当前位置:文档之家› 《宽禁带半导体发光材料》3.2氮化物异质结构生长与掺杂技术

《宽禁带半导体发光材料》3.2氮化物异质结构生长与掺杂技术

异质结发展现状和原理

异质结发展现状及原理 pn结是组成集成电路的主要细胞。50年代pn结晶体管的发明和其后的发展奠定了这一划时代的技术革命的基础。pn结是在一块半导体单晶中用掺杂的办法做成两个导电类型不同的部分。一般pn结的两边是用同一种材料做成的(例如锗、硅及砷化镓等),所以称之为“同质结”。如果把两种不同的半导体材料做成一块单晶,就称之为“异质结“。结两边的导电类型由掺杂来控制,掺杂类型相同的为“同型异质结”。掺杂类型不同的称为“异型异质结”。另外,异质结又可分为突变型异质结和缓变型异质结,当前人们研究较多的是突变型异质结。 1 异质结器件的发展过程 pn结是组成集成电路的主要细胞,50年代pn结晶体管的发明及其后的发展奠定了现代电子技术和信息革命的基础。 1947年12月,肖克莱、巴丁和布拉顿三人发明点接触晶体管。1956年三人因为发明晶体管对科学所做的杰出贡献,共同获得了科学技术界的最高荣誉——诺贝尔物理学奖。 1949年肖克莱提出pn结理论,以此研究pn结的物理性质和晶体管的放大作用,这就是著名的晶体管放大效应。由于技术条件的限制,当时未能制成pn结型晶体管,直到1950年才试制出第一个pn结型晶体管。这种晶体管成功地克服了点接触型晶体管不稳定、噪声大、信号放大倍数小的缺点。 1957年,克罗默指出有导电类型相反的两种半导体材料制成异质结,比同质结具有更高的注入效率。 1962年,Anderson提出了异质结的理论模型,他理想的假定两种半导体材料具有相同的晶体结构,晶格常数和热膨胀系数,基本说明了电流输运过程。

1968年美国的贝尔实验室和苏联的约飞研究所都宣布做成了双异质结激光器。 1968年美国的贝尔实验室和RCA公司以及苏联的约飞研究所都宣布做成了GaAs—AlxGal—。As双异质结激光器l;人5).他们选择了晶格失配很小的多元合金区溶体做异质结对. 在70年代里,异质结的生长工艺技术取得了十分巨大的进展.液相夕随(LPE)、气相外延(VPE)、金属有机化学气相沉积(MO—CVD)和分子束外延(MBE)等先进的材料生长方法相继出现,因而使异质结的生长日趋完善。分子束外延不仅能生长出很完整的异质结界面,而且对异质结的组分、掺杂、各层厚度都能在原子量级的范围内精确控制。 2 异质结的结构、原理、 异型异质结 两块导电类型不同相同的半导体材料组成异质结称为异型异质结,有pN和Pn 两种情况,在这里只分析pN异质结。两种材料没有接触时各自的能带如图所示。接触以后由于费米能级不同而产生电荷转移,直到将费米能级拉平。这样就形成了势垒,但由于能带在界面上断续,势垒上将出现一个尖峰.如图3.2m。我们称这一模型为Anderson模型。

锗的性质及其化合物

锗的性质及其化合物 锗的物理性质 锗的物理性质锗是银白色晶体(粉末状呈暗蓝色),熔点937.4℃,沸点2830℃,密度5.35g/cm3,莫氏硬度6.0~6.5,室温下,晶态锗性脆,可塑性很小。锗具有半导体性质,在高纯锗中掺入三价元素(如铟、镓、硼)、得到P型锗半导体;掺入五价元素(如锑、砷、磷),得到N型锗半导体。化合价为+2和+4。第一电离能7.899电子伏特。锗有着良好的半导体性质,如高电子迁移率和高空穴迁移率等。 晶体结构:晶胞为面心立方晶胞,每个晶胞含有四个金属原子。据X射线研究证明,锗晶体里的原子排列与金刚石差不多。结构决定性能,所以锗与金刚石一样硬而且脆。 锗的化学性质 锗的化学性质锗化学性质稳定,不溶于水、盐酸、稀苛性碱溶液。在常温下不与空气或水蒸气作用,但在600~700℃时,与氧气反应能很快生成二氧化锗。在加热情况下,锗能在氧气、氯气和溴蒸气中燃烧。 锗与盐酸、稀硫酸不起作用,但浓硫酸在加热时,锗会缓慢溶解。在硝酸、王水中,锗易溶解。 碱溶液与锗的作用很弱,但熔融的碱在空气中,能使锗迅速溶解。锗易溶于熔融的氢氧化钠或氢氧化钾,生成锗酸钠或锗酸钾。在过氧化氢、次氯酸钠等氧化剂存在下,锗能溶解在碱性溶液中,生成锗酸盐。锗的氧化态为+2和+4。

锗与碳不起作用,所以在石墨坩埚中熔化,不会被碳所污染。锗的化合物 锗的化合物锗与氧、卤素、酸、碱等物质反应都能生成化合物。锗有两种氧化物:二氧化锗(GeO2)和一氧化锗(GeO)。 锗共有四种已知的四卤化物:四碘化锗(GeI4)为固体,四氟化锗(GeF4)为气体,其余两种为挥发性液体。 锗还能与氧族元素生成二元化合物,例如二硫化物、二硒化物(GeSe2)、一硫化物(GeS)、一硒化物(GeSe)及碲化物(GeTe)。 甲锗烷(GeH4)是一种结构与甲烷相近的化合物。 有机锗化合物(organogermanium compound):四氯化锗与二乙基锌反应生成四乙基锗(Ge(C2H5)4)R4Ge型(其中R为烃基)的有机锗烷,如四甲基锗(Ge(CH3)4)及四乙基锗,是由锗前驱物四氯化锗及甲基亲核剂反应而成。有机锗氢化物,如异丁基锗烷((CH3)2CHCH2GeH3)的危险性比较低,因此半导体工业会用液体的氢化物来取代气体的甲锗烷。

异质结

异质结 百科名片 异质结,两种不同的半导体相接触所形成的界面区域。按照两种材料的导电类型不同,异质结可分为同型异质结(P-p结或N-n结)和异型异质(P-n 或p-N)结,多层异质结称为异质结构。通常形成异质结的条件是:两种半导体有相似的晶体结构、相近的原子间距和热膨胀系数。利用界面合金、外延生长、真空淀积等技术,都可以制造异质结。异质结常具有两种半导体各自的PN结都不能达到的优良的光电特性,使它适宜于制作超高速开关器件、太阳能电池以及半导体激光器等。 目录[隐藏] [编辑本段] 基本特性 所谓半导体异质结构,就是将不同材料的半导体薄膜,依先后 异质结 次序沉积在同一基座上。例如图2所描述的就是利用半导体异质结构所作成的雷射之基本架构。半导体异质结构的基本特性有以下几个方面。 (1) 量子效应:因中间层的能阶较低,电子很容易掉落下来被局限在中间层,而中间层可以只有几十埃(1埃=10-10米)的厚度,因此在如此小的空间内,电子的特性会受到量子效应的影响而改变。例如:能阶量子化、基态能量增加、能态密度改变等,其中能态密度与能阶位置,是决定电子特性很重要的因素。 (2) 迁移率(Mobility)变大:半导体的自由电子主要是由于外加杂质的贡献,因此在一般的半导体材料中,自由电子会受到杂质的碰撞而减低其行动能力。然而在异质结构中,可将杂质加在两边的夹层中,该杂质所贡献的电子会掉到中间层,因其有较低的能量(如图3所示)。因此在空间上,电子与杂质是分开的,所以电子的行动就不会因杂质的碰撞而受到限制,因此其迁移率就可以大大增加,这是高速组件的基本要素。 (3)奇异的二度空间特性:因为电子被局限在中间层内,其沿夹层的方向是不能自由运动的,因此该电子只剩下二个自由度的空间,半导体异质结构因而提供了一个非常好的物理系统可用于研究低维度的物理特性。低维度的电子特性相当不同于三维者,如电子束缚能的增加、电子与电洞复合率变大,量子霍尔效应,分数霍尔效应[1]等。科学家利用低维度的特性,已经已作出各式各样的组件,其中就包含有光纤通讯中的高速光电组件,而量子与分数霍尔效应分别获得诺贝尔物理奖。

最新应变锗的结构参数

1 第二章应变Ge空穴能带结构参数 2 本章基于弛豫 Ge 的物理特性,研究应变 Ge 的形成机制,并分析应变3 对 Ge能带结构引起的结果,对比应变Si和应变Ge的相同点与不同点。 4 2.1 应变 Ge 形成机理 5 在元素周期表中,锗(Ge)正好位于金属和非金属之间。在化学上,锗6 尽管是金属,但却具有许多跟非金属相类似的性质,所以它被称为“半金属”;7 在物理上,锗的导电能力比普通非金属强,但却弱于普通金属,所以它被称为8 “半导体”。锗被称为“稀散金属”,并非因为它在地球上的含量很稀少,而是9 由于几乎没有比较集中的锗矿。锗的主要用途是作为半导体工业的重要原料。 10 本章将从锗晶体的晶格结构、能带结构、有效质量、状态密度和状态密度有效11 质量这几方面分别讨论锗的半导体材料特性。 12 13 对于Si、Ge等这类半导体来说,它们每个原子与四个最近邻原子都会组14 成正四面体,所以当它们排成晶体时,其结构必定是以共价四面体为基础来构15 成的。如图2.1所示,C、Si、Ge晶格都是这种搭接结构,被称为金刚石结构。 16 从图中可以看出,Si、Ge这类金刚石结构是一种典型的复式格子,这种复式格17 子由两个相同的面心立方,沿着它们体对角线方向错开四分之一对角线的长度

18 套构而成。弛豫Ge的晶格常数是0.56579nm,Si的晶格常数为0.54310nm,由 19 于Ge的晶格常数比Si大,所以Si和Ge能以任意比例形成Si1-xGex固溶体。 20 这种固溶体是合金,并不属于化合物,形成合金后的晶格常数也同样的遵从 21 Vegard定则,如下式。 22 23 上式中的 x可在 0~1 之间任意取值,Si1-xGex固溶体通常被称为体 24 Si1-xGex 或弛豫 Si1-xGex,Si和 Ge 等半导体的固体物理原胞与面心立方晶 25 体的相同,它们都具有相同的基矢,因此也有相同的倒格子和布里渊区。下图 26 是 Ge 的第一布里渊区简图。 27 硅和锗等半导体都属于金刚石型结构,它们的固体物理原胞和面 28 29 心立方晶体的相同,两者都有相同的基矢,所以它们有相同的倒 30 格子和布里渊区。图2.2 是Ge 的第一布里渊区简图,Γ为布里 渊区中心,坐标为1/a(0,0,0);L 是布里渊区边沿与<111>轴31 32 的交点,坐标为1/a(0.5,0.5,0.5);X是布里渊区边沿与<100> 33 轴的交点,坐标为1/a(0,0,1);K 是布里渊区边沿与<11>轴 34 的交点,坐标为1/a(3/4,3/4,0)。大家知道,面心立方晶体的 35 倒格子为体心立方。如果选择体心作为原点,原点和八个临近格 36 点的连线的垂直平分面会形成一个正八面体,原点和沿着立方轴

应变锗的结构参数

第二章应变Ge空穴能带结构参数 本章基于弛豫Ge 得物理特性,研究应变Ge 得形成机制,并分析应变对Ge能带结构引起得结果,对比应变Si与应变Ge得相同点与不同点。 2、1 应变Ge 形成机理 在元素周期表中,锗(Ge)正好位于金属与非金属之间。在化学上,锗尽管就是金属,但却具有许多跟非金属相类似得性质,所以它被称为“半金属”;在物理上,锗得导电能力比普通非金属强,但却弱于普通金属,所以它被称为“半导体”。锗被称为“稀散金属”,并非因为它在地球上得含量很稀少,而就是由于几乎没有比较集中得锗矿。锗得主要用途就是作为半导体工业得重要原料。本章将从锗晶体得晶格结构、能带结构、有效质量、状态密度与状态密度有效质量这几方面分别讨论锗得半导体材料特性。 对于Si、Ge等这类半导体来说,它们每个原子与四个最近邻原子都会组成正四面体,所以当它们排成晶体时,其结构必定就是以共价四面体为基础来构成得。如图2、1所示,C、Si、Ge晶格都就是这种搭接结构,被称为金刚石结构。从图中可以瞧出,Si、Ge这类金刚石结构就是一种典型得复式格子,这种复式格子由两个相同得面心立方,沿着它们体对角线方向错开四分之一对角线得长度套构而成。弛豫Ge得晶格常数就是0、56579nm,Si得晶格常数为0、54310nm,由于Ge得晶格常数比Si大,所以Si与Ge能以任意比例形成Si1-xGex固溶体。这种固溶体就是合金,并不属于化合物,形成合金后得晶格常数也同样得遵从Vegard定则,如下式。 上式中得x可在0~1 之间任意取值,Si1-xGex固溶体通常被称为体Si1-xGex 或弛豫Si1-xGex,Si与Ge 等半导体得固体物理原胞与面心立方晶体得相同,它们都具有相同得基矢,因此也有相同得倒格子与布里渊区。下图就是Ge 得第一布里渊区简图。 硅与锗等半导体都属于金刚石型结构,它们得固体物理原胞与面心立方晶体得相同,两者都有相同得基矢,所以它们有相同得倒格子与布里渊区。图2、2 就是Ge 得第一布里渊区简图,

异质结建模

异质结建模 最近,有许多朋友询问我如何进行异质结建模的问题,在下不才,学习了一点这方面的知识,对于异质结,我的理解就是与树木嫁接一样,只有截面差不多大的树木才能嫁接存活,在此总结了一些异质结建模步骤分享给大家。 一.MoS2 与ZnO 首先,导入ZnO(或者也可以根据晶胞参数进行建立),建立MoS2(P63 a=b=3.17 c=12.3 S1 0.333 0.667 0.8789 S2 0.333 0.667 0.6211 Mo 0.333 0.667 0.25)如图所示: 相应的参数信息: ZnO:

MoS2: 然后你会发现它们都是六方晶系,a,b的值又很相近,这个时候我们想到可以做关于001方向的异质结,那么接下来我们来建立异质结。这个时候有人会问做多大的异质结可以晶格匹配,那么我告诉你,1×1,2×2,3×3……都可以,不信我们来看看。 二.首先,分别做与ZnO 与MoS2 的001切面 点击Build,surfaces,Cleave Surface, 这里的top指的是切面的位置,调节这个可以使裸露在表面的原子不同,Thichness 指的是厚度,根据自己的需要改变值,自己可以试着玩下。 点击Crystals,建立真空层,真空层一般选用15埃。

MoS2删除一层 接下来建立异质结,一种是将框子摆正,选择一层复制,粘贴到另外一个框子里面,然 后调节位置,,具体细节很简单,大家可以试试。另外一种是通过软件建立选项建立,Build,Build Layers,建立异质结界面,

强调下选择下面这个,然后建立真空层(Build,15埃真空层,与前面操作一样。 这里的距离可以调节,一般的范德华力作用范围在3埃左右。右边是用同样的方法做的2×2的异质结,主要是最开始需要分别做2×2的晶胞,后面操作一样。 二.MoS2与石墨烯 导入石墨烯,建立MoS2。

异质结

1.太阳能电池在光学设计优化中主要采取的措施。 A.在电池表面镀上减反射膜; B.增加电池厚度以提高吸收; C.表面制绒; D.通过表面制绒与光陷阱的结合来增加电池中的光径长度; 2.名词解释: 弗伦克尔缺陷:弗伦克尔缺陷是指原子离开其平衡位置而进入附近的间隙位置,在原来的位置上留下空位所形成的缺陷。其特点是填隙原子与空位总是成对出现。 光生伏特效应 反型异质结光谱响应的窗口效应:对于反型异质结,光从宽带隙材料表面入射并且垂直结平面。高能量的光子被宽带隙材料吸收,低能量的光子穿过宽带材料并且在界面附近被窄带材料吸收。 自发辐射:在高能级E2的电子是不稳定的,即使没有外界的作用,也会自动地跃迁到低能级E1上与空穴复合,释放的能量转换为光子辐射出去 受激辐射:在高能级E2的电子,受到入射光的作用,被迫跃迁到低能级E1上与穴复合,释放的能量产生光辐射 反向饱和电流:在一定的温度条件下,由本征激发决定的少子浓度是一定的,故少子形成的漂移电流是恒定的,基本上与所加反向电压的大小无关 相干光:频率、相位、偏振态和传播方向与入射光相同 非相千光:其频率和方向分布在一定范围内,相位和偏振态是混乱的 2.PN异质结可能存在的几种主要的电流输运机构。 A.扩散(发射)模型; B.简单隧道模型; C.界面复合模型; D.隧道复合模型; E.界面—隧道复合模型; 4.电子跃迁的基本方式。 A.带间跃迁 B.经由杂质或缺陷的跃迁 C.热载流子的带间跃迁 5.突变反型异质结的扩散模型要满足的四个条件。 A.突变耗尽条件:电势集中在空间电荷区,注入的少数载流子在空间电荷区之外是纯扩散运动; B.波尔兹曼边界条件:载流子分布在空间电荷区之外满足波尔兹曼统计分布; C.小注入条件:注入的少数载流子浓度比平衡多数载流子浓度小得多; D.忽略载流子在空间电荷区的产生和复合。 6、半导体激光器的工作原理 向半导体PN 结注入电流,实现离子数反转分布,产生受激辐射,再利用谐振腔的正反馈,实现光放大而产生激光振荡。 半导体发光二极管的工作原理 给发光二极管加上正向电压后,从P区到N 区的空穴和N区注入到P区的电子,在PN结附近数微米分别与N区的电子和P区的空穴复合,产生自发辐射的荧光。 太阳能电池的工作原理:

异质结

1异质结的理想能带结构 先不考虑界面态的影响来讨论异质结的理想能带图。 (1)异质结的形成 当两种不同导电类型的不同半导体材料构成异质结时,由于半导体的能带结构包括费米能级以及载流予浓度的不同,在不同半导体之间会发生载流子的扩散、转移,直到费米能级拉平,这样就形成了势垒。此时的异质结处于热平衡状态,如图1.2所示(n型的禁带宽度比p型的大)。与此同时,在两种半导体材料交界面的两边形成了空间电荷区(即势垒区或耗尽区)。n型半导体一边为正空间电荷区,p型半导体一边为负空间电荷区,由于不考虑界面态,所以在势垒区中正空间电荷数等于负空间电荷数。正、负空间电荷问产生电场,也称为内建电场,方向n—p,使结区的能带发生弯曲。 由于组成异质结的两种半导体材料的介电常数不同,各自禁带宽度不同,因而内建电场在交界面是不连续的,导带和价带在界面处不连续,界面两边的导带出现明显的“尖峰”和“尖谷”,价带出现断续,如图1.2所示。这是异质结与同质结明显不同之处。 (2)不同导电类型和禁带宽度构成的异质结 由两种半导体材料(导电类型和禁带宽度不同)构成的异质结,其能带结构有四种不同的类型(图1.3)。 在异质结器件中我们首先关心的是少子的运动。因为在这种“p窄n宽”的异质结中图l.3(a),导带底在交界面处的突变△Ee对P区中的电子向n区的运动起势垒的作用,所以对电子的输运影响较大。而价带虽然也有一个断续,但它对n区中的空穴向p区运动没有明显的影响,~般情况下可以不加考虑。 反之,对于“p宽n窄”的异质结[图1.3(d)],情况正好相反,界面两边的价带出现明显的“尖峰”和“尖谷”,

所以对空穴的输运影响较大。导带出现断续,但它对p区的电子向n区运动也没有明显的影响。同型异质结也同样存在“尖峰”和“尖谷”[图1.3(b)、(c)]。异质结内尖峰的存在阻止了电子的输运,这就是所谓的“载流予的限制作用”。 (3)各自掺杂浓度来决定尖峰在势垒区中的位置 尖峰的位置处于势垒上的什么位置将由两边材料的相对掺杂浓度来决定。可能出现几种情况(图1.4示):(a)当宽带掺杂比窄带少得多时,势垒主要落在宽带区,尖峰靠近势垒的项部;(b)两边掺杂差不多时,势垒尖峰在平衡时并不露出P区的导带底,但在有正向外加电压时有可能影晌载流子的输运;(c)窄带掺杂比宽带少得多时势垒主要降在窄带区,尖峰靠近势垒的根部。

相关主题
文本预览
相关文档 最新文档