当前位置:文档之家› 水库溢洪道的设计

水库溢洪道的设计

水库溢洪道的设计
水库溢洪道的设计

水库溢洪道的设计分析与探讨

【摘要】溢洪道的设计和布置合理与否,不仅直接影响到水库的安全,而且关系到整个工程造价。土石坝一般中小型溢洪道,约占水库枢纽工程造价的25~30%及劳动力的25%,故溢洪道合理的布局和选型,在水库工程设计中是一个比较重要的环节。

【关键词】土石坝;水库溢洪道;问题

溢洪道的设计和布置合理与否,不仅直接影响到水库的安全,而且关系到整个工程造价。土石坝一般中小型溢洪道,约占水库枢纽工程造价的25~30%及劳动力的25%,故溢洪道合理的布局和选型,在水库工程设计中是一个比较重要的环节。

1. 常见问题

1.1溢洪道是洪水期间保证水库安全的重要设施,中小型水库由于受工程造价的限制,其设计采用的洪水标准往往偏低、选用洪水数据(洪峰、洪量)偏小,因而必然带来溢洪道设计尺寸偏小,再加上周边岩体风化坍落,往往造成泄流能力不足,因而不能保证安全泄洪。

1.2在布置上,某些工程设计的溢洪道其进出口段离坝身太近,坝肩与溢洪道之间仅有单薄的山脊相隔。进口段如未进行有效的护砌,泄洪时一旦发生冲蚀现象,将危及坝肩安全,有些设计的陡槽末端与坝脚紧贴,如果发生横流冲刷,更易危及坝脚安全,因此这二种情况均对大坝的运行安全十分不利。

1.3溢洪道设计的平面弯道半径过大和收缩过剧,对泄流十分不利。特别在溢洪道陡坡段布置有弯道时,由于弯道流态、流势剧烈变化,导致二岸产生了水面差,这时凹岸水面壅高,并在下游衔接的平直段内产生折冲水流,大大影响了泄流能力和消能效果。另外陡坡段或缓流段的过剧收缩,也会发生显著的壅水和流态变化,并对溢洪道衬砌造成冲击,如砌护过高会增加投资,砌护过低了又不安全。

1.4溢洪道纵横剖面及平面布置设计不当,比较突出的问题是陡坡设计比降过陡。部分溢洪道布置在非岩性山坡上,其底部未做有效的反滤衬砌,致使渗水后易产生滑坡;结构上也不稳定。在横断面设计中,有些工程对两侧山坡开挖坡度注意不够,有的过陡,加上衬砌厚度偏薄,不能满足抗滑抗倾稳定,也易造成坍方和滑坡;平面布置上,存在着上下游断面连接不配套,形成“瓶颈”现象,从而影响了泄洪能力;此外溢洪道末端与河道衔接部分注意不够,导致有的末端高出河床很多,有的末端未做砌护处理,常造成严重冲刷,并向上延伸,直至整个建筑物破坏。

1.5现有水力设计方法尚不够完善,如溢洪道进口布置有引洪平流段的情况下,由于水力计算中忽略了平流段时进口水位的壅高(即水头损失)。而实际壅高有时较大,不可忽视。有些设计对溢洪道的消能工的设计考虑不够充分,或者型式选择不当,导致消力墙长度和深度均不能满足需要,消能不够充分,致使下游河段发生严重

冲刷。

另在侧槽式溢洪道设计中,过去大多采用“扎马林法”进行计算。经多年实践及水工模型试验证明:使用该法计算所确定的水面坡降偏小,导致侧槽深度不够,流量系数减小,使侧堰局部呈现淹没出流,其实际泄洪流量达不到设计要求的泄量,因而对工程是不安全的。

1.6有些工程在结构设计中对泄洪的特点和基础特性考虑不周,溢洪道下泄的高速水流具有很强的冲出力、由于急流的掺气和脉动现象十分显著常会产生剧烈的震动;有些溢洪道采用低标号的浆砌石或砼砌护,且砌护厚度与边坡砌护高度都不能适应结构稳定要求,因而不能抵御高流速的冲刷;有些非岩基上的溢洪道设计时,底部几乎没有反滤排水设备,极易发生塌滑;有些大面积圬工砼衬砌由于未设伸缩沉陷缝,致使溢洪道衬砌发生一些裂缝,总之这些都使工程安全受至影响。

2. 设计对策

溢洪道设计中掌握的基本资料是否充分与完善,选用的设计标准是否恰当,均直接影响到整个工程的安全及经济,现就有关问题谈一些看法:

2.1规划布局。溢洪道工程的规划布局应尽量利用有利地形地貌,即要经济合理又要保证安全。如大坝附近有天然山坳可以布设溢洪道则最为理想,如主坝口子狭窄无法布置正堰则可考虑选择侧槽式

溢洪道。其规划布置的主要原则是:基础坚硬均一,线路短,无弯道,出口远离坝体;工程严禁布置在滑坡或崩塌体地上。溢洪道通常有四个主要部分组成:引流段(近口段)、控制段(堰流段)、泄流段(陡坡、急流段)及消能工。

2.1.1引流段(近口段)。为引流平顺其进口形状最好做成喇叭口,为减小损失其长度不宜过长。如因地形所限必须在该段内设置弯道时,则应使弯曲段尽量平缓外、还应使弯道与下游衔接段和出口段尽量远离坝脚,以免冲刷坝脚。引流段截面一般选用梯形或矩形,当流速≤1~2米/秒时一般可不砌护,但与坝端邻近和紧接控制建筑物的范围内应砌护一定长度,同时在弯道二侧的凹岸亦应砌护,如为坚硬的岩基则可不考虑。

2.1.2控制段(堰流段)。为使泄流均匀,可使近口水流垂直于控制段建筑物;根据地形条件和泄流需要必需设置宽顶堰或实用断面堰,堰宽度可按允许单宽流量选定,岩基上单宽流量为40~70m3/s,非岩基上为20~40m3/s,土基上为20m3/s。除近口段设有引流段外,一般应使堰顶宽度≤3h堰(h堰为堰上水头,单位m);为使水流平顺,堰口与其上游引流段可采用渐变段连接,其收缩角以12度左右为宜。如堰体较宽则应在其横向设置温度缝与沉陷缝,其间距可按10~15m布设。

2.1.3泄流段(陡坡、急流段)。该段平面均采用直线布置,并尽量避免弯道和设置扭坡顺引流态的急骤变化甚至产生负压;其纵断

面设计应因地制宜地根据地形、地质而选用缓坡、陡坡或多级跃水等多种形式;陡坡段应采用均一比降;由于泄水段流速很高,故应尽量布置在岩基上,如为非岩基则该段衬砌厚度应按允许流速与地质条件选择进行设计,一般浆砌石用0.5~1.0m,砼0.2~0.5m,钢筋砼0.15~0.3m(砼与钢筋砼基部还应设0.3~05m厚的浆砌石底砌护),其坡度一般以≤1/2.5为宜。

新鲜岩基上的泄水道,可不砌护;如为松软风化岩石仍须用

0.3~0.5m的浆砌石或0.2m厚的砼作砌护,并加设锚固筋;如需大面积砼衬砌则应按地质情况,结合温度变化布置伸缩缝和沉陷缝,两侧边坡可仅设横缝,底部则应设纵横缝,间距一般为8~12m,同时在衬砌底部需敷设排水的反滤料;考虑高速水流掺气的特点,边坡的砌护高度应有适当超高。

2.1.4消能工。在泄水段末端需设置消能工,其具体选择型式可根据地形、地质和水力条件的要求而定,采用多级跃水或溢洪道末端的跃流段应使其泄流方向远离坝脚≥100~150m。对于非岩基上一般均采用底流消能,并在末端设置消力池。如泄流量不大,亦可考虑消力槛形式;如为远驱式水跃,由于极易造成冲刷,此时可考虑采用差动式消力槛形式;在岩基上,如溢洪道尾端有较陡边坎时,采用挑射消能较为有利(但需考虑高空扩散气流及下游冲刷对周围影响),由于这种形式可省去消力池、护坦与海漫等工程,由于其工程量小、造价低,因而常被采用。根据工程实践鼻坎形式以矩形差

动式最好,但鼻坎以上陡坡最好做成矩形断面,千万不可作成梯形断面以免需用扭坡与鼻坎衔接。

2.1.5侧槽段(指侧堰深槽式溢洪道)。该段布置应垂直于来水流向,其长度可根据等高线向上游延伸,水流特点是侧向进流,纵向泄流。

侧堰与深槽连接的渐变过渡段,其收缩角应控制在12°左右,其长度一般为槽内水深的3~5倍,其主要作用是避免槽内波动和横向旋滚的水流直接进入陡坡段。

2.2水利计算。为使水力计算与工程特性相一致,故正确选用计算公式十分重要。

2.2.1引流段的水力计算:可采取自下游控制断面向上游反推求水面曲线的方法进行(如查尔诺门斯基方法),引流段进口处端须先计算水位壅高,才能求得泄洪时的正确库水位。

2.2.2控制段的汇流计算:可根据“溢流堰水力计算设计规范”建议的方法计算,同时正确选用流量系数时并使其与选用的堰型相一致。

2.2.3泄流段陡槽水力计算:推求陡槽段水面曲线的方法较多,如陡槽底宽固定不变时,可采用bⅱ型降水曲线或用查尔诺门斯基方法计算;对底宽渐变的陡槽段则可用查氏方法分段详算。

2.2.4消能设施的水力计算:采取底流式消能可以采用a·c:巴什

基洛娃图表计算。由于巴氏对各种消能设备的计算方法与步骤均较明确、详细,计算省时又能保证精度;但是我们在选定消能设施的尺寸时应该留有余地,对于一些重要的中型水库其水力计算成果还应通过模型试验加以验证;至于挑射消能计算,目前还未找到一种比较成熟适用的计算方法。

2.2.5侧槽段的水力计算:过去采用的“扎马林法”由于计算时采用了均匀流假定,而实际水流状态是沿程变量流,故不符合适用于均匀流的谢才公式,因而与实际泄流情况有较大出入。

近年来有些水利科技工作者根据水流动量或能量关系而建议采用的水面曲线推算的公式比较符合实际泄流情况,如“西南水工所在《中小型水库侧槽式溢洪道的设计》一书中介绍的公式”、“美国《小坝设计》一书中用的公式”、以及“浙江省《水利科技情报》77年第三期介绍的南斯拉夫哈丁公式”等均与水工模型试验吻合。其中南斯拉夫的哈丁公式又可结合实际验算,计算方法简便、省时,故可供设计参考。由于侧槽内实际的流态十分复杂,故在堰顶对面的岸坡水面要比平均水位抬高5~20%,因此其设计的衬砌的高度、厚度要要考虑上述影响。

由于侧槽式溢洪道在侧向进流时,水流的冲击、掺气和槽内水流波动很大,流态十分复杂,故精确计算十分困难,因此对于重要的大中型水库其侧槽式溢洪道设计需依据水工模型试验来确定其相应尺寸。

2.3结构计算。为保证建筑物安全稳定的结构计算是不可缺少的,除一些护坡及挡土墙的稳定可按一般方法计算外,必须进行陡坡面砌护厚度与消力池底板的稳定分析,而对挑射消能则应进行鼻坎的稳定与基础应力计算。

2.3.1陡坡的护砌厚度应满足滑动安全,设置伸缩缝沉陷缝以后,坡面砌护类似大面积薄板,故对基础应力以及倾复稳定一般可不须计算,其主要控制条件是滑动稳定,作用在护面上的滑动力主要有水流拖泄力、砌体自重顺坡方向的分力及护面凸体(如伸缩缝)产生的阻力;抗滑力则包括砌体自重垂直坡面的分力和水流静压力(需扣除高速水流的脉动压力)、护面上的上举力和渗透压力,其抗滑安全系数应≥1.3~1.5即为安全。

2.3.2消力池底板厚度应满足抗浮稳定要求,由于底板四周边界的约束作用,一般没有滑动问题,因此仅需对其抗浮要求进行稳定计算。作用在底板上的上浮力包括渗透压力、脉动压力、底板上凸出体产生的上举力,以及下游消力池水深与水跃段内压力差。抗浮力包括底板的浮重和底板上的水重,其抗浮安全系数≥1.3~1.5即为安全。

2.3.3挑流鼻坎的尺寸应满足滑动稳定、倾复稳定和允许的基础应力。作用于鼻坎上的向下的垂直力包括鼻坎自重、鼻坎上的水重,挑流曲面离心力的垂直分力;向上的垂直力包括脉动力、渗透压力、鼻坎下游尾部形成的上浮力、以及鼻坎上凸出体产生的上举力。作

用于鼻坎的水平推力包括水流的拖泄力,挑流时其鼻坝曲面离心力的水平分力,以及鼻坎上凸出体产生的水平分力。按一般力学方法计算鼻坎的滑动与倾复稳定时其要求抗滑安全系数≥1.3~1.5,抗倾安全系数≥1.5,同时计算上述各力的合力,其作用点应位于基础面中三分点之内,且基础最大与最小应力比值≤3~5,以避免发生不均匀沉陷。

3. 小结

针对中小型溢洪道常出现的问题,应从资料收集、规划布局、水利计算及结构计算层层把关,保证工程安全经济可行。

陈丹仲水库除险加固初步设计毕业论文

丹仲水库除险加固初步设计毕业论文 4 工程任务与规模 4.1 工程存在问题 1. 下游坡的抗滑稳定不能满足规要求。 2. 大坝坝坡太陡,坝体不能按照设计要求挡水。大坝心墙高度严重不足,坝基清基不彻底,特别是岸坡削坡或清基不符合要求,导致坝体坝基渗漏,部分地段坝体与坝基的接触渗漏及坝体与岸坡的接触渗漏。大坝存在坝基渗漏和大坝中部转折处山体两侧坝肩绕坝渗透问题。 3. 溢洪道施工质量较差,且大部分未衬砌,由于浆砌石衬砌的基础处理不好,普遍存在不均匀沉降,砌体质量差,所以出现了边墙破损严重,底板老化,已破坏了结构的整体性和稳定性,一旦宣泄较大洪水时,必将造成严重的后果。 4. 高剅为隧洞形式,边墙衬砌出现局部脱落,混凝土强度低,老化严重。低管与与坝体土料接触处的密实度达不到要求,一直存在沿管壁的接触渗漏问题,止水已老化和局部破坏。 5.输水建筑物闸门锈蚀,漏水严重,运行已超过使用折旧年限;启闭设施旧、老化,附件难以更换,属淘汰产品,不能满足正常运用。 6.大坝无安全监测设施。 7.水库无水雨情自动测报系统,无洪水调度系统。通讯及管理设施落后。 4.2 除险加固的必要性 丹冲水库位于红安县上新集镇丹冲村,是一座以灌溉为主,兼顾防洪、养殖等综合利用的小(1)型水库,水库建成以来发挥了重要的作用,取得了良好的社会效益,但由于水库建设过程中诸多不规因素,纯属边勘探、边设计,边施工的三边工程。水库兴建时既没有作地基岩体性质调查,也没有作筑坝土料的物理学性质试验。 该工程已运行了37年,目前,该水库存在较多的安全隐患,影响水库效益的发挥。丹冲水库的设计灌溉面积8000亩,实际灌溉面积为2500亩。1975年、1982年两

水库溢洪道泄洪闸设计说明

水库溢洪道泄洪闸设计

1.1水库建设过程 (7) 1.2水库目前存在问题 (7) 2 水文 (8) 2.1流域概况 (8) 2.2年径流复核成果 (9) 2.3设计洪水复核成果 (10) 2.4非汛期设计洪水 (11) 3 工程地质 (11) 4 除险加固任务和规模 (12) 4.1除险加固任务 (12) 4.2除险加固洪水标准 (13) 5.溢洪道泄洪闸设计 (13) 5.1方案的说明 (13) 5.2方案比较 (14) 5.3设计基本资料 (15) 5.4溢洪道轴线选择 (16) 5.5溢洪道工程布置 (16) 5.6水力设计 (18) 5.7溢洪道防渗与排水设计 (22) 5.8稳定计算 (23) 6 施工组织设计 (28) 6.1施工条件 (28) 6.2施工导流 (28) 6.3主体工程施工 (29) 6.4施工交通运输 (30)

6.6施工总布置 (31) 结论 (33)

1 工程概况 白沙水库位于淮河流域沙颖河上游,坝址位于省市与登封市交界的白沙村以北300m处。是50年代初治淮早期我省兴建的大型水库之一,当时水库的设计洪水标准为100年一遇,校核洪水标准为1000年一遇。设计水位233.8m,校核水位235.3m,总库容2.95亿m3。水库控制流域面积为985km2,占颖河流域面积7230km2的13.6%,占颖河山丘区流域面积1900km2的51.8%,是以防洪灌溉为主,兼顾工业供水、水产养殖、旅游等综合利用的大型枢纽工程。水库位置见图1.1-1。 1978年水电部颁发了《水利水电枢纽工程等级划分及设计标准》(山区、丘陵区部分)SDJ12—78,根据该规定白沙水库正常运用洪水标准应为500~100年一遇,非常运用洪水标准如失事后对下游不致造成较大灾害的其下限值为2000年一遇,如果失事后对下游将造成较大灾害的大型水库应以可能最大洪水作为非常运用洪水标准。1990年水利、能源部对SDJ12—78又颁发了补充规定,根据该规定将白沙水库的校核洪水标准由可能最大洪水改为2000年一遇。1994年建设部发布国家标准《防洪标准》(GB50201—94)作为强制性国家标准,根据该标准白沙水库设计洪水标准应为500~100年一遇,校核洪水标准应为5000~2000年一遇。我省大部分大型水库,根据以上国家颁发的洪水标准、结合各水库的具体情况,经历20余年基本进行了除险加固,提高了水库安全标准。已完成的有鸭河口、宿鸭湖、鲇鱼山、孤石滩、彰武、南海等水库,正在实施的有白龟山水库和昭平台水库。 该工程1951年开工,1953年竣工。由于当时形势的需要和各方面条件的限制,存在诸多问题。1956年进行了扩建加固。 2001年3月对水库安全标准进行复核,1000年一遇洪水位为235.51m,2000年一遇洪水位为236.29m,而目前白沙水库允许的最高水位235.13m。因此,白沙水库现有安全标准不足1000年一遇,尚未达到国家《防洪标准》(GB50201-94)5000年~2000年一遇的下限。由于白沙水库在沙颖河流域防洪调度中的作用非常重要,事关市、京广铁路和京深公路的安危,一旦失事,将对市、、临颖、和郾城等县市造成严重的洪水灾害。因此急需除险加固。 2001年3月省水利厅组织水利部、淮委、黄委和水库管理局等单位组成专家组,对白沙水库进行安全鉴定,鉴定意见为:“白沙水库大坝现有防洪标准不足千年,属危险水库,急需进行除险加固。建议采取工程措施提高抗御洪水标准以满足国标《防洪标准》要求,对溢洪道混凝土建筑物和金属结构进一步进行检测。进一步补充完善观测设施,加强观测工作。在未进行除险加固前,水库管理单位应加强工程管理和工程监测,并做好超标准洪水的安全保坝措施。”

水利水电毕业设计

目录 一、基本资料 二、工程量计算(附件) 三、单价表 四、致谢 五、主要参考资料 一、基本资料 1课题名称 芭蕉河面板堆石坝初步设计概算文件编制 2工程概况 芭蕉河一级水电站位于湖北省恩施自治州鹤峰县境内,地处芭蕉河中下游河段,坝址下距鹤峰县城11.1km,距在建的芭蕉河二级水电站7.6km,为芭蕉河干流开发的“龙头”电站。 本工程以发电为主,兼顾航运、养殖、旅游等综合利用。坝址位于柳月坪,控制河域面积为303.3km2,多年平均流量12.6m3/s,多年平均年径流量3.97亿m3,水库正常蓄水位647.5m,死水位616.0m,总库容0.96亿m3,库容系数14.91%,为年调节水库;本工程属Ⅲ等中型工程,工程枢纽由混凝土面板堆石坝、左岸岸边开敞式溢洪道、左岸放空洞、右岸引水洞、地面厂房及升压站等组成,电让装机2台,总装机容量0.901亿kw.h,保证出力5.1MW,增加下游梯级电量0.085亿kw.h。枢纽主要工程量:土石方开挖79.3万m3,土石方填筑230.4万m3,混凝土10.12万m3。施工导流采用左岸隧洞导流,总工期40个月。 3工程地质(坝址工程地质条件) 本工程建坝河段位于芭蕉河下游柳月坪至芭蕉湾之间,长约1.5km,平面上大致成形,以中部河湾为界,河湾以上属柳月坪坝址,河湾以下为落山坝坝址。坝段内河谷深切,呈“V”型,上坝址为斜向谷,两岸地形连续完整,但冲沟发育,岸坡陡峭,一般40--60,右岸发育3堆石体;下坝址为横向谷,岸坡相对平缓,坡度一般35--50,河谷宽度较上坝址宽50—80m,右岸地形连续完整,发育5、6两条冲沟,左岸因背后的溪沟深切,临河山体相对单薄。上坝址基岩主要为龙马溪组上部和罗惹坪组下部,以中硬的条带状砂岩和石英砂岩为主,饱和抗压强度72.4—154.0MP;下坝址基岩为罗惹坪组中上部,以泥质粉砂岩为主,饱和抗压强度20.1—30.5MP;岩石较软弱,且普遍具有崩解特性。综合而言,上、下坝址的工程地质条件各有优缺点,以上坝址工程地质条件略优。 选定的上坝址位于八字山背斜南东,地质构造较简单,为单斜构造区,岩层产状N35—50E,SE30—50。区内以探明的断层有6条,规模均较小,最大断层破碎带宽0.40m。本区节理主要有4组,具有延伸性、连续性好、节理面较平直的特征,尤其是4组,为区内各种陡崖,跌坎的控制性结构面,坝址岩体风化较浅,卸荷作用相对而言较弱,建坝堆风化岩带,卸载带开挖处理的工作量都不大,坝址工程地质条件满足重力坝,面板堆石坝的建坝要求,基本满足拱坝的建坝要求,但面板堆石坝方案更适应坝址的地形地质条件。 水质分析结果表明芭蕉河河水对混凝土无任何腐蚀性,左岸岩湾溪水和右岸谢家溪沟水对混凝土具有中等溶出型或弱溶出型腐蚀性,但溪沟水流量很小,对工程影响甚微。

水资源规划毕业设计(沅水五强溪水库

水资源规划 沅水五强溪水库水利计算 姓名: 学号: 专业: 学习形式: 时间:

目录 1 基本情况 (3) 1.1 流域概况 (3) 1.2 开发任务 (3) 1.3 设计任务 (4) 1.4 设计前提 (4) 1.5 设计内容 (5) 1.6 设计原始资料 (5) 2 兴利计算 (10) 2.1 基本资料整理 (10) 2.2 死水位的确定 (10) 2.3 保证出力计算 (13) 2.4 水电站必需容量选择 (15) 2.5 水电站调度图绘制 (16) 2.6 重复容量选择与多年平均电能计算 (20) 3 防洪计算 (24) 3.1 水库调洪计算 (24) 3.2 坝顶高程的确定 (26) 4 经济计算 (29) 4.1 方案一工程费用 (29)

4.2 其它方案工程费 (32) 4.3 防洪效益 (39) 4.4 经济比较 (40) 附表 (45) 附图 (70)

1 基本情况 1.1 流域概况 五强溪水电站位于湖南省沅陵县境内,上离沅陵县城73km,下距常德市130km。坝址控制流域面积83800km2,占沅水总流域面积的93%,流域雨量充沛,水量丰富,坝址多年平均流量2060m3/s,年水量649×108m3,并有1925年以来的水文资料和核实的历史洪水资料。坝址位于沅水干流最后一段峡谷出口处,岩性坚硬,地形地质条件良好。具备了修筑高坝的自然条件。 在沅水规划中,五强溪水电站为沅水干流最后第二个梯级,上游接虎皮溪及酉水的风滩(已建成)梯级,是一个以发电为主,兼有防洪、航运效益的综合利用水库,系湖南省最大的水电电源点。 1.2 开发任务 五强溪水电站是以发电为主、兼有防洪、航运和灌溉等效益的综合利用工程。其开发任务分述如下: 1.发电 五强溪水电站建成后投入华中电网,主要供电范围为湖南省。 2.防洪 沅水下游赤山以西的桃源、常德、汉寿三县及常德市所属平原河网地区,统称沅水尾闾。这个地区地势低洼。全靠提防保护,共保护人口106万,农水159万亩。现有河道的泄洪能力20000m3/s,如遇1927、1931、1933、1935、1943、1949、1954、1969等年洪水重现,河道均不

小型水库溢洪道病害分析及处理探讨

小型水库溢洪道病害分析及处理探讨 摘要:溢洪道是水库枢纽中的重要建筑物,是洪水期间保证水库安全的重要设施。笔者通过对小型水库溢洪道的一些常见病害形成原因进行分析,提出了对水库溢洪道病害处理的措施。 关键词:小型水库;溢洪道;病害分析;处理措施 小型水库多建于上世纪50-60年代,“三边”(边勘测、边设计、边施工)和“四不清”(来水量不清、流域面积不清、库容不清、基础不清)很普遍,技术含量低,防洪标准低,大坝形体单薄,结构不安全。经过几十年的运行,小型水库坝体裂缝、渗漏,溢洪道和输水道塌陷、堵塞、泄洪能力不足,闸门启闭不灵活等工程问题普遍存在,有些还相当严重。许多小水库位于深山中,处于“无防汛抢险道路、无通信预警手段、无防汛抢险物料”的“三无”状态。还有许多小水库实行了承包、租赁、拍卖使用权等形式的改革,但有些承包、租赁给个人时没有明确工程管理维护责任,导致水库工程长期疏于管理、老化失修,存在安全隐患。正是基于小型水库普遍存在的诸多安全隐患,近年来国家加大了对小水库的治理力度。 溢洪道是水库枢纽中的重要建筑物,是洪水期间保证水库安全的重要设施,是用来宣泄规划库容所不能容纳的洪水、保证坝体安全的开敞式或带有胸墙进水口的溢流泄水建筑物。 1 溢洪道常见病害分析 在工程实践中,小型水库的溢洪道存在不少共性的问题,大致归纳如下。 1.1小型水库由于受建设时期施工条件、建设资金等的限制,其设计采用的洪水标准往往偏低,溢洪道设计尺寸偏小,再加上周边岩体风化坍落,往往造成泄流能力不足,因而不能保证安全泄洪。 1.2在布置上,有些工程设计的溢洪道进出口段离坝身太近,由于几十年的运行,进口段的护砌出现裂缝,泄洪时一旦发生冲蚀现象,将危及坝肩安全;有些设计的陡槽末端与坝脚紧贴,假如发生横流冲刷,更易危及坝脚安全。 1.3有的溢洪道平面弯道半径过大和收缩过剧,对泄流十分不利。在溢洪道陡坡段布置弯道时,由于弯道流态、流势剧烈变化,导致二岸产生水面差,这时凹岸水面壅高,并在下游衔接的平直段内产生折冲水流,大大影响泄流能力和消能效果。另外陡坡段或缓流段的过剧收缩,也会发生显著的壅水和流态变化,并对溢洪道衬砌造成冲击。 1.4溢洪道纵横剖面及平面布置设计不当,比较突出的问题是陡坡比降过陡。部分溢洪道布置在非岩性山坡上,其底部未做有效的反滤衬砌,致使渗水后易产生滑坡。在横断面设计中,有些工程对两侧山坡开挖坡度注重不够,有的过陡,

水库溢洪道泄洪闸设计说明

水库溢洪道泄洪闸设计 1工程概况 (5) 1.1 水库建设过程 (7) 1.2水库目前存在问题 (7) 2水文 (8) 2.1流域概况 (8) 2.2年径流复核成果 (9) 2.3设计洪水复核成果 (10) 2.4非汛期设计洪水 (11) 3工程地质 (11) 4除险加固任务和规模 (12) 4.1 除险加固任务 (12) 4.2除险加固洪水标准 (13) 5.溢洪道泄洪闸设计 (13) 5.1方案的说明 (13) 5.2方案比较 (14) 5.3设计基本资料 ......................................................... 1 5 5.4溢洪道轴线选择 (16)

5.5溢洪道工程布置 ....................................................... 1 6 5.6水力设计 ............................................................ 1 8 5.7溢洪道防渗与排水设计 (22) 5.8稳定计算 (23) 6施工组织设计 (28) 6.1施工条件 (28) 6.2施工导流 (28) 6.3主体工程施工 (29) 6.4 施工交通运输 (30) 6.5施工工厂设施 (30) 6.6 施工总布置 (31) 结论 (33)

1 工程概况 白沙水库位于淮河流域沙颖河上游,坝址位于河南省禹州市与登封市交界的白沙村以北300m 处。是50 年代初治淮早期我省兴建的大型水库之一,当时水库的设计洪水标准为100 年一遇,校核洪水标准为1000 年一遇。设计水位233.8m ,校核水位235.3m ,总库容2.95 亿m 3。水库控制流域面积为985km 2,占颖河流域面积 7230km 2的13.6% ,占颖河山丘区流域面积1900km 2的51.8% ,是以防洪灌溉为主,兼顾工业供水、水产养殖、旅游等综合利用的大型枢纽工程。水库位置见图 1.1- 1 。 1978 年水电部颁发了《水利水电枢纽工程等级划分及设计标准》(山区、丘 陵区部分)SDJ12 —78,根据该规定白沙水库正常运用洪水标准应为500?100年一遇,非常运用洪水标准如失事后对下游不致造成较大灾害的其下限值为2000 年一遇,如果失事后对下游将造成较大灾害的大型水库应以可能最大洪水作为非常运用洪水标准。1990 年水利、能源部对SDJ12 —78 又颁发了补充规定,根据该规定将白沙水库的校核洪水标准由可能最大洪水改为2000 年一遇。1994 年建设部发布国家标准《防洪标准》 (GB50201 —94 )作为强制性国家标准,根据该标准白沙水库设计洪水标准应为500 ?100 年一遇,校核洪水标准应为5000 ?2000 年一遇。我省大部分大型水库,根据以上国家颁发的洪水标准、结合各水库的具体情况,经历20 余年基本进行了除险加固,提高了水库安全标准。已完成的有鸭河口、宿鸭湖、鲇鱼山、孤石滩、彰武、南海等水库,正在实施的有白龟山水库和昭平台水库。 该工程1951 年开工,1953 年竣工。由于当时形势的需要和各方面条件的限制,存在诸多问题。1956 年进行了扩建加固。 2001 年3 月对水库安全标准进行复核,1000 年一遇洪水位为235.51m ,2000 年一遇洪水位为236.29m ,而目前白沙水库允许的最高水位235.13m 。因此,白沙水库现有安全标准不足1000 年一遇,尚未达到国家《防洪标准》 ( GB5020 1 -94 ) 5000 年~2000 年一遇的下限。由于白沙水库在沙颖河流域防洪调度中的作用非常重要,事关禹州市、京广铁路和京深公路的安危,一旦失事,将对禹州市、襄城、临颖、许昌和郾城等县市造成严重的洪水灾害。因此急需除险加固。 2001 年3 月河南省水利厅组织水利部、淮委、黄委和水库管理局等单位组成专家组,对白沙水库进行安全鉴定,鉴定意见为:“白沙水库大坝现有防洪标准不足千年,属危险水库,急需进行除险加固。建议采取工程措施提高抗御洪水标准以满足国标《防洪标准》要求,对溢洪道混凝土建筑物和金属结构进一步进行检测。进一步补充完善观测设施,加强观测工作。在未进行除险加固前,水库管理单位应加强工程管理和工程监测,并做好超标准洪水的安全保坝措施。”

水利水电工程与管理毕业设计

一、综述 1.1工程概况 平山水库位于湖北省某县平山河中游,该河系睦水(长辽的支流)的主要支流,全长284m,流域面积为556㎞2,坝址以上控制流域面积491㎞2;平山河是山区河流,河床比降为0.3%,沿河有地势较为平坦的小平原,最低高程为62.5m左右。 1.2枢纽任务 枢纽主要任务以灌溉发电为主,并结合防洪、航运养殖、给水等任务进行开发。 1.3设计基本数据 1)正常蓄水位 113.0 2)设计洪水位:113.10m; 3)校核洪水位:113.50m; 4)死水位:105.0m(发电极限工作深度8m); 5)灌溉最低库水位:104.0m; 6)总库容:2.00亿m3; 7)水库有效库容:1.15亿m3; 8)发电调节保证流量Qp=7.35m3/s,相应下游水位63.20m;

9)发电最大引用流量Qmax=28 m3/s,相应下游水位68.65m; 10)通过调洪演算,溢洪道下泄流量Q1%=840 m3/s,相应下游水 位72.65m。 11)校核情况下,溢洪道下泄流量Q0.1%=1340 m3/s,相应下游水 位74.30m。 12)水库淤积高程85.00m。 二、坝址水文特性 暴雨洪峰流量Q0.05%=1860m3/s,Q0.5%=1550m3/s,Q1%=1480m3/s。 多年平均流量13.34m3/s,多年平均来水量4.22亿m3。多年平均最大风速10m/s,水库吹程8km,多年平均降雨次数48次/年,库区气候温和。 三、枢纽及库区地形地质条件 3.1坝址、库区地形地质及水文地质 平山河流域多为丘陵地区,在平山枢纽上游均为大山区,河谷山势陡峭,河谷边坡一般为60°~70°,地势高差都在80~120m,河床宽一般为400m,河道弯曲很厉害,尤其枢纽布置处更为显著形成S 形,沿河沙滩及两岸坡积层发育,坝址处两岸河谷呈马鞍形,其覆盖

(整理)五强溪水库水资源规划毕业设计

河海大学函授毕业设计报告-------------水资源规划 姓名: 学号: 专业: 学习形式: 时间:

目录 1 基本情况 (3) 1.1 流域概况 (3) 1.2 开发任务 (3) 1.3 设计任务 (4) 1.4 设计前提 (4) 1.5 设计内容 (5) 1.6 设计原始资料 (5) 2 兴利计算 (10) 2.1 基本资料整理 (10) 2.2 死水位的确定 (10) 2.3 保证出力计算 (13) 2.4 水电站必需容量选择 (15) 2.5 水电站调度图绘制 (16) 2.6 重复容量选择与多年平均电能计算 (20) 3 防洪计算 (24) 3.1 水库调洪计算 (24) 3.2 坝顶高程的确定 (26) 4 经济计算 (29) 4.1 方案一工程费用 (29)

4.2 其它方案工程费 (32) 4.3 防洪效益 (39) 4.4 经济比较 (40) 附表 (45) 附图 (70)

1 基本情况 1.1 流域概况 五强溪水电站位于湖南省沅陵县境内,上离沅陵县城73km,下距常德市130km。坝址控制流域面积83800km2,占沅水总流域面积的93%,流域雨量充沛,水量丰富,坝址多年平均流量2060m3/s,年水量649×108m3,并有1925年以来的水文资料和核实的历史洪水资料。坝址位于沅水干流最后一段峡谷出口处,岩性坚硬,地形地质条件良好。具备了修筑高坝的自然条件。 在沅水规划中,五强溪水电站为沅水干流最后第二个梯级,上游接虎皮溪及酉水的风滩(已建成)梯级,是一个以发电为主,兼有防洪、航运效益的综合利用水库,系湖南省最大的水电电源点。 1.2 开发任务 五强溪水电站是以发电为主、兼有防洪、航运和灌溉等效益的综合利用工程。其开发任务分述如下: 1.发电 五强溪水电站建成后投入华中电网,主要供电范围为湖南省。 2.防洪 沅水下游赤山以西的桃源、常德、汉寿三县及常德市所属平原河网地区,统称沅水尾闾。这个地区地势低洼。全靠提防保护,共保护人口106万,农水159万亩。现有河道的泄洪能力20000m3/s,如遇1927、1931、1933、1935、1943、1949、1954、1969等年洪水重现,河道均不

溢洪道设计

某水库溢洪道设计 一、设计方案理论论证 某水库由于当年的条件限制,所以工程质量较差,加之近40年的运行,反复冻融破坏,结构、设备老化,水库诸多隐患,水库经专家鉴定,评价为:溢洪道无底板,右侧边墙短,破坏严重,安全评定为C级。根据中华人民共和国行业标准《溢洪道设计规范》(SL253-2000),对溢洪道进行计算和设计。该工程中河岸式溢洪道由引水渠、控制段、泄槽、出口消能和尾水渠等部分组成。 (一)、溢洪道水力计算 由正常、设计、校核洪水位时所对应的下泄流量查坝址水位流量关系曲线可得出下表。 溢洪道开挖后,为减轻糙率和防止冲刷,需进行衬砌,糙率取n=0.016。 溢洪道为3级建筑物,按10年一遇设计,20年一遇校核的洪水标准。 (二)、进水渠的设计 根据《溢洪道设计规范》(SL253-2000),进水渠的布置应依照以下原则:选择有利的地形、地质条件;在选择轴线方向时,应使进水顺畅。 进水渠是将水流平顺引至溢流堰前。进水渠的地基为土基,故采用梯形断面;底坡为平底坡,边坡采用m=0.5。根据《溢洪道设计规范》(SL253-2000)进水渠设计流速宜采用3~5m/s,渠内流速取υ=3.0m/s,渠底宽度大于堰宽,渠底高程是18.259m。 进水渠断面拟定尺寸,具体计算见表1-2。 表1-2 进水渠断面尺寸计算表 - 1 -

- 2 - 由计算可以拟定引渠底宽B=10 m (为了安全),引渠长L=10m 。 (二)、控制段的设计 控制段也叫溢流堰段,控制段包括溢流堰及两侧连接建筑物,其作用是控制泄流能力。本工程是以灌溉为主的小型工程,溢洪道轴线处地形较好,岩石坚硬,开敞式溢流堰有较大的超泄能力,故堰型选用开敞式宽顶堰,断面为矩形。顶部高程与正常蓄水位齐平,为18.80m 。堰厚δ拟为8米(2.5H<δ<10H )。堰宽由流量方程求得,具体计算见表1-3。 表1-3 堰宽计算表 (忽略行近水头υ2/2g) 由计算知,控制堰宽取b=15m 为宜。 (三)、泄槽的设计及水力计算 泄槽设计时要根据地形、地质、水流条件、与经济等因素合理确定其形式和尺寸。泄槽是渲泄过堰洪水的,槽底布置在基岩上,断面必须为挖方,且要工程量最小,坡度不宜太陡。为适应地形、地质条件,泄槽分收缩段(收缩角θ≦11.25°)和泄槽段,采用均一坡度023.0=i ,拟断面为矩形。 根据《溢洪道设计规范》(SL253-2000)附录A 中的泄槽水力计算规范,泄槽边墙收缩段角度可按经验公式v r k h g F k tg ?=?= 1 θ 计算。本工程拟定收缩段收缩角θ=6°,首端底宽与控制堰同宽b 1=15m,末端底宽b 2拟为8m ,断面取为矩形,则渐变段长 m tg b b L 30.3322 11=-= θ,取整则L 1为35m ,底坡i=0.023。 泄槽段上接收缩段,拟断面为矩形,宽b=8m ,长L 2为65m ,底坡和收缩段相同 023.0=i 。 (四)、出口消能 溢洪道出口段为冲沟,岩石比较坚硬,离大坝较远,采用挑流消能,水流冲刷不会危及大坝安全。

主坝、溢洪道、放水洞毕业设计

1枢纽概况 群安水库位于某省某地区群安河河谷出山口地段,水库控制流域面积714平方公里,库容900×104m3。 水库以灌溉和工业供水为主,兼顾防洪,工程兴建后可以向地区工业年提供水量2160×104m3,向灌区年供水1782×104m3,全年供水3942×104m3,改善灌溉面积14.32×104亩。 水库枢纽建筑物由主坝、溢洪道、放水洞组成。根据工程规模及其在国民经济中的作用,按《水利水电工程等级划分及洪水标准》SL252—2000,水库永久性建筑物设计洪水标准为50年标准,校核洪水标准为1000年标准。水库枢纽的工程等别为Ⅲ等,工程规模为中型。水库枢纽的主要建筑物级别为3级,次要建筑物为4级,临时建筑物为5级。 2 设计基本资料(见附件) 3 设计任务及基本要求 3.1 设计任务 3.1.1 工程任务和规模阶段 (1)根据工程任务确定工程规模,然后确定工程等别、建筑物级别及相应洪水标准。 (2)拟定泄洪建筑物型式和水库泄洪方式,选定泄洪建筑物尺寸,进行洪水调节计算,确定水库特征水位及相应库容。拟定导流建筑物型式和尺寸,确定围堰前设计水位,确定坝体临时度汛水位。 3.1.2 工程布置及建筑物阶段 (1)根据地形、地质、筑坝材料、水文气象、施工条件和枢纽建筑物的组成等因素进行坝轴线选择。 (2)根据已知基本资料进行坝型选择,可选坝型为粘土心墙堆石坝、沥青混凝土心墙堆石坝、混凝土面板堆石坝、混凝土重力坝和碾压混凝土重力坝五种,通过技术经济比较,确定最优坝型和相应泄洪建筑物尺寸。 (3)根据选定的坝型和枢纽建筑物组成,进行枢纽布置方案的比较,确定枢纽布置方案,绘制枢纽平面布置图。 (4)挡水建筑物-大坝设计:①坝体结构设计;②坝基处理设计;③坝体与坝基及其他建筑物的连接设计;④坝体计算与分析;⑤细部构造设计。 (5)泄水建筑物-溢洪道设计:①方案比较;②溢洪道布置;③设计计算;④结构设计。 (6)导流输水建筑物-导流放水洞设计:①方案比较;②水力计算;③结构设计。 3.1.3 施工组织设计阶段 (1)施工条件分析。 (2)施工组织设计:导流标准确定;导流方式选择;围堰设计;导流泄水建筑物设计;导流工程施工及河道截流设计;基坑排水设计;料场选择与开采、主体工程施工;施工交通布置;施工工厂设施设计;施工总布置和施工总进度计划设计。 3.2 设计成果内容及要求 3.2.1 设计成果内容 1、毕业设计报告一套(包括设计说明书1本和设计计算书1本),不少于2万字; 2、设计图纸4张,包括:

片上水库毕业设计5

1 枢纽概况及工程目 片上水库是河海流域大清河北支流拒马河上的一座大(二)型综合利用水利工程。水库总库容7.16亿立米,死库容0.44亿立米可进行防洪、兴利的调节库容6.72亿立米。 拒马河发源于河北省涞源县,流经涞源、易县、涞水山峡地区,至北京房山县张坊镇流入平原,并分南北两支。南拒马河经涞水至北河店与易水汇流至新城白沟镇,北拒马河汇合胡良河、琉璃河后在涿州县东茨村入白沟河,往南流至白沟镇汇合南拒马河后为大清河。 拒马河位于太行山东麓,流域面积约10000km2。地形特点,西部为山区,流域面积约5000km2,东部为平原。山区多为石质山区,植被较少,坡度较陡。仅上游涞源以上分水岭处于黄土高原边缘地区。平原河槽较窄,坡度很缓。本流域且为华北暴雨中心所在,因此洪水大,危害较为严重。 本工程可为东部平原房、涞、涿灌区的一百多万亩农田灌溉、北京生活及工业用水提供水源。 枢纽建筑物包括主坝、付坝、溢洪道、导流泄洪洞、灌溉发电洞及枢纽电站。

2 设计的基本资料 2.1 地形、地质条件 2.1.1库区地形 图2-1 片上水库河谷断面图 2.1.2 库区工程地质条件 本区除第四系地层外,均为中震旦系,雾迷山组地层(Z2w),分层、厚度及岩性见表2.1。此外尚有燕山期辉绿岩墙侵入体。 表2.1 地层厚度及岩性 辉绿岩和片岩透水性甚微,是本区相对隔水层。 本区构造,普遍发育有两组构造裂隙,一组为走向北东70度左右,一组为走向北西300-340度,均为陡倾角裂隙。

本区地震烈度为7度。 2.1.3 坝址区工程地质条件 (1)河床覆盖层 河床宽600余米为第四系冲积砂卵石层所覆盖,厚度为15-28m,靠左右岸边各有一冲蚀槽,左侧为古河床,以卵石层为主。地下水位约为105-106m。通过抽水试验,渗透系数K最小为 2.74×10-4m/s,最大8.56×10-3m/s,一般为(2.31~5.79)×10-3m/s,砂卵石层须防渗处理。 在砂卵石层中,有砂质黏土及细沙夹层。 砂质夹层分布在坝线下游02钻孔附近,高程一般89-91m,厚度1.5-1.8m,这些夹层顺河方向延伸稍长,以窄条带状分布在古河床西侧漫滩边缘和古河床死洼处。 河床右岸发现有含碎石、卵石的砂质黏土层,在基岩面上部,属岩石的风化残积层,厚度约1-2m。 总观,这些夹层分布范围不大,厚度较薄,一般位置较深,因此对坝体稳定影响不大,但应摸清具体分布范围,论证其对坝体稳定的影响和确定处理措施。 (2)岩溶、渗漏问题 从岩性看,本区灰岩均系硅质和白云质灰岩(白云岩),结晶程度较好,相对不易被溶蚀。据钻孔分析,本区岩溶发育,一是在坝址区高程70-90m较多发育,二是在片岩层的上下层面处较多发育,但溶洞很少,也很小。深层岩溶问题是不存在的,主要表现为岩溶裂隙。 据压水试验,坝基岩石透水性较大,单位吸水量算术平均值为3.2升/分,大值平均值为14.5升/分,对坝基渗漏不利。但在坝下基岩中第2层绢云母片岩,在坝下普遍分布,厚度3-7m,没有间断现象,隔水性好,是防渗的有利条件。不存在顺河断层。 坝基防渗处理时,河床砂卵石层宜做防渗墙,其下第2层片岩出露部分风化较严重,宜进行帷幕灌浆,伸入基岩内3-5m,至新鲜岩层处。两岸帷幕灌浆处理深度,左岸宜20-60m(伸入基岩),右岸岩石透水性较小,平均处理深度可为25m。 (3)地下水动态 据地下水位观测,坝址区地下水位坡降较小,在右岸为地下水补给河水。但左岸地下水有一“凹陷带”,从钻孔资料看,主要是因为该段为古河床主流线部位,砂砾石层中孤石较多,因而透水性大,致使该段地下水位稍低。考虑两岸地下水位较低,一般工程在106-110m左右,因此存在绕渗问题,建议适当向两岸适当延长帷幕线,以减少绕渗量。特别是右岸,为防止渗流改变工程地质条件,建议筑坝帷幕与溢洪道帷幕相接,使其连成一体。

小型水库溢洪道和放水设施除险加固设计

小型水库溢洪道和放水设施除险加固设计 摘要:本文主要针对小型水库溢洪道和放水设施的除险加固设计展开了探讨,通过结合具体的工程实例,对工程存在的问题作了详细的阐述,并对建筑物的加固设计作了深入的分析,以期能为有关方面的需要提供参考借鉴。 关键词:水库溢洪道;放水设施;除险加固设计 引言 所谓的溢洪道,是用于宣泄规划库容所不能容纳的洪水,保证坝体安全的开敞式或带有胸墙进水口的溢流泄水建筑物,而放水设施,顾名思义,就是指水库中的排水建筑。这两者的正常运行对水库有着重要的作用。因此,我们重视水库溢洪道和放水设施的质量,并做好除险加固的设计工作,以为水库溢洪道和防水设施除险加固的施工提供帮助。 1 工程概况 某水库控制流域面积为3.84km2,坝址以上沟道长度2.38km,比降35.8‰,水库原设计总库容50万m3,有效库容40万m3,死库容10万m3,现已淤积18万m3,有效库容为32万m3。大坝原设计为均质土坝,坝高28m,坝顶长130m。正常水位100m,设计洪水位101.13m,校核洪水位102.11m,死水位88.5m,是一座以农田灌溉为主,兼有防洪、养殖、林业等功能的Ⅴ等小(Ⅱ)型水库。该水库始建于1970年,1975年建成并蓄水运行。水库坝址以上控制流域面积3.84km2,坝址以上沟道长度2.38km,比降35.8‰,水库坝址以上流域地形由两部分组成,。流域内植被覆盖率低,水土流失较为严重。根据水库淤积量及淤积年限计算,多年平均输沙模数达3480t/km2。水库位处的沟谷下切严重,切割深度50m~70m,沟道狭窄,呈“V”型沟,沟底宽10m~30m,斜坡坡度在25°~55°,坡体较稳定。 2 工程存在的问题 经过对水库监测资料分析、现场安全检查、工程质量监测及地质勘查等综合考量,水库主要建筑物存在以下问题: (1)坝体:坝体工程基本完整,但是迎水坡风浪冲刷淘空严重;背水坡杂草丛生,坡面不平整,左坝肩放水洞出口以下出现30m2塌坑一处。 (2)溢洪道:溢洪道建筑物损坏达70%,严重堵塞,行洪不畅。施工缝杂草丛生,底板大面积毁坏,而且溢洪道进口已成为右岸村民行走的道路,滑落泥土严重阻塞了溢洪道行洪的畅通。 (3)放水设施:卧管损毁达90%,且现在的卧管全为砖砌,严重影响了大坝蓄水。坝后灌溉渠道的衬砌已有部分毁坏及断裂,从放水洞出来的水经过很短的一段灌溉渠后直接从断开处下落至坝体背水面,影响坝体安全。 (4)管理设施及防汛设施:水库原管理房已被当地政府拆除。目前,仅有养殖户的两间简易房,无法满足水库管理需要。管理人员不足,资金困难,管理工作粗放,大坝观测工作没有开展。水库无管理站房和防汛设施,无照明线路,通信设备,抢修道路不畅。 (5)现仅有2m宽的上坝土路,未硬化,坡陡弯急,防汛抢险重型车辆无法到达坝顶,严重影响防汛抢险工作的开展。 3 主要建筑物加固设计 3.1 大坝加固设计 设计对迎水坡坡面进行干砌石砌护,厚度30cm,自上而下坡比为1:2.52、

水库溢洪道的设计

水库溢洪道的设计分析与探讨 【摘要】溢洪道的设计和布置合理与否,不仅直接影响到水库的安全,而且关系到整个工程造价。土石坝一般中小型溢洪道,约占水库枢纽工程造价的25~30%及劳动力的25%,故溢洪道合理的布局和选型,在水库工程设计中是一个比较重要的环节。 【关键词】土石坝;水库溢洪道;问题 溢洪道的设计和布置合理与否,不仅直接影响到水库的安全,而且关系到整个工程造价。土石坝一般中小型溢洪道,约占水库枢纽工程造价的25~30%及劳动力的25%,故溢洪道合理的布局和选型,在水库工程设计中是一个比较重要的环节。 1. 常见问题 1.1溢洪道是洪水期间保证水库安全的重要设施,中小型水库由于受工程造价的限制,其设计采用的洪水标准往往偏低、选用洪水数据(洪峰、洪量)偏小,因而必然带来溢洪道设计尺寸偏小,再加上周边岩体风化坍落,往往造成泄流能力不足,因而不能保证安全泄洪。 1.2在布置上,某些工程设计的溢洪道其进出口段离坝身太近,坝肩与溢洪道之间仅有单薄的山脊相隔。进口段如未进行有效的护砌,泄洪时一旦发生冲蚀现象,将危及坝肩安全,有些设计的陡槽末端与坝脚紧贴,如果发生横流冲刷,更易危及坝脚安全,因此这二种情况均对大坝的运行安全十分不利。

1.3溢洪道设计的平面弯道半径过大和收缩过剧,对泄流十分不利。特别在溢洪道陡坡段布置有弯道时,由于弯道流态、流势剧烈变化,导致二岸产生了水面差,这时凹岸水面壅高,并在下游衔接的平直段内产生折冲水流,大大影响了泄流能力和消能效果。另外陡坡段或缓流段的过剧收缩,也会发生显著的壅水和流态变化,并对溢洪道衬砌造成冲击,如砌护过高会增加投资,砌护过低了又不安全。 1.4溢洪道纵横剖面及平面布置设计不当,比较突出的问题是陡坡设计比降过陡。部分溢洪道布置在非岩性山坡上,其底部未做有效的反滤衬砌,致使渗水后易产生滑坡;结构上也不稳定。在横断面设计中,有些工程对两侧山坡开挖坡度注意不够,有的过陡,加上衬砌厚度偏薄,不能满足抗滑抗倾稳定,也易造成坍方和滑坡;平面布置上,存在着上下游断面连接不配套,形成“瓶颈”现象,从而影响了泄洪能力;此外溢洪道末端与河道衔接部分注意不够,导致有的末端高出河床很多,有的末端未做砌护处理,常造成严重冲刷,并向上延伸,直至整个建筑物破坏。 1.5现有水力设计方法尚不够完善,如溢洪道进口布置有引洪平流段的情况下,由于水力计算中忽略了平流段时进口水位的壅高(即水头损失)。而实际壅高有时较大,不可忽视。有些设计对溢洪道的消能工的设计考虑不够充分,或者型式选择不当,导致消力墙长度和深度均不能满足需要,消能不够充分,致使下游河段发生严重

论述水库溢洪道泄洪安全的设计要点

论述水库溢洪道泄洪安全的设计要点 1前言 溢洪道是水库枢纽的主要建筑物之一,它承担着宣泄洪水、保护工程安全的重要作用。在进行工程加固以及结构改造过程中,对于溢洪道的布局进行合理设计与调整,最大程度地保证了水库汛期运行的安全性与可靠性,是工程设计的重点。 2溢洪道布置基本要求 溢洪道设计应符合SL253-2000(或DL/T5166-2002)《溢洪道设计规范》的要求。河岸式溢洪道布置可包括进水渠、控制段、泄槽、消能防冲设施及出水渠。溢洪道的布置应根据地形、地质、工程特点、枢纽布置、坝型、施工及运用条件、经济指标等综合因素进行全面考虑。溢洪道布置应结合枢纽总体布置全面考虑,避免泄洪、发电、航运及灌溉等建筑物在布置上的相互干扰。溢洪道的泄量、溢流前缘总宽度及堰顶(或闸底板)高程等应根据的因素通过技术经济比较选定。当设有正常、非常溢洪道时,正常溢洪道的泄洪能力,不应小于设计洪水标准下所要求的泄量。正常溢洪道在布置和运用上可分为主、副溢洪道,应根据地形,地质条件、枢纽布置、坝型、洪水特性及对下游的影响等因素研究确定。溢洪道的位置应选择有利的地形和地质条

件布置在岸边或垭口,并宜避免开挖而形成高边坡。溢洪道应布置在稳定的地基上,并应充分注意建库后水文地质条件的变化对建筑物及边坡稳定的不利影响。溢洪道进、出口的布置,应使水流顺畅,溢洪道轴线宜取直线,如需转弯时,宜在进水渠或出水渠段内设置弯道。当溢洪道靠近坝肩布置时,其布置及泄流不得影响坝肩及岸坡的稳定。在土石坝枢纽中,当溢洪道靠近坝肩时,与大坝连接的接头、导墙、泄槽边墙等必须安全可靠。溢洪道的闸门启闭设备及基础抽排水设备,应设置备用电源,保证供电可靠。 3水库溢洪道泄洪安全的设计 3.1进口段 进水渠道口布置应因地制宜,使水流平顺入渠,体型宜简单。当进口布置在坝肩时,靠坝一侧应设置顺应水流的曲面导水墙,靠山一侧可开挖或衬护成规则曲面。当进口布置在垭口面临水库时,宜布置成对称或基本对称的喇叭口形式。 如果在建设溢洪道时要受地形因素的限制,必须在段内设置弯道。这条弯道一定要尽量平缓,并且在上下游衔接处与出口处远离坝尾,以免冲刷。溢洪道的坝面一般都成四边形和梯形,当水流速度<1~2s/h,砌护墙是可以不用的。但如果她与附近的建筑物在一定范围

河海大学毕业设计

目录 第一章调洪演算 (4) 1.1 洪水调节计算 (4) 1.1.1 绘制洪水过程线 (4) 1.1.2 洪水过程线的离散化 (5) 1.1.3 时段内水位的试算 (5) 1.1.4 方案最高水位和最大下泄流量的计算 (6) 1.1.5 调洪演算方案汇总 (6) 1.2 防浪墙顶高程计算 (7) 第二章防浪墙计算 (9) 2.1 防浪墙尺寸设计 (9) 2.2 防浪墙荷载分析 (9) 2.2.1 完建情况 (9) 2.2.2 校核洪水位情况 (13) 2.2.3 结果分析 (17) 2.3 防浪墙配筋计算 (17) 2.3.1 墙身配筋计算 (17) 2.3.2 底板配筋计算 (18) 2.4 抗滑稳定计算 (19) 2.4.1 完建工况 (19) 2.4.2 非常运用工况(校核洪水位情况) (19) 2.5 抗倾覆计算 (20) 第三章坝坡稳定计算 (20) 3.1 坝体边坡拟定 (20) 3.2 堆石坝坝坡稳定分析 (20) 3.2.1 计算公式 (20) 3.2.2 计算过程及结果 (22) 第四章复合土工膜强度及厚度校核 (23) 3.1 0.4mm厚土工膜 (23) 3.2 0.6mm厚土工膜 (24) 第五章坝坡面复合土工膜稳定计算 (25) 5.1混凝土护坡与复合土工膜间抗滑稳定计算 (25) 5.2复合土工膜与下垫层间的抗滑稳定计算 (25)

5.1 最大断面设计 (26) 5.2 趾板剖面的计算 (26) 第六章副坝设计 (28) 6.1 副坝顶宽验算 (28) 6.2 强度和稳定验算 (29) 6.2.1 正常蓄水位情况 (29) 6.2.2 校核洪水位情况 (31) 第七章施工组织设计 (33) 7.1 拦洪高程 (33) 7.1.1 隧洞断面型式、尺寸 (33) 7.1.2 隧洞泄流能力曲线 (33) 7.1.3 下泄流量与上游水位关系曲线 (34) 7.1.4 计算结果 (35) 7.2 堆石体工程量 (36) 7.2.1 计算公式及大坝分期 (36) 7.2.2 计算过程 (37) 7.2.3 计算结果 (39) 7.3 工程量计算 (39) 7.3.1 堆石坝各分区工程量 (39) 7.3.2 趾板工程量 (40) 7.3.3 混凝土面板工程量 (41) 7.3.4 副坝工程量 (41) 7.3.5 防浪墙工程量 (42) 7.4 堆石体施工机械选择及数量计算 (42) 7.4.1 机械选择 (42) 7.4.2 机械生产率及数量计算 (42) 7.5 混凝土工程机械数量计算 (45) 7.5.1 混凝土工程施工强度 (45) 7.5.2 混凝土工程机械选择 (46) 7.6 导流隧洞施工 (46) 7.6.1 基本资料 (46) 7.6.2 开挖方法选择 (46) 7.6.3 钻机爆破循环作业项目及机械设备的选择 (47) 7.6.4 开挖循环作业组织 (47)

土石坝毕业设计_说明

前言 1、设计任务书及原始资料是工作的依据,因此首先要全面了解设计任务,熟悉该河流的一般自然地理条件,坝址附近的水文和气象特性,枢纽及水库的地形、地质条件,当地材料,对外交通及有关规划设计的基本数据,只有在熟悉基本资料的基础上才能正确地选择建筑物的类型,进行枢纽布置、建筑物设计及施工组织设计。因此,应把必要的资料整理到说明书中。通过对资料的了解和分析,初步掌握原始资料中对设计和施工有较大影响的主要因素和关键问题,为以后设计工作的进行打下良好的基础。 2、本次设计内容及要求: (1)坝轴线选择。 (2)坝型选择。 (3)枢纽布置。 (4)挡水建筑物设计:包括土坝断面设计、平面布置、渗流计算、稳定计算、细部构造设计、基础处理等。 (5)泄水建筑物设计:溢洪道或导流洞设计(仅选其中一项),以水利计算为主。选取溢洪道设计。 (6)施工导流方案论证(选作内容)。仅作简单的阐述。 3、工程设计概要 ZH水库位于QH河干流上,水库控制流域面积4990km2,库容5.05×108m3。水库以灌溉发电为主,结合防洪,可引水灌溉农田71.2×104亩,远期可发展到10.4×105亩。灌区由一个引水流量45m3/s的总干渠和4条分干渠组成,在总干渠渠首及下游24km处分别修建枢纽电站和HZ电站,总装机容量31.45MW,年发电量1.129×108kw·h。水库防洪标准为百年设计,万年校核。

枢纽工程由挡水坝、溢洪道、导流泄洪洞、灌溉发电洞及枢纽电站组成。摘要:土坝设计渗流计算稳定计算细部结构

第一章基本数据 第一节工程概况及工程目的 本水库建成后具有灌溉、发电、防洪、解决工业用水和人畜吃水等多方面的效益,是一座综合利用的水库。水库近期可灌溉农田71.2×104亩,远期可发展到10.4×105亩。枢纽电站和HZ电站,总装机容量31.45MW,年发电量1.129×108kwh。除满足农业提水灌溉用电外,还剩余50%的电力供工农业用电。防洪方面,水库控制流域面积4990km2,占全流域面积的39%,对下流河道防洪、削减洪峰、减轻防汛负担也有一定的作用,可将下游100年一遇的洪水流量6010m3/s 削减到3360m3/s,相当于17年一遇;可将50年一遇洪水流量6000m3/s削减到2890m3/s,相当于12年一遇。另外,每年还可供给城市及工业用水0.63×108m3。 由于市库区沿岸山峰重迭,村庄零散,耕地不多,故淹没损失较小。按库区移民高程770m统计,共需迁移人口3115人,淹没耕地12157亩,房屋1223间,窑洞1470孔。

相关主题
文本预览
相关文档 最新文档