当前位置:文档之家› 光纤Bragg光栅及其光学特性测量

光纤Bragg光栅及其光学特性测量

光纤Bragg光栅及其光学特性测量
光纤Bragg光栅及其光学特性测量

第38卷 第6期

1999年 11月中山大学学报(自然科学版)ACT A SCIE NTI ARUM NAT URA LI UM UNI VERSIT ATIS S UNY ATSE NI V ol 138 N o 16N ov 1 1999 文章编号:052926579(1999)0620034205

光纤Bragg 光栅及其光学特性测量

Ξ

傅思镜,梁丽贞,曹惠英,刘惠子,林晓霞

(中山大学物理学系,广州510275)摘 要:光纤Bragg 光栅的研究和应用已成为当前光通信国际热点技术课题.扼要介绍了光纤Bragg 光栅的工作原理和主要光学特性,着重描述用实验室常用仪器测量其主要光学特性的方法.

关键词:光纤Bragg 光栅;测量

中图分类号:T N 25;TP 391 文献标识码:A

Hill 等[1]发现掺锗光纤的光敏(光折变)效应,随后Meltz 等[2]利用244mm 紫外激光干涉从单模光纤侧面成功地写入Bragg 光栅.此后,人们发现利用光纤Bragg 光栅可以更方便制作出性能更好的光纤激光器、光纤光放大器、光纤色散补偿器、光纤波分复用器等光纤功能器件.光纤光栅在当前国际新发展的全光纤集成通信系统中亦有明朗的应用前景.因此,光纤光栅倍受世人瞩目.普遍认为,掺锗Bragg 光栅(G DBG )的开拓是继掺铒光纤光放大器(E DFA )之后光纤通信领域的又一重大技术突破,将成为光纤通信发展的又一个重要里程碑.它的研究和应用已成为当前一个全球性的热点技术课题.因此,了解光纤光栅的工作原理和主要光学特性,并掌握其主要光学特性使用实验室常用仪器的测量方法,对科技研究和教育部门,尤其对我国的高等学校具有重要的现实意义.

1 光纤Bragg 光栅工作原理及其主要光学特性

由耦合模方程[3]

d A 1d z =-jK 12A 2exp (j Δβz ),d A 2d z =-jK 312A 1exp (j Δβz )(1)A 1、A 2分别为正反向传输波归一化振幅,K 为耦合系数.其中,

Δβ=β1+β2-l 2πΛ

(2)Λ为光栅周期,l 为光栅级数,β1、β2是传播常数,对式(1)两边进行微商,并代入边界条件 A 1(0)=1,A 2(0)=0,d A 1d z =0,d A 2d z

=jk 12A 2exp (-jBL )Ξ基金项目:广东省自然科学基金(960025)资助项目

收稿日期:1999202204 作者简介:傅思镜,男,1945年生,副教授.

式中,B =(β2+K 22)+(β1+K 11)-l 2πΛ,则可解得A 1(z )、

A 2(z ).所以两导模的归一化功率为

P 1(z )=|A 1(z )|2=K 12K 312sinh 2[G (z -L )](B 2/4)sinh 2(G L )+G 2cosh 2(G L )P 2(z )=|A 2(z )|2=(B 2/4)sinh 2[G (z -L )]+G 2cosh 2[G (z -L )](B 2/4)sinh 2(G L )+G 2cosh 2(G L )

(3)式中,G =G +-=[K 12?K 312±(B 2/4)]

1/2,G 的上下标+、-号表示光波沿正、反方向传输两种情况.当光栅结构适当.使Δ

β=0,即满足相位匹配条件时,两导模的功率变为 P 1(z )=|A 1(z )|2=sinh 2[|K 12|(z -L )]cosh 2[|K 12|L ]P 2(z )=|A 2(z )|2=cosh 2[|K 12|(z -L )]sinh 2[|K 12|L ]

(4)P 1、P 2的曲线如图1所示,可以看出,坐标从0变到L ,正向传输模的功率P 1(z )从最大值变到0;而反向传输模的功率P 2(z )从0变到最大值.这说明在耦和区内,正向传输模的功率被耦合到了反向传输模中

.

图1 反向传输导模之间耦合时两导模的功率分布

Fig 11 The power distribution of tw o coupling guided modes

由式(4)可以得到满足相位匹配条件时的反射率满足

R =P 2(0)P 1(0)tanh 2πn 1L λB

(5)其中,n 1=Δn/ n ,为调制折射率,L 为光栅长度,λB 为Bragg 波长.说明反射率是宗量为(│K 12│?L )的双曲正切函数的平方.只要光栅足够长,总可以使反射率R =1,显然在不满足相位匹配条件时,反射率会显著变小.在Bragg 光栅反射滤波器中往往取正反向波传输常数相等,则由相位匹配条件可将式(2)写为β=πl/Λ.

将有效折射率N e =β/K 0代入,则得

λB =2N e Λ/l

(6)上式称为Bragg 条件,满足这种现象的反射称为Bragg 反射,此时的波长称为Bragg 波长,Bragg 光栅反射带宽可写为

ΔλλB

=S ?n 12n 0+1N (7)

5

3第6期 傅思镜等:光纤Bragg 光栅及其光学特性测量

63中山大学学报(自然科学版) 第38卷

对强光栅来说S=1,对弱光栅S=015,N为光栅周期数.因此一个均匀周期的光栅就可以反射以λB为中心,带宽Δλ之内的一切波长,而变周期(chirp)光栅可以制作宽带滤波器等.由式(6)可知,改变光栅周期Λ和有效折射率N e均可以改变Bragg波长,对2个参量之一进行调制就可以制成Bragg光栅.由上述可知基本光栅性能(特性)参数设计要点为:

(1)中心反射波长λB=2nΛ,Λ=λ/(2sinθ),(对全息法);

(2)最大中心反射率R=tanh2(πn1L/λB);

(3)反射带宽(FWHM)Δλ=2nlΛ.

2 光纤Bragg光栅中心波长和反射带宽的测量

211 测量实验装置

实验装置框图如图2所示.

LED光纤光栅光纤调节架单色仪斩波器探测器锁定放大器

偏置电路

图2 测量实验装置框图

Fig12 Scheme of measurement set2up

212 测量实验方法描述

(1)选择LE D的发射光波带宽必须覆盖光纤Bragg光栅以λB为中心的带宽范围,并使λ

尽量落在LE D发射光波峰值波长附近.

B

(2)先将LE D尾纤输出端和光纤光栅两端光纤分别与光纤活动连接器(跳线)熔融接好,然后用法兰盘将LE D或光纤光栅相连接.光纤调节架夹住一根跳线的一端,使它对准单色仪输入端狭缝,而跳线的另一端插入法兰盘的一边,这样更换探测信号时就不影响调节好进入单色仪输入狭缝的光路.

(3)单色仪用刻线密度600条/mm的近红外反射光栅替换紫外至可见波长的反射光栅,测量前先将单色仪波长转盘读数调在接近LE D发射波长低端,这时W DG50021型单色仪(本实验用)波长刻度盘读数乘2就是所测近红外光谱波长值.

(4)斩波器斩波频率视探测器要求而定.例如用硫化铅探测器,斩波频率可选40~60

H z,可获得较高的探测灵敏度.

(5)硫化铅探测器,其信号是电压型的,需要有合适的偏置电路.图3是实验中设计的一种简单偏置电路.

(6)开启斩波器、偏置电路和锁定放大器,可从锁定放大器幅值输出显示器看到系统本身的噪声,根据它确定锁定放大器的灵敏度选择,同时也可清楚地看到,当开启LE D,有信号给锁定显示放大器时,幅值输出值明显减小,说明噪声得到有效的抑制.

(7)一般光纤Bragg光栅的反射带宽只有几个埃(本实验用的Δλ=01272nm)或更小.因此测量靠近其中心波长λB值(本实验用的λB=15541032nm)时,要求每隔011 nm读一个锁定放大器幅值输出值.

(8)发光二极管LE D输出光很弱(本实验用的边发射LE D输出光功率在注入电流60 mA时只有30μW左右).经过单色仪后输出最大只有几十nW.为了尽量提高探测灵敏

度,要求信号输出功率最大限度进入探测

器.可是115μm 左右近红外光在我们视觉

范围之外.因此,我们先用He 2Ne 激光照射

光纤调节架夹住那根光纤跳线的另一端,从

单色仪输出狭缝可看到He 2Ne 激光的输出光

点位置,然后用探测器对准,这时光纤调节

架夹住的跳线一端固定不动,另一端通过法

兰盘方便地将LE D 或LE D 与光纤光栅替换

He 2Ne 激光器进行测量

.

图3 探测器偏置电路

Fig 13 The biasing circuit of photodetector

3 讨 论

311 关于探测器的选择和使用

探测器的波长响应范围与LE D 发射波长带宽、光纤Bragg 光栅带宽三者相吻合.本实

验选择PbS 作探测器,它的波长响应为018~312μ

m ,如213(1)所述,后两者的带宽都落在这范围内.还可以选择锗探测器,它在1155μm 附近有相当高的量子效率,它的响应度约μA/μW 量级,是电流型的信号,可直接接光电检流计测量,或接线性放大器驱动记录仪测量,其缺点是暗电流较大,使测量系统噪声较大.

使用图2测量装置,不论选择何种探测器都要求它有足够大的光敏面积和灵敏度,否则调节和分辨不同波长的响应就很困难.

312 关于实验测量结果

本实验测量结果与用深圳飞通光电技术有限公司的进口专用仪器测量的结果比较,如图4所示

.

图4 测量结果比较

Fig 14 The comparis on of measurement results

(a )用实验室常用仪器测得的LE D 发射光谱;(b )以LE D 作光源的光纤光栅透射光谱;

(c )用进口专用仪器测得的用LE D 作光源的光纤光栅透射光谱

图4(a )、(b )的光谱曲线是重复5次测量取平均值拟合的结果.从图4(b )、(c )可见光纤光栅的中心波长λB 的值吻合得很好,而图4(b )带宽略偏大,且图4(c )带宽Δλ的针状朝下的尾峰在图4(b )测不到.分析其原因:①测量实验装置存在小于(有时

73第6期 傅思镜等:光纤Bragg 光栅及其光学特性测量

等于)0101mV的系统本底噪声,使锁相放大器幅值读数跳变较快较大,难以准确判定该波长的输出幅值;②W DG50021型单色仪的波长精度是011nm,加上单色仪内部机械结构的影响,实验难以得到准确精确的波长值;③实验用MRE DSP500122型LE D是普通LE D 光源,受环境温度、注入电流的影响,它的输出功率会随时间有一定的变化.因此,进一步提高LE D光源的输出功率和稳定度,尽量减小单色仪出射狭缝宽度,并用微型计算机配合处理测量数据,使之在011nm内增加测量的次数,使用较好的数据拟合规律等等都将是进一步提高实验测量精度,使实验测量进一步迫近进口专用仪器测量结果的有效办法.

参考文献:

[1] HI LL K O,FU J II Y,JOH NS ON D C,et al1Photosensitivity in optical fiber wave2guides application to reflec2

tion filter fabrication[J].Appl Phys Lett,1978,32:647~649.

[2] ME LTZ G,M OREY W W,G LE NN W H1F ormation of Bragg gratings in optical fiber by a transverse holograph2

ic method[J].Opt Lett,1989,14(15):823~825.

[3] 秦秉坤,孙雨南.介质波导及其应用[M].北京:北京理工大学出版社,1991.118~196.

Optical Fiber Bragg G rating and Its Characteristic Measurement

FU Si2jing Ξ

,LIANG Li2zhen,C AO Hui2ying,LIU Hui2zi,LIN Xiao2xia

Abstract:The operating principle of optical fiber Bragg grating and its main optical characteristics were introduced1The experimental method of the optical measurement with usual laboratory instruments was described.

K eyw ords:optical fiber Bragg gratings;measurement

83中山大学学报(自然科学版) 第38卷ΞDepartment of Physics,Zhongshan University,G uangzhou510275,China

一光纤光栅光谱特性测试系统的设计

实验一光纤光栅光谱特性测试系统的设计 一.实验目的和任务 1.熟悉PC光谱仪的使用方法 2.了解光环行器的工作原理和主要功能。并测量光环行器的插入损耗、隔离度、方向性、回波损耗参数。 3.了解光纤光栅的光谱特性 4.应用PC光谱仪、光环行器测量光纤光栅的光谱特性 二.PC光谱仪 PC光谱仪是用来测量光源或其它器件经光纤输出的光的波长和能量的关系图(即光谱特性)。 图1.1 PC光谱仪的软件界面 本实验用的PC光谱仪的硬件是插入计算机ISA槽的ISA2000卡。该卡有一个光输入孔。测试波长范围为紫外-可见光-近红外。 PC光谱仪的软件界面如图1.1所示。 界面中,主要工具栏按扭介绍: 1.数据光标左移按扭,每点击该按扭一次,数据光标左移一个像素的距离。连续点击该按扭,可以找到波峰位置。

2.数据光标右移按扭,每点击该按扭一次,数据光标右移一个像素的距离。连续点击该按扭,可以找到波峰位置。 3.开始/结束扫描波形按钮。第一次点击该按扭,开始扫描,显示出扫描波形,并且能感觉波形在动。再次点击该按扭,结束扫描,波形静止。 4.点击该按扭,增加波长显示范围,即水平方向缩小波形。如果要在水平方向放大波形,操作方法为:左击波形的左侧,拖动鼠标到波形的右侧,释放鼠标,即可。 5.纵坐标自动调整按钮,如果波形出现削顶或者波形太低,左击该按钮,可以自动调整波形高度。右击该按钮,取消自动调整纵坐标操作。 6.计算按钮,点击该按钮,显示波形的中心波长、峰值波长、半最大值全宽等参数。 使用该PC光谱仪测量光谱特性的步骤: 1.将待测光输入到ISA2000卡的光输入孔内,运行程序“Spectra Wiz”, 即可进入软件运行窗口。 2.点击开始/结束扫描波形按钮,开始扫描波形,再点击一次该按钮,结束扫描波形。 3.点击横坐标调整按钮,显示波形到界面适当位置。如果要在水平方向放大波形,就左击波形的左侧,拖动鼠标到波形的右侧,释放鼠标,即可。 4.点击纵坐标调整按钮,调整波形到适当高度。 5.点击计算按钮,显示相关参数数据。 三.光环行器 (一)光环行器的工作原理 光环行器是一种多端口输入输出的非互易器件,具有正向顺序导通而反向传输阻止的特性,可以完成正反向传输光的分离,在双向长途干线通信、密集波分复用器及光时域反射计(OTDR)中有广泛的应用。 制造光环行器的方法有几种,但所有的光环行器的工作原理是相同的,比如3端口的光环行器,在端口1输入的光信号只有在端口2输出;在端口2输入的光信号只有在端口3输出,而在端口3输入的光信号只能在端口1输出。但是在许多应用中,这最后一种状态是不必要的,因此,大多数商用环行器都被设计成“非理想”状态,即吸收从端口3输入的任何信号。3端光环行器的原理图如图1.2所示:

光纤光栅原理及应用

光纤光栅传感器原理及应用 (武汉理工大学) 1光纤光栅传感原理 光纤光栅就是利用紫外光曝光技术,在光纤中产生折射率的周期分布,这种光纤内部折射率分布的周期性结构就是光纤光栅。光纤布喇格光栅(Fiber Bragg grating ,FBG )在目前的应用和研究中最为广泛。光纤布喇格光栅,周期0.1微米数量级。FBG 是通过改变光纤芯区折射率,周期的折射率扰动仅会对很窄的一小段光谱产生影响,因此,如果宽带光波在光栅中传输时,入射光将在相应的波长上被反射回来,其余的透射光则不受影响,这样光纤光栅就起到了波长选择的作用,如图1。 图1 FBG 结构及其波长选择原理图 在外力作用下,光弹效应导致折射率变化,形变则使光栅常数发生变化;温度变化时,热光效应导致折射率变化,而热膨胀系数则使光栅常数发生变化。 (1)光纤光栅应变传感原理 光纤光栅反射光中心波长的变化反映了外界被测信号的变化情况,在外力作用下,光弹效应导致光纤光栅折射率变化,形变则使光栅栅格发生变化,同时弹光效应还使得介质折射率发生改变,光纤光栅波长为1300nm ,则每个με将导致1.01pm 的波长改变量。 (2)光纤光栅温度传感原理 光温度变化时,热光效应导致光纤光栅折射率变化,而热膨胀系数则使光栅栅格发生变化。光纤光栅中心波长为1300nm ,当温度变化1摄氏度时,波长改变量为9.1pm 。 反射光谱 入射光谱 投射光谱 入射光 反射光 投射光 包层 纤芯 光栅 光栅周期

2光纤光栅传感器特点 利用光敏元件或材料,将被测参量转换为相应光信号的新一代传感技术,最大特点就是一根光纤上能够刻多个光纤光栅,如图2所示。 光纤光栅传感器可测物理量: 温度、应力/应变、压力、流量、位移等。 图2 光纤光栅传感器分布式测量原理 光纤光栅的特点: ● 本质安全,抗电磁干扰 ● 一纤多点(20-30个点),动态多场:分布式、组网测量、远程监测 ● 尺寸小、重量轻; ● 寿命长: 寿命 20 年以上 3目前我校已经开展的工作(部分) 3.1 基于光纤光栅传感的旋转传动机械动态实时在线监测技术与系统 利用光纤光栅传感技术的特性,实现转子运行状态的非接触直接测量。 被测参量 宽带光源 光纤F-P 腔 测点1 测点2 测点3 测点n 波长 光 强 λ1 测点1 λ2 测点2 λ3 测点3 λn 测点n 光源波长

(完整版)《大学物理》习题册题目及答案第19单元波动光学

第19单元 波动光学(二) 学号 姓名 专业、班级 课程班序号 一 选择题 [C]1. 在如图所示的单缝夫琅和费衍射装置中,将单缝宽度a 稍稍变窄,同时使会聚透镜L 沿y 轴正方向作微小位移,则屏幕E 上的中央衍射条纹将 (A) 变宽,同时向上移动 (B) 变宽,同时向下移动 (C) 变宽,不移动 (D) 变窄,同时向上移动 (E) 变窄,不移动 [ D ]2. 在双缝衍射实验中,若保持双缝S1和S2的中心之间的距离d 不变,而把两条缝的宽度a 稍微加宽,则 (A) 单缝衍射的中央主极大变宽,其中所包含的干涉条纹数目变少 (B) 单缝衍射的中央主极大变宽,其中所包含的干涉条纹数目变多 (C) 单缝衍射的中央主极大变宽,其中所包含的干涉条纹数目不变 (D) 单缝衍射的中央主极大变窄,其中所包含的干涉条纹数目变少 (E) 单缝衍射的中央主极大变窄,其中所包含的干涉条纹数目变多 [ C ]3. 在如图所示的单缝夫琅和费衍射实验中,若将单缝沿透镜光轴方向向透镜平移,则屏幕上的衍射条纹 (A) 间距变大 (B) 间距变小 (C) 不发生变化 (D) 间距不变,但明暗条纹的位置交替变化 [ B ]4. 一衍射光柵对某一定波长的垂直入射光,在屏幕上只能出现零级和一级主极大,欲使屏幕上出现更高级次的主极大,应该 (A) 换一个光栅常数较小的光栅 (B) 换一个光栅常数较大的光栅 (C) 将光栅向靠近屏幕的方向移动 (D) 将光栅向远离屏幕的方向移动 λ L 屏幕 单缝 f 单缝 λa L E f O x y

[ B ]5. 波长λ =5500 ?的单色光垂直入射于光柵常数d = 2?10-4cm 的平面衍射光柵上,可能观察到的光谱线的最大级次为 (A) 2 (B) 3 (C) 4 (D) 5 二 填空题 1. 用半波带法讨论单缝衍射暗条纹中心的条件时,与中央明条纹旁第二个暗条纹中心相对应的半波带的数目是_____4_________。 2. 如图所示,在单缝夫琅和费衍射中波长λ的单色光垂 直入射在单缝上。若对应于汇聚在P 点的衍射光线在缝 宽a 处的波阵面恰好分成3个半波带,图中 ____________CD BC AB ==,则光线1和光线2在P 点的相差为 π 。 3. 一束单色光垂直入射在光栅上,衍射光谱中共出现5条明纹,若已知此光栅缝宽度与不透明部分宽度相等,那么在中央明纹一侧的两条明纹分别是第__一___级和第___三_级谱线。 4 用平行的白光垂直入射在平面透射光栅上时,波长为λ1=440nm 的第3级光谱线,将与波长为λ2 = 660 nm 的第2级光谱线重叠。 5. 用波长为λ的单色平行光垂直入射在一块多缝光柵上,其光柵常数d=3μm ,缝宽a =1μm ,则在单缝衍射的中央明条纹中共有 5 条谱线(主极大)。 三 计算题 1. 波长λ=600nm 的单色光垂直入射到一光柵上,测得第二级主极大的衍射角为30o ,且第三级是缺级。则 (1) 光栅常数(a +b )等于多少? (2) 透光缝可能的最小宽度a 等于多少 (3) 在选定了上述(a +b )和a 之后,求在屏幕上可能呈现的全部主极大的级次。 解:(1) 由光栅公式:λ?k d =sin ,由题意k = 2,得 P λ5.1λA B C D a 1234

光纤光栅的特性

光纤光栅的特性 1.光纤布喇格光栅的理论模型: 假设光纤为理想的纤芯掺锗阶跃型光纤,并且折射率沿轴向均匀分布,包层为纯石英,此种光纤在紫外光的照射下,纤芯的折射率会发生永久性变化,对包层的折射率没有影响。 利用目前的光纤光栅制作技术:如全息相干法,分波面相干法及相位模板复制法等。生产的光纤光栅大多数为均匀周期正弦型光栅。纤芯中的折射率分布(如图1)所示。 )(1Z n 为纤芯的折射率,max n ?为光 致折射率微扰的最大值, )0(1n 为纤芯原折射率, Λ为折射率变化的周期(即栅距), L 为光栅的区长度。 若忽略光栅横截面上折射率分布的不均匀性,光栅区的折射率分布可表示为: )2cos( )0()(max 11Z n n z n Λ ?+=π …………………………………………………(1.1) 显而易见,其折射率沿纵向分布,属于非正规光波导中的迅变光波导,在考虑模式耦合的时候,只能使用矢量模耦合方程,其耦合主要发生在基模的正向传输导模与反向传输导模之间。 2.单模光纤的耦合方程 由于纤芯折射率非均匀分布,引起了纤芯中传输的本征模式间发生耦合。在弱导时, 忽 略偏振效应,吸收损耗和折射率非均匀分布引起了模式泄漏,则非均匀波导中的场Φ( x , y , z ) 满足标量波动方程:0),,(}),,({22 2 20 2=Φ??++?z y x z z y x n sk t …………………(2.1) 其中:λπ/20=k ,λ是自由空间的光波长。 2 22 2 1}{1? ??+?Φ???=Φ?Φ r r r r r t …………………………………………………(2.2) 由于折射率非均匀分布引起波导中模式耦合只发生在纤芯中,因此非均匀波导中的场 可以表示为均匀波导束缚模式),(y x φ之和: ),()}exp()exp()({),()(),,(y x z i a z i z a y x z A z y x l l l l l l l l l φββφ-+-∑=∑=Φ………(2.3)

光栅光谱仪与光谱分析讲稿(20210228141228)

光栅光谱仪与光谱分析 实验目的 1、 进一步掌握光栅的原理 2、 了解光电倍增管和线阵 CCD 及其在光谱测量中的应用 3、 学习摄谱、识谱和谱线测量等光谱研究的基本方法 4、 通过测量氢光谱可见谱线的波长,验证巴尔末公式的正确性,从而对玻尔理论的实验基 础有具体的了解。力求准确测定氢的里德伯常数,对近代测量达到的精度有一初步了解。 、实验原理 光谱分析是研究原子和分子结构的重要手段, 现有关于原子结构的知识, 大部分来源于 各种原子光谱的研究。 通过光谱研究,可以得到所研究物质中含有元素的组分和原子内部的 能级结 构及相互作用等方面的信息。 在光谱分析中,用于分光的光谱仪器和检测光的光探测 器对分析结构有着决定性作用 1)光栅光谱仪分光原理与参数 光栅是光栅光谱仪的核心,其分光原理如下: 1. 平面反射光栅的构造与光栅方程 目前最广泛应用的是平面反射光栅, 它是在玻璃基板上镀上铝层, 用特殊刀具刻划出许 多平行而且间距相等的槽面而成, 如图1所示。大量生产的平面反射光栅每毫米的刻槽数目 为600条、1200条、1800条和2400条。铝在近红外区和可见光区的反射系数都较大,而且 几乎是常数,在紫外区的反射系数比金和银都大,加上它比较软,易于刻划,所以通常都用 铝来刻制反射光栅。 我们将看到,在铝层上只要刻划出适当的槽形, 就能把光的能量集中到 某一极,克服透射光栅光谱线强度微弱的缺点。 铝制反射光栅几乎在红外、可见光和紫外区 都能用。用一块刻制好的光栅(称原制光栅或母光栅) 反射光栅在分光仪器中得到越来越多的应用。 在图1中,衍射槽面(宽度为 a )与光栅 平面的夹角为0,称为光栅的闪耀角。当平行光 束入射到光栅上,由于槽面的衍射及各个槽面衍 射光的叠加,不同方向的衍射光束强度不同。考 虑槽面之间的干涉,当满足光栅方程 时,光强度将出现极大。式中 i 及]分别是入射光及衍射 光与光栅平面法线的夹角(入射角 和衍射角)。d 为光栅常数,m= ± 1,± 2,土 3,…,为干涉级,'是出现极大值的波长。 当入射线与衍射线在法线同侧时,公式取正号,异侧取负号。 由式(1)可知,当入射角i 一定时,不同的波长对应不同的衍射角,因而经光栅衍射 后按不同方向排列成光谱,成像于谱面中心的谱线波长称为中心波长。本仪器采用的光路, 对中心波长'0而言,入射角与衍射角相等, i = 一:(图2),这种布置方式称为 littrow 型, 因此对中心波长'0有 可以复制出多块光栅。 由于这些优点, (1)

单模和多模光纤的特点

单模和多模光纤的特点和应用 一、光纤结构和类型 (一)光纤的结构 光纤是光导纤维的简称,是一种新的光波导,是光通信系统最普遍和最重要的传输媒质。它由单根玻璃纤芯、紧靠纤芯的包层、一次涂覆层以及套塑保护层组成。(光纤呈圆柱形,由纤芯、包层和涂覆层三部分组成。) 纤芯和包层由两种光学性能不同的介质构成,内部的介质对光的折射率比环绕它的介质的折射率高。 包在外围的覆盖层就像不透明的物质一样,防止了光线在穿插过程中从表面逸出。 1. 纤芯 位置: 位于光纤的中心部位, 直径:在4~50μm,单模光纤的纤芯直径为4~10μm ,多模光纤的纤芯直径为50μm。纤芯的成分:含有极少量掺杂剂的高纯度二氧化硅(如二氧化锗,五氧化二磷)作用是适当提高纤芯对光的折射率,用于传输光信号。 2. 包层 位置: 位于纤芯的周围 直径:125μm 成分:是含有极少量掺杂剂的高纯度二氧化硅。 掺杂剂(如三氧化二硼)的作用:适当降低包层对光的折射率,使之略低于纤芯的折射率,即纤芯的折射率大于包层的折射率(这是光纤结构的关键),它使得光信号封闭在纤芯中传输。 3. 光纤的最外层为涂覆层,包括一次涂覆层、缓冲层和二次涂覆层。 一次涂覆层:一般使用丙烯酸醋、有机硅或硅橡胶材料; 缓冲层:一般为性能良好的填充油膏; 二次涂覆层:一般多用聚丙烯或尼龙等高聚物。 涂覆层的作用:是保护光纤不受水汽侵蚀和机械擦伤,同时增加光纤的机械强度与可弯曲性,起着延长光纤寿命的作用。涂覆后的光纤外径约2. 5 mm 。 4. 光纤最重要的两个传输特性 损耗和色散是光纤最重要的两个传输特性,它们直接影响光传输的性能。 (l)光纤传输损耗:损耗是影响系统传输距离的重要因素之一,光纤自身的损耗主要有吸收损耗和散射损耗。 吸收损耗是因为光波在传输中有部分光能转化为热能; 散射损耗是因为材料的折射率不均匀或有缺陷、光纤表面畸变或粗糙造成的。 当然,在光纤通信系统中还存在非光纤自身原因的一些损耗,包括连接损耗、弯曲损耗和微弯损耗等。这些损耗的大小将直接影响光纤传输距离的长短和中继距离的选择。 (2)光纤传输色散:色散是光脉冲信号在光纤中传输,到达输出端时发生的时间上的展宽。产生的原因是光脉冲信号的不同频率成分、不同模式,在传输时因速度不同,到达终点所用的时间不同而引起的波形畸变。 色散结果:这种畸变使得通信质量下降,从而限制了通信容量和传输距离。 二、光纤通信的工作窗口 光纤损耗系数随着波长而变化,为获得低损耗特性,光纤通信选用波长范围在800 ~1800nm,

(完整版)均匀光纤光栅光谱仿真研究毕业设计

摘要 全光通信是光纤通信的发展方向,自从1978年Hill等人制作出第一条光纤光栅之后,作为重要的全光网络器件之一,光纤光栅的研究和应用就一直受到人们的重视。光纤光栅这种新型的光纤器件由于其独特的光学特性和灵活的设计特点,在光通信系统中有着广泛的应用,包括滤波器、全光复用/ 解复用器、色散补偿器和激光器谐振腔等等。所谓光纤光栅即指光纤轴向上存在的折射率周期性变化。其制作原理是基于石英光纤的光敏效应。光纤中的光致折射率改变现象最初仅是一个科学问题,用来满足人们科学探索的好奇心,而正是因为光纤光栅在光通信与光传感领域的扮演的重要角色也使其成为光纤领域的一项基本技术。在光纤通信的应用中根据应用场合的不同,针对对光纤光栅的光谱方面和色散方面特性会提出相应的专门要求,为了给光纤光栅制作过程中的方法选择及参量控制提供理论性指导,对光纤光栅的理论与应用研究有重要的实际意义。在实际的光栅设计过程中,我们总是希望由所期望的光学特性来确定光栅的各个参数的值,因而对光纤光栅特性方面的数值模拟就具有非常重要意义。本论文以光纤通信发展为主线介绍了光纤光栅的历史及其在光通信领域的应用,概述了光纤光栅的光敏效应,以光波导为背景介绍了分析光纤光栅常用的耦合模理论以及传输矩阵理论。基于耦合模理论和传输矩阵理论对重要的两类光纤光栅:均匀光纤光栅和线性啁啾光纤光栅进行了分析推导。并对两类光纤光栅的光谱方面特性进行了仿真研究,绘制出了两类光纤光栅在不同参数下的反射光谱特性曲线,讨论了不同参数对光纤光栅频率选择特性和色散特性的影响, 所得结果可作为这类光纤光栅结构参数设计的参考依据,给光纤光栅制作过程中的方法选择及参量控制提供理论指导,为

均匀光纤光栅光谱仿真研究

均匀光纤光栅光谱仿真研究

摘要 全光通信是光纤通信的发展方向,自从1978年Hill等人制作出第一条光纤光栅之后,作为重要的全光网络器件之一,光纤光栅的研究和应用就一直受到人们的重视。光纤光栅这种新型的光纤器件由于其独特的光学特性和灵活的设计特点,在光通信系统中有着广泛的应用,包括滤波器、全光复用/ 解复用器、色散补偿器和激光器谐振腔等等。所谓光纤光栅即指光纤轴向上存在的折射率周期性变化。其制作原理是基于石英光纤的光敏效应。光纤中的光致折射率改变现象最初仅是一个科学问题,用来满足人们科学探索的好奇心,而正是因为光纤光栅在光通信与光传感领域的扮演的重要角色也使其成为光纤领域的一项基本技术。在光纤通信的应用中根据应用场合的不同,针对对光纤光栅的光谱方面和色散方面特性会提出相应的专门要求,为了给光纤光栅制作过程中的方法选择及参量控制提供理论性指导,对光纤光栅的理论与应用研究有重要的实际意义。在实际的光栅设计过程中,我们总是希望由所期望的光学特性来确定光栅的各个参数的值,因而对光纤光栅特性方面的数值模拟就具有非常重要意义。本论文以光纤通信发展为主线介绍了光纤光栅的历史及其在光通信领域的应用,概述了光纤光栅的光敏效应,以光波导为背景介绍了分析光纤光栅常用的耦合模理论以及传输矩阵理论。基于耦合模理论和传输矩阵理论对重要的两类光纤光栅:均匀光纤光栅和线性啁啾光纤光栅进行了分析推导。并对两类光纤光栅的光谱方面特性进行了仿真研究,绘制出了两类光纤光栅在不同参数下的反射光谱特性曲线,讨论了不同参数对光纤光栅频率选择特性和色散特性的影响, 所得结果可作为这类光纤光栅结构参数设计的参考依据,给光纤光栅制作过程中的方法选择及参量控制提供理论指导,为光纤光栅这一重要器件的仿真软件的构建进行初步的探索。 关键词:光纤光栅耦合模理论传输矩阵法光通信器件数值仿真 第一章绪论 光纤通信技术是以光波为载波,以光导纤维为传输信道的一种现代有线通信 技术。人类已进入信息化时代,人类对通信的需求呈现加速增长的趋势,而光纤通信技术是构建信息高速公路的主要支柱。现代光纤通信技术涉及光纤光缆技术、传输技术、光有源器件、光无源器件以及光网络技术等。 1.1光纤通信历史及发展: 1880年,贝尔利用太阳光作为光源,以大气为传输信道,用硒晶体作为光接收器,进行了光电话的实验,实现了真正现代意义下的光通信,使通话距离最远达到了二百多米,但空间光传输易受到气候和周围环境等条件的影响,损耗也比较大。 1966年,英籍华人高锟博士和他的同事G. A. Hockham,在研究了光在石英玻璃纤维中传输的特性极

光纤光栅光学特性的测量

光纤光栅光学特性的测量 一、实验目的和内容 1. 了解光纤Bragg 光栅的原理及其主要光学特性。 2. 掌握Digtal lock-in Amplifier 工作原理和使用要领。 3. 掌握测量光纤Bragg 光纤反射光谱及其它光学特性的方法 二、实验基本原理 1. 光纤布拉格光栅的理论模型 光敏光纤布拉格光栅(FBG ,fiber Bragg grating )的原理是由于光纤芯折射率周期变化造成光纤波导条件的改变,导致一定波长的光波发生相应的模式耦合,使的其透射光谱和反射光谱对该波长出现奇异性,图1表示了其折射率分布模型。这只是一个简化图形,实际上光敏折射率改变的分布将由照射光的光强分布所决定。 对于整个光纤曝光区域,可以由下列表达式给出折射率分布较一般的描述: ? ?? ??≥≤≤≤+=2 32 1211)],,(1[),,(a r n a r a n a r z r F n z r n ?? 式中),,(z r F ?为光致折射率变化函数。具有如下特性: 1 ),,(),,(n z r n z r F ???= )(0 ),,() 0(),(1 max max L z z r F L z n n z r F >=<

多模光纤

多模光纤 多模光纤 多模光纤容许不同模式的光于一根光纤上传输,由于多模光纤的芯径较大,故可使用较为廉价的耦合器及接线器,多模光纤的纤芯直径为50μm至100μm。 目录 分类 对比 多模光纤产品选用指南 多模光纤的应用潜力 1.九十年代所占市场 2.七十年代崛起后 3.特点 4.“62.5”的兴衰和“50”的崛起 5.“62.5”优势 6.后续发展 7.802.3出台的影响 8.“新一代多模光纤” 1.新一代类型 2.新一代多模光纤光源 3.新一代多模光纤的带宽 4.光源的注入 1.介绍 2.①偏置注入 3.②中心注入 展开 分类 对比 多模光纤产品选用指南 多模光纤的应用潜力 1.九十年代所占市场

2.七十年代崛起后 3.特点 4.“62.5”的兴衰和“50”的崛起 5.“62.5”优势 6.后续发展 7.802.3出台的影响 8.“新一代多模光纤” 1.新一代类型 2.新一代多模光纤光源 3.新一代多模光纤的带宽 4.光源的注入 1.介绍 2.①偏置注入 3.②中心注入 展开 分类 基本上有两种多模光纤,一种是梯度型(graded)另一种是阶跃型(stepped),对于梯度型(graded)光纤来说,芯的折射率(refraction index)于芯的外围最小而逐渐向中心点不断增加,从而减少讯号的模式色散,而对阶跃型(Stepped Index)光缆来说,折射率基本上是平均不变,而只有在包层(cladding)表面上才会突然降低。阶跃型(stepped)光纤一般较梯度型(graded)光纤的带宽低。在网络应用上,最受欢迎的多模光纤为62.5/125,62.5/125意指光纤芯径为62.5μm而包层(cladding)直径为125μm,其他较为普通的为50/125及100/140。 对比 相对于双绞线,多模光纤能够支持较长的传输距离,在10mbps及 100mbps的以太网中,多模光纤最长可支持2000米的传输距离,而于1GpS 千兆网中,多模光纤最高可支持550米的传输距离,在10Gps万兆网中,多模光纤最高可支持100米以内的传输距离。

物理光学期末试题

1.波动方程,光程、光程差、相位差 2.杨氏干涉、薄膜干涉(等倾、等厚) (重点) 3.单缝衍射、圆孔衍射(半波带、分辨本领)、光栅 4.马吕斯定律、布儒斯特定律、偏振光之间转换 1.)](ex p[0kz t i E E --=ω与)](ex p[0kz t i E E +-=ω描述的是 传播的光波。 A .沿正方向 B .沿负方向 C .分别沿正和负方向 D .分别沿负和 正方向 2.牛奶在自然光照射时呈白色,由此可以肯定牛奶对光的散射主要是 A .瑞利散射 B .分子散射 C .Mie 散射 D .拉曼散射 3.在白炽光入射的牛顿环中,同级圆环中相应于颜色蓝到红的空间位置是 A .由外到里 B .由里到外 C .不变 D .随机变化 5. F-P 腔两内腔面距离h 增加时,其自由光谱范围λ? A .恒定不变 B .增加 C .下降 D .=0 6.光波的能流密度正比于 A . E 或H B .2E 或2H C .2E ,与H 无关 D . 2H ,与 E 无关 7.光在介质中传播时,将分为o 光和e 光的介质属 A .单轴晶体 B .双轴晶体 C .各向同性晶体 D .均匀媒质 8.两相干光的光强度分别为I 1和I 2,当他们的光强都增加一倍时,干涉条纹的可见度 A .增加一倍 B . 减小一半 C .不变 D . 增加1/2 倍 9.线偏振光可以看成是振动方向互相垂直的两个偏振光的叠加,这两个偏振光是 A .振幅相等,没有固定相位关系 B .振幅相等,有固定相位关系 C .振幅可以不相等,但相位差等于0度或180度 D .振幅可以不相等,但相位差等于90度或270度 10.等倾干涉图样中心圆环 。(区分迈克尔孙和牛顿环) A .级次最高,色散最弱 B .级次最高,色散最强 C .级次最低 色散最弱 D .级次最低,色散最强 11.在单缝夫琅和费衍射实验中,波长为λ的单色光垂直入射在宽度为λ4=a 的单 缝上,对应于衍射角为30o的方向,单缝处波阵面可分成的半波带数目为 A .2 个 B .4 个 C .6 个 D .8 个 14.闪耀光栅中,使刻槽面与光栅面成角,目的是使

光纤光栅的特性

光纤光栅的特性

光纤光栅的特性 1.光纤布喇格光栅的理论模型: 假设光纤为理想的纤芯掺锗阶跃型光纤,并且折射率沿轴向均匀分布,包层为纯石英,此种光纤在紫外光的照射下,纤芯的折射率会发生永久性变化,对包层的折射率没有影响。 利用目前的光纤光栅制作技术:如全息相干法,分波面相干法及相位模板复制法等。生产的光纤光栅大多数为均匀周期正弦型光栅。纤芯中的折射率分布(如图1)所示。 ) (1Z n 为纤芯的折射 率,m ax n ?为光致折射 率微扰的最大值, ) 0(1n 为纤芯原折射 率, Λ 为折射率变化的周期(即栅距), L 为光栅的区长度。 若忽略光栅横截面上折射率分布的不均匀

性,光栅区的折射率分布可表示为: )2cos()0()(max 11Z n n z n Λ ?+=π ………………………………………………… (1.1) 显而易见,其折射率沿纵向分布,属于非正规光波导中的迅变光波导,在考虑模式耦合的时候,只能使用矢量模耦合方程,其耦合主要发生在基模的正向传输导模与反向传输导模之间。 2.单模光纤的耦合方程 由于纤芯折射率非均匀分布,引起了纤芯中传输的本征模式间发生耦合。在弱导时, 忽 略偏振效应,吸收损耗和折射率非均匀分布引起了模式泄漏,则非均匀波导中的场Φ( x , y , z ) 满足标量波动方程: ),,(}),,({22 220 2=Φ??++?z y x z z y x n sk t …………………(2.1) 其中:λ π/20 =k ,λ是自由空间的光波长。 2 22 2 1}{1???+?Φ???=Φ?Φ r r r r r t ………………………………… ………………(2.2) 由于折射率非均匀分布引起波导中模式耦合只发生在纤芯中,因此非均匀波导中的场

高分辨率阶梯光栅光谱仪的光学设计

文章编号 1004-924X(2003)05-0442-06 高分辨率阶梯光栅光谱仪的光学设计 武旭华,朱永田,王 磊 (中国科学院国家天文台南京天文光学技术研究所,江苏南京210042) 摘要:简述阶梯光栅的基本原理和在天文学中的应用,分析并比较了阶梯光栅光谱仪与普通平面闪耀光栅光谱仪的区别。为正在研制中的一架国产4m 通光口径的光谱巡天望远镜(简称L AM OST )设计了高分辨率阶梯光栅光谱仪的光学方案,该设计方案采用了白光孔径准直镜系统,大闪耀角的R4阶梯光栅和无遮拦的离轴折叠Schmidt 照相机。关 键 词:天文光学;光谱仪;阶梯光栅中图分类号:T H744.1 文献标识码:A Optical design of high resolution echelle spectrograph WU Xu -hua,ZHU Yong -tian,WANG Lei (National A stronomical Observatory /Nanj ing I nstitute of Astronomical Op tics and Technology ,Chinese Academy o f Sciences ,N anj ing 210042,China) Abstract:The g eneral theories behind echelle and its applications in astronomy are briefed,and the differ -ences betw een echelle spectrog raph and plane grating spectrograph are analyzed and compared.An optical design,w hich features the use of w hite pupil collimator system,R4echelle w ith large blaze angle,and the fold and of-f ax ial Schm idt camera without center obstruction,has been made for a hig h resolution echelle spectrog raph (Large Sky Area Mult-i Object Fiber Spectroscopic T elescope)under development,a more pow erful tool for astrophysical research using hig h -resolution spectroscopy in China.Key words:astronom ical optics;spectrograph;echelle grating 1 引 言 20世纪70年代前,天文高分辨率光谱仪多采用大面积普通闪耀光栅,以满足光通量方面的要求。普通闪耀光栅在实际应用中,为了避免级次重叠,只能用于低级次(第1级或第2级),因此要获得高分辨率光谱只能采用大面积细刻线光栅,仪器尺寸非常庞大。这种一维排列的光谱仪要求焦距4m,通光口径1.5m 的大型照相机,探测元件只好采用低效率的照相乳胶和高噪声的Reticon 。 G.R.Harrison 于1949年研制出一种新的衍 射光栅)))阶梯光栅(echelle),并对这种光栅的 刻划技术做了开拓性的工作[1-3] 。阶梯光栅实质 上是一种粗光栅,具有较大的闪耀角,典型的是63b 26c 、69b 和76b ,可以用于很高的干涉级次,通常10~100级,因此可获得极高的分辨率。阶梯光栅在光谱学的许多领域都是非常有用的,特别是它集中了宽波段、高色散、高分辨率等特点,引起了天文学家的极大兴趣,率先得到天文应用[4]。 二维高效光电成像探测器件的出现,尤其是大面积低噪声高量子效率CCD 的发展,引起了人 收稿日期:2003-04-07;修订日期:2003-08-01. 第11卷 第5期2003年10月 光学精密工程 O ptics and Precision Engineer ing Vol.11 No.5 Oct.2003

光栅布拉格光栅及其传感特性研究

光栅布拉格光栅及其传感特性研究2 一光纤光栅概述2 1.1 光纤光栅的耦合模理论2 1.2 光纤光栅的类型3 1.2.1 均匀周期光纤布拉格光栅3 1.2.2 线性啁啾光纤光栅3 1.2.3 切趾光纤光栅3 1.2.4 闪耀光纤光栅4 1.2.5 相移光纤光栅4 1.2.6 超结构光纤光栅4 1.2.7 长周期光纤光栅4 二光纤布拉格光栅传感器5 2.1 光纤布拉格光栅应力传感器5 2.2 光纤布拉格光栅温度传感器6 2.3 光纤布拉格光栅压力传感器6 2.4 基于双折射效应的光纤布拉格光栅传感器7 三光纤光栅传感器的敏化与封装10 3.1 光纤光栅传感器的温度敏化10 3.2 光纤光栅传感器的应力敏化10 3.2 光纤光栅传感器的交叉敏感及其解决方法10 四光纤光栅传感网络与复用技术10 4.1 光纤光栅传感网络常用的波分复用技术11 4.1.1 基于波长扫描法的波分复用技术12 4.1.2 基于波长分离法的波分复用技术13 4.1.3 基于衍射光栅和CCD阵列的复用技术13 4.1.4 基于码分多址(CDMA)和密集波分复用(DWDM)技术14 4.2光纤光栅传感网络常用的空分复用技术14 4.3光纤光栅传感网络常用的时分复用技术16 4.4 光纤光栅传感网络的副载波频分复用技术18 4.4.1 光纤光栅传感副载波频分复用技术18 4.4.2 FBG传感网络的光频域反射复用技术18 4.5 光纤光栅传感网络的相干复用技术18 4.6 混合复用FBG传感网络18 4.6.1 WDM/TDM混合FBG网络18 4.6.2 SDM/WDM混合FBG网络18 4.6.3 SDM/TDM混合FBG网络18 4.6.4 SDM/WDM/TDM混和FBG网络18 4.6.5 光频域反射复用/波分复用混合FBG传感网络18 五光栅光栅传感信号的解调方法18 六激光传感器18

大学物理光学实验报告

实验十:光栅衍射 一、实验目的 1.观察光线通过光栅后的衍射光谱。 2.学会用光栅衍射测定光波波长的方法。 3.学会用光栅衍射原理测定光栅常数。 4.进一步熟悉分光计的调整和使用方法。 二、实验仪器 分光计 光栅 钠光灯 平面反射镜 三、实验原理 光栅是有大量的等间隔、等宽度的狭缝平行放置组成的一种光学元件。设狭缝宽度(透光部分)为a ,不透光部分为b ,则a b +为光栅常数。 设单色光垂直照射到光栅上,光透过各个狭缝后,向各个方向发生衍射,衍射光经过透镜后会聚后相互干涉,在焦平面上形成一系列的被相当宽的暗区分开的明亮条纹。 衍射光线与光栅平面的夹角称为衍射角。设衍射角为θ的一束衍射光经透镜会聚到观察屏的点。在P 点出现明条纹还是暗条纹决定于这束衍射光的光程差。 由于光栅是等宽、等间距,任意两个相邻缝的衍射光的光程差是相等的,两个相邻狭缝的衍射光的光程差为()sin a b θ+,如果光程差为波长的整数倍,在P 点就出现明条纹,即 ()sin a b k θλ+=± (0,1,2,)k =L 这就是光栅方程。 从上式可知,只要测出某一级的衍射角,就可计算出波 长。 四、实验步骤 1、调整分光计。 使望远镜、平行光管和载物台都处于水平状态,平行光 管发出平行光。 2、安置光栅 将光栅放在载物台上,让钠光垂直照射到光栅 上。 可以看到一条明亮而且很细的零级光谱,左右转动望远 镜观察第一、二级衍射条纹。 3.测定光栅衍射的第一、二级衍射条纹的衍射角θ,并记录。 五、数据记录 S 2 S 1 S 3 ()3 ()2 () 1()1()2 ()3 G 2 φ12 φ22φ3

光纤光栅研究

布拉格光栅的研究 1 概述 光纤光栅是一种通过一定方法使光纤纤芯的折射率发生轴向周期性调制而形成的衍射光栅,是一种无源滤波器件。由于光纤光栅具有高灵敏度、低损耗、易制作、性能稳定可靠、易与系统及其它光纤器件连接等优点,因而在光通信、光纤传感等领域得到了广泛应用[1]。 在光纤通信领域,利用光纤光栅可以制成光纤激光器、光纤色散补偿器、光插、分复用器、光纤放大器的增益均衡器等[2],这些器件都是光纤通信系统中不可缺少的重要器件,可见光纤光栅对光纤通信的重要性,因此光纤光栅也被认为是掺铒光纤放大器之后出现的又一关键器件。 在光纤传感领域,光纤光栅也起到了及其重要的作用。光纤光栅的传感机制包括温度引起的形变和热光效应、应变引起的形变和弹光效应、磁场引起的法拉第效应及折射率引起的有效折射率变化等。当光纤光栅所处的温度、应力、磁场、溶液浓度等外界环境的发生变化时,光栅周期或者光纤的有效折射率等参数也随之改变,通过测量由此带来的光纤光栅的共振波长变化或者共振波长处的透射功率变化可以获取所需的传感信息[3],由此可见,光纤光栅是波长型检测器件,所以其不光具有普通光纤的优良特性,而且测量信号不易受光强波动及系统损耗的影响,抗干扰能力更强,还可利用波分复用技术,实现对信号的分布式测量。 由于光纤光栅的应用范围较为广泛,故本文只针对光纤光栅传感的应变检测机制进行一定的研究。光纤光栅可分为布拉格光栅和长周期光栅,在应变检测中,一般采用的布拉格光栅,下文中出现的光纤光栅指的是布拉格光栅。本文主要的工作主要是分析光纤光栅应变检测的原理,对光纤光栅应变检测进行一定的综述,以及对应变检测中很重要的增敏技术进行研究,并总结。 2 应变检测原理 根据光纤光栅的耦合模理论,光纤光栅的中心波长λB 与有效折射率n eff 和光 栅周期Λ满足如下的关系[4] Λ=eff B n 2λ (2-1) 光纤光栅的反射波长取决于光栅周期Λ和有效折射率n eff ,当光栅外部产生应变变化时,会导致光栅周期Λ和有效折射率n eff 的变化,从而引起反射光波长的偏移,通过对波长偏移量的检测可以获得应力的变化情况。由于课上已经讲过,故不多做赘述,只是简要的回顾一下。接下来主要讨论应变对光纤光栅作用的模

光纤光栅的特性

光纤光栅的特性 1光纤布喇格光栅的理论模型: 假设光纤为理想的纤芯掺锗阶跃型光纤,并且折射率沿轴向均匀分布,包层为纯石英, 此种光纤在紫外光的照射下,纤芯的折射率会发生永久性变化,对包层的折射率没有影响。 利用目前的光纤光栅制作技术: 如全息相干法,分波面相干法及相位模板复制法等。 生产的 光纤光栅大多数为均匀周期正弦型光栅。纤芯中的折射率分布(如图 1)所示。 n i (Z )为纤芯的折射率, n 吶为光 致折射率微扰的最大值, n i ( °)为纤芯原折射率, 上为折射率变化的周期(即栅距), L 为光栅的区长度。 若忽略光栅横截面上折射率分布的不均匀性,光栅区的折射率分布可表示为: 2兀 n i (z)二 n i (0) ............................... 'n max cos( Z) ( 行) A 显而易见,其折射率沿纵向分布, 属于非正规光波导中的迅变光波导, 在考虑模式耦合 的时候,只能使用矢量模耦合方程,其耦合主要发生在基模的正向传输导模与反向传输导模 之间。 2.单模光纤的耦合方程 由于纤芯折射率非均匀分布,引起了纤芯中传输的本征模式间发生耦合。在弱导时 ,忽 略偏振效应,吸收损耗和折射率非均匀分布引起了模式泄漏 ,则非均匀波导中的场 ①(x , y , z )满足标量波动方程:{'2 sk 2n 2(x, y,z) ? —三}门&, y,z) = 0 ............................... ( 2.1 ) 一z 其中:k 0 =2二八,■是自由空间的光波长。 由于折射率非均匀分布引起波导中模式耦合只发生在纤芯中 可以表示为均匀波导束缚模式 (x, y)之和: "(x,y,z)二卡 A(z) l (x,y)二卡{a l (z) exp(-i rz) a 4 exp(i :丨 z)} l (x, y) I- ,A 1 f 片㈣ ma x : 1 ■ t z (2.2) ,因此非均匀波导中的场 (2.3) 圈1均匀周期LE 弦型光纤光柵纤芯护射率

Zemax模拟光栅光谱仪王忠杰、张蒙、岑剡ZEMAX是美国Radiant

Zemax模拟光栅光谱仪 王忠杰、张濛、岑剡 ZEMAX是美国Radiant Zemax 公司所发展出的光学设计软件,可做光学组件设计与照明系统的照度分析,也可建立反射,折射,绕射等光学模型,并结合优化,公差等分析功能,是套可以运算sequential及Non-Sequential的软件。 本文介绍用Zemax模拟光栅光谱仪的方法,其中各元件的位置数据和参数参照实际实验。 打开Zemax,进入如下界面,该界面为序列模式界面。 Zemax分为序列模式、非序列模式、序列-非序列混合模式,其中序列模式是研究光路严格的按照从一个参照面到下一个参照面的直线顺序的情况,对于光栅光谱仪这种各元件三维非直线次第排列的情况,我们选择非序列模式来进行模拟。 点击左上角下拉按钮文件-非序列模式,选择删除所有序列模式数据并进入纯非序列模式,进入页面:

其中objective type为元件类型,后面有各项参数,如x、y、z坐标等。Null object即“无”的意思。 要模拟的CCD光栅光谱仪结构如图: 从左到右依次是:矩形光源-透镜-狭缝-平面反射镜-球面反射镜-光栅-球面反射镜-探测器。 上述光栅的最终结果如图

按下菜单栏下的L3n按钮,即可调出如上图的原件分布,其中向右为z方向,向上为y方向,垂直纸面向外为x方向。在该视图中可以实现放大-缩小,旋转来观察系统等功能。 按下L3n旁的LSn按钮,可看到上了色的3D实际系统图像。 下面在非序列模式中构造上述光栅。 点击非序列部件编辑中的第一个面,按Insert键即可在其后再插入一个面。 1.插入矩形光源: 实验中所用的汞灯实际上是矩形光源,右击第一个面的Objective type,进入如下界面 点开“类型”下拉按钮,选择Sourse Rectangle 每个面后都有参数可以调整x、y、z坐标及绕x、y、z轴旋转的角度,我们在模拟实际实验的情况下模拟光栅,其中光源面的参数如下(长度的单位为mm):未提及的参数都为默认值0.

相关主题
文本预览
相关文档 最新文档