当前位置:文档之家› 双幅大跨度钢管拱桥横移式缆索吊机吊装斜拉扣挂施工工法

双幅大跨度钢管拱桥横移式缆索吊机吊装斜拉扣挂施工工法

双幅大跨度钢管拱桥横移式缆索吊机吊装斜拉扣挂施工工法
双幅大跨度钢管拱桥横移式缆索吊机吊装斜拉扣挂施工工法

双幅大跨度钢管拱桥

横移式缆索吊机吊装斜拉扣挂施工工法

1、前言

大跨度拱桥无支架法施工,可根据具体的桥梁结构形式、周围的地理环境因地制宜的采用缆索吊机的方式吊装,扣挂体系亦有多种形式。对于钢管拱桥,钢管拱各吊装节段用高强螺栓临时连接,简化了安装程序,降低了劳动强度,加快了拼装速度,提高了缆索吊机的工作效率,因此采用缆索吊装这种优势更为明显。为此,在吸取各方面的实践经验和在集团公司内外专家的指导下,我单位在东莞水道大桥施工中,经过共同研究,多方优化,针对双幅拱桥自行设计了2×80T可滑移式缆索吊机和塔扣分离的扣挂系统,采用了双幅大跨度钢管拱桥缆索吊装斜拉扣挂施工工法,制定了详细的施工工艺和操作规程,获得了成功。

2、工法特点

2.1在工厂内进行钢管拱肋的分段加工和预拼装工作,采用陆路和水路运抵施工现场,易于保证结构复杂的钢管拱肋的加工质量。

2.2缆索吊装和扣索塔斜拉扣挂自成体系,安装过程中互不干扰,受力明确,计算简便。

2.3扣挂体系中,采用塔顶过鞍和张拉转换系统,减少了高空作业的同时,使扣索调整工艺简单、方便快捷。

2.4施工中采用了左右侧拱肋对称安装固定,然后再安装横撑的施工顺序,有助于安装过程中的安全稳定。

2.5钢管拱肋接头在焊接前采用了等强度外法兰板连接方式,可有效的应对台风到来时的不利影响。

2.6钢管拱线形控制采用大型有限元通用软件模拟钢管拱的受力状况进行计算,并以自编程序予以复核的方式,使钢管拱的线形控制从理论上得到了保证。

2.7对原桥台基础进行加固处理,作为缆索吊机的后锚;在边拱拱顶设置预埋件,直接利用边拱的自重平衡扣索索力,利用拱座作为扣塔的基础,做到了经济、安全、实用。

3、适用范围

本法普遍适用于跨越深水、深谷、航运繁忙的河道上的拱型桥梁,尤其适用于平原地区边拱设计较为强大的大跨度飞燕式双幅钢管砼系杆拱桥拱肋的拼装架设。

4、工艺原理

深谷或通航河就是针对需要跨越深水、本工法采用可横移式缆索吊机吊装斜拉扣挂法,

道的大跨双幅拱桥施工中,由于无法采用支架或拱架用量过大的情况下而采用的。施工前,针对设计图纸所确定的拱肋分段重量,进行缆索吊机的设计安装,每一节段采用缆索吊机吊装就位后,通过扣挂体系临时固定和微调,进而完成所有拱段的安装,实现合龙。安装过程中,按提前计算拟定的各节段预抬标高值进行设置,达到对拱肋的安装线型进行控制的目的。安装完一幅拱肋后,通过预先设置的横移滑道横移缆索吊机,安装另一幅钢管拱肋。

5、工艺流程及操作要点

5.1工艺流程

图1 施工工艺流程图

操作要点5.2.

钢管拱肋现场安装采用两岸双肋并举的对称方式进行施工。先安装完右幅桥主拱肋,待缆索吊机横移后再进行左幅桥主拱肋的安装。具体参见钢管拱肋安装图2。

图2 钢管拱肋安装图

5.2.1 钢管拱肋加工及运输

钢管拱采用厂内制造方案,主要包括筒节制造、节段弦管制造、节段匹配制造、半拱肋预拼装四个阶段。零件下料(除节段两端筒节)采用预加补偿量一次下料的工艺,均采用数控精密切割,坡口在专用平台上切割完成;管相贯接口切割由数控相贯线切割机完成;主弦管弯制由大型中频弯管机完成;筒节及筒节对接在专用平台上制造;主拱肋匹配制造胎架按桥线型设计制造,在胎架上完成主拱肋制造和预拼、腹杆相贯线预拼及临时连接件的安装。

钢管拱采用陆路、水路运输相结合的方式,根据钢管拱肋现场吊装先后顺序,南北岸成对配载,以满足现场吊装要求。

5.2.2 缆索吊机安装

5.2.2.1主塔安装

索塔安装采用“单件拼装、摇杆安装”,逐节向上拼接直至设计高度。摇头扒杆起吊能力为10KN。拼装达到缆风绳位置时,在塔架上加设缆风绳,确保安全。

5.2.2.2主索架设

采用“小索代主缆直接拖拉法”安装工艺,先在两座塔架间对拉2根工作钢丝绳,作为φ60㎜主缆索安装的滑行轨道。固定好后,用50KN卷扬机将主缆索拖拉过河。起重、牵引索的安装方法基本上和主缆索相同。

5.2.2.3索鞍、跑车安装

索鞍与运行小车等较重部件,在地面进行分解后,利用索塔上滑轮组配卷扬机将各零部件吊至索塔顶,并在塔顶进行组装后,吊到主索上。.

5.2.3 扣挂体系安装

5.2.3.1 塔架安装

扣塔塔架先拼装成较大节段,利用己安装好的缆索吊机进行安装。

5.2.3.2 扣索安装

钢绞线先在地面上做好端头锚固,将锚固好的钢绞线使用缆索吊机整体吊装,放置于扣索塔索鞍内,一端放入张拉体系内,另一端牵至安装好的节段上面,等到安装拱段基本就位后,将其牵引至该段扣点处连接,张拉端收紧到工作状态。

5.2.3.3 转换体系的安装

根据张拉结构形式进行组装,以销轴和精轧螺纹钢连接,准确测量,保证各锚箱之间形成平行关系,防止扭曲变形。5.2.4 钢管拱肋悬臂拼装

5.2.4.1 拱脚预埋段安装

在拱座承台上进行拱脚(定位架及预埋段)的吊装预埋。预埋时,必须经反复多次测量检查,确认其位置、坐标、标高、倾角均达到设计位置和要求后才能最后固定定位架和预埋段,且在灌注拱座砼之前,将定位架支撑牢固以防变形。

5.2.4.2 拱肋及风撑安装

a、吊装第一分段拱肋

拱肋起吊后,下端嵌扣预埋段内导管,由于内衬管与第一节段端口失圆的影响,安装困难较大,可采用对内衬管进行切割,减小内导管尺寸的方法,加快安装速度。就位后焊接好接头法兰和拼接板,安装螺栓、冲钉。将拱铰的下座板及锚栓嵌埋入拱座预留槽孔中。调准拱肋线型、标高、拱肋间距后吊装横撑及斜撑,焊接横撑管接头,而K撑端头只用马板与主拱弦管定位而不焊接。拱肋标高定位采用缆索吊机徐徐松钩和扣索徐徐加力的方式进行。

b、吊装第二分段拱肋

起吊后,下端嵌扣进第一分段内导管并用冲钉及螺栓将法兰板及拼接板连接,调准拱肋线型、标高、拱肋间距后将拱肋定位好,安装临时横撑及斜撑,焊接横撑管接头,而K撑端头只用马板与主拱弦管定位而不焊接。待全桥合拢并焊接完成后,拆除临时支撑,安装肋间钢横梁,高强度螺栓施拧须严格按“钢结构高强度螺栓连接的设计、施工及验收规程进行。

c、吊装第三~七分段拱肋

施工工艺与第二节段相同。

5.2.4.3 合拢段安装

吊装前,调准全拱拱肋线型、标高、位置等,在最接近设计温度的时间时,反复测量高由于受缆索吊依据实测值切割掉合拢段两端余量,以保证测量精度。空合拢口的水平距离,

机起升高度的影响,上弦管一端多切除60cm,以便于安装过程中转动和调整,同样在最接近设计温度的时间内吊装合拢段,拉动第七分段的滑动内导管使其插入合拢段,及时装焊接头处法兰板及连接板并用冲钉及螺栓栓接。调准拱肋线型、标高及拱肋间距后吊装拱顶风撑,焊接风撑横管接头。多切除的端头段采用两个半圆钢管补焊。合拢段安装见图3

图3 合拢段安装图

5.2.5钢管拱焊接

主拱拱肋及风撑(横撑、斜撑)的工地焊接顺序。主拱拱肋分段接头处焊接顺序为:吊装三个分段后及时焊接最下面一个弦管接头和相应的风撑接头。等主拱拱肋合拢焊接完成后,切除接头处法兰板及其它板件,焊接包板,补焊后焊腹管及缀、腹板。

5.2.6 扣索拆除

钢管拱肋全部焊接完成后,即可拆除扣索,拆除时要对照线形控制中反映的变形情况进行,先南北岸自上而下对称拆除拱肋将向下变形处的扣索,然后拆除向上变形处的扣索。

5.2.5 线形控制

5.2.5.1 目标:使拱肋合龙后各控制点的标高满足设计要求,即拱轴线符合“理想裸拱轴线”。这是安装过程中线形控制的基准。

5.2.5.2思路:每一节段在吊装时刻均有一预抬高值,随着吊装节段的增多,在自重作用下,拱肋轴线愈来愈逼近设计的“理想裸拱轴线”,当拱肋合龙松扣后,其轴线即位于该“理想裸拱轴线”。

5.2.5.3 拱肋安装阶段预抬高值计算原理

在线形控制计算中,采用大型有限元通用软件对钢管拱肋吊装阶段进行模拟计算。模型中采用分段直线梁单元模拟悬链线形拱肋,杆单元模拟拉索。拱段间连接按半刚性考虑。先用“前进分析”计算扣索的受力状态和各段拱肋控制点标高与理想轴线的差值,然后再用.

“倒退分析”确定各段拱肋在吊装时刻控制点的标高。

5.2.5.4确定松扣挠度

拱肋合龙后,由于松扣引起的拱肋控制点挠度为松扣挠度,计算模型如图3示。其计算原理是,在各扣点作用一个反向索力,在反向索力作用下,计算空钢管各点的挠度。反向索力的大小为合龙时各段的最终索力。

5.2.5.4计算假定及相关说明

⑴在吊装过程中扣塔不发生水平及竖向变位,在施工中保证塔顶偏移量不大于20cm,对拱肋安

装标高影响可以忽略。

⑵不考虑温度变化对扣挂过程中拱轴线形的影响,施工中拱肋精确定位全部选择在夜晚10点钟以后进行,尽量降低温度变化对安装标高的影响。

⑶扣索绕过设置在塔架上的索鞍后锚固在边拱端部,在计算中忽略了扣索与转鞍轮之间的转动摩擦,认为前索和背索的张力大小相等,但施工中发现,索鞍处摩擦力影响较大,对索力有较大影响。

5.2.6缆索吊机横移

设计时,在塔架底部设置滑道,滑道主要由工字钢、槽钢组成,结构形式可见图4。滑移采用YCW 液压千斤顶拖拉,起动时,在塔架后部增设辅助的顶推千斤顶。滑移前,放松承重索,既有缆风和新设缆风互紧互松,协调配合进行。横移到位后,安设另幅拱肋。

图4 滑道结构图

6、机具设备

6.1 缆索吊机

6.1.1 技术性能指标

40=80t;

×Q=2主索额定起重量;6.1.1.1.

6.1.1.2建筑跨度:L=400m;

L×2=320 m 6.1.1.3工作有效跨度:Lv=400m-106.1.1.4承重索跨中最大挠度:(含气温38℃影响)fmax=28m

6.1.1.5钢支架高度:H=99m;

6.1.1.6运行速度:运行小车运行速度Vx=0~10m/min;起升速度Vq=0.92~2m/min;

6.1.1.7承重索形式:单跨二索制。主索采用Φ60mm的钢丝绳12根;

6.1.1.8缆索起重机工作级别(GB3811-1983)

总设计寿命12500小时,起重利用等级U6;名义载荷系数Kp=0.5;载荷状态Q3-重级利用等级A7。

6.1.1.9缆索起重机主要技术参数表1

2

缆索起重机钢索规格及性能参数表6.1.1.10

6.1.2 缆索吊机组成结构

6.1.2.1索塔

塔架采用N型万能杆件拼装,总高度为96m,塔架拼装呈门式,塔柱截面为4×4m,,立柱杆件为4N1,柱中心距20m,高度方向设系梁两道,满足塔柱的稳定要求;基础采用桩基与承台,桩径1.2m,承台厚度为2m,塔架与基础采用滑道联接形式。两岸索塔中心距为400m,有效跨度320 m。索塔应适当向引桥方向后仰15~20cm。可参见图2。

2.主索

每幅桥布置2套缆索,每套主索为6φ60钢丝绳,后锚位置设一600T滑轮组,用于调整主索的垂度和平衡6根主索的索力,承重索跨中最大挠度28m。

3.牵引索

选用φ42钢丝绳,配四台28T双筒卷扬机两岸牵引,经索塔上部转向滑轮与地面50T导向滑轮进行牵引,牵引速度4.5m/s。

4.起重索

选用φ26不旋转钢丝绳,配四台8T单筒卷扬机,经索塔上部转向滑轮与地面16T导向滑轮进行起升运动,对岸设钢丝绳死头;提升速度2.5m/s。额定起重量800KN。

5.后背索

选用φ42和φ26钢丝绳,每组设四根,两岸共八组,主塔上下设三层,配80T和50T滑轮组,与主地锚锚固装置进行固定。用于平衡钢管拱吊装时塔架产生的不平衡力。

6.缆风

主塔上下设置三层缆风,选用φ42和φ26钢丝绳,与塔架呈八字型布置。

7.主地锚

桩基,并将承台加大处理,1200mm根φ12主地锚位于桥台位置,在原桥台基础上增设

满足钢管拱吊装产生的锚固力。

8.侧缆风地锚

根据现场地形和环境,采用重力式与桩承台基础,利用预埋件与缆风连接。

6.2 扣挂系统组成结构

扣挂体系主要分五部分:扣索塔架、前锚系统、平衡锚索系统、张拉转换系统、纵向风缆及压塔索。

6.2.1扣索塔架

塔架高64m,横桥向宽24m,顺桥向宽4m,采用N型万能杆件拼装,为门式结构。塔架顶设上平联,高度为4m,左右两立柱间设两道水平连接系,高度为4m。同时,在扣塔立柱相应的位置安设索鞍,其标高由需要扣挂的拱段标高控制。塔架基础直接利用主桥拱座,施工时,在拱座内预埋12根工字钢,其上安设立柱铰支座。铰支座分为上下两部分,上部分与塔架连接成整体,下部分与工字钢相连,两部分采用钢销铰接。可参见图5。

6.2.2 前锚系统的设计

钢绞线与钢管拱连接部分称为前锚系统。钢管拱第一、二节段扣点位于钢管拱腹板中部,

图5 扣塔铰座图

每节段两侧各一个,呈对称布置,采用16Mn钢板焊接为组合箱型,每个扣点设4根钢绞线,钢管拱第三至七节段扣点位于钢管拱上弦管下部与竖腹管夹角处,见图6。采用Q345c型钢制作为组合箱型梁,与钢管拱焊接。箱梁两端设扣点。根据受力采用5――8根钢绞线,型挤压锚双重固定。P锚具和夹片、HVM端部采

用.

大跨度钢结构吊装工法

复杂地型超大跨度钢结构桁架梁吊装施工工法 1、前言 随着现代工业经济的发展飞速前进,工业厂房越来越多,尤其是钢结构屋面的工业厂房因施工整体结构较轻(与混凝土结构相比),施工工期短,而且能解决许多工业厂房跨度较大的问题,越来越得到普遍应用。为了确保大跨度钢结构吊装的高效、快速、安全的目的,需要将钢梁进行整体拼装,然后采用双机抬吊的吊装方法,尤其是施工场地狭窄、场地不平整时,采用跨内吊装,结合活动拼装平台进行构件组装的施工方法会使大跨度钢结构吊装在施工场地复杂时却达到安全、快捷,经济,为使此方法得以推广,特编制了本施工工法。 2、工法特点 本工法采用两台50t吊车同时平衡起吊的一次性吊装方案,比采用一台大吨位(至少100吨)吊车和采用桅杆吊更安全,更经济;施工场地限制,采用跨内吊装;制作活动的拼装平台,进行现场就地拼装,并根据吊装方向和顺序移动拼装平台,减少场内的二次转运,节省了人力物力,也减少大面积土方回填平整的费用;为解决第一榀钢梁吊装后无法固定的问题,另加设一台75吨吊车进行配合,以保证两台50t吊车能顺利进行第二榀桁梁的吊装。通过以上方法,解决了该钢结构屋面桁架梁跨度大、质量重、离地高、施工场地狭窄、拼装困难的难点,保证了施工质量和安全,满足业主的施工进度要求,并达到降低施工成本的目的。 3、适应范围 本工法适用于常见的工业厂房超大跨度钢结构屋面梁的整榀吊装工程施工。 4、工艺原理 利用现场整体拼装,两台吊车平衡起吊的一次性整体吊装方法,解决单层工业厂房超大跨度钢结构屋面梁吊装难题。 5、施工工艺流程及操作要点

5.1施工工艺流程 桁架梁根据设计要求在工厂内预先加工。然后运输到施工现场进行组装。工厂化加工保证了其精确度,构件运到施工现场后根据合理的施工顺序进行吊装,主要施工艺流程如下: 桁架梁厂内加工-→桁架梁组拼-→桁架梁吊装-→连接与固定-→检查、验收-→除锈、刷涂料 5.2操作要点 5.2.1安装准备: 5.2.1.1 复验安装定位所用的轴线控制点和测量标高使用的水准点。 5.2.1.2 放出标高控制线和屋架轴线的吊装辅助线。 5.2.1.3 复验桁架梁支座及支撑系统的预埋件,其轴线、标高、水平度、预埋螺栓位置及露出长度等,超出允许偏差时,应做好技术处理。 5.2.1.4 检查吊装机械及吊具,按照施工方案的要求制作好活动操作平台(如图二所示)。 5.2.1.5 桁架腹杆设计为拉杆,但吊装时由于吊点位置使其受力改变为压杆时,为防止构件变形、失稳,必要时应采取加固措施,在平行于屋架上、下弦方向采用钢管、方木或其它临时加固措施。 5.2.1.6 测量用钢尺应与钢结构制造用的钢尺校对,并取得计量法定单位检定证明。 5.2.2.桁架梁组拼: 钢桁架梁分片运至现场组装时,活动拼装平台应平整。组拼时应保证屋架总长及起拱尺寸的要求。焊接时焊完一面检查合格后,再翻身焊另一面,做好施工记录,经验收后方准吊装。钢结构桁架梁及天窗架皆在地面上组装好后一次吊装,但先要临时加固,以保证吊装时有足够的刚度,受已施工的设备基础影响,场地狭窄,且由于场地存在部分孤石,场地不平整,故组装时利用活动平台进行,活动平台采用槽钢制作,如图二,活动平台移动可利用场内吊车,可将活动平台移动到指定位置。

大跨度钢结构吊装方案..

礼堂40m大跨度钢桁架吊装方案 十五冶非洲建筑贸易有限公司2015年 4月 15日

审批栏批准: 审核: 编制: 会签:

目录 一、工程概况 二、编制依据 三、施工准备 四、吊装方法 五、吊装质量控制及分析 六、组织结构体系 七、质量安全保证体系及保证措施 八、安全文明施工 附录:附表1 附表2

一、工程概况 卢萨卡卫生部项目礼堂屋架结构由15榀平行弦桁架组成,单榀最大跨度40.12m,最大自重4.823t;每榀桁架上、下弦均由两根[150*75mm双拼槽钢焊接而成,上、下弦高度1.2m,中间最长5榀均由4跨组成(每榀详细参数见表1),腹杆采用∠100*100*10mm角钢人字形布置,桁架的斜腹杆和上下弦采用节点板连接,节点板厚度δ=6mm,节点间距1.5m。屋架安装在现浇混凝土框架梁或者柱上,通过预埋螺栓连接桁架端部连接板,桁架两端及中间连接板厚度δ=16mm,混凝土圈梁沿扇形大口边向小口边方向放坡,形成单坡屋架(坡度1°)桁架安装高侧顶标高11.3m,低侧安装顶标高9.9m。屋架之间由C型钢檩条和∠60*60*6mm下弦水平支撑组成空间稳定体系。工程主要特点是:该桁架体积大、位置高、施工场地狭窄,交叉作业多、屋架拼装精度要求高,因此施工难度很大。施工平面布置及屋架安装剖面图如下。 表1.桁架参数

图2.礼堂屋架安装剖面图 二、编织依据 2.1《钢结构设计计算与图集》 2.2 Civilink Engineering Designers Ltd提供结构图纸 2.3《大型设备吊装工程施工工艺标准》SH/T3515-2003 2.4建筑施工安全检查标准; 2.5钢结构分部工程施工组织设计; 2.6公司ISO9002国际质量体系、《质量手册》、《程序文件》、《技术标准》 2.7施工现场实地条件; 三、施工准备 3.1施工机械设备、机具准备 主要施工机械设备、机具配备计划表

大跨度中承式钢管混凝土拱桥设计

大跨度中承式钢管混凝土拱桥设计 陈勇勤1,邢 燕2,杨洁琼1,胡亚琴1 (1.浙江省公路水运工程咨询公司,浙江杭州310004;2.大连市政设计院有限责任公司,辽宁大连116011) 摘 要:以大连市开发区滨海路四号桥为例,介绍大跨度中承式钢管混凝土拱桥的总体设计、平面静力分析、空间静力分析、稳定分析和施工工艺的要点。 关键词:拱桥;钢管混凝土结构;系杆拱;桥梁设计中图分类号:U444.22;TU528.59 文献标识码:A 文章编号:1671-7767(2007)03-0018-03 收稿日期:2007-02-01 作者简介:陈勇勤(1975-),女,工程师,1998年毕业于重庆交通学院桥梁工程系,工学学士,2001年毕业于重庆交通学院桥梁与隧道工程专业,工学硕士。 1 工程简介 大连开发区滨海路,是继大连市内滨海路之外 的又一条著名滨海景观旅游线路。滨海路四号桥位于这条旅游线路的中部,桥梁走向南北,背靠山峦,面临黄海。建设单位对该桥的景观要求极高,同时要求尽量降低造价,减少维修养护费用。该设计以美观、靓丽、新颖、独特为出发点,同时兼顾到实用经济、安全合理。该桥的自然条件如下。 (1)水文:桥址与海岸的距离为200m 左右,潮汐对该桥没有影响。 (2)气象:桥位紧靠黄海,历年最大风速为29m/s ,发生在4月;极大风速为48.7m/s ,发生在8 月。通常夏季盛行东南风,其它时节以西北风为主。8月平均最高气温为27.5℃,1月平均气温为-5.5℃,属寒冷地区。最大冻结深度0.5m 。 (3)地质:桥址处为沟谷,设计桥面和谷底的最 大高差约15m ,沟谷边坡坡度为1∶2,谷底为旱地。该地区石英岩广泛分布,地质钻孔由上至下依次为素填土、碎石、强风化石英岩、中风化石英岩。其中,中风化石英岩岩面较浅,岩层稳定,是良好的持力层。 综合考虑地质条件和周围景观环境,在方案设计中,共选择3个方案:自锚式悬索桥、V 形墩连续梁桥、中承式钢管混凝土拱桥。上述方案经开发区有关领导及专家讨论评审,最终选定主拱为160m 跨的中承式钢管混凝土拱桥,采用单索面、异型拱肋。桥面系采用三跨连续梁体系,桥梁全长180m ,主跨150m ,两边跨各15m 。滨海路四号桥布置示意见图1。 图1 滨海路四号桥布置示意 2 总体设计 2.1 主要设计技术标准 (1)桥面宽度:桥面总宽18.5m 。(2)设计速度:60km/h 。 (3)荷载标准:车辆荷载为公路-Ⅰ级;人群荷 载为2.5kN/m 2;温度影响力按年均升温15℃、降温25℃考虑;风载:基本风压强度取750Pa ;地震基本烈度为6度,按7度设防。2.2 拱肋 拱肋中段采用圆端形钢管混凝土[1],肋高1.5m 、宽3.2m 。拱轴线为二次抛物线,抛物线方程为 Y =6.6X 2 /1000(坐标原点位于拱顶中心线位置)。 拱肋两端为人字形,拱轴线为直线,采用直径为2m 的圆形钢管混凝土。中拱肋和边拱肋的拱轴线在相交处相切。 该中承式钢管混凝土拱桥计算跨径160m ,拱肋矢跨比1/4.32,矢高37.036m 。 8 1世界桥梁 2007年第3期

大跨度拱形钢结构安装施工工法

大跨度拱形钢结构安装施工工法1.前言 近年来钢结构建筑凭借其造价低、大空间、抗震性能好等优点迅速发展,尤其在公共建筑和大型场馆等公用设施中得到广泛应用。而拱形结构因其大空间、造型新颖、美观等特点,受到诸多建设单位的厚爱。当钢结构拱落地长度较长,土建结构为混凝土梁板时,主拱安装宜采用分段安装,由拱脚向上组装,最后在顶部中间合龙。结合205.44米大跨度空间拱形钢结构的安装进行施工总结,形成了本工法。2.特点 2.1 土建结构为混凝土梁板,上部为箱形变截面钢结构主拱,主拱生根于四个拱脚基础; 2.2 在混凝土顶板上设置支撑塔架(同时作为操作平台),混凝土顶板下局部设满堂红架体支撑; 2.3 采用分段吊装、现场拼装焊接。 3.适用范围 本工法适用于工业与民用建筑工程中大跨度拱形钢结构安装工程。尤其适合土建主体结构为混凝土框架梁板,上部为大跨度拱形钢结构的工程。 4.工艺原理

主拱安装在能同时满足设计分段要求和运输要求的前提下,采用分段制作、运输和安装。为确保整体空间结构的稳定性,主拱的安装需穿插在其他结构梁安装的同时进行,主拱的安装顺序是从四个主拱脚向上进行安装,最后在顶部中间合拢,主拱安装的同时,及时进行主拱和屋面拱之间的拉杆支撑的安装。 施工工艺流程及操作要点5. 5.1工艺流程 建立测量控制网及测量控制→主拱支撑架体设计→主拱吊装及安装→卸荷 5.2操作要点 大跨度钢拱安装同时涉及分段及吊机的选择、施工测量定位、支撑架体的设置、钢拱的吊装及安装、卸荷等多种施工工艺,而钢拱的吊装及安装是整个施工过程的关键。 5.2.1建立测量控制网及测量控制 1.GPS点的交接及复核 根据GPS点的成果,制定点位精度的复查,具体测量步骤:根据GPS 点的布局,在施工区域边布设二级控制网,按闭合导线的观测方法,计算出导线精度,再根据计算出的点位精度,如果GPS点的成果符合施工要求即可使用,反之要对导线实行平差后才可使用;对水准点的复查,采用国家二级水准的要求进行复查,在施工区域内按施工需要布设若干固定的水准基准点,对布设的水准点实行联测。 建立施工控制网(有轴线控制桩),形成统一布局(见图5.2.1)。

钢管混凝土拱桥的施工方法和结构设计..

钢管混凝土拱桥的施工方法 钢管砼结构,由于能通过互补使钢管和混凝土单独受力的弱点得以削弱甚至消除,管内混凝土可增强管壁的稳定性,钢管对混凝土的套箍作用,使砼处于三向受力状态,既提高了混凝土的承载力,又增大了其极限压缩应变,所以自钢管砼结构问世以来,是桥梁建筑业发展的一项新技术,具有自重轻、强度大、抗变形能力强的优点,因而得到突飞猛进的发展。在桥梁方面,已以各种拱桥发展到桁架梁等结构形式,并发展到钢管混凝土作劲性骨架拱桥。其施工方法发展很快,已经应用的有无支架吊装法,支架吊装法,转体施工法等。 1 拱肋钢管的加工制作 拱肋加工前,应依理论设计拱轴座标和预留拱度值,经计算分析后放样,钢管拱肋骨架的弧线采用直缝焊接管时,通常焊成1.2-2.0m的基本直线管节;当采用螺旋焊接管时,一般焊成12.0~20m弧形管节。对于桁式拱肋的钢管骨架,再放样试拼,焊成10m左右的桁式拱肋单元,经厂内试拼合格后即可出厂。具体工艺流程为:选材料进场材料分类材质确认和检验划线与标记移植编号码下料坡口加工钢管卷制组圆、调圆焊接非坡口检验附件装配、焊接单节终检组成10m左右的大节桁式拱肋焊接无损检验大节桁式拱肋终检 1:1大样拼装检验 防腐处理出厂。 当拱肋截面为组合型时,应在胎模支架上组焊骨架一次成型,经尺寸检验和校正合格后,先焊上、下两面,再焊两侧面(由两端向中间施焊)。

焊接采用坡口对焊,纵焊缝设在腔内,上、下管环缝相互错开。在平台上按1:1放样时,应将焊缝的收缩变形考虑在内。为保证各节钢管或其组合骨架拼组后符合设计线型,可在各节端部预留1cm左右的富余量,待拼装时根据实际情况将富余部分切除。钢管焊接施工以“GBJD05—83、钢结构施工和施工及验收规范”的规定为标准。焊缝均按设计要求全部做超声波探伤检查和X射线抽样检查(抽样率大于5%)。焊缝质量应达到二级质量标准的要求。 2 钢管混凝土拱桥的架设 2.1无支架吊装法 2.1.1缆索吊机斜拉扣挂悬拼法 具体做法与其他拱肋的架设相似,只是钢管混凝土拱肋无支架架设方案用于较大跨度,它可根据吊机能力把钢管拱肋合成几大段进行分段对称吊装,并随时用扣索和缆风绳锚固,稳定在桥位上,最后合拢。如净跨度150m 四川宜宾马鸣溪金沙江大桥,为钢筋混凝土箱拱,分五段吊装,吊重700KN。广西邕宁邕江大桥,主跨312m的钢管混凝土劲性骨架箱肋拱,每根拱肋的钢管骨架分9段吊装,吊重590KN。四川万县长江大桥,跨径420m的钢管混凝土劲性骨架上承式拱桥,分36段吊装,吊重612.5KN。 缆索吊机斜拉扣挂悬拼法施工是我国修建大跨度拱桥的主要方法之一。施工理论成熟,施工体系结构简单,施工调整与控制较方便。但这种方法起吊端要有一定的施工场地,缆索跨度较桥跨要大,用缆索较多,主塔架与扣索塔架相互分开,存在受压杆稳定要求塔高不能过高,并且要设置各种缆风索而占地面积较大。

大跨度钢筋混凝土拱桥施工工法

大跨度钢筋混凝土拱桥施工工法 1、前言 随着我国公路事业的高速发展,箱形拱桥工量少、自重轻、截面合理,近年来在大跨度钢筋砼拱桥中被广泛应用。我公司先后承建了陕西省境内的包(头)—茂(名)高速公路毛坝至陕川界MC4合同段,渝(重庆)—昆(明)高速公路云南省境内的水富至麻柳湾23合同段等工程项目,均包括大跨度钢筋混凝土拱桥结构。其中水富至麻柳湾23合同段在施工中大力开展科技攻关,不断完善施工工艺,成功的解决了主拱圈下部原地面基础处理和下沉;扣件钢管拼装满堂式拱架的搭设方法和要求;支撑主拱圈底模的1-80 米弧形杆件的材料选择与制作;主拱圈加载程序和下部支撑卸载程序;主拱圈间隔槽的预留位置;合拢温度的选择;混凝土分段和浇注顺序;拱上运输系统的布置;消除拱架形、控制主拱圈变形等关键技术难题,本工法是在总结上述成功经验的基础上形成的。 2、工法特点 公路工程大跨度钢筋混凝土拱桥,近年来的桥跨已经发展到140m现代桥梁,它是集桥梁结构学、结构力学、地质结构学与材料科学等技术为一体,具有很高的技术含量和远景发展。大跨度钢筋混凝土拱桥具有以下特点: 2.1 对原地面进行处理后采用满堂支架系统克服了传统的土牛胎易产生不均匀沉降导致支架下沉引起主拱圈变形开裂及填筑挖出土牛胎增加工程量的弊端,有效防止了拱架下沉拱圈变形,保证了施工质量。 2. 2 支撑体系和模板系统位于稳固的地基上,安全系数高,不易下沉,结构受力合理,支架、模板安装拆卸方便,操作简单,支架和模板适用

范围广,可再利用。 2.3. 拱圈采用钢筋砼分段现浇,整体性强,结构轻盈,自重小,线性美观,减少了砼用量,节约了投资。 2.4. 施工工艺完善、简便,可操作性强,降低劳动强度,便于推广。 2.5.施工速度、施工质量容易得到保证。 3、适用范围 本工法适用于公路大跨度钢筋混凝土箱形拱桥采用现浇的主拱圈,适合拱圈下部为水流不大的山谷、沟壑、坑洼、平地、河流,跨度50~140m 的钢筋混凝土拱桥施工。 4.工艺原理 大跨度钢筋混凝土拱桥设计理念先进,施工技术成熟,具有广阔的市场前景。通过混凝土原材料把关、配合比选定、埋设循环水管、混凝土搅拌、运输、浇注过程的控制,以及后期通过混凝土养护、控制水温以降低混凝土内外温差,防止大体积混凝土出现裂缝,保证大体积混凝土施工质量。 5、施工工艺 5.1 拱架地基处理 将跨径范围左右共宽13m投影面下的沟槽表层植被、浮土与挖基倾倒土全部清除后,纵横方向挖成错台,横向靠近两桥台处尤其近1号台处的自然坡度大,依土质和风化岩石层的具体情况分别处理为不同宽度及外坡的错台,清除错台废方。顺桥向左侧拱架支承面的外缘,施作一浆砌片石挡土墙, 砂浆标号M7.5.基础处理深度依地质情况而定,但不宜小于0.5m。挡墙顶宽0.8m,外坡直立,内侧背坡依挡墙高度定为1:0.3。挡墙高度在2~4 m。

大跨度钢管混凝土拱桥拱肋少支架安装法

第5卷第3期徐州建筑职业技术学院学报v。1.5№.32005年9月JOURNAL0FXUZHOUINSTITUTE0FARCHITECTURALTECHNOLOGYSep.2005 大跨度钢管混凝土拱桥拱肋少支架安装法 周水兴 (重庆交通学院桥梁及结构工程系,重庆400074) 摘要:结合实际工程介绍了少支架安装法在大跨度钢管混凝土拱桥中的应用,着重分析说明了 在安装过程中预抬高量计算、地基沉陷以及各节段间标高控制方法.实践证明,少支架法安装大跨 度钢管混凝土拱桥是合理的,不仅安全稳定性好,而且施工快、费用低. 关键词:钢管混凝土拱桥;少支架法;拱肋安装;施工控制 中图分类号:U445.46文献标识码:A文章编号:1009—8992(2005)03—0001一03 ErectionofRibsonLarge—SpanCFST ArchB“dgeswithMethod0fLimitedBrackets ZHOUS^甜i—zi咒g (DepartmentofBridgeWorkandStructuralEngineering, ChongqingJiaotongUniVersity,Chongqing400074,China) Abstract:Onthebasisofapracticalproject,abriefintroducationismadeontheapphcationof themethodoflimitedbracketsonlarge—spanCFSTarchbridges,andanexplanationisaddedto thecambercalculation,thesettingofsubgradeandtheelevationcontroloverthepaneljointsin theerectionprocess.Thepracticeshowsthatitisintelligenttoerectribson1arge—spanCFST archbridgeswiththemethodof1imitedbrackets,whichtakespriorityofhighsecurityandsta— bility,quicknessand10wcostinconstruction. Keywords:CFSTarchbridge;methodoflimitedbrackets;erectionofarchribs;construction cnntrol 钢管混凝土拱桥拱肋的安装常用无支架缆索吊装法和转体施工法[1],这两种方法主要用于跨越山谷、大江大河等不适宜搭设支架或根本无法搭设支架的场合.其特点是需要专业的施工队伍,施工难度大,技术要求严,费用较高.在拱肋离地面不高或桥下水位不深,通过缩窄河道可以留有足够开阔平整的场地的情况下,可采用少支架法安装,其特点是操作容易、技术要求低、拱肋节段标高易控制 收稿日期:2005一06—22 作者简介:周水兴(1967一),男,浙江嘉兴人,教授,主要从事桥梁设计理论与旧桥加固研究.且稳定性好,施工快捷,工程费用低. 本文结合浙江省东阳市中山大桥的拱肋安装,主要介绍在安装过程中预抬高量计算、地基沉陷以及各节段间标高的控制方法. 1拱肋的吊装及位置的调整 对于拱肋的节装,少支架安装法是在各个节段接头处设置钢支架,用汽车吊、门架吊或浮吊安装. 为便于调整每段拱肋的标高、平面位置和成拱后的落架,在支架顶部设置微调装置,一般用千斤顶、丝杠等.各支架在纵向及横向设缆风索以保证  万方数据万方数据

桥梁上部结构缆索吊装施工

桥梁上部结构缆索吊装 施工 文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-

桥梁上部结构缆索吊装施工 一、概况 适用:峡谷或水深流急河段上,或在通航的河流上需要满足船只的 顺利通行的拱桥施工 优点:跨越能力大,水平和垂直运输机动灵活,适应性广,施工比 较稳妥 主要施工设备:缆索吊机塔架、缆索吊机主缆(承重缆)、起重 缆、牵引缆、扣索、工作缆、风缆、横移缆、跑车(天车、骑马 滑车)、索鞍、锚碇等 二、吊装方法和要点 (一)缆索吊装施工工序: 大跨径拱桥吊装,尽量采用正吊、正落位、正扣,索塔的宽度应与 桥宽相适应 拱肋分段安装,每段拱肋由索扣临时固定在扣架上,每段拱肋必须 设置防风缆 起重索与扣索承重交接时速度不能太快,每次升降应控制在一定范 围内,交接过程中对风缆随时进行调整 拱肋跨度>80m或横向稳定安全小于<4,应采用双基肋合龙松索 成拱方式 双基肋合龙松索成拱方式:当第一根拱肋合龙并校正拱轴线,楔紧 拱肋接头缝后,稍松扣索和起重索,压紧接头缝,但不卸掉扣 索;待第二根拱肋合龙,两根拱肋横向连接固定好并拉好风缆之

后,再同时松卸两根拱肋的扣索和起重索 (二)施工中注意要点 1.缆索设备检查项目及检查方法: (1)地锚试拉: 每一类地锚取一个进行试拉 缆风绳的土质地锚要求位移量非常小,应全部试拉(2)索扣: ①检查项目:扣索、扣索收紧索、扣索地锚、动力装置 ②检查方法:将两岸的扣索用卸甲连接起来,收紧索进行 对拉 (3)主缆系统试吊: ①检查项目: 连续不间断观测塔架位移、主索垂度、主索受力的 均匀程度 动力装置工作状态,牵引索、起重索在各转向轮上 运转情况 主索地锚稳固情况 通信、指挥系统的通畅性 各作业之间的协调情况 ②检查方法: 主索系统试吊分跑车空载反复运转、静载试吊、吊 重运行三步

大跨度钢结构厂房航车吊装施工工法

大跨度钢结构厂房航车吊装施工工法 工法编号: 编制单位:中国建筑一局(集团)有限公司陕西分公司国核项目部 主要执笔人:岳晓冬 1 前言 随着现代工业经济的发展飞速前进,工业钢结构厂房越来越多,而且厂房内多需要安装有航车,钢结构厂房跨度较大的航车分部件吊装方法相比传统的整体吊装更为高效、快速、安全,越来越得到普遍应用。厂房内航车分部件吊装,需要将航车各部件二次搬运到指定位置,然后按照轨道-大梁-小车-司机室-电气设备及辅属件顺序吊装并安装到位方法,尤其是施工场地狭窄、场地不平整时,采用跨内分件吊装的施工方法会使大跨度钢结构厂房内航车吊装在施工场地复杂时却达到安全、快捷,经济,为使此方法得以推广,特编制了本施工工法。 2 工法特点 航车分件吊装对场地要求低,操作更简单安装更方便,解决了厂房航车分件吊装的跨度大、质量重、离地高、施工场地狭窄、拼装困难的难点,保证了施工质量和安全,满足业主的施工进度要求,并达到降低施工成本的目的。 3 适用范围 本工法适用于钢结构厂房航(桥式起重机)吊装。 4 工艺原理 先钢结构厂房封顶前轨道承轨梁验收后先将航车轨道吊装并安装完成,然后将2根航车大梁吊装到轨道上并完成端梁拼装,然后再将航车小车,司机车,电气设备及辅助设备依次吊装并安装到主梁上。 5 工艺流程及操作要点 5.1工艺流程

现场准备及轨道梁验收 轨道吊装及安装 航车各部件的二次倒运 主梁吊装 小车及端梁吊装连接 司机室、电气设备、辅助设备吊装安装 图5.1-1 工艺流程图 5.2操作要点 5.2.1现场准备及轨道梁验收 1)航车各部件及吊车进场道路是否满足要求;场地地面是否夯实;检查施工现场环境,查看是否有异物存在,如有异物应及时清理;然后测量施工现场平面距离是否满足要求。 2)轨道承轨梁的验收 5.2.2轨道吊装及安装 清理现场→在地面对轨道检查调直→在车间钢吊车梁上1.5米处安装安全钢丝绳→放线→轨道上位找正→轨道鱼尾板连接安装→轨道压板辅件紧固→测量检查→限位尺安装 5.2.3航车各部件的二次倒运 1)航车各部件的二次搬运 运输车辆进入大门后,用50T汽车吊和直径28mm的钢丝绳把主梁1吊起(吊装示意详见图5.2-1),而后指挥运输车进入车间一侧通道、车头调直,用汽车吊把主梁1装车固定主梁运至车间门口,用50T汽车吊把主梁1再次吊起,让运输进入车间后、再次用汽车吊装车固定主梁运至车间内卸车,主梁2搬运方法同主梁1(见图5.2-1),进入车间后分别按以下位置摆放。 ① QD20/5T-25.5m起重机在两轴之间摆放(见图5.2-2); ② QD20/5T-19.5m起重机另两轴之间摆放(见图5.2-2); 2)二次搬运时,50t汽车吊作业半经R=6m,出杆L=10.7m,构件吊装时最大提升高度3m,(吊装

大跨度钢筋混凝土拱桥斜拉扣挂法悬臂浇筑施工关键技术

大跨度钢筋混凝土拱桥斜拉扣挂法悬臂浇筑施工关键技术 尹洪明郭军肖沾 (中交一公局四公司广西南宁 530000) 摘要:钢筋混凝土拱桥悬臂施工法分为悬臂拼装法和悬臂浇筑法两大类。悬臂浇筑法主要采用挂篮悬臂浇筑施工,根据国内外目前的工艺技术又可以分为采用塔架斜拉扣挂法和悬臂桁架浇筑法。而悬臂浇筑法施工的拱桥在国内日前仅建成3座,都采用塔架斜拉扣挂法施工,且因为施工情况又存在不同,技术理论不够完善,整体还处在起步阶段,为进一步完善悬臂浇筑拱桥的施工技术,本文以在建的马蹄河特大桥为背景,谈论大跨度塔架斜拉扣挂法悬臂浇筑拱桥的关键施工技术控制。 关键词:悬臂浇筑斜拉扣挂箱拱挂篮索力优化施工技术 0 前言 拱桥是一种以受压为主的结构,受力合理, 外形美观, 是我国公路上广泛采用的一种桥梁体系。随着钢筋混凝土的出现,拱桥的施工技术得到提升,跨越能力增大,大跨度混凝土箱拱造价低廉、施工方便、养护简单,在我国适合贵州、广西、云南等多山地区。制约混凝土箱拱跨度的一个重要因素是施工方法,拱桥的施工方法一般有缆索吊装法、劲性骨架法、转体施工法、悬臂施工法、悬臂施工与劲性骨架组合法等。小跨度箱拱可以采用支架施工或分多个节段吊装,随着跨度增大,山区沟谷多,环境条件限制,提出采用的悬臂施工法更能适应山区拱桥发展。 悬臂法分为悬臂拼装法和悬臂浇筑法,我国钢筋混凝土拱桥发展在20世纪70年代得到提升,伴随无支架缆索吊装技术的成熟和设计方法进步,才逐渐出现了大跨度的钢筋混凝土悬臂拼装拱桥。90年代后先后建造了跨度最大的中承式钢筋混凝土——广西邕林邕江大桥(312m,1996年)和世界第一跨的钢管混凝土劲性骨架钢筋混凝土拱桥——重庆万州长江大桥(420m,1997年)。然而,随着时间发展,国家对工程质量、技术要求更高,悬臂拼装法需要足够大的预制空间和吊装能力,且成拱后拱圈接头多,整体性不高,在进几年开始推广挂篮悬臂浇筑施工的钢筋混凝土拱桥,由于主拱圈采用挂蓝浇筑一次成形、无需分环、工艺简单、整体性好、施工中横向稳定和抗风性能好、运营阶段养护费用低、耐久性好的特点。 而在国外,20世纪60年代就开始采用悬臂浇筑施工拱桥,目前施工技术已经比较成熟,最大跨径由德国2000年建造的WildeGera桥,跨径252m,我国建成挂篮悬浇拱桥仅有三座,2007年净跨150m的白沙沟1#大桥、2009年净跨182m的新密地大桥,2010年净跨165m的木蓬特大桥,以及在建净跨180m的马蹄河特大桥,且都采用斜拉扣挂悬臂浇筑施工。

大跨度钢管混凝土拱桥成拱线形控制技术研究

大跨度钢管混凝土拱桥成拱线形控制技术研究 发表时间:2020-04-14T11:11:16.260Z 来源:《基层建设》2020年第1期作者:郭林 [导读] 摘要:近年来,随着我国经济的快速发展,桥梁的建设也十分迅速。 天津金隅混凝土有限公司天津 300450 摘要:近年来,随着我国经济的快速发展,桥梁的建设也十分迅速。钢管混凝土拱桥具有材料强度高,施工方便等优点,在近几十年迅速兴起,成为大跨径桥梁中较有竞争力的桥型之一。随着施工技术的不断突破,各种拱桥的施工方法也随之产生。斜拉扣挂施工法由于其成本低,施工工艺相对成熟,在选择钢管混凝土拱桥的施工方法时一般优先考虑。在斜拉扣挂施工过程中,扣塔偏位、临时荷载、温度变化及索力松弛等均是影响拱肋切线拼装线形的关键因素。因此对钢管混凝土拱桥施工的实时监控是必要的,施工监控以线形控制为主,应力控制为辅,保证施工过程中实际线形与目标线形相一致。 关键词:大跨度钢管;混凝土拱桥;成拱线形;控制技术 引言 桥梁结构施工设计中,需要根据实际参照的标准和施工情况进行分析,准确的判断模型种类,分析可能造成的负面影响。依照混凝土的材料使用情况,分析是否均匀,是否存在不确定性因素。大跨度预应力混凝土在实际的连接设计中,需要准确的探索分析实际的结构理论标准,分析T型监测结构的连续性,判断桥梁施工的过程和标准,分析实际情况产生和设计中可能存在的不合理影响因素。 1工程概况 郑万高铁汉江特大桥主桥设计为(109+220+109)m连续刚构拱组合结构,所有桥墩均在水中,90,91号为主墩。梁体设计为单箱双室、变高度、变截面预应力钢筋混凝土箱梁。梁体0号块高度为12m,跨中合龙段高度为5.5m;箱梁底部宽10.8m,桥梁桥面宽13.2m,拱座区加宽至16.6m。主拱拱肋计算跨度220m,设计矢高44m,矢跨比1/5,设计拱轴线采用二次抛物线。主拱为钢管混凝土结构,采用等高度哑铃形截面,截面高为3.4m,拱肋直径1.2m。拱肋之间采用缀板连接,拱肋及缀板内填充C50自密实收缩补偿混凝土。2榀拱肋间共设置11道格构型横撑,其中拱顶为米字形,其余为K字形。主拱共设计22对钢绞线整体挤压索吊杆,吊杆纵向间距9m,横向中心距12m。 2钢管拱施工 2.1钢管拱的加工 钢管拱分段制作采取单元件(单管、单腹板)工厂制造、总装现场整体组装的制作模式,在工厂加工成可运输的设计段单元(单管),厂内进行单管、腹板预拼装,总装现场组装焊接,并组装焊接相关的安装连接件。各设计段接口的断面分奇偶块,控制钢板对接错开十字缝。在厂内加工时,按照1∶1拱轴线放大样,由于钢材的热膨胀系数较大,考虑预拱度和温度修正值。每段拱肋在制造时,考虑一定的焊接收缩量和温度的影响,单元长度方向预留二次切割量,待焊接完成后按照理论分段线进行二次切割,拱肋段在1∶1胎型大样上平面预拼为桥位状态,整体划线切割接口周边。合龙段两端各留100mm工地配切量,待工地架设到该位置时测量距离,根据测量数据进行整体配切后发运工地合龙。预拱度确定:按设计图要求拱肋在制造时预加预拱度,其预拱度值=设计预拱度+工厂制造拱度。 2.1.1单元件的制造 单元件的制造是在单元管节加工完成后在1∶1胎型上进行的。工厂胎型分为钢管主拱肋的上弦管和下弦管分别制作,且在胎型上必须准确确定分段口的坐标位置以及其它相关杆件的平面位置。胎型整体必须牢固可靠以保证数据的准确性。单元管节在胎型上拼接成单元件,拼装时注意单元管节之间按焊接工艺的要求预留相应的间隙,保证单元管节之间的匀顺过渡。 2.1.2腹板单元制造 腹板和劲板板均采用数控门切下料,下料时预留焊接收缩量,按焊接工艺要求机加工各板的坡口。加工方法是先做各种板单元,在各种板单元焊接完成后进行调直处理,在组装平台上先放置腹板单元,且对劲板的组装位置进行精确划线,之后按线组装劲板,保证劲板板与腹板单元的垂直度,开始组装腹板单元。 2.1.3钢锚箱的制造 钢锚箱是拱肋吊杆的承力关键部件。钢锚箱沿吊杆位置不同零件尺寸变化,全桥锚箱零件采用CAD软件全桥逐一零件放样。各零件采用数控门切割下料,焊接边预留机加工,焊接坡口采用机加工刨切坡口。在拼装平台上布置各个锚箱组装控制线,按线组装各个锚箱并打印吊杆位置号。按《焊接工艺卡》焊接,焊接时严格按工艺要求的焊接顺序焊接,捶击焊缝,减少焊接变形和残余焊接应力的产生。 2.2主拱合龙和体系转换控制 主拱合龙前必须对临时系杆拱位置进行精调。待拱顶和4个合龙口的测点坐标与高程均达到允许范围内后,在提升塔内侧钢管支架适当位置处安装2层限位装置,以固定临时系杆拱。在合龙温度下连续测量合龙口之间长度,采用现场配切法合龙,将配切好的钢管按下弦管→上弦管→腹板的顺序安装并锁定。合龙施工必须在合龙温度10~15℃同步进行,防止合龙后钢管拱线形发生变化及产生额外附加应力。待主拱合龙段与其他部位焊缝全部焊接完毕且检测合格后,进行体系转换。体系转换分4个步骤:①拆除拼装拱脚段的原位支架;②控制塔顶液压连续千斤顶,分级卸载提升力,完成提升段钢管拱落拱;③分级卸载临时水平系杆张拉力并拆除;④解除钢箱与拱肋的连接焊缝及抱箍,利用提升系统下放拱座钢箱,完成体系转换。体系转换后,在自重作用下主拱将产生较大下挠,同时拱脚水平推力将由连续刚构梁体的纵向预应力承受。经现场监测,体系转换后,钢管拱各控制截面观测点竖向位移实测值与理论计算值对比如图1所示。 图1体系转换后主拱各测点竖向位移与理论计算值对比 2.3桥面系施工标高控制 主桥设计为时速350km的I型双块式无砟轨道,无砟轨道底座板和道床板截面尺寸分别为2800mm×220mm和2800mm×220mm,二期恒载为14kN/m,对主拱线形和梁体桥面高程影响较大。在吊杆张拉完的桥面实测数据的基础上,采取以下方法控制成桥轨枕标高。桥面系施工

桥梁上部结构缆索吊装施工

桥梁上部结构缆索吊装施工 一、概况 ●适用:峡谷或水深流急河段上,或在通航得河流上需要满足船 只得顺利通行得拱桥施工 ●优点:跨越能力大,水平与垂直运输机动灵活,适应性广,施工 比较稳妥 主要施工设备:缆索吊机塔架、缆索吊机主缆(承重缆)、起重 缆、牵引缆、扣索、工作缆、风缆、横移缆、跑车(天车、骑 马滑车)、索鞍、锚碇等 二、吊装方法与要点 (一)缆索吊装施工工序:

大跨径拱桥吊装,尽量采用正吊、正落位、正扣,索塔得宽度应

与桥宽相适应 ●拱肋分段安装,每段拱肋由索扣临时固定在扣架上,每段拱肋 必须设置防风缆 ●起重索与扣索承重交接时速度不能太快,每次升降应控制在一 定范围内,交接过程中对风缆随时进行调整 ●拱肋跨度>80m或横向稳定安全小于<4,应采用双基肋合龙松 索成拱方式 双基肋合龙松索成拱方式:当第一根拱肋合龙并校正拱轴线,楔紧拱肋接头缝后,稍松扣索与起重索,压紧接头缝,但不卸掉扣索;待第二根拱肋合龙,两根拱肋横向连接固定好并拉好风缆之后,再同时松卸两根拱肋得扣索与起重索 (二)施工中注意要点 1.缆索设备检查项目及检查方法: (1)地锚试拉: ●每一类地锚取一个进行试拉 ●缆风绳得土质地锚要求位移量非常小,应全部试拉 (2)索扣:

①检查项目:扣索、扣索收紧索、扣索地锚、动力装置 ②检查方法:将两岸得扣索用卸甲连接起来,收紧索进 行对拉 (3)主缆系统试吊: ①检查项目: ●连续不间断观测塔架位移、主索垂度、主索受力 得均匀程度 ●动力装置工作状态,牵引索、起重索在各转向轮 上运转情况 ●主索地锚稳固情况 ●通信、指挥系统得通畅性 ●各作业之间得协调情况 ②检查方法: ●主索系统试吊分跑车空载反复运转、静载试吊、 吊重运行三步 ●每一步骤试吊完成后,确定无异常情况才能进入 下一步骤 ●试吊重物可以为构件、钢筋砼预制件等 ●试吊载重分几次完成,吊重一般为设计荷载× 60%、100%、130% 试吊后综合各种观测数据与现场检查结果,对设 备得技术状况进行分析、鉴定,提出切实可行得 改进措施,对能否吊装做结论 2.设置风缆得注意要点:

双幅大跨度钢管拱桥横移式缆索吊机吊装斜拉扣挂施工工法

双幅大跨度钢管拱桥 横移式缆索吊机吊装斜拉扣挂施工工法 1、前言 大跨度拱桥无支架法施工,可根据具体的桥梁结构形式、周围的地理环境因地制宜的采用缆索吊机的方式吊装,扣挂体系亦有多种形式。对于钢管拱桥,钢管拱各吊装节段用高强螺栓临时连接,简化了安装程序,降低了劳动强度,加快了拼装速度,提高了缆索吊机的工作效率,因此采用缆索吊装这种优势更为明显。为此,在吸取各方面的实践经验和在集团公司内外专家的指导下,我单位在东莞水道大桥施工中,经过共同研究,多方优化,针对双幅拱桥自行设计了2×80T可滑移式缆索吊机和塔扣分离的扣挂系统,采用了双幅大跨度钢管拱桥缆索吊装斜拉扣挂施工工法,制定了详细的施工工艺和操作规程,获得了成功。 2、工法特点 2.1在工厂内进行钢管拱肋的分段加工和预拼装工作,采用陆路和水路运抵施工现场,易于保证结构复杂的钢管拱肋的加工质量。 2.2缆索吊装和扣索塔斜拉扣挂自成体系,安装过程中互不干扰,受力明确,计算简便。 2.3扣挂体系中,采用塔顶过鞍和张拉转换系统,减少了高空作业的同时,使扣索调整工艺简单、方便快捷。 2.4施工中采用了左右侧拱肋对称安装固定,然后再安装横撑的施工顺序,有助于安装过程中的安全稳定。 2.5钢管拱肋接头在焊接前采用了等强度外法兰板连接方式,可有效的应对台风到来时的不利影响。 2.6钢管拱线形控制采用大型有限元通用软件模拟钢管拱的受力状况进行计算,并以自编程序予以复核的方式,使钢管拱的线形控制从理论上得到了保证。 2.7对原桥台基础进行加固处理,作为缆索吊机的后锚;在边拱拱顶设置预埋件,直接利用边拱的自重平衡扣索索力,利用拱座作为扣塔的基础,做到了经济、安全、实用。 3、适用范围 本法普遍适用于跨越深水、深谷、航运繁忙的河道上的拱型桥梁,尤其适用于平原地区边拱设计较为强大的大跨度飞燕式双幅钢管砼系杆拱桥拱肋的拼装架设。 4、工艺原理 深谷或通航河就是针对需要跨越深水、本工法采用可横移式缆索吊机吊装斜拉扣挂法, 道的大跨双幅拱桥施工中,由于无法采用支架或拱架用量过大的情况下而采用的。施工前,针对设计图纸所确定的拱肋分段重量,进行缆索吊机的设计安装,每一节段采用缆索吊机吊装就位后,通过扣挂体系临时固定和微调,进而完成所有拱段的安装,实现合龙。安装过程中,按提前计算拟定的各节段预抬标高值进行设置,达到对拱肋的安装线型进行控制的目的。安装完一幅拱肋后,通过预先设置的横移滑道横移缆索吊机,安装另一幅钢管拱肋。 5、工艺流程及操作要点 5.1工艺流程

大跨径钢管拱桥施工监控

大跨径钢管拱桥施工监控 摘要:秦皇岛市先锋路南延伸跨大汤河大桥,是秦皇岛市上跨大汤河的一座交 通兼景观桥梁。为确保质量在可控制的状态内,建设单位引入了监控单位。本次 桥梁建设工程,全方位引入了监控机制,本次桥梁建设工程,全方位引入了监控 机制,本文对该桥型的施工监控做了简要介绍。对监控主要内容、施工监测过程、施工控制安排等方面进行了全面分析。本次施工完全按照设计要求进行,从而使工 程施工质量达到设计和规范要求。结果表明,施工控制所采用的计算模型、监测方 法和控制方法是科学的。尤其是在2-5主跨施工中,监控单位对桥梁的主梁及主 拱应力、吊杆张拉等项目进行了全程的监控。本文基于此工程实践,探讨大跨径 钢管拱桥施工监控实践以及操作流程,强调监控工作的关键环节。 关键词:桥梁钢管拱吊索监控 Long-span steel tube arch bridge construction control baorui (qinhuangdao municipal construction group Co., LTD. In hebei qinhuangdao 066000) Pick to: pioneer road across the large extended qinhuangdao peasants bridge, qinhuangdao is on the peasants across a big traffic and bridge landscape. To ensure quality in control in the state, the construction unit into the control unit. The bridge construction engineering, all-round introduced monitoring mechanism, the bridge construction engineering, all-round introduced monitoring mechanism, this paper analyzes the construction supervision of the form do are briefly introduced. To monitor the main contents, construction monitoring process, the construction control arrangement, etc are fully analyzed. This construction completely according to the design demand and the engineering construction quality to achieve the design and specification. The results show that the construction control of the calculation model, monitoring methods and control method is scientific. Especially in 2-5 main construction, monitoring unit of the bridge girder and the arch stress, the tension and the monitoring of the whole project. This paper based on the engineering practice, this paper discusses the steel tube arch bridge long-span construction supervision practice, as well as the operation process, emphasizes the key link of monitoring work. Keywords: bridge steel tube arch sling monitoring 工程施工监控,是保证工程质量的重要措施之一。秦皇岛市先锋路南延伸跨大汤河大桥,是秦皇岛市上跨大汤河的一座交通兼景观桥梁,该桥梁的受力体系为国内首创。为确保施工 全程明确桥梁的受力状态,由监控单位对该桥梁进行了全程的监控,本次桥梁建设工程,全 方位引入了监控机制,本文对该桥型的施工监控做了简要介绍。对监控主要内容、施工监测 过程、施工控制安排等方面进行了全面分析。本次施工完全按照设计要求进行,从而使工程施 工质量达到设计和规范要求。结果表明,施工控制所采用的计算模型、监测方法和控制方法是 可行的。 本人担任该项工程的技术负责人,在施工期间对监控有了一些了解,知道了桥梁监控的 必要性,对桥梁的监控项目有一些简单的了解,在此与大家共同分享。 一、工程概况 秦皇岛市先锋路南延伸跨大汤河大桥是一座交通兼景观功能的桥梁。该桥为辐条式桥拱 组合的结构体系,全桥共划分为4部分,分别为主桥、南引桥、北引桥和人行梯道。 主桥采用39+90+39=168米跨径双向预应力箱型断面主梁,中跨采用梁拱组合体系,放射 状吊杆形式,边跨采用连续梁结构配孔,主桥中央分隔带4米宽,用于设置拱肋,中墩与主 梁采用铰接形式。主梁采用变截面形式,梁底曲线为二次抛物线,根部的3.5米变化到端部 和跨中的1.8米,主梁横断面为单箱5室,腹板厚0.6米,箱室净宽4.975米,顶板厚0.25

相关主题
文本预览
相关文档 最新文档