当前位置:文档之家› 医学物理师在肿瘤放射治疗中的角色和职责

医学物理师在肿瘤放射治疗中的角色和职责

医学物理师在肿瘤放射治疗中的角色和职责
医学物理师在肿瘤放射治疗中的角色和职责

医学物理师在肿瘤放射治疗中的角色和职责

作者:傅玉川(ychfu@https://www.doczj.com/doc/3d10351972.html,) 来源:原创更新日期:2005-10-26

简述:医学物理师是肿瘤放射治疗中不可或缺的重要成员。特别是随着近年来肿瘤放射治疗设备和技术的飞速发展,物理师在保证辐射安全,提高治疗技术水平,为患者提供高质量服务等方面所起的作用也越来越重要。

医学物理师在肿瘤放射治疗中的角色和职责

医学物理师是肿瘤放射治疗中不可或缺的重要成员。特别是随着近年来肿瘤放射治疗设备和技术的飞速发展,物理师在保证辐射安全,提高治疗技术水平,为患者提供高质量服务等方面所起的作用也越来越重要[1]。在欧美国家医院里的肿瘤放疗科,物理师作为一个职业已有很长的历史,从事物理师职业的人数也由于设备和精确放疗技术的发展不断增加,同时所担负的责任也越来越重。

在肿瘤放射治疗中,放射肿瘤学医师无疑将对整个放射治疗过程负责,基于这样一个角色,他或她的责任就是确定一个合适的能胜任工作的物理队伍,在这个队伍中不同人员(包括物理师,剂量师或其他人员)的职责是明确指定的。没有足够的物理支持,就无法为患者提供高标准的治疗和服务[2]。而物理师则必须领导物理组的工作,对应用于患者的所有物理数据和过程负责,不管这些过程是否由物理师本人直接实施。

每一个放射治疗部门都需要不断提高自己的治疗水平,这就意味着需要不断引入新的治疗技术和手段,同时有选择地保留原有的治疗项目。在这个过程中,物理师都扮演了重要的角色。例如在近30年里,加速器技术的发展、CT成象、三维治疗计划、适形和动态治疗、远程后装近距离照射、调强放射治疗以及立体定向治疗等新技术的相继出现和发展[3],都不断地改变着物理师的工作内容和职责范围。由于每家临床医院的肿瘤放射科所拥有的治疗设备各不相同,治疗水平和开展的项目也不一样,所以工作在不同医院里的物理师的具体工作和职责也就不尽相同。在具备大多数先进的放射治疗设备的肿瘤放疗科里,物理师这个职业的具体任务大致包括以下几个方面。

1.针对放射治疗设备方面的工作

现代放疗设备包括远距离照射设备、近距离照射设备及模拟机等等。考虑到放疗设备的迅速发展、针对的病症种类和相对昂贵的价格,物理师有责任对本单位需要购买的放射治疗设备进行性能价格比方面的选择,就如何开展该治疗项目提出自己的建议,并提出厂家的设备需要满足的指标和条件。这不仅要求物理师不断了解最新的放射治疗技术,同时也要清楚各种技术和手段的适用范围和局限性,并对这些技术实施过程的复杂程度有所了解。

放射治疗设备的安装一般都是由厂家完成的,但随后该设备的验收检测和机器数据测量都是医学物理师的工作。对每种放疗设备来说都可列出正式的验收检验条目,其指导原则是用于患者的任何设备都必须经过检测以确保满足使用要求和安

全标准。例如对直线加速器,就需要做以下几方面的检测:辐射防护测量,独立准直器的对称性的检查、各部分中心轴是否一致、机架和机头的转动对等中心点位置的影响、X射线的能量、射野平坦度及射野对称性的检测[4]、电子线的能量、射野平坦度及射野对称性的检测、监测电离室的稳定性和线性度的检测等等。每一项检测都有不同的内容、步骤和指标, 可以列成表格的形式逐一完成。

通过验收检测的一部分放疗设备可直接开始临床使用,但还有一部分不能直接使用,需要获取更多的数据,如直线加速器在进行临床使用之前,必须通过刻度[4],测量得到治疗计划系统所需要的所有射束参数和机器参数并将它们输入治疗计

划系统,然后检验该治疗计划系统所计算的剂量分布是否与实际测量结果相符合,这些都是物理师的工作。经过物理师授权的机器才能被用于治疗患者。

放疗设备的质量保证(QA),是一个临床机构进行高质量放射治疗服务的必要

条件[2]。每台放疗设备都需要有每天应该做的质量保证内容,每月应该做的质

量保证内容以及每年应该做的质量保证内容,并将其列在文档中,按时间安排人员逐一实施。一些常规的质量保证任务既可以由物理师来完成,也可以由剂量师来完成,但物理师必须建立质量保证的内容条目和步骤,指导整个过程并检查最后的结果。

2.辐射治疗计划方面的工作

首先,辐射治疗计划系统硬件和软件的验收检验、数据测量、日常的系统和数据维护都需要物理师来完成[5][6]。对硬件系统的检验内容包括检查数字化输入和

输出设备的精度和线性度;对软件系统的检验就是选择一系列治疗条件,检查在这些条件下计算数据和测量数据相比的精确度,如在三维水箱中可进行的各种计算和测量数据的比较。另外一个重要的方面是对治疗计划系统中的各种算法进行检验,如它们的精确度、限制条件和特点等等。这里医学物理师的职责是保证治疗计划系统能够得到正确的使用。

其次,辐射治疗计划过程一定需要物理师的参与。虽然患者的治疗方案由放射肿瘤学医师全面负责,但具体的治疗计划则由放射肿瘤学医师和物理师共同来完成,因为治疗计划过程中许多方案的设计和优化包含复杂的物理概念。一般的模式是:①放射肿瘤学医师根据患者的病情决定是否做CT检查或MR检查,或两者都做,并确定CT模拟的定位方式和定位点;②物理师将CT图象数据及MR图象数据输入治疗计划系统;③如果有MR图象数据,物理师先进行CT图象和MR图象的融合,然后在CT图象上进行外轮廓、重要器官的轮廓勾画;④放射肿瘤学医师勾画靶区,与物理师讨论如何设置射野,在DRR图象上勾画射野中的挡块形状,此时物理师在领会医生的治疗方案后,考虑实际的物理条件和设备条件,提出自己的建议;⑤物理师进行参数设定和剂量计算,不断对计划进行改进和优化,以尽量实现医生的治疗方案;⑥最后由医生决定治疗计划是否可接受,并在病历上签字认可。在整个过程中,放射肿瘤学医师和物理师都应该是密切配合的。在很多治疗中心,一般的治疗计划是由剂量师完成的,同样需要遵循以上的步骤,物理师主要起监督和指导的作用,当涉及到复杂的治疗计划时,则由物理师来完成。

另外,物理师还有一个重要的任务,那就是对治疗计划的质量保证。所有的治疗计划经过医生的认可后,一方面需要输出到控制治疗设备的计算机中以控制实际的治疗过程,另一方面需要输出到患者的病历中,这两方面的输出都要求非常准确,物理师需要对每一项内容进行检查,保证计划输出、控制输出和患者的病历三者的数据是一致的;另外因为放射治疗一般要进行分次治疗,为了检查每次治疗是否是按计划要求进行,治疗师需要按照表格填入每天的治疗情况,如日期,每一射野治疗时输出的实际剂量等等,而物理师则每隔一周左右检查这些记录,发现问题及时纠正。为了尽量不出错,上述的检查一般需要由两名物理师进行双检。

如果患者的治疗计划是一个调强放射治疗计划(IMRT),那么需要对它进行专门的质量保证过程。每个放射治疗部门可根据本部门的设备条件制定IMRT的质量保证内容。如对一个IMRT 治疗计划,可以把该治疗计划应用于一个固体水的体模中,计算得到在这个体模中每个射野的等剂量分布;同时用Mapcheck

实际测量每个射野的等剂量分布,其中每个射野由几十个甚至上百个子野组成。将计算值和测量值进行比较,如果80%的点的剂量误差在5%以下,那么这个计划就得以通过,可进行下一步的治疗。或者用小的空腔电离室测量某一点的绝对剂量,用EDR2胶片测量某一平面的等剂量分布,然后与计算结果相比。如果一个放射治疗部门拥有两种不同厂家的IMRT治疗计划系统,可以用被称为混合计划验证的方法进行质量保证。具体做法是将一个系统产生的IMRT计划应用于一个固体水的体模中,计算得到在这个体模中每个射野的等剂量分布;同时在另一个治疗计划系统中用同样的射束条件进行固体水体模中的剂量分布计算,比较两个系统的计算结果,等中心剂量的计算结果的差异应小于5%。该方法与用独立的剂量计算系统进行QA验证的方法类似。

3.培训和研究方面的工作

由于放射治疗技术本身的复杂性和飞速发展,每一个放射治疗部门不仅要求有一支能满足临床任务的物理师队伍,而且对其人员的不断培训也非常重要。这些培训不仅包括常规的临床训练,同时也包括对新的技术和治疗方式的逐步掌握。首先,对新进入医学物理领域从事物理师工作的人员,必须要有一段合理的临床训练时间,对临床工作中许多实际的操作必须有一个熟悉的过程;其次,将一种新的治疗手段引入到一个放射治疗部门,如全身照射、电子线照射、三维适形放射治疗、调强放射治疗、立体定向放射手术、低能量源植入式内照射、高剂量率内照射等等,对物理师来说一方面是要掌握治疗技术本身,另一方面是要了解开展该治疗技术的治疗设备,并针对这一治疗设备制定相应的操作规程和质量保证计划,全面开发该设备的各种功能。所以,医学物理师的职业培训应该是一个长期的继续教育和自我培训的过程。这样才能保证治疗设备处于良好的工作状态,为患者的诊断和治疗提供最佳的技术支持。另外,物理师还负有培训本单位的剂量师和治疗师在物理方面的知识的责任。

现代社会中飞速发展的各种高、精、尖技术也集中地体现在现代放射治疗设备的开发和应用上,如电子技术、精密仪器、计算机网络、图形图象处理、自动控制技术等等。在提高放射治疗技术、发展新的治疗设备的过程中,特别是在它们的

设计和临床应用方面,医学物理师都扮演了重要的角色。而涉及医学物理领域各个方面的研究工作是促进放射治疗技术不断发展的源泉。对放射治疗技术本身的精益求精也是医学物理师的职责之一。肿瘤放射治疗过程中的物理支持工作并不是每一项都要物理师亲自完成,其中的一些具体技术工作可以由剂量师来做,由物理师进行检查。这样物理师可以有一定的时间开展一些研究工作,提高治疗技术水平,发展新的治疗手段。

每一个医学物理师在肿瘤放射治疗中的角色和职责非常强烈地依赖于他或她所在的放射治疗部门内所拥有的设备种类和开展的治疗项目,同时也与所在的部门内物理师人数多少有关,另外一些物理师还要负担一些教学和管理任务,因此很难详尽地进行概括。但他们共同的目标都是协助肿瘤放射学医师,将处方剂量正确而有效地打到病灶靶区,提高和发展临床治疗技术,为患者提供高标准的治疗服务。

参考文献

[1] AAPM, The role of a physicist in radiation oncology. Report No.38. Colchester, VT:AIDC, 1993.

[2] ISCRO. Radiation oncology in integrated cancer management: report of the Inter-Society Council for Radiation Oncology. Reston, VA: American College of Radiology, 1991.

[3] Faiz M. Khan, The physics of radiation therapy, Third Edition, Lippincott Williams & Wilkins, 2003.

[4] Peter R. Almond,et.al. AAPM’s TG-51 protocol for clinical reference dosimetry of high-energy photon and electron beams, Med. Phys., Vol. 26, 1847-1870, 1999.

[5] Van Dyk J, Barnett R, Cygler J, etal. Commissioning and QA of treatment planning computers. Int J Radiat Oncol Biol Phys, 26, 261-273, 1993.

[6] Benedick Fraass,et.al. American Association of Physicists in Medicine Radiation Therapy Committee Task Group 53: Quality assurance for clinical radiotherapy treatment planning, Med. Phys., Vol. 25, 1773-1829, 1992.

肿瘤放射治疗技术的现状与发展

原创:肿瘤放射治疗技术的现状与发展 摘要放射治疗在过去的十年中经历了一系列技术革命,相继出现了三维适形放疗(3DCRT)、调强放疗(IMRT)、质子放疗等技术,这些技术的主要进步是靶区剂量分布适形性的提高。但是,由于呼吸运动等因素的影响,在放疗实施过程中肿瘤及其周围正常组织会发生形状和位置的变化,这种不确定性一定程度阻碍了3DCRT和IMRT技术的发展。图像引导放疗技术(IGRT)的出现,对补偿呼吸运动影响的肿瘤放疗取得了很好的疗效,特别是近年来提出的四维放射治疗(4DRT)技术,进一步丰富了IGRT的实现方式。本文将详细介绍现有的各种放疗技术及其存在的问题,同时讨论一下放疗技术的未来发展方向。 关键词图像引导放疗;锥形束CT;四维放疗;呼吸门控系统 1引言 理想的放疗目的是精确给予肿瘤高剂量的同时尽量减少对靶区周围正常组织的照射。近年来3DCRT和IMRT技术实现了静态三维靶区剂量分布的高度适形,较大程度上解决了静止且似刚性靶区的剂量适形放射问题。然而,在实际放疗过程中,主要由呼吸运动引起的内部组织的运动和形变(主要是胸部和腹部的靶组织),严重影响了IMRT和3DCRT技术的准确实施。如在单次放疗中,呼吸运动和心脏跳动会影响胸部器官或上腹部器官的位置和形状,胃肠蠕动也会带动邻近的靶区;在分次放疗间随着疗程的进行出现的肿瘤的缩小或扩展;消化系统和泌尿系统的充盈程度;在持续的治疗过程中患者身体变瘦或体重减轻等造成的靶区和标记的相对移位。针对上述问题,我们迫切需要某种技术手段去探测肿瘤的摆位误差和运动形态,并且这种技术可以对靶区的形态变化采取相应的补偿和控制措施。IGRT正是基于以上问题的出现而产生的。现在我们可以采用在线校位和自适应放疗技术去解决分次间的摆位误差和靶区移位问题,也可以采用呼吸限制、呼吸门控、四维放疗等技术对单次放疗中出现的靶区运动进行补偿和控制,而这些技术都是属于IGRT的范畴[2]。后面的内容将分别介绍IMRT技术、IGRT 技术的不同实现方式,包括呼吸限制、呼吸门控、自适应放疗、四维放疗,最后介绍一下未来放疗技术及设备的发展方向。 2肿瘤放疗技术的现状 由于目前各种放疗技术各具优势及经济市场发展等原因,不同的放疗技术还处于并存的状态,适形调强放疗和图像引导放疗的部分技术代表了放疗领域的现状。 2.1适形调强放射治疗 适形调强放疗技术包括三维适形放疗和调强放疗。三维适形放疗是通过采用立体定位技术,在直线加速器前面附加特制铅块或利用多叶准直器来对靶区实施非共面照射,各射野的束轴视角(beam eye view, BEV)方向与靶区的形状一样,使得剂量在靶区上的辐射分布可以更加准确,而对周围正常组织的照射又可降到较低程度[3]。与以往的常规放疗相比,三维适形放疗设备的突出优势是多叶准直器的使用。多叶准直器所产生的辐射野可以根据肿瘤在空间任何角度方向(一般指机架旋转360度范围内)上的几何投影形状而改变,使辐射野的几何形状与肿瘤投影相匹配。如美国Varian生产的23EX直线加速器上面装配有60对多叶

放疗机房技师职责示范文本

放疗机房技师职责示范文 本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

放疗机房技师职责示范文本 使用指引:此管理制度资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 1、严格遵守各项规章制度和医德规范 2、刻苦专研业务,不断提高专业修养 3、以乐观及友善的态度对待病人,并了解患者病情、 思想、生活,以提高必要的咨询 4、做好治疗前对查,认真书写放疗病历,详细记录治 疗记录单 5、严格执行加速器操作规范,正确输入治疗条件及各 种参数,摆位熟练而准确 6、治疗时注意监测病人,出现情况及时处理,不得擅 自离开工作岗位或与他人聊天 7、放疗技师在治疗工作中应对放疗技士的工作起到指 导、帮助、检查、监督的作用,每周至少一次核对治疗单

剂量,发现问题及时更正,如有较大差错应及时报告主任 8、在劳动纪律和服务态度上要为人师表,积极配合放疗医师、物理师完成各项工作任务 9、正确熟练地使用机器,发生故障及时向主任及维修工程师汇报 10、治疗结束后,检查机器及辅助设备,门窗、水、电等关闭情况以及机房安全、卫生情况 请在此位置输入品牌名/标语/slogan Please Enter The Brand Name / Slogan / Slogan In This Position, Such As Foonsion

2018年《肿瘤放射治疗技术》常考题(三)

2018年《肿瘤放射治疗技术》常考题(三) 单选题-1/知识点:章节测试 适形放疗要求各野到达靶区内P点的剂量率和照射时间的乘积之和为一常数,调整各野照射P点的剂量率的方法有 A.组织补偿器 B.多叶准直器动态扫描调强 C.多叶准直器静态扫描调强 D.笔形束电磁扫描调强 E.独立准直器动态扫描 单选题-2/知识点:章节测试 放射治疗的质量保证的英文缩写是 A.QA B.QC C.CA D.GA E.QG 单选题-3/知识点:章节测试 钴治疗机等中心误差应不大于 A.1mm B.2mm

C.1.5mm D.2.5mm E.0.5mm 单选题-4/知识点:章节测试 斗篷野照射喉保护大小一般为 A.1cm×1cm B.2cm×2cm C.3cm×3cm D.4cm×4cm E.5cm×5cm 单选题-5/知识点:医学伦理学 国际上最早对人体实验制定基本国际准则的医德文献是 A.《希波克拉底誓言》 B.《赫尔辛基宣言》 C.《纽伦堡法典》 D.《日内瓦协议》 E.《东京宣言》 单选题-6/知识点:医学伦理学 关于生殖权利错误的是 A.人权的一个基本组成部分

B.是人的自然权利 C.是人类的生存和延续所不可缺少的 D.在保护生殖权利与调节人口之间存在着矛盾 E.有悖于我国计划生育原则 单选题-7/知识点:放射治疗物理学基础 射野边缘处的半影由以下几种半影组成 A.几何半影、干涉半影和散射半影 B.物理半影、穿射半影和散射半影 C.准直器半影、穿射半影和散射半影 D.几何半影、穿射半影和模体半影 E.几何半影、穿射半影和散射半影 单选题-8/知识点:章节测试 以下有关口底癌放疗布野的描述不正确的是 A.肿瘤靠前者应包下唇 B.肿瘤靠后者可不包下唇 C.后界一般置于椎体前缘 D.上界在舌上缘上2cm E.下界一般置于舌骨下缘水平 单选题-9/知识点:章节测试 下列乳腺癌非对称照射野摆位技术描述不正确的是

放疗科岗位职责

放疗科各类人员岗位职责 科主任职责 -----** l、在主管院长及院长的领导下,负责本科的医疗、教学、科研、预防及行政管理工作。 2、制定本科工作学习计划,组织实施,经常督促检查,按时完成工作任务,及时总结汇报。 3、根据本科工作任务和人员情况进行科学分工,保证对病员进行及时的定位及治疗。 4、定期主持集体交班,亲自参加临床会诊和对疑难病例的讨论工作,制定合理的治疗方案。 5、学习、引进国内外先进医疗技术,开展科学研究。组织本科人员的业务学习和业务技术考核。担任教学,搞好进修、实习人员的培训。督促科内人员做好资料积累和登记、统计工作。 6、组织领导本科人员认真执行各项规章制度和技术操作规程,做好安全防护工作,经常检查设备使用与保养情况。严防差错事故,及时处理医疗纠纷和医疗事故,保障医疗安全。 7、经常和临床科室保持联系,搞好协作,并征求意见,改进工作。 8、确定本科人员轮换、值班和休假及参加学术活动、外出进修。 9、组织本科人员的医德医风教育、业务培训和技术考核,提出升、调、奖、惩意见。

10、经常对所有设备的工作和运行情况经行检查,督促专职人员定期对设备进行保养维护,发现问题及与设备科或生产厂家维修,杜绝设备带病运行。 11、对本科设备加速器、模拟定位机、后装机、计划系统及其他辅助设备的技术资料统一管理,由专人负责保管。 12、审签本科药品、器材的请领与报销。 科主任助理职责 ----** 协助科主任负责业务相关工作,科主任外出或休假时全权负责科室工作。 主任(副主任)医师职责 ----** 1、在科主任领导下,负责和指导科室医疗、教学、科研和预防工作。 2、担负疑难病例的治疗计划制定,参加院内会诊和疑难、死亡病例讨论。 3、制定和主持开展新技术、新项目和科学研究,指导下级医师开展科研工作和论文撰写工作。 5、担任对下级医师和进修实习人员的培训、教学和指导工作。 6、督促下级医师认真贯彻执行各项规章制度和技术操作规程。

放疗科科室人员岗位职责

放疗科岗位职责 一、科主任职责 1、在院长领导下全面负责放疗科医疗、教学、科研、行政管理工作。 2、结合放疗科设备、人员编制、技术水平、人才培养等制定计划,做好近期工作安排和 远期发展规划。 3、领导全科人员认证执行各项规章制度和技术操作规范流程,严防差错与事故,定期(每 月至少一次)组织召开一次医疗质量分析会。监督本科室执行治疗规范及专科用药、辅助用药的情况,并根据各医疗组的完成情况在科内实行奖惩。 4、组织并参加对全科人员的各项业务训了和技术考核,不断提高放疗科的监测和治疗水 平及各级人员的专业技术水平。 5、主持疑难病例和死亡病例讨论,亲自参加重、危、疑难病例的诊治,认真把握诊断。 6、决定本科室人员的轮转、进修、参加各种学术会议、出诊、会诊等事宜。 7、副主任协助主任负责相应的具体工作。 8、主持科室的医德医风及行风建设工作,对科室医务人员进行职业道德教育和管理,引 导科室人员树立正确的世界观、价值观、人生观,自觉抵制不正之风。 二、 (副)主任医师 1、在科主任的领导下,指导并参加放疗科医疗、教学、科研、技术培训和理论提高工作。 2、定期检查及指导主治、住院医师、及临床实习学生业务水平提高、基本操作、基本制度执行情况,定期举办教学查房、病区小讲座、专题病案讨论。 3、负责病区的病案质量。 4、通晓现代肿瘤医学理论,学习、运用国内外肿瘤医学先进技术治疗临床工作,不断提高自身业务素质。 5、指导下级医师并参加科研工作,做好资料积累,及时总结经验。 6、加强自身的医德医风建设,以身作则,为其他医务人员树立榜样。 三、主治医师职责 1、在科主任和(副)主任医师(医疗组长)指导下,负责放疗科一定范围内的医疗、教学、科研工作。

磁共振模拟(MRSIM)_肿瘤放疗模拟技术新前沿

磁共振模拟——站在肿瘤放疗的最前沿 磁共振模拟 站在肿瘤放疗的最前沿
黄岁平 博士 关键词:磁共振模拟 MRSIM 据有关调查显示,目前全世界范围内的肿瘤患者,约有 70%需要接受不同程 度的放射治疗,以达到治愈肿瘤或缓解症状、改善生活质量的目的。能够最大限度 地把放射剂量集中到病变(靶区)内,杀灭肿瘤细胞,同时使其周围正常组织和器 官少受或免受不必要的照射,从而得到保护,是肿瘤放射治疗一直以来追求的目 标。 20世纪 70年代 CT的使用是放射治疗计划所取得的一个巨大进步。引入 CT 图像的模拟增加了临床医生对靶区体积的空间意识,从而较之原有的传统治疗的靶 区体积(由垂直 X线胶片确定)产生了一个质的改变-----CT扫描得到一系列断层 轴面,经过多种方式的三维重建,形成一个三维计划,这使得适形放射治疗 (CRT)的概念得以实现。但 CT却有一些先天的局限性----它只对具有不同的电 子密度或 X线吸收特征的组织结构具有较好的分辨率(如空气对骨或对水或软组 织),但如果没有明显的脂肪或空气界面,则对具有包括肿瘤在内的相似电子密度 的不同软组织结构区分较差。相比之下,磁共振最大的优点就是对具有相似电子密 度的软组织有较强的显示能力并且能区分其特征。在这种情况下,磁共振能够更好 的提供靶区的轮廓,不但包括肿瘤的范围,而且还包括临近的重要软组织器官。通 过更准确地定位肿瘤靶区、避免危及临近的组织器官、以及提高局部控制率等。
一.磁共振模拟独特的优越性。
事实上,临床医生早已意识到诊断性的 MRI扫描对肿瘤体积的确定具有相当 重要的信息补充,引入 MR图像作定位由来已久。最早通常是由医生用肉眼在 MRI上观察疾病的范围,然后手工将数据转移至模拟胶片或 CT扫描片上,这种方 法极易产生解释和转译错误。第二种方式是通过使用一种放大投影系统将 MRI图 像叠加到模拟胶片或 CT图像上进行融合处理的 MR辅助的模拟。第三种更加定量 的方式是将 MRI图像与 CT图像进行融合,那样就可以将 MRI上具有较高分辨率 的肿瘤图像与几何精确的 CT图像中电子密度信息结合起来。但以上任意一种融合 方式都是在放疗过程中增加了一个步骤,也就是说,延长了整个放疗过程花费的时 间,加重了医生的工作任务,加大了病人的经济负担,也增加了误差的可能性及偏 离度。现在我们已经很明确对于中枢神经系统部位如颅底和脊髓部位的肿瘤,以及 软组织肉瘤和盆腔肿瘤,MRI成像已远优于 CT成像。这些情况下,就可以单纯借 助 MR图像完成模拟工作,因为 MRI有许多优于 CT方面的特点, 直接利用 MR 图像进行模拟定位有着不可替代的优越性:

肿瘤放射物理学

放射物理复习 轨道电子结合能的概念和计算方法:把电子从所在的能级转移至不受原子核吸引并处于最低能态时所需的能量叫轨道电子结合能。 核子结合能的概念和计算方法:质子和中子等核子结合成原子核放出的能量叫核子结合能计算水和人体骨组质的有效原子序数 计算水和人体骨组质的电子密度 计算Co-60源比活度的极限值 指型电离室测量照射量的原理:绝大部分次级电子来自于室壁材料,少部分来自中间的空气,周围介质产生的次级电子可忽略 指型电离室作为空腔的测量原理:次级电子全部来自于周围介质材料,可忽略来自室壁材料和中间的空气次级电子 何谓电子平衡?离开某一区域的次级电子所带的能量等于进入这一区域的次级电子所带 的能量,就认为这一区域实现了电子平衡 如何描述辐射探测器的特性?能量响应特性(越平坦越好)、剂量率线性(响应)、积分线性、空间分辨率高 X射线与物质相互作用中能量转递的方式光电效应、康普顿效应、电子对效应 用拟合公式表达标称加速电压与PDD20/PDD10之间的关系 二者相辅相成,不可偏废 对应策略:外照射是多射野分野照射;近距离照射是合理布放射源 比较深部X射线、高能X( )射线、高能电子束、和重带电粒子的深度剂量特点。

深部X射线高能X射线高能电子束重带电子粒子 Dmax点皮肤表面在建成区后皮下一定深度 Bragg Peak 适形定义,调强定义 适形:是一种治疗技术,它能使高剂量区剂量分布形状在三维方向上与靶区形状一致;调强:是一种治疗技术,按照一定要求调整射野内各处的剂量注量率的过程; 3DCRT与IMRT的异同点 调强更要求靶区表面和靶区内部各点剂量相等 多叶准直器叶片的描述方式 高度(至少5个半价层)、等中心处宽度、端面形状 多叶准直器整野(Cone Beam)调强的方式 整野调强、扇形束调强 加速器使用束流均整器的目的 将符合高斯分布的射野变成符合一定平坦度要求的射野 临床形成不规则射野的方法及其优缺点 MLC和铅挡块;MLC易成形,形状粗糙、铅挡块制作复杂,形状精细 楔形板的用途及种类 改变射野剂量分布形状; 种类:利用准直器形成的动态楔形板、一楔合成板(60°)、物理楔形板 楔形板楔形因子的测量方法 Co60 :一定源皮距,10cmX10cm, d=5cm,分别测量开野和楔形野 加速器:一定源皮距,10cmX10cm,d=10cm,分别测量开野和楔形野 独立准直器的用途 形成偏轴射野(非对称)、动态楔形板 治疗机剂量处方的规定点(MU/cGy)

放射治疗技术介绍

放射治疗技术介绍 肿瘤是一种常见病、多发病,恶性肿瘤是危害人类健康最严重的疾病。1983年,吴桓兴在肿瘤学中将肿瘤定义为;肿瘤是肌体中成熟的或在发展中的正常细胞,在有关因素的作用下,呈现过度增生或异常分化而形成的新生物。我们应从以下几点来认识肿瘤。1肿瘤是由正常细胞在多种致瘤因素的长期作用下转变而来的。2肿瘤是失去机体控制、过度生长的细胞群体。3肿瘤的发生、发展与机体的免疫系统的功能密切相关。 放射治疗是通过射线的电离作用引起生物体细胞产生一系损伤过程。放射肿瘤学是建立在放射生物学、放射物理学、临床肿瘤学和放疗技术学基础上的学科。随着肿瘤学的发展,它和外科肿瘤学、内科肿瘤学组成了治疗恶性肿瘤主要手段。 放射治疗临床简称为放疗,是治疗恶性肿瘤的主要手段之一,被称之为放射肿瘤学。1895年伦琴发现X线,1896年居里夫妇发现了镭,它的生物学效应很快就得到了认识。1899年放射治疗治愈了第一例病人。至今已有百年的历史。放疗已成为当今治疗恶性肿瘤的主要手段之一。Tubiana(蒂比亚纳)1999年报告45%的恶性肿瘤可治愈。其中手术治愈22%,放疗治愈18%,化疗药物治愈5%。 一、放射治疗 1.1 放射物理学术语 放射源:一切能产生电离辐射(光子和粒子)的物质或设备,称为放射源。 体外照射(远距离治疗):用各种放射源在体外进行照射,远距离治疗剂量分布均匀,深度量高,适用于深部肿瘤。 远距离治疗(体外照射)的主要设备:(1)深部X线机:作为外照射源,深部X线已很少使用,以往多用于浅表肿瘤的治疗,管电压多在180~250kV。(2)钴-60远距离治疗机:该机由一个不断放射源钴-60及附属防护装置和治疗机械装置构成。主要依靠它发射的γ 射线来治疗肿瘤,平均能量1.25MeV,它与深部X射线比较有下列优点:皮肤量低,最大剂量点在皮下0.5cm,深部剂量高,骨吸收量低等特点。缺点:半衰期短,为5.3年,一般3年要更换源1次。(3)直线加速器:使用最多的是电子感应加速器及电子直线加速器,因其既可产生电子束,又可产生高能X射线。高能电子束具有突出内四)的物理学特点:剂量自皮肤到达预定深度后骤然下降,可保护靶区后面的正常组织;可以通过调节能量来调节电子束的深度;皮肤剂量介于深部X射线及钴-60之间,但其剂量骤然下降的特点,随着能量超过25MeV以后逐渐消失,所以适合治疗中、浅层偏心肿瘤;等剂量曲线很扁平,放射野内剂量分布均匀;对不同组织的吸收剂量差别不大。 1.2 高能X射线特点皮肤反应小,其最大剂量点在皮肤下;等剂量曲线均匀、平坦,照射野中心和边缘剂量相差5%左右;深度剂量高,容积剂量小,骨吸收小。能量4~15MeV,最常用6MeV。但加速器设备复杂,对水电要求高,对维修技术要求高,价格昂贵。照射野:表示射线束经准直器后垂直通过体模的范围,以体模表面的截面大小表示照射野的面积。源皮距:照射源到体模表面照射野中心的距离。源轴距:照射源到机架旋转轴或机器等中心的距离。 放疗是研究各种放射线与生物体相互作用,并用它来治疗各种恶性肿瘤的一门学科。是在放射物理学、临床放射生物学及肿瘤学三种学科的基础上发展起来的,是根据肿瘤的生物学特性和临床特点,应用射线的物理特性及剂量分布的特点、生物学的特点进行治疗它可以破坏肿瘤细胞而很小损伤正常组织。与外科手术比较有其独特的优越性。是对前列腺癌、鼻咽癌、口腔癌、宫颈癌、膀胱癌、皮肤癌等放射敏感肿瘤进行治疗的首选方案。取代了外科

肿瘤放射治疗知识点及试题

名词解释 1.立体定向放射治疗(1. 2.2)指借助CT、MRI或血管数字减影仪(DSA)等精确 定位技术和标志靶区的头颅固定器,使用大量沿球面分布的放射源,对照射靶区实行聚焦照射的治疗方法。 2.立体适形放射治疗(1.2.2)是通过对射线束强度进行调制,在照射野内给出 强度变化的射线进行治疗,加上使用多野照射,得到适合靶区立体形状的剂量分布的放射治疗。 3.潜在致死性放射损伤(1.2.4)当细胞受到非致死放射剂量照射后所产生的非 致死性放射损伤,结局可导致细胞死亡,在某些环境下(如抑制细胞分裂的环境)细胞的损伤也可修复。 4.亚致死性放射损伤(1.2.4)较低剂量照射后所产生的损伤,一般在放射后立 即开始被修复。 5.加速再增殖(1.2.4)在放疗疗程中,细胞增殖的速率不一,在某一时间里会 出血细胞的加速增殖现行,此现象被为称为加速再增殖。 6.常规放射分割治疗(1.2.1)是指每天照射1次,每次1.8-2.0Gy,每周照射 5d,总剂量60-70Gy,照射总时间6~7周的放疗方法。 7.非常规放射分割治疗(1.2.1)指对常规放射分割方式中时间-剂量-分割因子 的任何因素进行修正。一般特指每日照射1次以上的分割方式,如超分割治疗及加速超分割治疗。 8.放射增敏剂(1.2.1)能够提高放射肿瘤细胞的放射敏感性以增加对肿瘤的杀 灭效应,提高局控率的药物。包括嘧啶类衍生物、化疗药物和缺氧细胞增敏剂。

9.放射保护剂(1.2.1)能够有效的保护肿瘤周围的正常组织,减少放射损伤, 同时不减少放射对肿瘤的杀灭效应化学修饰剂。 10.热疗(1.2.1)是一种通过对机体的局部或全身加温以达到治疗疾病的目的的 治疗方法。 11.亚临床病灶临床及显微镜均难于发现的,弥散于正常组织间或极小的肿瘤 细胞群集,细胞数量级≤106,如根治术或化疗完全缓解后状态。 12.微小癌巢为显微镜下可发现的肿瘤细胞群集,细胞数量级>106,如手术边 缘病理未净。 13.临床病灶临床或影像学可识辨的病灶,细胞数量级≥109,如剖腹探查术或 部分切除术后。 14.密集肿瘤区(GTV)指通过临床检查或影像检查可发现(可测量)的肿瘤范围, 包括原发肿瘤及转移灶。 15.计划靶区(PTV)指考虑到治疗过程中器官和病人的移动、射野误差及摆位 误差而提出的一个静态的几何概念,包括临床靶区和考虑到上述因素而在临床靶区周围扩大的范围。 CTV+0.5cm 16.“B”症状临床上将不明原因发热38℃以上,连续3天;盗汗;不明原因 体重减轻(半年内体重减轻大于10%)称为“B”症状。 17.咽淋巴环(韦氏环,Waldege’s ring)是由鼻咽腔、扁桃体、舌根、口咽 以及软腭背面淋巴组织所围绕的环形区域。 1、肿瘤放射治疗学:是研究和应用放射物质或放射能来治疗肿瘤的原理和方法一门临床学科。它包括放射物理学、放射生物学、放疗技术学和临床肿瘤学。 2、放射物理学——研究各种放射源的性能和特点,治疗剂量学和防护。 3、放疗技术学——研究具体运用各种放射源或设备治疗病人,射野设置定位技术摆位技术。 4、放射生物学——研究机体正常组织及肿瘤组织对射线反应以及如何改变这些反应的质和量。

医学物理师职称评定的方式

医学物理师职称评定的方式 在肿瘤放化疗中心这个团队里存在这样一群特殊的人,他们不是医生,不是护士,深居简出,医院里的很多同事根本不知道他们到底是干什么的?但他们在肿瘤患者的治疗 上却有着举足轻重的地位,这就是我们中心的放疗物理师,一群“藏”在放疗临床医生背后的工程师。 他们每天面对的不是真正的病人,而是病人的三维人体设计图和所有患者治疗用的精确放疗设备。他们像“软装”设计师,把“业主”——放疗医生的思路、想法、策略输入电脑,在肿瘤患者放疗前,借助电脑在人体设计图上画各种曲线,将“射束”的路径、分布一一标注清楚,精确肿瘤患者的放疗物理范围,获得最优的物理剂量分布,做出一个让放疗医生满意的放射治疗方案,为肿瘤患者“对症下药”。每一次的治疗,物理师们都精益求精,完成一个治疗计划,短则需要三五小时,长则需要三五天时间。他们也像所有放疗设备的“医师”,不定期的为这些设备诊断护航,确保这些高精设备处于健康状态。 物理师是肿瘤放射治疗中非常重要的成员,可以毫不夸张的说,没有物理师,放射治疗工作就不能顺利开展。特别是随着近年来肿瘤放射治疗设备和技术的飞速发展,物理师在保

证辐射安全,提高治疗技术水平,为患者提供高质量服务等方面所起的作用也越来越重要。 由于国家一直没有独立的医学物理师职称,目前医学物理师的职称评定每个人走的方向各不相同,有种“八仙过海各显神通”的感觉。总结了目前主要的评定方式,主要有以下三种:一、全国卫生专业的技师系列 每年的报名时间大概在12 月到次年的1 月之间,报名通知与网址:中国卫生人才网 1、截至目前全国有很多省份规定,非医学专业毕业的不能报考全国卫生专业技技资格考试,想走技师职称的同仁可提前咨询当地人事局或职称改革办公室相关的政策,目前有的地方非医学专业毕业的还是允许报名全国卫生专业技术资 格考试的,具体以当地规定为准。 2、技师职称序列一般为: 放射医学技术(初级) 肿瘤放射治疗技术(中级) 放射医学技术(副高级) 放射医学技术(正高级) 3、报考条件: (1)参加技师资格考试的人员,须具备下列条件之一: ①取得相应专业中专毕业,从事技士职务工作满5年; ②取得相应专业大专学历,从事技士职务工作满2年;

放疗科试题及答案

放疗科试题及答案 一、单选题[A1/A2](每题只有一个正确答案,共819道题) 1、在什么时期,60钴远距离治疗机开始应用于临床治疗一些深部肿瘤 A、20世纪40年代 B、20世纪50年代 C、20世纪60年代 D、20世纪20年代 E、20世纪30年代 正确答案:B 20世纪50年代加拿大制造第一台60钴远距离治疗机,开始应用于临床治疗一些深部肿瘤。 2、关于根治性放射治疗的描述错误的是 A、治疗靶区包括肿瘤原发灶 B、治疗靶区包括肿瘤相关的淋巴引流区 C、要求照射剂量高 D、需要保护正常组织和重要器官 E、治疗目的主要是减轻症状和改善生活质量 正确答案:E 根治性放射治疗的目的是为了根治肿瘤,通常包括原发灶和相关的淋巴引流区,照射剂量比较高。姑息性放射治疗的目的是减轻症状和改善生活质量。 3、从剂量学的角度来看,均匀模体与实际患者间的区别是 A、均匀模体无生命而实际患者是有生命的 B、均匀模体无运动而实际患者时刻处于运动当中

C、均匀模体的密度与实际患者不同 D、均匀模体的形状与实际患者不同 E、均匀模体的形状、大小及内部密度分布与实际患者不同 正确答案:E 人体主要由肌肉、脂肪、骨(海绵状骨和实质性骨)、气腔(如气管、喉、上颌窦腔等)以及肺组织等组成,而均匀模体只模拟人体的肌肉软组织。 4、克隆源性细胞在特定的生长环境内有能力形成细胞集落数是 A、30个 B、40个 C、50个 D、60个 E、70个 正确答案:C 在特定的生长环境内有能力形成含有超过50个细胞集落的细胞,称为克隆源性细胞。50个细胞表示已繁殖5~6代。 5、肿瘤经照射后一段时间,细胞的乏氧水平可低于照射前,是由于发生了 A、放射损伤修复 B、细胞周期再分布 C、乏氧细胞再氧合 D、再群体化 E、以上均不对 正确答案:C

肿瘤放射治疗学试题及答案

肿瘤放射治疗学试题及答案 1、恶性肿瘤:是在人类正常细胞基础上,在多种致癌因素作用下,逐渐形成的、 不断增殖的、个体形态变异或缺失的、具有迁徙和浸润行为的细胞群。临床上常表现为一定体积的肿物。 2、我国目前肿瘤放疗事故(恶性肿瘤最新发病率)为:10万人口每年280例。 3、肿瘤放疗:放射治疗就是用射线杀灭肿瘤细胞的一种局部治疗技术。 4、放疗时常用的射线:射线分两大类:一类是光子射线,如X、γ线,是电磁 波;一类是粒子,如电子、质子、中子。 5、放疗的四大支柱:放射物理学、放射生物学、放射技术和临床肿瘤学。 6、肿瘤细胞放射损伤关键靶点:DNA。 7、射线的直接作用:(另一种答案:破坏单键或双键)。任何射线在被生物物质 所吸收时,是直接和细胞的靶点起作用,启动一系列事件导致生物改变。如:电离、光电、康普顿。 8、射线的间接作用:(另一种答案:电解水-OH,自由基破坏)。射线在细胞内可 能和另一个分子或原子作用产生自由基,它们扩散一定距离,达到一个关键的靶并产生损伤。 9、B-T定律:细胞的放射敏感性与它们的增殖能力成正比。与它们的分化程度 成反比。 10、影响肿瘤组织放射敏感性的因素:组织类型、分化程度、临床因素。 肿瘤自身敏感性:肿瘤负荷、肿瘤分型、分期;肿瘤来源和分化程度;肿瘤部位和血供;照射剂量;2、化学修饰与肿瘤放射效应:放射增敏剂:氧气、多种药物;放射保护剂:低氧、谷胱甘肽加温与放疗;430C加温自身即可杀灭肿瘤细胞;能使S期细胞、乏氧细胞变的敏感;热休克蛋白,42-4450C, 2/周;3、放疗与同步化疗:空间协作:放射控制原发,化疗控制转移;毒性依赖:必须注意两者叠加问题;互相增敏:联合应用,疗效1+1>2,机制不详;保护正常组织:缩小病灶,减少剂量; 11、放射野设计四原则:1、靶区剂量均匀:治疗的肿瘤区域内吸收剂量要均匀,剂量梯度部超5%,90%剂量线包整个靶区。(野对称性);2、准确的靶区和剂量:即CTV准确,考虑到肿瘤类型和生物学行为(不同胶质瘤外扩大不一样),

2014年放疗物理师考试大纲

全国医用设备使用人员业务能力考评(LA)物理师专业考试大纲 (含伽玛刀物理内容) 卫生部人才交流服务中心

说明 为更好地贯彻落实《大型医用设备管理办法》(卫规财发[2004]474号文)精神,中华医学会和卫生部人才交流服务中心自2004年开始分别组织对全国医用设备使用人员进行培训和专业技术知识统一考试。 为使应试者了解考试范围,卫生部人才交流服务中心组织有关专家编写了《全国医用设备资格考试大纲》,作为应试者备考的依据。考试大纲中用黑线标出的为重点内容,命题以考试大纲的重点内容为主。

直线加速器(LA)物理师专业考试大纲 (含伽玛刀物理内容) 第一章放射物理基础 1.1 基本物理概念 基本物理常数重要推导物理常数物理量和单位四种基本作用力基本粒子非电离辐射和电离辐射光子致电离辐射质能关系辐射量和单位 1.2 原子与原子核结构 原子结构组成和特性卢瑟福原子模型玻尔氢原子模型及四个假定玻尔氢原子模型能级结构多电子原子壳层模型核结构核反应放射性放射性活度放射性衰变衰变常数半衰期比放射性活度平均寿命递次衰变核素活化放射性衰变方式及特点 1.3 电子与物质相互作用 电子与轨道电子相互作用电子与原子核相互作用阻止本领总质量能量阻止本领质量阻止本领质量碰撞阻止本领质量辐射阻止本领限制性阻止本领质量散射本领传能线密度 1.4 光子与物质相互作用 间接电离光子辐射光子束衰减性质半价层十分之一价层线性衰减系数质量衰减系数原子和电子衰减系数能量转移系数能量吸收系数光子相互作用类型光电效应相干(瑞利)散射康普顿效应对效应光致核反应各种效应的相对优势 第二章剂量学原则,量和单位 2.1 光子注量和能量注量 粒子注量能量注量粒子注量率能量注量率粒子注量谱能量注量谱; 2.2 比释动能 比释动能 2.3 CEMA Cema 2.4 吸收剂量 吸收剂量 2.5 阻止本领

物理师职责相关

放射物理师岗位职责 (1)放射物理师的职责范围主要包括放射治疗设备的测量校准与放射治疗计划的设计制定两大部分。 (2)放射物理师应熟练掌握放射物理学的基本理论和基础知识,了解各种放射治疗设备与各种放疗辅助设备的基本结构原理与运行特点,熟练掌握各种放射治疗设备的辐射性能和技术指标。 (3)熟悉各种辐射测量手段和各种辐射测量仪器的基本工作原理,能熟练操作相关的辐射测量仪器、准确分析各种测量结果、正确校准、刻度放射治疗设备的辐射性能。 (4)应了解放射治疗计划系统(TPS)的硬件配置与软件结构,熟练掌握TPS的应用操作方法,能正确计算常规放射治疗剂量、精确规划设计各种“适形”、“调强”放射治疗计划。 (5)对每个需要进行CT模拟定位的病人,物理师都要现场参与,重点负责靶区坐标的设定和定位数据采集拷贝工作。 (6)放射治疗计划的规划设计与剂量计算,是放射物理师的日常工作职责,必须以高度负责的精神,确保剂量计算和放射治疗计划准确无误。 (7)新病人的放射治疗计划完成之后,物理师必须与放疗医生共同进行首次摆位指导。 (8)精心做好放疗QA、QC工作,要通过剂量验证、位置验证、指导摆位等各种技术手段和管理措施,全面提高放疗工作的准确性。 (9)放疗专用网络服务器的日常维护与病人放射治疗资料的备份保存工作。 (10)全面负责辐射防护与放射安全工作,确保工作人员和放疗病人的辐射安全。(11)积极承担医院与中心交办的其它各项工作。 维修工程师岗位职责 (1)维修工程师全面负责放射治疗设备和放疗配套设施的保养维修工作。 (2)负责保存管理各种设备的技术资料,并建立健全设备档案,做到帐物相符,查对应用方便。 (3)按要求进行设备年检、月检、周检和定期维护保养工作,发现偏差或异常要及时维修处理,保证设备处于正常运行状态。 (4)配合物理师做好放疗设备的剂量测量与机械精度测量等相关的QA、QC工作,发现偏差及时校准,要确保放射剂量误差与机械精度误差符合相关的技术标准。 (5)负责放疗设备的故障应急检修工作,当设备发生故障时,要全面分析故障原因,仔细查找故障部位,及时恢复设备运行。 (6)设备维护保养与故障应急检修之后,要随时做好维修记录,要做到资料完整准确。 (7)负责与专业设备厂家进行长期技术合作及常规工作联系,并根据实际需要联系购买备品配件,最大限度减少设备的停机检修时间。 (8)随时完成领导交办的其它任务。

《放射治疗学》考试题

. '. 《放射治疗学》试卷姓名专业 一、单项选择题(每题2分,共40分。请将答案写在表格内) 1.用于治疗肿瘤的放射线可以是放射性核素产生的射线是: A.αB.δC.θ 2.X线治疗机和各类加速器产生的不同能量的射线是: A.γB.αC.X 3.各类加速器也能产生的射线是: A.电子束B.高级质子束C.低能粒子束 4.放射治疗与外科手术一样,是: A.局部治疗手段B.全身治疗手段C.化学治疗手段 5.放射治疗是用什么物质杀伤肿瘤细胞,达到治愈的目的? A.放射线B.化学药物C.激光 6.放射线治疗的适应证比较广泛,临床上约有多大比例的恶性肿瘤病人需要做放射治疗?A.50% B.70% C.90% 7.60钴的半衰期是: A.5.27年B.6.27年C.7.27年 8.几个半价层厚度的铅,可使原射线的透射率小于5%? A.4.5~5.0 B.6.5~7.0 C.7.5~8.0 9.照射患者一定深度组织的吸收剂量为: A.组织量B.空气量C.机器输出量 10.放射源到体模表面照射野中心的距离是: A.源皮距B.源瘤距C.源床距 11在放射治疗中,直接与肿瘤患者治疗有关的常用设备有: A.DSA B.适形调强C.加速器和钴-60治疗机 12.60钴治疗机的半影有: A.物理半影B.化学半影C.散射半影 13.高能x射线的基本特点是: A.等中心照射较60钴治疗机更准B.在组织中有更高的穿透能力C.照射更准确 14.高能电子束的基本特点是: A.高能电子束易于散射B.主要用于深部肿瘤的照射 C.不同能量的电子束在介质中有确定的有限射程 15.模拟治疗定位机的临床应用主要表现在: A.肿瘤和敏感器官的定位B.评价治疗计划的好坏C.固定病人的体位 16.放射治疗中用的楔形板的楔形角度有: A.100 B.200 C.300 D.400 17.放射敏感的肿瘤是指: A.给以较低的剂量即可达到临床治愈B.给以较低的剂量即可达到永久治愈C.该类肿瘤不易远处转移 18.立体定向放射治疗是: A.精确放射治疗B.根治性放射治疗C.普通放射治疗 19.一般来讲,人体组织细胞对放射线的敏感性与组织繁殖能力成正比,与分化程度成反比,即: A.繁殖能力愈强的组织对放射线愈敏感 B.繁殖能力愈强的组织对放射线愈不敏感 C.分化程度愈高的组织对放射线愈敏感 20.各种不同组织接受照射后能够耐受而不致造成不可逆性损伤所需要的最大剂量为: A.该组织的耐受剂量B.该组织的损伤剂量C.该组织的治疗剂量 二、填空题(每空1分,共40分) 1.在照射的线束内,把线束内测量的同等剂量点连线的曲线称_______________。 2.远距离放射治疗的方式有__________放射治疗技术,__________放射放射治疗技术,_________放射治疗技术。3.近距离放射治疗的方式有____________技术,______________技术,_________技术,_____________技术。 4.放射治疗的种类有___________放射治疗,____________放射治疗,__________放射治疗,__________放射治疗,___________放射治疗。 5.肿瘤区__________是指通过临床或影像检查可发现的肿瘤范围,包括_____________,_____________和____________。 6.恶性肿瘤的放射治疗剂量应当选择在正常组织能够耐受且肿瘤细胞致死的范围内,这样才能使肿瘤逐渐消退,周围正常组织不产生严重损伤。对射线不同敏感的肿瘤放射剂量大致分:_______________的肿瘤剂量,______________肿瘤剂量,______________的肿瘤剂量,_____________的肿瘤剂量,_________放射治疗剂量。 7.根据楔形板造成的等剂量曲线倾斜变形结果看,楔形板使用具有__________,放疗摆位中必须注意其__________,严格遵守___________的要求,如果使用中楔形板方向出现错误,结果将适得其反。 8.肿瘤放疗中,由于病灶总是不规则形状,常需要用铅挡块或加速器多叶准直器系统屏蔽遮挡___________或____________,使其免受或少受照射,形成___________。 9.斗蓬野照射技术一般适用于___________隔上病变的治疗,照射范围包括______,___________,__________,___________。 10.全身照射主要用于____________及某些全身广泛性且对_______________的恶性肿瘤的治疗。 11.全身照射技术主要用于白血病的骨髓移植予处理,可以达到三个目的,_________________,________________,________________________。 12.体位固定技术大致分两种_______________, ________________。 三、问答题(20分) 阐述60钴治疗机的临床应用特点。

模拟试卷二(带答案)--放疗物理师

2008 LA物理师模拟试卷(二) 一单选题(共120小题,每小题只有一个选项是正确的) 1 阿伏加德罗常数NA约为: A 6.022045×1023 B 6.022045×1025 C 5.022045×1023 D 5.022045×1025 E 6.022045×1021 2 原子序数大于()的元素都不稳定。 A 25 B 28 C 35 D 52 E 82 3 ()发生光电效应的概率最大。 A K层 B L层 C M层 D N层 E P层 4 关于康普顿效应的描述,错误的是: A光子和轨道电子相互作用后,损失一部分能量并改变运动方向,电子获得能量而脱离原子的作用过程称为康普顿效应。 B 在入射X(γ)光子能量一定的情况下,散射光子能量随散射角增大而减小。 C 散射角一定的情况下,散射光子能量随入射X(γ)光子能量增大而增大。 D 散射角一定的情况下,反冲电子动能随入射X(γ)光子能量增大而减小。 E 每个电子的康普顿效益总截面、转移截面和散射截面均与原子序数无关。 5 以水为吸收介质,光电效应占优势的能量段是: A 1-10Kev B 10-30Kev C 30Kev-25Mev D 25Mev-100Mev E 100Mev-125Mev 6 具有确定质子数和中子数的原子的总体称为: A 原子核 B 同位素C核素 D元素 E核电荷素 7 带电粒子与核外电子的非弹性碰撞的论述中,不正确的是: A入射带电粒子与核外电子之间的库仑力相互作用,使轨道电子获得足够的能量而引起原子电离 B轨道电子获得的能量不足以引起电离时,则会引起原子激发 C处于激发态的原子在退激时,会放出γ射线 D处于激发态的原子在退激时,释放出特征X射线或俄歇电子 E被电离出来的轨道电子具有足够的能量可进一步引起物质电离,此称为次级电离 8 描述辐射品质的物理量是: A传能线密度B线性碰撞阻止C质量碰撞阻止D线性衰减系数E质量衰减系数 9 如以r表示电离室的半径,则高能X射线的有效测量点位于: A 0.3r B 0.4r C 0.5r D 0.75r E 几何中心 10 由自由电子参与导电并形成电流的硅晶体称为()硅晶体。 A “M”型 B “N”型 C “L”型 D “P”型 E “F”型 11 线性能量转移系数是用来描述 A X(γ)射线与物质相互作用中,单位长度的能量损失份额 B 带电粒子与物质相互作用中,单位长度的能量损失份额 C X(γ)射线与物质相互作用中,单位长度的相互作用几率 D 带电粒子与物质相互作用中,单位质量厚度的能量损失份额 E X(γ)射线与物质相互作用中,单位质量厚度的相互作用几率 12半价层HVL与线性吸收系数μ的关系为: A μ·HVL= 0.693 B μ/HVL= 0.693 C μ·HVL= 0.963 D μ/HVL= 0.963 E 无固定关系 13关于半导体探测器的描述,错误的是:

肿瘤放射治疗技术新进展

肿瘤放射治疗技术新进展 2007-12-17 放射肿瘤学由于高科技的发展已取得了许多理论上和技术上的突破,本文简要介绍了放射生物科学,生物等效剂量超分割以及三维调强立体定向放射等技术的进展。 1放射生物学进展 1.1放射生物学的进展以线性——平方模式(Linear-Quadratic model)来解释放射生物学中的反应,以α/β系数来预测放射治疗剂量时间疗效关系,为放射生物学开辟了较为广阔的天地。近年来深入研究了细胞周期,即增殖期(G1-S-G2-M)和静止期(G0)的关系,为此提出了4个R:即是修复(Repair),再氧化(Reoxygenation)和再分布(Redistribution)和再增殖(Regeneration)作为指导放射生物中克服乏氧等问题的研究要点,放射生物学推进到目的明确,针对性强的有效研究中去。近年来在研究细胞修复和增殖中又进一步了解到细胞凋亡(Apoptosis)和细胞分裂(Mitosis)的关系后,提出了凋亡指数(AI)与分裂指数(MI) (Apoptosisindex/Mitosisindex)比来予测放射敏感性和预后,指导调发自发性凋亡和平衡各种细胞的抗放、耐药(即Resistant RT和Resistant Chemotherapy),并由此估计复发,研究增敏,开发出超分割、加速超分割治疗等新技术,从而取得了科研及临床的许多新结果,加深了理论深度,开拓出新的领域,推动了放射治疗学的进展。 1.2DNA和染色体研究 为了测定肿瘤细胞本身辐射损伤,染色体中DNA链中的断裂(单链断裂SSB和双链断裂DS,其断裂的准确位置,以及在这个过程中,肿瘤细胞如何进行修复,也观察到错误修复,以及无修复等对细胞的子代产生的决定作用。目前临床用对DNA调节机制的多种原理表达进行测试,可以分清那些是有意义的表达,那些是灵敏的表达,建立对临床治疗,预后评估的方法学和化验项目,指导放射生物学,放射物理学,临床放射肿瘤学的发展,使更有目的性,针对性和实用性。放射生物学从细胞水平已进入到大分子水平,从纯实验室过渡到临床初步应用阶段。 2放射物理技术的进展 2.1立体定向治疗的实现 基于电子计算机精度提高,双螺旋CT及高清晰度MRI出现,因此立体定向治疗应运而生,目前使用的γ-刀,从某种意义来说是一个立体定向放射手术过程(Sterol Radiation Surgery,SRS),它通过聚焦,等中心照准,于单次短时间或多次较长时间给予肿瘤超常规致死量治疗,达到摧毁瘤区细胞的目的,γ刀利用约30~200个钴源,在等中心条件下,从立体不同方向位置,在短距离内对细小肿瘤(或良性肿瘤,先天畸形等病灶,一般约1~2cmΦ)进行一次或多次照射,给予总剂量超过肿瘤及正常组织耐受量,用准确聚焦的办法使多个60Co源的剂量集中在靶区,分射束聚焦使周围正常组织受量仍在可能的耐受量中,由于采用电脑、CT,以及准确的立体设计定位,因而射野边界锐利可达±2mm以下,确保了非瘤区正常组织安全。应用于脑部的良性小肿瘤和先天性畸形效果尤佳,应用于脑干等生命禁区

相关主题
文本预览
相关文档 最新文档