当前位置:文档之家› 几种材料微观结构分析方法简介

几种材料微观结构分析方法简介

几种材料微观结构分析方法简介
几种材料微观结构分析方法简介

几种材料微观结构分析方法简介

Introduction to several materials

microstructure analysis method

黑道梦境间谍

指导教师:XXX

摘要:材料的微观世界丰富多彩,处处蕴含着材料之美.然而如何分析材料的微观结构是一个很重要的问题.本文章将介绍几种分析材料微观结构的方法, 通过微观结构分析仪器来对微观材料结构进行探索

关键词:材料微观结构X射线激光拉曼光谱电子显微分析方法

1 引言

材料科学在21世纪的地位愈发重要,各种各样的材料具有许多优良的物理及化学特性以及一系列新异的力、光、声、热、电、磁及催化特性,被广泛应用于国防、电子、化工、建材、医药、航空、能源、环境及日常生活用品中,具有重大的现实与潜在的高科技应用前景。材料科技是未来高科技的基础, 而微观材料分析方法是材料科学中必不可少的实验手段。因此, 微观材料分析方法对材料科学甚至是整个科技的发展都具有重要的意义和作用.

2 X射线分析

X射线是一种波长很短的电磁波,这是1912年由劳埃M.von Laue指导下的著名的衍射实验所证实的。X射线衍射是利用X射线在晶体中的衍射现象来分析材料的晶体结构、晶格参数、晶体缺陷(位错等)、不同结构相的含量及内应力的方法。这种方法是建立在一定晶体结构模型基础上的间接方法,即根据与晶体样品产生衍射后的X射线信号的特征去分析计算出样品的晶体结构与晶格参数,并且可以达到很高的精度。然而由于它不是显微镜那样可以直接观察,因此也无法把形貌观察与晶体结构分析微观同位地结合起来。由于X射线聚焦的困难,所能分析样品的最小区域(光斑)在毫米数量级,因此对微米及纳米级的微观区域进行单独选择性分析也是无能为力的。

通常获得X射线是利用一种类似热阴极二极管的装置,用一定材料制作的板状阳极(A,称为靶)和阴极(C,灯丝)密封在一个玻璃-金属管壳内,阴极通电加热,在阳极和阴极间加以直流高压U(数千伏至数十千伏),则阴极产生的大量热电子e将在高压电场作用下飞向阳极,在它们与阳极碰撞的瞬间产生X射线,如图1.1所示。

因此,产生X射线的条件是:

1产生自由电子;

2使电子作定向的高速运动;

3在其运动的路径上设置一个障碍物使电子突然减速或停止。

用仪器检测此X射线的波长,发现其中包含两种类型的波谱,即连续X射线波谱和特征X射线波谱。

其中特征X射线是:当加于X射线管两端的电压增高到与阳极靶材相应的某一特定值UK时,在连续谱的某些特定的波长位置上,会出现一系列强度很高、波长范围很窄的线状光谱,它们的波长对一定材料的阳极靶有严格恒定的数值,此波长可作为阳极靶材料的标志或特征,故称为特征X射线谱。特征谱只取决于阳极靶材元素的原子序数。

3 激光拉曼光谱分析

拉曼散射的过程涉及光的弹性散射和非弹性散射,当一束频率为n。的单色光照射到样品上时,都会发生散射现象,产生散射光,将产生弹性散射 (Rayleighscattering)和非弹性散射(Raman scattering)。散射光的大部分具有与入射光(激发光)相同的频率,即散射光的光子能量与入射光的相同,这就是弹性散射,称为瑞利散射。当散射光的光子能量发生改变与入射光不同时,其频率高于和低于入射光即非弹性散射,称为拉曼散射。频率低于激发光的拉

曼散射叫斯托克斯散射,频率高于激发光的拉曼散射叫反斯托克散射。其中Stokes线(v0一△v)与Anti-stokes线(v0+△v)对称分布在激发线(n0)。由于拉曼位移△、只取决于散射分子的结构而与v0无关,所以拉曼光谱可以作为分子振动能级的指纹光谱。拉曼位移△v(散射光的波数与入射光波数之差)反映了分子内部的振动和转动方式。由此可以研究分子的结构和分析鉴定化合物。

拉曼光谱技术能提供快速、简单、可重复、且更重要的是无损伤的定性定量分析,它无需样品准备,样品可直接通过光纤探头或者通过玻璃、石英、和光纤测量。此外它还具有如下的优越性:

(1) 由于水的拉曼散射很微弱,拉曼光谱是研究水溶液中的生物样品和化学化合物的理想工具;

(2)拉曼一次可以同时覆盖50-4000波数的区间,可对有机物及无机物进行分析。相反,若让红外光谱覆盖相同的区间则必须改变光栅、光束分离器、滤波器和检测器;

(3) 拉曼光谱谱峰清晰尖锐,更适合定量研究、数据库搜索、以及运用差异分析进行定性研究。在化学结构分析中,独立的拉曼区间的强度可以和功能集团的数量相关;

(4) 因为激光束的直径在它的聚焦部位通常只有0。2-2毫米,常规拉曼光谱只需要少量的样品就可以得到。这是拉曼光谱相对常规红外光谱一个很大的优势。而且,拉曼显微镜物镜可将激光束进一步聚焦至20微米甚至更小,可分析更小面积的样品;

(5) 共振拉曼效应可以用来有选择性地增强大生物分子特个发色基团的振动,这些发色基团的拉曼光强能被选择性地增强1000到10000倍。

4 电子显微分析方法

电子显微镜 (electron microscope,EM)是使用高能电子束作光源,用磁场作透镜制造的具有高分辨率和高放大倍数的电子光学显微镜。电子显微分析方法以材料微观形貌,结构与成分分析为基本目的。电子显微分析方法中得到广泛应用的分别为透射电子显微镜分析与扫描电子显微镜分析及电子探针分析。

4.1 扫描电子显微镜 (SEM)

扫描电子显微镜(scanning electron microscope,SEM)简称扫描电镜,是利用电子束在样品表面扫描激发出来代表样品表面特征的信号成像的。扫描电子显微镜(SEM)是由热阴极电子枪发射出的电子在电场作用下加速,经过2-3个电磁透镜的作用,在样品表面聚焦成为极细的电子束最小直径为1-10nm)。场发射扫描电子显微镜的分辨率可达到1nm,放大倍数可达到15万-20万倍,还可以观察样品表面的成分分布情况。

4.2 原子力显微技术 (AFM)

原子力显微镜(Atomic force microscopy)的主要特征是不要求电导的表面,因为它测量的是扫描探针和它的样品表面间的相互作用力,包括静电的、范德华的、摩擦的、表面张力的(毛细的)和磁力的,因此它克服了STM方法的不足并成为它的互补。由于仪器可以调节到所测量对象特定力有敏感作用的,故其可测量样品范围扩展到有机、无机、生物材料及技术样品。不同于STM,从AFM探针所获得是每一个表面点力的图。这力的图可解释为表面结构

的反映,是磁的、静电的诸种力的几何拓朴图。AFM测定样品表面形貌的模式有三种:接触式、非接触式和轻敲式(tapping mode)。

4.3扫描隧道显微镜(STM)

扫描隧道显微镜 (STM)是一种新型的表面测试分析仪器。与SEM、TEM相比,STM具有结构简单、分辨本领高等特点,可在真空大气或液体环境下以及在实空间内进行原位动态观察样品表面的原子组态,并可直接甲于观察样品表面发生的物理或化学反应的动态过程及反应中原子的迁移过程等。 5.4射电子显微镜(TEM)

透射电子显微镜(trans mission electron microscope.TEM)是采用透过薄膜样品的电子束成像来显示样品内部组织形貌与结构的。它可以在观察样品微观组织形态的同时,对所观察的区域进行晶体结构鉴定(同位分析):其分辨率可达10nm,放大倍数可达40万-60万倍。此法用于薄层样品微观形貌观察与结构分析。透射电镜成像原理与光学显微镜类似,即以电子束为照明源,经聚光镜聚焦后照射样品,透射电子经成像系统聚焦、放大、成像,并由荧光屏显示或底片记录。常用的方法有:超薄切片法、冷冻超薄切片法、冷冻蚀刻法、冷冻断裂法等。对于液体样品,通常是挂在预处理过的铜网上进行观察。

现有纳米测量方法往往测量大面积或大量的纳米材料以表征纳米材料的单一尺度和性能,所得的测量结果是整个样品的平均值,因此,单个纳米颗粒、单根纳米管的奇异特性就被掩盖了。

对现有的纳米测量方法来说,表征单一纳米颗粒、纳米管、纳米纤维的尺度和性能是一个难题和挑战。首先,因为它们的尺寸相当小,对单一纳米颗粒、纳米管的固定和夹持无法用大尺寸的固定和夹持技术来实现。其次,纳米结构的小尺寸使得手工操纵相当困难,需要有一种针对单一纳米结构设计的专门操纵技术来进行操作。Wang研究了用原位透射电子显微镜来测量单根碳纳米管力学强度的技术,专门制作了可通过外加电场来控制试样的夹具。在电镜中能够清楚地观察到每个单根的碳纳米管,因而能够对单根纳米管进行性能测量。

5 结语

材料微观结构分析是认识材料具有某种特性的内容原因和改进材料合成工艺的基础。而材料科学的最终目的是材料的应用,而有特殊用途的材料必定具有特殊的性质,而特殊的性质是由特殊的微观结构决定的,因此可获应用材料的结构分析以及应用过程中该材料的结构分析,就会对材料具有某种特性及其在使用过程中性能变化的原因有正确的认识,从而对材料合成和制备方法以及应用条件提供科学依据。材料微观结构分析方法在飞速发展的今天日趋重要.

参考文献:

1.李铃,向航. 功能材料与纳米技术[M]. 北京:化工工业出版社,2002:13.

2.朱永法. 纳来米材料表征与测试[M]. 北京: 化学工业出版社,2006.

3.川合知仁主编, 陆求实译. 图解纳米技术的应用[日][M]. 文汇出版社, 200

4.

4.G Schmid. [J]. Chem Rev, 1992. 92: 1709.

5..G Schon,U Simon. [J]. Colloid Po lym Sci. 1995, 273: 101.

汞分析方法的研究进展

汞分析方法的研究进展 化学(化学工程方向)2007级2班袁宇 2007060263 摘要:汞在现代人们的生活中已经是不容忽视的污染物,是影响人们健康的一种可积累性重金属。其毒性作用涉及神经、肾脏、消化等系统。本文评述了汞对人体的危害,环境中汞的污染以及汞的测定方法的研究进展。 关键词:汞;危害;测定方法;研究进展 引言 汞是在常温下唯一的液体金属,银白色,易流动。比重13.59,熔点-38.9℃,沸点356.6℃。蒸气比重6.9[1]。它有三种基本的形态以液态或气态形式存在的金属汞、无机汞化合物(包括氯化亚汞、氯化高汞、乙酸汞和硫化汞) 以及有机汞化合物(如苯基汞、烷基汞等) 。地壳中约含80ug·kg.L-1汞[2]。空气中汞主要来源于岩石的风化、火山爆发及水中汞的蒸发等;水中的汞来自大气及工农业生产的污染 ,如氯碱工业用汞作阴极电解食盐,除汞蒸气的挥发外,大量的汞和氯化汞从废水中排出;食物中的汞,通常以甲基汞的形式存在,甲基汞能积聚在水生生物中,参加食物链,使汞在鱼体内富集浓缩,达到极高浓度。汞及其化合物都是剧毒物质。无机汞化合物通过食物链进入人体,在肝,肾,脑等器官组织中富集,Hg2+可与蛋白质的巯基集合,抑制酶的活性,使细胞代谢受到阻碍;有机汞的毒性大于无机汞,其中甲基汞的毒性最大。汞对人体的毒性很大程度上取决于其存在形式[3]。由此可以看出汞对人类的危害很大,所以汞的检测在环保部门有着很重要的意义。多年来,分析者对汞的测定方法进行了大量的研究工作,且建立了很多种方法,本文从汞的原子吸光光谱法(AAS),原子荧光光谱法(AFS),色谱法,电化学分析法,分光光度法等方法作出了综述。 1 原子吸收光谱法 原子吸收光谱法是微量汞分析中应用最广的方法。虽然原子吸收光谱法不能直接用于元素的形态分析,只能检测元素的总量,但是利用它们简便,快速,灵敏度高的特点,常将其与其他富集分离技术相集合测量元素的不同形态。其中,冷原子吸收法(CVASS),极大地提高了测定的灵敏度,适合进行10-9级汞的分析,是目前汞分析中最主要和普及的方法之一。Yin[4]等使用在线固相萃取预富集—流动注射—HPLC—CVAAS分析技术,直接测定样品中MeHg,EtHg,PhHg, Hg2+。操作简易,自动化程度高,对MeHg,EtHg,PhHg, Hg2+检出限分别为9.6,10.5ng.L-1,相对标准偏差为3.6%,5.5%,10.4%,7.6%。

材料微观结构观察实验报告

材料微观结构观察开放实验报告 学院:系:专业:年级: 姓名:学号:实验时间:注明日期和第几节课 指导教师签字:成绩: 一、实验目的和要求 1.了解材料微观结构观察与分析技术的实际应用; 2.了解光学金相显微镜的基本原理、主要部件的功能和显微镜的正确操作;3.了解制作金相试样的步骤; 4.观察工程材料典型的微观结构,了解微观结构与材料性能之间的关系。 二、实验原理 观察材料的微观结构时,首先对试样进行研磨和拋光,得到一平整镜面。然后对试样的抛光表面进行适当的化学浸蚀处理,由于不同微观结构的腐蚀程度不同,使得腐蚀后的试样抛光面对入射光线反射强弱不同,因此借助各部分的明暗差异,便可在光学显微镜下观察到材料内部的微观结构形貌。 不同材料具有不同的微观结构,同种材料经过不同加工处理后其微观结构也会发生变化,从而使材料具有不同的性能。 三、主要仪器设备及材料 光学金相显微镜、台虎钳、镶嵌机、预磨机、抛光机、金相砂纸、浸蚀剂、吹风机、金相试样(45钢、铸铁和铝合金等) 四、制备金相试样和观察试样微观结构的主要过程。 首先有专门的试件样品,将一平面稍微用力放在有磨砂纸的转盘上,同时磨砂纸转盘旋转,进行研磨,砂纸转盘上还有一些起润滑作用的液体,在试件表面和磨砂纸之间均匀分布。研磨要进行多次,并且砂纸也要更换,从最粗糙的砂纸开始磨起,一直到精细的砂纸。最后要将试件样品磨好的面在酸性液体里浸泡下,

残余杂质会被洗掉。最后可以在光学显微镜等观测仪器下进行观测了~ 五、实验后的收获。 材料是科技进步的核心,开发和使用材料的能力是衡量社会技术水平和未来技术发展的尺度,材料就存在于我们的周围,生活中我们会接触或使用各种各样的材料。本实验通过真实事例介绍材料微观结构观察与分析技术在人们生活和工作中的重要应用,以及光学金相显微镜的原理和正确操作,动手制作金相试样,并在显微镜下观察材料的微观结构形象,将奇妙,变幻多端的材料微观实世界展现在我眼前,增加我对身边材料的了解,拓展和识面。

汞的形态分析

液相色谱-原子荧光光谱联用测定鱼样中甲基汞的含量 ——LC-AFS法 1、目的 建立一个前处理操作方便,准确可靠的测定鱼类样品中甲基汞的方法 2、主题内容及适应性 本方法规定了鱼类中甲基汞测定的液相色谱-原子荧光光谱法,本法适用于鱼类中甲基汞的测定。 3、原理 样品中的甲基汞用提取液提取后,通过C18色谱柱,由于C18柱对无机汞、甲基汞和乙基汞的吸附能力不同,流动相将无机汞、甲基汞和乙基汞依次洗脱,洗脱的溶液首先和氧化剂混合,再和空气混合,通过紫外光照射,将有机汞都氧化成无机汞,最后混合还原剂和盐酸发生氢化反应,进入原子化器,与原子荧光联用进行数据收集和处理。 4、试剂与材料 除非另有说明,所用试剂均为分析纯,水为蒸馏水或相当者;液相色谱流动相所用溶剂均为色谱纯并经过0.45μm滤膜过滤。 4.1 试剂 4.1.1 流动相:5%乙腈jing(HPLC级)+0.5%乙酸胺+0.1%半胱氨酸,经溶剂过滤器过滤后,放在超声波清洗器中超声20min,除去气泡。 4.1.2 载流:7%HCl(优级纯) 4.1.3 还原剂:0.5%KOH +1.5% KBH4 4.1.4 氧化剂:0.5%KOH +1%K2S2O8 4.1.5 清洗液:CH3OH-H2O(1+1) 4.1.6 提取液:10%HCl+1%硫脲+0.15%KCl 4.2 标准溶液 4.2.1 标准储备溶液:用水配制1000μg/L的Hg2+-MeHg-EtHg的混合标准溶液100mL,保存于4℃冰箱。 4.2.2 标准工作溶液:标准工作液根据需要用混合液逐级稀释配置(混合液包括提取液:流动相:水=3:4:3) 5、仪器与设备 5.1 岛津高压液相泵-SAP10形态分析预处理装置-原子荧光光谱仪

高中物理-晶体的微观结构、固体新材料

高中物理-晶体的微观结构、固体新材料 A级抓基础 1.下列晶体中属于金属晶体的是( ) A.金刚石和氧化钠B.锗和锡 C.银和氯化钠D.镍和金 解析:根据晶体的结合类型可知氧化钠和氯化钠是离子晶体;锗、锡和金刚石是原子晶体;银、镍和金是金属晶体.故选D. 答案:D 2.(多选)晶体表现出各向异性是由于( ) A.晶体在不同方向上物质微粒的排列情况不同 B.晶体在不同方向上物质微粒的排列情况相同 C.晶体内部结构的无规则性 D.晶体内部结构的有规则性 解析:组成晶体的物质微粒是有规则排列的,由于在不同方向上物质微粒的排列情况不同,造成晶体在不同方向上的物理性质不同,选项A、D正确.答案:AD 3.(多选)纳米材料具有许多奇特效应,如( ) A.电光效应B.量子尺寸效应 C.高硬度D.表面和界面效应 解析:由纳米材料的良好性能表现知B、D项正确. 答案:BD 4.(多选)下列说法中正确的是( ) A.化学成分相同的物质只能生成同一种晶体 B.因为石英是晶体,所以由石英制成的玻璃也是晶体 C.普通玻璃是非晶体 D.一块铁虽然是各向同性的,但它是晶体 解析:一种元素可以生成多种晶体,因为其分子可能排成几种空间点阵结构.玻璃为非晶体,而石英为晶体,所有的金属都为多晶体,故C、D正确.答案:CD 5.下列说法正确的是( )

A.新材料特殊的性能不仅包括特殊的物理性能,也包括一些特殊的化学性能B.制作集成电路时,尽管对硅单晶片的完整性有很高的要求,但是可以允许单晶片内原子的规则排列出现微小的缺陷 C.纳米是长度单位,1 nm=10-10 m D.金属薄膜可以配合读写磁头设计的改进,增大磁记录的密度 解析:新材料的特殊性能是指物理性能,A错;制作集成电路的硅单晶片是不允许硅单晶片内原子的规则排列出现微小的缺陷的,B错;1 nm=10-9 m,C错;由于金属薄膜的晶粒尺寸小、晶粒各向异性大,晶粒间的相互交换作用弱,是可以配合读写磁头的改进增大磁记录的密度的,D正确. 答案:D B级提能力 6.(多选)下列新型材料中,可用作半导体材料的有( ) A.高分子合成材料B.新型无机非金属材料 C.复合材料D.光电子材料 解析:高分子合成材料有合成橡胶、塑料和化学纤维等:新型无机非金属材料有工业陶瓷、光导纤维、半导体材料;复合材料分为结构复合材料和功能复合材料;光电子材料有光电子半导体材料、光纤和薄膜材料、液晶显示材料等,故B、D正确. 答案:BD 7.纳米晶体材料在现代科技和国防中具有重要的应用.下列关于晶体的说法正确的是( ) A.晶体内的微观粒子在永不停息地做无规则热运动 B.晶体内的微观粒子间的相互作用很强,使各粒子紧紧地靠在一起 C.晶体的微观粒子在不同方向上排列情况不同 D.晶体的微观粒子在空间排列上没有顺序,无法预测 解析:

仪器分析方法在中药含量测定中应用概况

仪器分析方法在中药含量测定中应用概况 李小红,龚小红,马靖,季宁平 (成都中医药大学药学院2008级中药学基地班)摘要:随着现代仪器分析技术的发展,越来越多的新技术、新方法已应用到中药的含量测定中,本文简要概述了光谱法、色谱法、色谱- 质谱联用等仪器分析方法在中药含量测定方面的应用。 关键词:光谱法;色谱法;质谱法;中药;含量测定 Abstract:With the development of modern instrumental analysis techniques,more and more new technologies and methods are applied to the content determination of Chinese medicines.The article provides a brief overview on spectroscopy,chromatography,chromatography-mass and other methods in the application of determination. Key word word::Spectroscopy;Chromatography;Chromatography-mass; Chinese medicine;Content determination 为提高中药的国际竞争力,使中药成为我国新的经济增长点之一,我国提出了“中药现代化科技产业行动计划”。要实现中药现代化,就必须结合现代的科学理论和先进的科学技术、方法和手段来研究中药。中药有效成分的含量影响中药的内在质量和临床疗效,是中药质量控制的关键。仪器分析方法因其准确、高效的特点,己成为药检工作者洞察药品内在质量的眼睛。本文就常用的仪器分析方法在中药含量测定中的应用概况作一综述。 1光谱分析法 各种结构的物质都具有自己的特征光谱,光谱分析法即是利用特征光谱研究物质结构或测定化学成分的方法。光谱分析法已成为中药含量测定的重要手段和工具,主要有以下几种。 1.1紫外分光光度法(UV) 紫外分光光度法具有灵敏度高、设备简单、操作方便等特点,根据中药中特定成分在一定波长处的吸光度与浓度呈线性关系可计算该成分的含量。2010年版《中国药典(一部)》有37种中药用本法进行含量测定,其中包括20种药材、16种中成药、1种提取物。马梅芳等[1]采用紫外分光光度法对南葶苈子药材中的总黄酮进行含量测定,结果表明总黄酮在3~30μg·mL-1线性关系良好,该方法

环境监测常用分析方法简介

环境监测常用分析方法简介

环境样品的测试方法是在现代分析化学各个领域的测试技术和手段的基础上发展起来的,用于研究环境污染物的性质、来源、含量、分布状态和环境背景值。随科学技术的不断发展,除经典的化学分析、各种仪器分析为环境分析监测服务外,一些新的测试手段和技术,如色谱-质谱联用、激光、中子活化法、遥感遥测技术也很快被广泛应用于环境污染的监测中,为了及时反映监测对象和取样时的真实情况,确切掌握环境污染连续变化的状况,许多小型现场监测仪器和大型自动监测系统也获得迅速的发展。 一、化学分析法 是以特定的化学反应为基础的分析方法,分重量分析法和容量分析法两类。 重量法操作麻烦,对于污染物浓度低的,会产生较大误差,它主要用于大气中总悬浮颗粒、降尘量、烟尘、生产性粉尘及废水中悬浮固体、残渣、油类、硫酸盐、二氧化硅等的测定。随着称量工具的改进,重量法得到进一步发展。例如,近几年用微量测重法测定大气飘尘和空气中的汞蒸汽等。 容量法具有操作方便、快速、准确度高、应用范围广、费用低的特点,在环境监测中得到较多应用,但灵敏度不够高,对于测定浓度太低的污染物,也不能得到满意的结果。它主要用于水中的酸碱度、NH3-N、COD、BOD、DO、Cr6+、硫离子、氰化物、氯化物、硬度、酚等的测定,及废气中铅的测定。 二、光学分析法

是以光的吸收、辐射、散射等性质为基础的分析方法,主要有以下几种: (一)分光光度法 是一种具有仪器简单、容易操作、灵敏度较高、测定成分广等特点的常用分析法。可用于测定金属、非金属、无机和有机化合物等。在国内外的环境监测分析法中占有很大的比重。 (二)原子吸收分光光度法 是在待测元素的特征波长下,通过测量样品中待测元素基态原子(蒸气)对特征谱线吸收的程度,以确定其含量的一种方法。此法操作简便、迅速、灵敏度高、选择性好、抗干扰能力强、测定元素范围广,是环境中痕量金属污染物测定的主要方法,可测定70多种元素,国内外都用作测定重金属的标准分析方法。(三)发射光谱分析法 是在高压火花或电弧激发下,使原子发射特征光谱,根据各元素特征性的光谱线可作定性分析,而谱线强度可用作定量测定。 本法样品用量少、选择性好、不需化学分离便可同时测定多种元素,可用于无机有害物质铬、铅、镉、硒、汞、砷等20多种元素的测定,但不宜分析个别试样,且设备复杂,定量条件要求高,故在环境监测的日常工作中,使用发射光谱分析法较少。但自电感耦合高频等离子体光源(简称ICP光源)研究成功以来,由于它具有灵敏度高、准确度和再现性好,基体效应和其他干扰较少和线性范围

《混凝土-微观结构 性能和材料》笔记

笔记之前: 1.这本书是译著。原著名:《CONCRETE Microstructure,Properties,and Materials》由库玛·梅塔(Mehta)和保罗.蒙特罗(Paulo )合著。 2.本笔记所选摘的都是普通教材中可能忽略的地方,不体现混凝土科学的主要框架,只以本书的体色为主:细致,深入,全面。 3.作为思考混凝土某一方面研究的借鉴,目的是拓宽思路。 笔记: 第一篇硬化混凝土的微结构和性能 第一章绪论 第二章混凝土的微结构(提出了混凝土中过渡区的重要性) 第三章强度(见附图1影响混凝土强度各个因素的相互作用) 第四章尺寸稳定性 “需要注意,混凝土构件通常处于被约束的状态,约束有时来自路基的摩擦 和端部的其他构件,但更多还是来自钢筋和混凝土内、外部的应变差。” “混凝土在约束状态下,干缩应变诱发的弹性拉应力和粘弹性行为带来的应 力松弛之间的交互作用,是大多数结构变形和开裂的核心。” “不是所有变量都以同一种方式控制混凝土的强度和弹性模量(通常,粗骨 料的弹性模量越高、用量越大,混凝土的弹性模量就越大。低强或中强混凝 土的强度不受骨料孔隙率正常变化的影响。)” (附图2 影响混凝土弹性模量的不同参数) 第五章耐久性 (附图3 混凝土劣化的物理原因) “在一种冻融环境中耐冻的混凝土在另一种组合条件下却可能被摧毁。” “经显微镜观测证实:当冰在气孔(而不是毛细孔道)中形成时,水泥浆体 会收缩” “对一种骨料,临界尺寸(在一定的孔径分布、渗透性、饱和度与结冰速率 条件下,大颗粒骨料可能会受冻害,但小颗粒的同种骨料则不会)并非单一 值,因为他还取决于结冰速率、饱和度和骨料的渗透性。” (附图4 化学反应引起混凝土劣化的模型) (附图5 常见环境条件下混凝土损伤的整体模型) “氯化物对硫酸盐膨胀的影响清楚地表明:我们在模拟材料行为时经常犯错 误,即为了简单起见只考虑单一因素的影响,而没有充分考虑其他可能会显 著改变这种影响的因素的存在。” 第二篇混凝土原材料、配合比和早龄期性能 第六章水硬性水泥 区分水泥熟料的化学组成(氧化钙、二氧化硅、三氧化二铝、三氧化二铁、 水等)与矿物组成(硅酸三钙、硅酸二钙、氯酸三钙、铁铝酸四钙等); “任何化学反应的主要特征包括物质变化、能量变化和反应速率三个方面” “水化水泥浆体的电子显微研究表明,水泥早期,水化主要以完全溶解机理 为主;水化后期,由于溶液中离子的迁移受阻,剩余水泥颗粒的水化则主要 按固相反应机理进行” (附图6 硅酸盐水泥浆体液相中铝酸盐对硫酸盐的比例对凝结特性的影响) (附图7 水化产物与凝结过程的关系)

高分子材料微观结构

高分子材料是以高分子化合物为主要组分的材料。高分子化合物是分子量很大的化合物,每个分子可含几千、几万甚至几十万个原子。 在元素周期表中只有ⅢA、ⅣA、ⅤA、ⅥA中部分非金属、亚金属元素(如N、C、B、O、P、S、Si、Se等)才能形成高分子链。由于高聚物中常见的C、H、O、N等元素均为轻元素,所以高分子材料具有密度小的特点 (1)高分子链的几何形态 1)线型分子链由许多链节组成的长链,通常是卷曲成线团状。这类结构高聚物的特点是弹性、塑性好,硬度低,是热塑性材料的典型结构。 2)支化型分子链在主链上带有支链。这类结构高聚物的性能和加工都接近线型分子链高聚物。 3)体型分子链分子链之间由许多链节相互横向交联。具有这类结构的高聚物硬度高、脆性大、无弹性和塑性,是热固性材料的典型结构。 (2)高分子链的构象及柔顺性 由于单链内旋转所产生的大分子链的空间形象称为大分子链的构象。由于构象变化获得不同卷曲程度的特性。这种能拉伸、回缩的性能称为分子链的柔性,这是聚合物具有弹性的原因。 (3)高聚物的聚集态结构 高分子化合物的聚集态结构是指高聚物内部高分子链之间的几何排列或堆砌结构,也称超分子结构。依分子在空间排列的规整

性可将高聚物分为结晶型、部分结晶型和无定型(非晶态)三类。 在实际生产中大多数聚合物都是部分晶态或完全非晶态。晶态结构在高分子化合物中所占的质量分数或体积分数称为结晶度。结晶度越高,分子间作用力越强,因此高分子化合物的强度、硬度、刚度和熔点越高,耐热性和化学稳定性也越好;而与键运动有关的性能,如弹性、伸长率、冲击韧性则降低。 陶瓷亦称无机非金属材料,是指用天然硅酸盐(粘土、长石、石英等)或人工合成化合物(、氧化物、碳化物、硅化物等)为原料,经粉碎、配置、成型和高温烧制而成的无机非金属材料。陶瓷的基本相结构主要有:晶相、玻璃相、气相等。 晶体相是陶瓷的主要组成相:主要有硅酸盐、氧化物和非氧化物等。它们的结构、数量、形态和分布,决定陶瓷的主要性能和应用。 玻璃相是一种非晶态物质。其作用:①粘连晶体相,填充晶体相间空隙,提高材料致密度;②降低烧成温度,加快烧结;③阻止晶体转变,抑制其长大;④获得透光性等玻璃特性;⑤不能成为陶瓷的主导相:对陶瓷的机械强度、介电性能、耐热耐火性等不利。 气相是陶瓷内部残留的孔洞;成因复杂,影响因素多。陶瓷根据气孔率分致密陶瓷、无开孔陶瓷和多孔陶瓷。气孔对陶瓷的性能不利(多孔陶瓷除外)。普通陶瓷气孔率5%~10%,特种陶瓷气孔率5%以下,金属陶瓷气孔率低于0.5%。 工程材料的性能 金属材料的物理性能主要有密度、熔点、导热导电性、热膨胀性

仪器分析法概论

仪器分析法概论 一、近代仪器分析的发展过程 50年代仪器化;60年代电子化;70年代计算机化;80年代智能化;90年代信息化;21世纪是仿生化和进一步智能化。 二、化学分析法与仪器分析法的关系 重量分析法 化学分析法酸碱滴定法 滴定分析法沉淀滴定法 配位滴定法 氧化还原滴定法 天平的出现化学分析法的优点:准确、仪器简单、快速、适用于常量化学。 比色计、分光光度计出现 光谱分析法-根据物质发射的电磁辐射或物质与辐射的相互作用建仪器分析法立起来的一类仪器分析方法。 (精密仪器)色谱分析法-是一种物理或物理化学分离分析方法。 仪器分析法的优点:灵敏、快速、准确、适用于微量和痕量分析。 第十一章光谱分析法概论

1.定义:光学分析法是根据物质发射的电磁辐射或物质与辐射的相互作用建立起来的一类仪器分析方法。 2.光学分析法包含的三个主要过程: (1)由仪器设置的能源提供能量照射至被测物质。 (2)能量与被测物质之间相互发生作用。 (3)产生可被检测的讯号。 第一节 电磁辐射及其与物质的相互作用 (一)电磁辐射和电磁波谱 1.光的波粒二象性:光是一种电磁辐射(电磁波),是一种以巨大速度通过空间而不需要任何物质作为传播媒介的光子流,它具有波粒二象性。 (1)光的波动性:光的波动性用波长λ(nm )、波数σ(cm - 1)和频率υ(Hz )表述。 在真空中,波长、波数和频率的关系为: ,C υλ= (11-1) 光速=光的频率×波长 (11-2) 波数=1/波长 (2)光的微粒性:用以解释光与物质相互作用产生的光电效应、光的吸收和发射等现象。 光的微粒性用每个光子具有的能量E 作为表征,光子的能量是与频率成正比,与波长成反比。它与频率、波长和波数的关系为: 从γ射线一直到无线电波都是电磁辐射,光是电磁辐射的一种形式,每个波段之间,由于波长或频率不同,光子具有的能量也不相同。电磁辐射按照波长顺序的排列称为电磁波谱,电磁波谱的波长或能量是没有边际的,表11-1所示的电磁波谱只是排列出了已被人们认识了的几个主要波段。下册主要讨论近紫外区、可见区和近红外区、远红外区的电磁波谱与物质的定性和定量关系。从表可见,光的波长越短、频率越高,能量越大;反之亦然。 表11-1 电磁波谱及其在仪器分析中的应用 C υλ =1σλ =C E h h υλ ==

汞的分析方法综述20130427

汞的分析方法综述 当前环境污染中汞是主要有害元素。汞的污染分有机汞和无机汞两类,无机汞毒性较小,由呼吸道进入人体;有机汞通过生物界复杂的食物链富集数百至数千万倍,由消化道进入人本。目前国家“污水综合排放标准”汞小于0.05mg/L,国家“大气污染物综合排放标准”汞小于0.015mg/m3(烟囱高度15~60m),国家“工业企业设计卫生标准”居住区大气中含汞小于0.0003mg/m3(日平均量)。 一、汞的常见化合物及其性质 汞有一价和二价化合物,多数汞的盐类都有结晶水。 汞在稀盐酸和稀硫酸中完全不反应,但易溶于硝酸生成硝酸汞,硝酸汞易溶于水。 汞与硫磺粉研磨形成硫化汞。 硫化汞在空气中焙烧时,生成汞和二氧化硫。硫化汞的溶解度是硫化物中最小的,在浓硝酸中也不溶解,但溶于王水和硫化钠溶液中。 汞盐溶液与碱反应生成黄色氧化汞;因为氧化汞不稳定,加热后,分解为汞和氧气。 汞可以生成两种氯化物:升汞(HgCl2)和甘汞(Hg2Cl2) 升汞(HgCl2)微溶于水有剧毒,它与氨水反应生成白色的氯化氨基汞沉淀Hg(NH2)Cl 。在水中会水解生成氯化羟基汞Hg(OH)Cl 。 升汞(HgCl2)在酸性溶液中是较强的氧化剂,与氯化亚锡反应生成氯化亚汞或金属汞。 甘汞(Hg2Cl2)微溶于水,无毒,味甜,故称甘汞。 二价汞能与氯离子、碘离子、硫氰酸根离子、氰氢酸根离子等形成配离子。而一价汞无此性质。 二、含汞样品的分解 含汞样品的分解方法可分为灼烧还原法和酸溶分解法。 灼烧还原法:是将试样与铁粉在潘菲氏管的玻球中混匀,于500~600℃灼烧,试样中的汞被还原成金属蒸气逸出,冷凝于潘菲氏管上。 酸溶分解法有硝酸、盐酸—硝酸、硫酸—硝酸钾、氢溴酸—硫酸(或高氯酸)等。 在试样分解时,必须注意防止汞的挥发,①切勿将溶液蒸干,②分解过程中不能有还原剂存在。③试样一般不宜用碱熔融。 三、汞的常用测定 1、还原灼烧分离—硫氰酸盐容量法 试样→潘菲氏管+铁粉→加热(500~600℃)→拉去玻球→加硝酸溶解(生成硝酸亚汞)→加高锰酸钾(氧化成硝酸汞)→加硫酸亚铁铵(破坏多余的高锰酸钾)→加硝酸铁(作指示剂)→用硫氰酸钾标准溶液滴定。

几种材料微观结构分析方法简介

几种材料微观结构分析方法简介 Introduction to several materials microstructure analysis method 黑道梦境间谍 指导教师:XXX 摘要:材料的微观世界丰富多彩,处处蕴含着材料之美.然而如何分析材料的微观结构是一个很重要的问题.本文章将介绍几种分析材料微观结构的方法, 通过微观结构分析仪器来对微观材料结构进行探索 关键词:材料微观结构X射线激光拉曼光谱电子显微分析方法

1 引言 材料科学在21世纪的地位愈发重要,各种各样的材料具有许多优良的物理及化学特性以及一系列新异的力、光、声、热、电、磁及催化特性,被广泛应用于国防、电子、化工、建材、医药、航空、能源、环境及日常生活用品中,具有重大的现实与潜在的高科技应用前景。材料科技是未来高科技的基础, 而微观材料分析方法是材料科学中必不可少的实验手段。因此, 微观材料分析方法对材料科学甚至是整个科技的发展都具有重要的意义和作用. 2 X射线分析 X射线是一种波长很短的电磁波,这是1912年由劳埃M.von Laue指导下的著名的衍射实验所证实的。X射线衍射是利用X射线在晶体中的衍射现象来分析材料的晶体结构、晶格参数、晶体缺陷(位错等)、不同结构相的含量及内应力的方法。这种方法是建立在一定晶体结构模型基础上的间接方法,即根据与晶体样品产生衍射后的X射线信号的特征去分析计算出样品的晶体结构与晶格参数,并且可以达到很高的精度。然而由于它不是显微镜那样可以直接观察,因此也无法把形貌观察与晶体结构分析微观同位地结合起来。由于X射线聚焦的困难,所能分析样品的最小区域(光斑)在毫米数量级,因此对微米及纳米级的微观区域进行单独选择性分析也是无能为力的。 通常获得X射线是利用一种类似热阴极二极管的装置,用一定材料制作的板状阳极(A,称为靶)和阴极(C,灯丝)密封在一个玻璃-金属管壳内,阴极通电加热,在阳极和阴极间加以直流高压U(数千伏至数十千伏),则阴极产生的大量热电子e将在高压电场作用下飞向阳极,在它们与阳极碰撞的瞬间产生X射线,如图1.1所示。 因此,产生X射线的条件是: 1产生自由电子; 2使电子作定向的高速运动; 3在其运动的路径上设置一个障碍物使电子突然减速或停止。 用仪器检测此X射线的波长,发现其中包含两种类型的波谱,即连续X射线波谱和特征X射线波谱。 其中特征X射线是:当加于X射线管两端的电压增高到与阳极靶材相应的某一特定值UK时,在连续谱的某些特定的波长位置上,会出现一系列强度很高、波长范围很窄的线状光谱,它们的波长对一定材料的阳极靶有严格恒定的数值,此波长可作为阳极靶材料的标志或特征,故称为特征X射线谱。特征谱只取决于阳极靶材元素的原子序数。 3 激光拉曼光谱分析 拉曼散射的过程涉及光的弹性散射和非弹性散射,当一束频率为n。的单色光照射到样品上时,都会发生散射现象,产生散射光,将产生弹性散射 (Rayleighscattering)和非弹性散射(Raman scattering)。散射光的大部分具有与入射光(激发光)相同的频率,即散射光的光子能量与入射光的相同,这就是弹性散射,称为瑞利散射。当散射光的光子能量发生改变与入射光不同时,其频率高于和低于入射光即非弹性散射,称为拉曼散射。频率低于激发光的拉

两种容量法测定汞的含量

碘化钾容量法测定汞 碘离子在酸性介质中,与汞(Ⅱ)生成难溶的碘化汞沉淀。在10%~20%硝酸溶液中,碘(Ⅰ2)存在下以淀粉为指示剂,用碘化钾标准溶液滴定汞。当碘化钾过剩时,与溶液中的Ⅰ2生成Ⅰ3-,而后者与淀粉生成蓝色指示终点。 银和大量的铅、铊、铜和铁等干扰测定。汞经蒸馏分离后,这些元素均已除去。 氯离子干扰测定,应防止混入。 用硝酸溶解金属汞时生成的低价汞可用高锰酸钾氧化,过量的高锰酸钾用亚硝酸钠还原。亚硝酸钠能使终点拖长,需用尿素破坏。 本法滴定终点较硫氰酸钾法更加鲜明。因此,可用很稀的碘化钾标准溶液滴定,适用于低品位的汞矿石分析(含汞0.005%~0.5%)。但当汞量超过5毫克时,碘化汞沉淀太多,影响终点观察。 一、试剂 碘溶液称取0.5克碘,溶于50毫升无水乙醇中。 淀粉溶液1% 称取1克可溶性淀粉,加水调成糊状,加入100毫升沸水,煮沸,冷却备用。 碘化钾标准溶液0.001N 0.322克碘化钾溶于水中,并稀释至1升。 标定:取2毫克汞的标准溶液,置于100毫升锥瓶中,加硝酸8毫升,用时稀释至50毫升,按试样分析手续,用碘化钾标准溶液滴定。 二、分析手续 称取0.5~1克试样,置于带球玻管中,按硫氰酸钾容量法熔矿和蒸馏汞。用8毫升硝酸加热溶解汞,并用水洗入锥瓶中,加水稀释至50毫升,滴加1%高锰酸钾溶液至呈现稳定的红色。加尿素1克,摇动

使其溶解。滴加0.5%亚硝酸钠溶液至红紫色褪去并过量1~2滴。剧烈摇动,放置数分钟后,加碘溶液5滴、1%淀粉溶液2毫升,用0.001N 碘化钾标准溶液滴定至溶液呈现明显的蓝色为终点。

铜试剂容量法测定汞 汞在氨性溶液中,首先与铜试剂定量生成白色的二乙胺基硫代甲酸铜沉淀,使其浓集于四氯化碳中指示终点。 在酒石酸存在下,钙、镁、铝、铁、钛、铅、锌、砷、锰、钴、锑、镓、镉、钨、钼和锡等元素不干扰测定。镍、钒和大量铜略有影响。金、银定量干扰,一般汞矿中含量极微,可不予考虑。 氯根、硝酸根和硫酸根不干扰测定。因此,可用王水分解试样,滤出酸不溶物后,于滤液中用铜试剂滴定汞。本法适用于含汞0.01%以上的试样,特别适用于测定较高含量的汞。 一、试剂 硝酸—盐酸混合酸一份硝酸、三份盐酸、四份水混合。 铜试剂标准溶液0.1N 称取25克铜试剂,用1N氨水溶解并稀释至1000毫升。此溶液为贮备液,保存于暗处。 铜试剂标准溶液0.02N 吸取0.1N铜试剂标准溶液20毫升,放于1000毫升容量瓶中,用0.5N氢氧化铵稀释至刻度,摇匀。此溶液每毫升相当于0.2毫克汞。每隔10天标定一次。 标定:吸取含2毫克汞的标准溶液,放于250毫升锥瓶中,加硝酸、盐酸混合酸5毫升、1%三氯化铁溶液2滴、10%酒石酸溶液10毫升和0.2%乙酸铜溶液2滴,用水稀释至50毫升,按试样分析手续调整酸度后,用铜试剂标准溶液滴定。 二、分析手续 称取0.1~1克试样,放于100毫升烧杯中,用水润湿,加硝酸、

常用仪器分析方法概论.

第十三* 常用仪分析方法轨淹 第一节仪器分析简介 仪器分析法是通过测定物质的光、电、 磁等物理化学性质来确定其化学组 含量和化学结构的分析方法。 热、 - \ 6 *豪

方法试样质!n/mg试液体积/mL 常量分析>100>10 半微量分析10~1001~10 微量分析0?1~100.1-1 超微量分析<0.1<0.01 ?灵敏度高,检出限量可降低.样品用量由化学分析的mL、mg级降低到pg、|1L级,S至至低。适合于微量、痕量和超痕量成分的测定。 ?选择性好:仪器分析方法可以通过选择或调整测定的条件,使共存的组分测定时,相互间不产生干扰。 ?操作简便,分析速度快,容易实现自动化。 ?相对误差较大:化学分析一般用于常量和高含量成分分析,准确度较高,误差小于千分之几。多数仪器分析相对误差较大,一般为5%,不适用于常量和高含量成分分析。

?需要价格比较昂贵的专用仪器。

仪器分析与化学分析关系 仪器分析是在化学分析基础上的发展 -不少仪器分析方法的原理,涉及到有关化学分析的基本理论; -不少仪器分析方法,还必须与试样处理、分离及掩蔽等化学分析手段相结合,才能完成分析的全过程。 -仪器分析有时还需要采用化学富集的方法提高灵敏度; -有些仪器分析方法,如分光光度分析法,由于涉及大量的有机试剂和配合物化学等理论,所以在不少书籍中,把它列入化学分析。 仪器分析与化学分析关系 ?应该指出,仪器分析本身不是一门独立的学科,而是务种仪器方法的组合。这些仪器方法在化学学科中极其重要,已不单纯地应用于分析的目的,而是广泛地应用于研究和解决各种化学理论和实际问题。因此,将它们称为“化学分析中的仪器方法' 更为确切。 4和滞 Vi

材料微观结构与性能分析报告

实用标准 完成时间:2016年XX月XX日

摘要 材料分析检测技术,是关于材料成分、结构、微观形貌的检测技术及相关理论基础的研究,在众多领域的研究和生产中被广泛应用。本报告以Mg/Al扩散焊接接头的检测分析为例,分别介绍了扫描电镜(SEM)、X光衍射技术(XRD)、电子探针(EPMA)等材料微结构表征手段和显微硬度、断裂强度测试等材料力学性能测试手段的具体应用。 关键词:材料分析;微观形貌;力学性能 Abstract Material analysis and testing technology are detection technologies and theoretical foundations about material composition, structure, microstructure. They are widely used in many fields of research and production. This report introduce the detection of Mg/Al diffusion bonding joint as an example, and discusses the application progress of X-ray diffraction technology in material analysis, such as SEM, XRD, EPMA which are used for material microstructure analysis and microhardness, breaking strength which are used for mechanical properties testing. Keywords: materials analysis; microstructure; mechanical properties

饮用水检测的方法简介仪器分析

饮用水检测方法简介_仪器分析 摘要:由于水源污染物的项目繁多,类型复杂,使得传统的饮用水检测指标(GB5749-1985)不能完全代表安全的饮用水标准。本文针对现行的《生活饮用水卫生标准》,简要介绍了饮用水常规检测指标所涉及的分析仪器方法,主要包括有:原子吸收法、离子色谱法、TOC 仪、气/液相色谱法等。论文关键词:饮用水,检测,仪器分析前言随着人们健康意识的增强,人们对饮用水品质的要求也越来越高。以环境为代价的工业发展,致使水源污染日趋严重,传统的饮用水检测指标不能完全代表安全的饮用水标准,这引起了相关部门的高度重视。人们对饮用水安全性的要求主要体现在饮用水中化学物质的安全性。我国的供水企业八十年代起开始重视有机污染物及消毒副产物等指标。目前,我国已组织卫生和水质等方面的专家,根据世界卫生组织的要求并结合我国的具体情况制定了GB5749-2006《生活饮用水卫生标准》,它是我国现行评价水质安全卫生的法规性文件。该标准包括感观性状指标、一般化学性指标、毒理学指标、细菌学指标及放射性指标等106项内容,本文主要从饮用水化学性指标考虑。结合目前主要使用的仪器分析进行了简要介绍。 1.饮用水常规检测指标分类主要可分为几大类:(1)无机物指标:如金属离子、阴离子等;(2)总有机物指标:如TOC、COD、BOD、UV等;(3)有机物指标:如苯类、硝基苯、苯胺等;(4)消毒副产物:如三卤甲烷、卤乙酸主要有一氯乙酸、二氯乙酸、三氯乙酸等;(5)内分泌干扰物:如邻苯二甲酸酯化合物;(6)农药类:如滴滴涕、六六六等。 2.主要分析方法及使用仪器 2.1金属离子检测金属离子如砷、镉、铬、铅、汞、硒、铝、铁、锰、铜、锌,主要可采用原子吸收、原子荧光、离子色谱等方法。 2.1.1原子吸收法主要用来分析铁、锰、铜、锌等金属。原子吸收光谱分析仪器的原理是通过火焰、石墨炉等将待测元素在高温或是化学反应作用下变成原子蒸气,由光源灯辐射出待测元素的特征光,在通过待测元素的原子蒸气时发生光谱吸收,透射光的强度与被测元素浓度成反比,在仪器光路系统中,透射光信号经光栅分光,将待测元素的吸收线与其他谱线分开。经过光电转换器,将光信号转换成电信号,最终在显示待测样品中微量及超微量的多种金属和类金属元素的含量和浓度。澄清的水样可直接进行测定;悬浮物较多的水样,水样需要经过预处理,主要可采用盐酸-硝酸消化处理。每升酸化水样中加入5mL硝酸,混匀后取定量水样,每100mL水样加5mL盐酸,然后在电热板上加热15min,冷却至室温后过滤(通过孔径0.45μm滤膜),最后用纯水稀释至一定体积。原子吸收光谱法的特点是:1.灵敏度高(火焰法:1ng/ml,石墨炉100-0.01pg);2.准确度好(火焰法:RSD,石墨炉:3-5%)3.选择性高(可测元素达70个,相互干扰很小);缺点:不能多元素同时分析。 2.1.2原子荧光法主要用来测定水样中的砷、镉、汞、硒、铅等金属。原子荧光法原理是利用基态原子吸收具有特征波长的光源辐射后,被激发到高能态,然后去激发某一较低能态(常为基态)而发射出特征波长的原子荧光,原子荧光是光致发光,也是二次发光,当激发光源停止照射之后,再发射过程立即停止。原子荧光测定是通过待测元素的原子蒸汽在辐射能激发下产生的荧光发射强度,来确定待测元素含量的方法。原子荧光的优点:1.谱线简单,干扰少;2.灵敏度高(较原子吸收法),检出限低;3.分析校准曲线线性范围宽,可达3-5个数量级;4.适用于多元素分析。 2.2非金属离子检测非金属离子:如F、Cl、NO、SO、BrO,可采用离子色谱法检测。离子色谱法原理是当样品溶液进入离子色谱仪后,由于待测阴离子对低容量强碱性阴离子交换树脂(交换柱)的相对亲和力不同而彼此分开。被分离的阴离子随淋洗液流经强酸性阳离子树脂(抑制柱)时,被转化为相应的高电导酸,淋洗液组分(碳酸钠-碳酸氢钠)则转变成电导率很低的碳酸(清除背景电导),用电导检测器测定转变为相应酸型的阴离子,与标准溶液比较,根据保留时间、峰高或峰面积来分别定性、定量。离子色谱仪对被测水样的构成要求较高,样品必须经可靠的预处理才能进样,一般有色或浑浊的水样可离心沉淀后过0.45μm滤膜进样。复杂的水样应预先除去杂质并调整pH值为6.5~

常用仪器分析方法

常用仪器分析方法 1.光学显微镜的放大率由哪些因素决定? 光学显微镜的放大率由物镜放大率和目镜放大率两个因素决定:显微镜放大率=物镜放大率×目镜放大率 2.显微镜的分辨率是如何定义的? 显微镜的分辨率是指在显微镜下能清晰看到的两点间最小距离。 3.扫描电镜为什么具有较好的分辨率和放大倍数? 扫描电镜的成像原理有别于光学显微镜,是靠电子衍射成像的。电子枪发出的高能电子束经电磁透镜调节后在样品表面扫描,由于电磁透镜可将电子束调节得非常精细,使其在很小的范围内扫描,因此在分辨率和放大倍数等方面远远优于光学显微镜。 4.简述能谱仪X射线信号是如何产生的? 当样品受到高能电子束的作用,样品表面原子的核外电子获得能量从基态跃迁到激发态。激发态不稳定,存在的时间极短,随即又回到基态,并将多余的能量以X光的形式释放出来,从而产生X射线。 5.什么是色谱法,其主要作用是什么? 色谱法集分离与检测于一体,是一种重要的近代分析方法。在色谱系统中有流动相和固定相两个相态,在分离过程中两相作相对运动。欲分离的混合物组分随流动相通过固定相,由于不同的物质在两

相中具有不同的分配系数,当两相作相对运动时,这些组分得以在两相中反复多次地分配,从而使各组分得到完全的分离,并逐一被检测出来。 色谱法的主要作用是实现混合物分分离。 6.什么是保留值,如何用保留值来定性? 保留值表示试样中各组分在色谱柱中停留时间的长短,有保留时间、保留体积、相对保留值、和保留指数等几种表达方法,是色谱法定性的主要依据。理论与实践证明,各种物质在一定的色谱条件下均具有确定不变的保留值,在色谱柱和操作条件不变时,比较组分的保留值就可判断组分的异同,一般采用与标准品的保留值比较来确定未知物的种类。 7.什么是反相液相色谱法,具有什么特点?如何调整色谱条件改善分离? 流动相极性大于固定相极性的液-液色谱法称为反相色谱法。与正相色谱法相反,极性大的组分在固定相中溶解度小,先流出色谱柱;极性小的组分反之。 调整色谱条件主要是调整流动相的极性。流动相的极性增大,洗脱能力降低,组分的保留时间增长,分离得到改善。但流动相极性过大,组分的保留时间过长,色谱峰变宽,灵敏度降低,所用分析时间也增加。所以流动相的极性大小要适当。

材料结构与性能地关系

关于新型材料结构与性能的关系相关文章读后感 通过阅读文献,我了解了关于新型材料的一些基础知识。 新型材料是指那些新近发展或正在发展的、具有优异性能和应 用前景的一类材料。新型材料的特征: (1)生产制备为知识密集、技术密集和资金密集; (2)与新技术和新工艺发展密切结合。如:大多新型材料通过 极端条(如超高压、超高温、超高真空、超高密度、超高频、 超高纯和超高速快冷等)形成。 (3)一般生产规模小,经营分散,更新换代快,品种变化频繁。 (4)具有特殊性能。如超高强度、超高硬度、超塑性,及超导 性、磁性等各种特殊物理性能。 (5)其发展与材料理论关系密切。 新型材料的分类,根据性能与用途分为新型结构材料和功能材料。新型结构材料是指以力学性能为主要要求,用以制造各种机器零件和工程结构的一类材料。新型结构材料具有更高力学性能(如强度、硬度、塑性和韧性等),能在更苛该介质或条件下工作。功能材料指具有特定光、电、磁、声、热、湿、气、生物等性能的种类材料。广泛用于能源、计算机、通信、电子、激光、空间、生命科学等领域。根据材料本性或结合键分为金属材料、元机非金属材料、高分子材料、复合材料

新型材料,在国民经济中具有举足轻重的地位。对新一代材料的要求是:(1)材料结构与功能相结合。(2)开发智能材料。智能材料必须具备对外界反应能力达到定量的水平。目前的材料还停留在机敏材料水平上,机敏材料只能对外界有定性的反应。(3)材料本身少无污染,生产过程少污染,且能再生。(4)制造材料能耗少,本身能创造新能源或能充分利用能源。 材料科学发展趋势:(1)研究多相复合材料。指两个或三个主相都在一个材料之中,如多相复合陶瓷材料,多相复合金属材料,多相复合高分子材料,金属—陶瓷、金属—有机物等。(2)研究并开发纳米材料。①把纳米级晶粒混合到材料中,以改善材料脆性。②利用纳米材料本身的独特性能。 基于材料结构和性能关系研究的材料设计,其核心科学问题有三: (l)寻找决定材料体系特性的关键功能基元; (2)材料微观结构和宏观功能特性的关系的研究; (3)基于功能基元材料体系的设计原理。 各种新型材料的开发研究越来越引起人们的重视,活性碳纤维(ACF)(或纤维状活性碳(FAC)是近几十年迅速发展起来的一种新颖的高效吸附材料。 ACF的吸附性能与其结构特征有密切关系.影响性能的结构因素可分为两个方面:其一为孔结构因素,如比表面积、孔径、孔容等。在通常情况下,比表面积与吸附量有正比关系;其二为表面官能团的种类和含量,例如含氮官能团的ACF对含硫化合物有优异的吸附能力.

相关主题
文本预览
相关文档 最新文档