二章项目的提出和背景 (4) 第三章市场分析 (5) 第四章建设条件和厂址选择 (8) 第五章工厂技术方案 (10) 第六章环境保护与劳动安全 (14) 第七章企业组织和劳动定员 (17) 第八章项目实施进度安排 (17) 第九章投资估算与资金筹措 (17) 第十章节能 (18) 第十一章经济和社会效益分析 (18) 第十二章项目结论 (20)

第一章项目概况 1、项目名称:年生产1500吨轻质碳酸镁、氧化镁项目 2、项目承办单位:**县**镇 3、项目建设地点:**县**镇 4、项目负责人:** 5、建设规模:建设年生产轻质碳酸镁、氧化镁1500吨生产线 6、项目总投资:1200万元 7、建设年限:1年 8、专利技术提供:中南大学 第二章项目的提出和背景 1、项目的提出 **镇位于**县城东北部,距县城9公里,距三明市**公里。境内交通发达,306省道贯穿全境,全镇11个行政村,村村通水泥路。**镇有优越的地理位置和便利的交通条件,有丰富的矿产资源,合理开发和利用矿产资源,有利加快发展我镇经济,增加农民收入,提高农民生活水平,解决失业人员,稳定社会。 2、项目的背景 我镇有丰富的白云岩矿产资源,矿区主要分布在***和***,距县城7公里和12公里,交通便利。1992年由**矿场做了勘探工作,矿点延长约120米,厚度约30-35米,延深在110-130米,储量估算为100-150万吨,矿石品位:MgO:19.26%、20.75%、CaO:30.87%、32.38%、SiO2:0.22%、0.44%、Fe2O3:0.12%、Al2O3:0.08%、0.04%。该矿石品位符合生产轻质碳酸镁等镁盐产品的要求。

氢氧化镁

氢氧化镁综合介绍 基本介绍: 氢氧化镁(化学式:Mg(OH)2、分子量58.32)是镁的氢氧化物,为白色晶体或粉末,难溶于水,广泛用作阻燃剂、抗酸剂和胃酸中和剂。氢氧化镁在水中的悬浊液称为氢氧化镁乳剂,简称镁乳,用于中和过多的胃酸和治疗便秘。水溶液,呈碱性。用做分析试剂,还用于制药工业。 物化性质: 白色晶体或粉末。水溶液呈碱性。2.36g/cm3。溶于稀酸和铵盐溶液,几乎不溶于水和醇。在水中的溶解度(18℃)为0.0009g/100g 。易吸收空气中的二氧化碳。在碱性溶液中加热到200℃以上时变成六方晶体系结晶。在350℃分解而成氧化镁和水。高于500℃时失去水转变为氧化镁。沸水中碳酸镁可转变为溶解性更差的氢氧化镁。粒径1.5-2μm ,目数10000,白度≥95。 生产工艺: 1、水镁石磨细法 由于由天然水镁石磨细生产氢氧化镁只是一个物理过程,因此需要较纯净的天然水镁石资源。天然矿物水镁石的主要成分是氢氧化镁, 是一种层状结构的氢氧化物, 属于三方晶系, 常见的构造有块状、球状及纤维状, 是迄今自然界发现的含镁量最高的一种矿物。水镁石磨细法制备氢氧化镁, 是将水镁石粉碎成水镁石粉 ( 150μm ) , 再将水镁石粉气流粉碎至 1~ 26μm 粉体 ( 由表面活性剂改性的氢氧化镁 ) 。该氢氧化镁制造工艺简单, 价格也较低。该方法生产的是重质氢氧化镁。 2、化学合成法 化学合成法是利用含有氯化镁的卤水、卤矿等与苛性碱类物质在水介质中反应, 生成氢氧化镁浆料, 经过滤、洗涤、干燥制得氢氧化镁。化学合成法中应用较多的方法包括氢氧化钙法、氨法、氢氧化钠法。采用这些方法生产的是轻质氢氧化镁。氢氧化钙法又称石灰乳法, 是以 Ca(OH)2为沉淀剂, 是一种传统的制备 方法。该法优点是原料易得, 生产工艺简单, 成本较低。但是, 由于所得产品粒度小 (可达 0. 51μm 以下) , 聚附倾向大, 难于沉降、过滤及洗涤, 并且易吸附硅、钙、铁等杂质离子,因此产品纯度低, 只适用于对纯度要求不太高的行业, 如烟气脱硫和酸性废水中和等。 氢氧化钠法是采用氯化镁水溶液与烧碱反应制备氢氧化镁。该方法优点是操作简单, 产物的形貌、粒度分布及纯度、晶体结构均易于控制, 适宜制备高纯微细产品。但是, 烧碱的使用会使成本增大;另外, 由于粒度较细, 过滤有一定困 难。用氢氧化钠沉淀卤水生成碱式氯化镁沉淀, 如果要得到氢氧化镁需要在高压 釜中再进行水热处理, 使之转化成氢氧化镁晶体。由于氢氧化钠是强碱, 如果条件控制不当会使生成的氢氧化镁形成胶体, 给产物性能的控制带来困难, 同时 也易带入较多的Na 和 Cl 。与氨法比较, 该方法的母液回收不如氨法容易。 + - +

纳米氧化镁的制备及进展分析

纳米氧化镁的制备及进展分析 纳米科学技术( N ano Science and Techno logy简称NST)是20世纪90年代初发展起来的一个多学科交叉的科学与技术。纳米材料是指在三维空间中至少有一维处于纳米尺度范围( 1 ~ 100nm ), 或由它们作为基本单元构成的材料。纳米材料由于其组成晶体结构和表面电子结构发生变化, 产生了普通材料所不具有的表面效应、量子尺寸效应、小尺寸效应、宏观量子隧道效应等, 从而使纳米材料具有特殊的光、电、磁、热及催化等性质。其中纳米氧化镁是一种新型高功能精细无机材料。由于其结构的特殊性, 决定了它具有不同于本体的电学、磁学、热学及光学性能。采用纳米氧化镁, 不使用烧结助剂便可以实现低温烧结, 制成高致密度的细晶陶瓷, 可望开发为高温、高腐蚀气氛等苛刻条件下使用的尖端材料; 它可以作为氧化锆、氧化铝、氧化铁等其它纳米粒子的烧结助剂和稳定剂而获得高质量的纳米相陶瓷。另外, 纳米氧化镁可作为油漆、纸张及化妆品的填料、塑料和橡胶的添加剂和补强剂、脂肪的分解剂、医药品的擦光剂、化学吸附剂、以及各种电子材料、催化剂、超导体、耐火材料的辅助材料等。 1 纳米氧化镁的国内外研究现状 日本在80年代就已经推出了纳米氧化镁产品日本宇部兴产公司以金属镁为原料采用气相氧化技术开发了纯度在99.95%以上平均粒径10nm的高纯纳米氧化镁产品分散性好粒度均匀能够低温烧结且绝缘性耐热性优秀透光性良好在集成电路板等电子材料特殊型的发光管红外线透过用材料等领域得到很好的应用日本科学技术厅无机材质研究所采用液相滴下法开发成功纳米氧化镁纯度高达99.99%在应用方面日本化学公司开发成功氧化镁材质的透明薄板陶瓷薄板为3厘米正方形厚0.07mm,耐热温度高达28000C最大特点是韧性好可热加工弯曲成U L S型,产品含氧化镁在99.9以上了,该公司已向航空航天电子光学元件太阳能电池原子能等产业提供样品另外日本赤穗化成旭硝子等化学公司也都拥有自己的纳米氧化镁陶瓷产品我国进入90年代以后纳米氧化镁的研制开发开始起步中国科学院固体物理研究所采用化学沉淀法制备了薄片型氧化镁超细粉末粒径在10-30nm之间陕西师范大学化学系分别采用均匀沉淀和直接沉淀法合成超细粉体氧化镁平均粒径分别为25nm和62nm这些工作目前仅处于实验室阶段在工业化及产品应用研究方面仍未见报道国内外纳米氧化镁生产及开发。目前我国纳米氧化镁的研究尚处于实验室阶段在制备技术相应应用研究及由实验室向工业化过渡方面还远远落后于世界发达国家。 2纳米氧化镁的制备方法 纳米氧化镁有其独特的制备方法, 目前国内外关于纳米级氧化镁合成的报道主要有物理法、化学法、物理化学法3种类型。也可以细分为: 物理法: 流动液面真空蒸发法、溶剂蒸发法、惰性气体蒸发法等; 化学法: 水热法、气相法、醇盐水解法、固相法、辐射合成法、均匀沉淀法、直接沉淀法、喷雾热解法、电解法; 物理化学法: 溶胶-凝胶发、微乳液和胶束法等。目前, 工业上主要有白云石碳化法和卤水- 氨法制备纳米级氧化镁。其中的几种典型方法介绍如下。 2. 1 流动液面真空蒸发法 在高真空下将原料蒸发, 再使之凝结。其优点是能获得纯净的产品, 但生产能力低, 且不能灵活控制粒子大小, 只适合制备尺度小于20 nm 的粒子。 2. 2溶剂蒸发法 该法是将金属盐溶液先分散成微小液滴, 再加热使溶剂蒸发, 析出所需的纳米粒子。溶剂蒸发法可分为喷雾干燥法、喷雾热解法和冷冻干燥法。 2. 3气相法 该法又可分为物理气相沉积法( PVD) 和化学气相沉积法( CVD ) , 根据反应类型, 化

纳米级氢氧化镁阻燃剂

纳米级氢氧化镁阻燃剂的研究现状 氢氧化镁作为阻燃剂的阻燃机理为:氢氧化镁受热分解时,释放出H2O,同时吸收大量的潜热,这就降低了树脂在火焰中实际承受的温度,具有抑制高聚物分解和可燃性气体产生的冷却效应。分解后生成的MgO 是良好的耐火材料,也能帮助提高树脂抵抗火焰的能力,而且氢氧化镁的热分解温度高达340 ℃,因此,其阻燃性能十分优越。但普通氢氧化镁用于聚合物阻燃的主要缺点是阻燃效率低以及与基体的相容性差,要使材料的阻燃性能达到一定要求,氢氧化镁的添加量通常要高达50 %以上,这样会对材料的力学性能和加工性能影响很大,难以达到使用要求。为了使氢氧化镁能更好地用于塑料阻燃,国内外不少研究机构已成功地开发出了不同性能的氢氧化镁。美国Solem 公司开发出了分散性良好,加工温度可达332 ℃的优质氢氧化镁。日本协和化学工业自1973 年开始研究特殊大晶粒,低比表面积的氢氧化镁,1975 年研究成功。该机构最近又开发出了氢氧化镁薄片状粒子和纤维状结晶,但该项技术并未公开。大连理工大学也曾研制出晶粒尺寸大、比表面积小、具有优良阻燃性能的新型氢氧化镁。江苏海水综合利用研究所、兰州化学工业公司研究院以及中科院青海盐湖研究所等相继致力于研制特殊晶形的氢氧化镁阻燃剂。 应用研究表明:当加入的氢氧化物粒径减小到 1 μm 时,其阻燃聚合物体系的氧指数显著提高。不少文献报道随着粒径的减小,无机粒子对聚合物材料有增强增韧的作用。因此,超细化成为氢氧化镁阻燃剂的一个重要发展方向。在材料科学里面,人们将超细微粒子称谓纳米粒子,是一种介于固体和分子间的亚稳中间态物质。纳米氢氧化镁是指颗粒粒度介于1~100 nm 的氢氧化镁,作为一种纳米材料,它具有纳米材料所具有的共同特点,即小尺寸效应,量子尺寸效应,表面效应,宏观量子效应等,用它填充于复合材料中能大大提高材料的阻燃性能、力学性能和其它性能。研究表明,采用纳米Mg(OH)2的塑料阻燃性能优于普通Mg(OH)2填充的塑料,具有更好的机械加工性,与含磷和卤素的有机阻燃剂相比,纳米氢氧化镁无毒,无味,且具有阻燃,填充,抑烟三重功能,是开发阻燃聚合物的理想添加剂,已受到人们的广泛关注。 姚佳良等研究了纳米氢氧化镁与微米氢氧化镁填充聚丙烯(PP)体系的阻燃性能、流动性能和力学性能。实验结果表明:添加相同质量分数Mg(OH)2时,纳米Mg(OH)2填充体系的阻燃性能要好于微米Mg(OH)2填充体系,并在填充量为60 %时达到V-0 级标准,且发烟量少,流动性能和力学性能也要好于微米Mg(OH)2填充体系。 1 制备方法 液相化学法是目前广泛采用的制备纳米氢氧化镁粉体的方法,已用于制备纳米Mg(OH)2的液相法有:直接沉淀法、水热反应法等。 1.1 直接沉淀法 直接沉淀法是在金属盐溶液中加入沉淀剂,仅通过沉淀操作从溶液中直接得到某一目标金属的纳米颗粒沉淀物,将阴离子从沉淀中除去,经干燥即可得到纳米粉体。常见的沉淀剂有NaOH、NH3.H2O、CO(NH2)2等。该法操作简便易行,对设备、技术要求不高,不易引入杂质,产品纯度高,有良好的化学计量性,制备成本较低;但产品粒度较大,粒度分布较宽。邱龙臻等以氯化镁、氢氧化钠为原料,采用表面活性剂包覆的溶液沉淀法制备出了不易团聚的纳米Mg(OH)2粉体,经透射电镜表征,其形态是短轴方向尺寸为6~9 nm,长轴方向尺寸为50~100 nm 的针状粒子。随着Mg(OH)2粒径的减小,光致发光光强度显著增强。将其以1︰1 的比例与EV A 混合,能很好地均匀分散在EV A 基体中,氢氧化镁几乎没有发生团聚现象。而且,EV A/纳米Mg(OH)2复合材料也表现出了优异的阻燃性能,该材料的

纳米氧化镁的制备及其红外吸收性能研究

纳米氧化镁的制备及其红外吸收性能研究 纳米氧化镁是一种新型高功能精细无机材料,除了具有普通氧化镁的性质和用途外,由于粒子进入纳米尺度,使纳米氧化镁因纳米粒子所共有的表面效应、量子尺寸效应、体积效应、宏观量子隧道效应,而具有一系列普通氧化镁所不具备的性质,从而开丰要辟了一系列新的应用领域。纳米氧化镁具有不同于本体材料的热、光、电、力学、化学等特殊性能,在工业上有重要的应用前景和巨大的经济潜力。 红外吸收是隐身技术的一种,红外隐身材料是当前隐身技术研究的一个热点,它具有广阔的研究前景。本文采用液相沉淀热分解法制备纳米氧化镁,以不同的镁盐与沉淀剂氢氧化钠合成前驱物氢氧化镁,通过控制反应物加入方式、反应时间及温度、机械搅拌速度等因素,控制纳米氧化镁前驱物的粒度及形貌,并通过添加晶型控制剂控制其形貌。对于前驱物,通过马弗炉煅烧后得到纳米氧化镁产品。煅烧过程中,通过控制煅烧温度及煅烧时间等因素,控制纳米氧化镁的粒度。借助于X-射线衍射仪(XRD)、透射电子显微镜(TEM)、扫描电子显微镜(SEM)等测试手段,对前驱物和纳米氧化镁进行检测,确定其物相组成、产品平均粒度和形貌,并最终得到制备不同粒度及不同形貌的纳米氧化镁产品的工艺流程。 论文还研究了不同粒度及不同形貌纳米氧化镁产品的红外吸收特性,通过傅里叶红外光谱仪(FTIR)测定纳米氧化镁红外吸收带,并与普通方镁石的红外吸收特性做对比,研究其特殊性能。研究结果表明:采用液相沉淀法制备纳米氧化镁时,主要的影响因素有反应时间、反应温度、晶型控制剂的种类和用量、机械搅拌速度以及煅烧时间和温度。 以上因素均在一定程度上影响纳米氧化镁产品的性能。搅拌速度的增大、反应时间的延长以及反应温度的升高均使纳米氧化镁延一定方向生长,使其形貌趋于短棒状。

纳米氧化镁制备方法及性质应用综述全解

纳米氧化镁制备方法及性质应用 冯云会高恩军* (沈阳化工大学配位化学研究室,辽宁省无机分子基化学重点实验室) 摘要:纳米氧化镁作为一种重要的无机化工产品,由于其尺寸大小而使它具有 优异的性能,因此在各个领域被广泛应用。该文章对纳米氧化镁的制备方法做了详细的介绍,包括气相法、液相法、和固相法以及物理方法等;阐述了纳米氧化镁的吸附性能、分解性能以及杀菌性能。 关键词:纳米氧化镁;吸附;分解;杀菌 随着纳米材料技术的发展,人们的研究范围不再局限于镁合金、镁盐等,而 是聚焦于更小尺寸的纳米氧化镁。于是,纳米氧化镁作为一种新型功能无机材料 应运而生。纳米氧化镁产品为白色粉末、无毒、无味,产品粒径小,一般介于 1~100nm,具有较大的比表面积。由于纳米氧化镁尺寸较小,才使得它具有量子尺寸效应、表面效应、小尺寸效应、表面效应和宏观两字隧道效应等特殊性质,这导致了它具有不同于本体材料的光、电、磁等化学性能[1],做成涂料可以起到隐身的作用[2]。另外,研究发现尺寸达到纳米级别的抗菌材料一般具有更强的抗菌活性,而且杀菌效果与纳米粒子的粒径大小,分散程度,比表面积有关,纳米氧化镁能不依赖光照产生抗菌活性[3]。例如在制备高性能的纳米相氧化铝陶瓷的时候可用纳米氧化镁作为烧结助剂,这样可以在低温的条件下烧结成致密的细晶陶瓷,降低生产成本;以纳米氧化镁和纳米氧化钇或稀土金属氧化物为复合稳定剂烧成及热处理制成的力学性能优良,抗高温老化的部分稳定氧化锆陶瓷可广泛用作高温工程部件及高级耐火材料。 1. 制备纳米氧化镁的物理方法 1.1物理方法 制备纳米氧化镁常见的物理方法分为三种,即真空蒸发法、溶剂蒸发法、惰 性气体蒸发法。其中溶剂蒸发法可细分为喷雾干燥发、喷雾热解法、冷冻干燥[4]。 基金项目:沈阳市科技基金资助,NO:F16-208-6-00 通讯作者:高恩军,男,1962年1月生,理学博士,二级教授,从事化学与材料学领域研究工作,E-mail:enjungao@https://www.doczj.com/doc/3d7620562.html,

(完整版)常用危险化学品储存禁忌物配存表.docx

常用危险化学品储存禁忌物配存表配 危险化学品的种类和名称存顺号 点火器材11 起爆器材2× 2 爆炸品 炸药及爆炸性药品 ( 不同 品名的不得在同一库内3× × 3 配存 ) 其他爆炸品4△ × × 4 有机氧化剂5× × × × 5 氧化剂亚硝酸盐、亚氯酸盐、次 6△ △ △ △ × 6 亚氯酸盐1) 其他无机氧化剂2)7△ △ △ △ × × 7剧毒(液氯与液氨不能在 8× × × × × × 8一库内配存) 压缩气体和易燃9△ × × △ × △ △9 液化气体助燃(氧及氧空钢瓶不得 10 △ × × △△ 10 与油脂在同一库内配存) 危 不燃11× ×11 一级12 △ × × × × △ △ × × × 12 险自燃物品 二级13× × △× △ △13 化 遇水燃烧物品(不得与含水液体货物 学14× × × △ △ △ △ △ △ × 14在同一库内配存) 品 易燃液体15 △ × × × × △ × ××× △15易燃固体( H 发孔剂不可与酸性腐蚀 物品及有毒和易燃酯类危险货物配16× × △ × △ △ ×××16存) 毒害品 氰化物17△ △17 其他毒害品18△ △18溴19 △ × × × ×△× △ △ △ × △ 19 酸性过氧化氢20 △ × × △ △△ △ × △× △20 腐蚀硝酸、发烟硝酸、硫酸、 21 △ × × × × × 1) × × △ △ × × △ △ △ × △ △ △ 21 物品发烟硫酸、氯磺酸 腐蚀其他酸性腐蚀物品22 △ × × △ △ △ △ △ △△△× △△ △ 22物品碱性生石灰、漂白粉23△△ △△ △△△ × △ 23及其 他腐其他(无水肼、水合肼、 24△×24蚀物氨水不得与氧化剂配存) 品 注:

新型无机阻燃剂氢氧化镁

新型无机阻燃剂氢氧化镁 简介:氢氧化镁属于填加型阻燃剂,受热分解释放出水气,同时吸收了大量的热量,可以降低材料表面的温度,使得聚合物降解的速度放慢,随之小分子可燃物质的产生也减少。释放出来的水气稀释了表面的氧气,使燃烧难以进行。氢氧化镁在材料表面形成炭化层,阻止氧气和热量的进入,并且氢氧化镁分解生成的氧化镁是高级耐火材料,所以当燃烧源消失,火就自动停止,起到阻燃的效果。由于氢氧化镁阻燃作用主要发生在聚合物降解区,减少可燃物的产生,而对预燃区作用很少,可燃物的完全燃烧影响很小,产生的烟雾也减少,并且氢氧化镁可以冲淡和吸收烟雾,所以氢氧化镁具有减烟效果。 1、氢氧化镁阻燃剂的特点 氢氧化镁Mg(OH)2,白色固体粉末,不溶于碱性物质,受热分解为氧化镁和水,加热到340℃时开始分解,430℃时分解速度最快,到490℃时完全分解。氢氧化镁晶体属于2价金属水合物族,晶体结构是层状的CdI2型,形成连续的六边形,Mg2+层和OH-层互相重叠,每个镁离子被6个氢氧根离子配合从而形成Mg(OH)6八面体。标准状态下:Mg(OH)2(s)MgO(s)+H2O(g)△H=mol同样作为无机阻燃剂,氢氧化镁与氢氧化铝相比具有很多优点:①氢氧化铝热分解温度为245~320℃,与氢氧化镁分解温度340~490℃相比,有效使用范围低,适合用于加工温度比较低的树脂如ABS、丙烯酸树脂和环氧树脂等。氢氧化铝由于分解温度较低,其中部分结晶水在材料加工时已经分解,易使制品多泡、多孔,自身的阻燃效果也下降。而氢氧化镁能使得被填加的材料承受更高的加工温度,有利于加快挤塑速度,缩短模塑时间。而且氢氧化镁的分解能比氢氧化铝大、热容高,能够吸入更多的热量,阻燃效果更好[2]。②氢氧化镁的粒度比氢氧化铝小,对材料加工设备磨损小,有利于延长设备的使用寿命。③氢氧化镁的减烟效果

锂电池用纳米氧化镁

锂电池材料用纳米氧化镁 概述 CAS号:1309-48-4 纳米级氧化镁具有明显的小尺寸、大表面效应、量子尺寸效应和宏观隧道效应,表面经改性处理,无团聚现象,在体系中有更好的分散性和纳米活性,从而发挥了纳米氧化镁粒子的光、电、磁场、热、量子效应,纳米氧化镁运用到电池材料中,可提高电池的循环性和充放电次数,延长电池的使用寿命。 技术指标 型号SS-MG30D 氧化镁纯度≥99.9% 一次粒径(TEM)30-40nm pH值8-11 比表面积15-30m2/g 干燥失重≤1.0% 灼烧失重≤2.0% 氯化物<0.035% 电子级活化剂≤0.2% 应用范围 1.添加到锂离子蓄电池正极材料中 在锂离子蓄电池正极材料中添加适量的SS-MG30D,所得正极材料拥有大于140mAh/g 的可逆放电容量,且循环性能良好。在正极材料中使用可以提高导电性,建议添加量 0.3-0.5%左右。 2.添加到锌镍蓄电池中 通过物理混合的方法在锌负极活性物质中掺入SS-MG30D,可减少充放电极化、减少循环后期的内阻、提高负板活性物质利用率、延长电池循环寿命,适宜添加量为1.0-2.0%左右,添加量不宜过多。 3.添加到高氯化锌电池中 在正极活性物质中添加少量的氧化镁可以调节电液酸度,减缓自放电,抑制电池气胀,提高贮存性能,且对提高放电容量及促进浆层糊化有独特的效果。建议添加量0.5-1%,并调节合适的pH值。 4.添加到镉镍蓄电池中的应用 在镉电极中添加适量的氧化镁、氧化锌和氧化铁可提高活性物质利用率;添加氧化镁,三氧化二铟和氧化锌,可提高密封镉镍蓄电池的荷电保持能力。

包装 包装:20Kg/袋 杭州吉康新材料有限公司提供

煤粉储存注意事项

煤粉储存注意事项集团公司文件内部编码:(TTT-UUTT-MMYB-URTTY-ITTLTY-

煤粉储存注意事项 一、煤的自然机理 煤制品长期暴露在空气中易自燃,主要原因是由于吸收了空气中的氧气,使煤的组成物质氧化产生热量。如再遇空气湿润,就会放出更多的湿润热,从而加速煤的自燃,此外,煤的自燃还与煤本身的性质有关。如煤的显微组分、水分、矿物质等,煤的自燃从本质上来说是煤的氧化过程造成的。 煤的自燃是综合因素诱发的,并非温度到多少就会自燃,所以没有量的定义。 二、煤粉自燃的预防 煤粉自燃是不可杜绝的,在日常生活中可以通过一些措施来预防,以达到减少煤粉自燃几率,主要从以下几个方面来预防。 1、堆放时使用托盘2吨一垛,垛与垛之间留40CM—50CM的通风道。 2、夏季天气晴朗时就掀开蓬布通风,但注意避免阳光直接暴晒。 3、煤粉制品不能露天摆放,放在背阴的地方或库房内,尽量避免煤粉淋雨。 4、雨后或空气温度大时应随时监测煤粉的状况,发现冒烟现象应及时隔离。 5、煤粉不应同易燃的物品存放在一起,以避免更大的经济损失。 6、铸造厂在使用煤粉时应注意一次投放到储存罐中的量不要过多,并在当天使完,减少 自燃的几率,现场溢洒的煤粉应及时清理。 7、对破包的煤粉应优先投入使用,减少煤粉同空气反应的时间,从而避免自燃。 8、有条件的单位可在储存罐中加入一定比例的膨润土。 三、煤粉自燃后的处理

煤粉自燃是一个氧化过程,过程缓慢,初期无明火,蔓延缓慢,所以处理时间充足,但应选择正确的处置方法。 1、发现有冒烟现象及时隔离燃点。 2、严禁用水灭火,因为水反而会增加煤粉的燃烧(煤粉比水质量轻,会随水飘浮)。 3、对隔离的已燃烧的煤粉用膨润土或砂土覆盖。 以上主要是预防为主,库管人员和现场的操作人员,应该注意观察,及时处理。 景县圣丰铸造材料有限公司 2015年1月30日

氢氧化镁制备

氢氧化镁阻燃剂生产方式有两种:一是利用化学合成法,即通过利用含有氯化镁的卤水、卤矿等原料与苛性碱类在水介质中反应,生成的氢氧化镁经过滤、洗涤干燥就可得到;另一种方式是通过天然矿物水镁石经磨细到所需粒度制得。 氢氧化镁的制备:先配制50%(质量分数)化镁溶液和20%(质量分数)的氢氧化钠溶液两者按n(MgCl2):n(NaOH)=1搅拌混合5min,然后倒入1000mL的高压釜中拌,升温到180℃恒温搅拌8h。之后快速冷却,用蒸馏水洗涤、抽滤多次后,将所得膏状物在(1055)℃下烘干得到氢氧化镁(MH)白色粉体产品。 由于盐田产水氯镁石中含有少量泥沙等不溶性杂质,制备氢氧化镁之前必须对其进行除杂预处理。其方法是将水氯镁石加入到一定量的去离子水中,在低温度下搅拌溶解成饱和氯化镁溶液,过滤除去悬浮物杂质。 取过滤除杂后饱和氯化镁溶液,用适量去离子水稀释成含Mg2+3~4mol/L的卤水,氨水浓25%,沉镁反应时氨水和卤水同时滴加到带有搅拌置的反应器中,该反应器预先加入有一定量由氨水与氯化铵配制成的反应底液(pH为11)。通过控氨水与卤水的滴加速度来控制反应体系的pH=11不变,反应温度为55℃。反应生成的Mg(OH 过滤分离后用稀氨水和无水酒精先后各洗涤三次。然后置于无水酒精中,采用超声波分散。过滤分离后在真空干燥箱中于60℃条件下进行真空干燥,得到白疏松的超细氢氧化镁粉末。 将净制好的卤水(MgCl2)2L置放于5L的烧杯中,搅拌,同时滴

加相等体积的NaOH溶液,卤水与NaOH溶液物质的量比为1:2,滴加时间1h,得到Mg(OH)2浆液。 一步法 将卤块加水溶解,精制卤液打入反应釜中,加水调至要求的浓度后升温到50~70℃;一定浓度的氨水在混合槽中加入一定量的表面处理剂,在搅拌下溶解时间1h左右。然后慢慢地将氮表面处理剂溶液加入到反应釜中进行反应,反应温度50~70℃,反应时间1~2h。待氨处理剂溶液加完后,提高反应液温度到80~90℃,恒温处理2~3h后,放料进行过滤、干燥、粉碎,制得氢氧化镁阻燃剂产品。 纳米氢氧化镁 首先,用EDTA络合滴定法测定氯化镁的含镁量,然后分别以去离子水、乙醇与水(乙醇与水的比例分别为l:2、1:1、2:1)的混合溶剂和无水乙醇为溶剂,配制含Mg离子浓度为1.0mol/L制过程先将氯化镁溶解在部分溶剂中,然后滤出杂质,洗涤杂质多次后稀释到0.mol/L液50mL,置于200mL烧杯中,然后加入10mL氨水,加入方式为先缓慢加入,边加入边搅拌,待溶液呈现稳定沉淀时快速加入剩余氨水。沉淀静放一段时间后,抽滤并用去离子水洗涤多次,再用无水乙醇洗涤3次,收集滤液,最后将滤饼置于微波炉中快速干燥。 微胶囊技术 在装有搅拌器、温度计、滴液漏斗、冷凝器的四口烧瓶中加入162.8g37%的甲醛溶液与80g尿素,再加入适量三乙醇胺调节pH=8,并加热到70℃,保温1h,得到粘稠的液体,然后用330mL稀释,形

纳米氧化镁在锂电池中的应用特性

纳米氧化镁在锂电池中的应用特性 1.锂离子电池高容量锡复合物负极材料添加剂 锂离子电池高容量锡复合物负极材料选择加入直径在0.05~10微米之间的SiO2、TiO2、ZrO2、Cr2O3、Fe2O3、CeO2、MgO、SiC、BaSO等不溶性固体微粒10~100g/L;该方法制得的镍-固体微粒-锡复合物负极材料作为锂离子电池负极比容量高、首次充放电效率高、循环性能稳定。 2.锂电池正极材料,以纳米氧化镁作为导电掺杂剂通过固相反应制得掺镁锂铁锰磷酸盐,其进一步制得纳米结构的正极材料,其电导率可达10-2S/cm,实际放电容量达到240mAh/g。该新型正极材料具有低价、高能和安全的特性,不仅适用于中小型聚合物、胶体和液体锂离子电池中,尤其适用于大功率动力电池。 3.用于可充电锂电池的正极活性物质,添加一定量的纳米氧化镁,氧化铝等金属氧化物形成的涂层,其断裂韧度至少为MPam1/2 4.提高尖晶石锰酸锂电池容量及循环性能,在尖晶石锰酸锂作正极材料的锂离子电池电解液中加入纳米氧化镁做脱酸剂除酸,加入量为电解液重量的%,通过对电解液除酸,使电解液中游离酸HF的含量降至20ppm以下,减轻了HF对LiMn2O4的溶解作用,提高了LiMn2O4的容量和循环性能。 5.纳米氧化镁作为pH调节剂的碱溶液与一种作为络合剂的氨水溶液加至含钴盐及镍盐的混合水溶液中,共沉淀Ni-Co复合氢氧化物;(b)、将氢氧化锂加至该复合氢氧化物中,并于280~420℃下热处理此混合物;以及(c)、于650~750℃下热处理在步骤(b)中所得的产物。与共沉淀的时间相关,此锂复合氧化物的平均粒径减小,或堆积密度因此增加。当此锂复合氧化物用作阳极活性材料时,能够得到一种高电容量的锂离子二次电池。纳米氧化镁添加量在%左右。 6.玻碳电极材料抛光,通常用金刚砂、氧化铈、氧化锆、纳米氧化镁、氧化铝,抛光时总是按抛光剂粒度较低的顺序依次进行研磨。制得的玻碳电极具有导电性高、对化学药品稳定性好、气体无法通过电极、纯度高、价格便宜、氢过电位和氧过电位小以及表面容易再生等特点,因而应用比较广泛。

轻质氧化镁常识

轻质氧化镁常识 轻质氧化镁为白色轻质疏松无定型粉末。无臭无味,无毒。轻质所占体积约为重质氧化镁的三倍左右。暴露在空气中极易吸收水分和二氧化碳,不溶于水和醇,能溶于稀酸中生成相应的镁盐溶液。氧化镁有高度耐火绝热性能,比重为3.58(25),熔点为2852,沸点3600,微溶于纯水及有机溶剂,能溶于酸或盐溶液,分子式MgO,分子量40.31。 用于冶金、冶炼、高级镁砖、耐火材料及保湿材料的制造,还广泛用于橡胶、橡胶板、橡胶制品、医药行业、食品行业、塑料板材促进剂、玻璃钢的增塑剂及硅钢片的表面涂层油漆、纸张生产的填充料及补强剂、钢球磨光剂、皮革处理剂、绝缘材料、油脂、染料、陶瓷、干燥剂、树脂、阻燃剂用做橡塑制品的填充料及增强剂、软磁铁氧体、胶粘剂、化学工业做催化剂及制造其他镁化合物,搪瓷、陶瓷、玻璃等的原料。 一、轻质氧化镁的性质及指标化验 轻质氧化镁的分子式是MgO,相对分子质量为40.30,轻质氧化镁是无臭、无味、无毒的白色无定形粉末。难溶于水,不溶于醇,溶于酸或铵盐溶液中,在水中的溶解度随着水中的CO2含量增大而增大,熔点为2852℃,沸点为3600℃,经1000℃.以上高温灼烧,可转化为晶体。温度升到1500℃以上时,则成死烧氧化镁或烧结氧化镁。吸收空气中的二氧化碳和水生成碱式碳酸镁。 二、轻质氧化镁的用途 轻质氧化镁主要用于橡胶制品及氯丁胶胶粘剂的生产,在橡胶制造中氧化镁起吸酸剂及促进剂作用,在氯丁胶粘剂中起硫化交联、防焦剂与树脂螯合作用。氧化镁在陶瓷和搪瓷中起降低烧结温度作用。在砂轮、油漆中的制造中作为填充剂,在医药上用作抗酸剂与轻泻剂用于治疗胃酸过多,胃和十二指肠溃疡病,在食品加工中可作为增白剂或砂糖精致脱色剂。在农业上最大用途是用作肥料和牲畜的饲料,是植物和动物代谢过程中的主要元素,用作奶牛的饲料时,可防止因缺镁而引起的神经系统机能失调。另外也可以用于玻璃钢,染化药剂、电子工业、绝缘材料工业以及石油添加剂,铸造、酚醛塑料等行业。

氢氧化镁阻燃剂

氢氧化镁阻燃剂 姓名:单显朋学号:20130591 班级:材料1305班 【摘要】:随着高分子材料日新月异飞速发展,高分子复合材料应用在人类生活的每一个领域,高分子材料的阻燃技术发挥着越来越重要的作用,市场发展的需要,对氢氧化镁的阻燃剂的研发方向也有着改变,更加注重对氢氧化镁的阻燃剂新的性能的研究,励志开发出更加高效的阻燃剂适应市场的进一步的发展。无论从合成资源还是从天然资源制得的氢氧化镁,用于阻燃剂量与日俱增,利用我国丰富的镁资源,依托技术创新开发高附加值的阻燃性氢氧化镁,是镁盐行业面临地一个共同课题。氢氧化镁是阻燃性能好的高效无卤阻燃剂,火灾后不会产生二次污染,都具有抑烟性强、无毒、无腐蚀、不挥发、不析出、安全等特点,已经被公认是环保型阻燃剂,正因为氢氧化镁的安全、环保特性,在塑料、电缆、橡胶等行业得到广泛的应用。我国拥有丰富的含镁矿物、富镁废弃物资源,因此氢氧化镁阻燃填料的前景是十分广阔的。本文简单介绍了阻燃剂的分类,氢氧化镁阻燃机理。重点介绍了氢氧化镁阻燃剂的作用、研究现状和发展方向。并指出氢氧化镁阻燃剂是一种新型的,环境友好型的无机阻燃剂。 【关键词】:氢氧化镁阻燃剂环保发展方向 【前言】:随随着高分子材料的发展,高分子材料的易燃性日益受到了人们的重视,对阻燃剂的需求量也随之增加。然而,随着人们对环境等因素提出了更加严格的要求,阻燃的无卤化、高效性、抑烟性、无毒成为未来的发展趋势。 1.阻燃剂的分类 阻燃剂按化学成份可以分为有机阻燃剂和无机阻燃两大类。有机阻燃剂又分为磷系和卤系两个系列。由于有机阻燃剂存在着分解产物毒性大、烟雾大等缺点,正逐步被无机阻燃剂所替代。 无机阻燃剂主要品种有氢氧化铝、氢氧化镁、红磷、氧化锑、氧化锡、氧化钼、钼酸铵、硼酸锌等,其中以氢氧化铝和氢氧化镁因分解吸热量大,并产生H2O可起到隔绝空气作用,其分解后氧化物又是耐高温物质,故二种阻燃剂不仅可起到阻燃作用,而且可以起到填充作用,它所具有不产生腐蚀性卤气及有害气体、不挥发、效果持久、无毒、无烟、不滴等特点。 2.氢氧化镁的阻燃机理 氢氧化镁在受热时(340-490度)发生分解吸收燃烧物表面热量到阻燃作用;同时释放出大量水分稀释燃物表面的氧气,分解生成的活性氧化镁附着于可燃物表面又进一步阻止了燃烧的进行。氢氧化镁在整个阻燃过程中不但没有任何有害物质产生,而且其分解的产物在阻燃的同时还能够大量吸收橡胶、塑料等高分子燃烧所产生的有害气体和烟雾,活性氧化镁不断吸收未完全燃烧的熔化残留物,从使燃烧很快停止的同时消除烟雾、阻止熔滴,是一种新兴的环保型无机阻燃剂。氢氧化镁阻燃剂通过受热分解时释放出结合水,吸收大量的潜热,来降低它所填

一纳米氧化镁为模板一步法制备多级孔炭材料解读

第一部分文献综述 1.1 多孔炭的研究背景与意义 伴随着全球经济的快速发展和科技水平的进步,煤、石油和天然气等化石燃料消耗逐年增加,日渐枯竭,并且化石燃料的利用造成严重的环境污染,如温室效应、酸雨、大气颗粒物污染、臭氧层破坏和生态环境破坏等。人类正面临着资源短缺、环境污染、生态破坏等迫切需要解决的问题,全球经济和会的可持续发展也面临着严峻的考验。人们迫切需要开发利用新能源和可再生清洁能源来解决日趋短缺的能源问题和日益严重的环境污染。 化学储能装置具有使用方便,性能可靠,便于携带,容量、电流和电压可在相当大的范围内任意组合和对环境无污染等许多优点,在新能源技术的开发和利用中占有重要地位。储氢、储锂和超级电容器等储能装置的电极材料的研究成为材料研究中的热点。在所有的储能材料中,多孔碳材料由于具有大的比表面积,均一的孔径分布,孔结构可调等优点,是迄今为止最理想的储能材料。除此之外,多孔碳材料由于具有均匀的孔径分布,吸收储存气体和液体性能也非常优秀,常被应用于环境保护,制药和化工等领域,作为有毒气体和液体的净化吸收剂。 在近十几年间,有关多孔碳材料方面的报告和论文大批量在国际会议和国际学术刊物上发表,表明多孔碳材料已经成为当今科学界的研究热点。经过科研人员多年不断的试验研究,大批量孔径尺寸分布均匀且可以调控、结构组成可以变化、排列样式和孔道形态多种多样的多孔碳材料可以通过各种各样的合成方法被制备出来。尽管人们已经取得了许多成果,但是多孔碳材料仍然存在许多不足,需要我们去探索和解决,多孔碳材料的性能与实际应用有一定的差距,也有待进一步提高。未来仍然需要我们不断努力去开发成本低,制备过程

纳米氢氧化镁的性质

纳米氢氧化镁的性质 纳米氢氧化镁分子式Mg(OH)2,白色微细粉,无毒、无味、无腐蚀,相对密度2.36,折射率1.561,350℃开始分解,430℃时分解迅速,490℃时全部分解,溶于强酸溶液及按盐溶液,不溶于水。 (1)光学性质 金属材料的晶粒尺寸减小至纳米级别时,颜色多变为黑色,而且粒径减小。纳米粒子的吸光能力与其颜色成正比。能级的量子尺寸效应及晶粒表面电荷分布也会影响到吸光的过程。晶粒中传导电子能级常常凝聚成很窄的能带而造成窄的吸收带。非线性光学效应成为纳米材料光学性能研究的另外一个方面。 (2)电磁性质 金属材料原子的间距与粒子粒径的变化成正比。所以,当金属晶粒处在纳米范围内时,其密度会随着间距的变小而增大。这样,金属中自由电子的平均自由程就会减小,电导率也随之减小。在磁结构上,粗晶材料和纳米材料具有很大的差异,一般情况下,磁性材料的磁结构是由许多磁畴组成,畴间通过畴壁分隔开来,由畴壁运动实现磁化。在纳米材料中,粒径小于某一临界值时,所有的晶粒都呈现单磁畴结构,而矫顽力显著变大。当纳米材料晶粒尺寸减小时,磁芯材料的磁有序状态会发生根本性的变化。例如,粗晶状态下为铁磁性的材料,在粒径小于某一临界值时,可以转化为超顺磁状态。 (3)化学催化性能 由于纳米材料粒径的变小,表面的原子数将占有很大的比例,吸附能力会加强,化学活性随之增大。所以,在室温条件下,很多金属纳米材料在空气中发生剧烈的氧化反应而燃烧。暴露在大气环境中的无极纳米材料会吸附气体,形成吸附层。利用这一特性,可以使用纳米材料制成气敏原件,实现对不同气体进行检测。金属纳米材料的催化性能表现为在适宜的条件下可催化断裂H-H键、C-C键、C-O键、C-H键等。纳米材料作为催化剂的主要优点有无细孔、无杂成分、自由选择组分、条件温和、使用方便等。 (4)热性质 在组成相的尺寸足够小时,在限制的原子系统中的各种弹性和热力学参数变化,会导致平衡相的改变。通过热重实验分析可知,平均粒径为40nm的纳米铜粒子的熔点由1053℃降至750℃。纳米材料的熔点小于同类的粗晶材料,而比热容大于粗晶材料。

相关主题
文本预览
相关文档 最新文档