当前位置:文档之家› 目标检测与跟踪实验报告3 王进

目标检测与跟踪实验报告3 王进

目标检测与跟踪实验报告3 王进
目标检测与跟踪实验报告3 王进

《图像探测、跟踪与识别技术》

实验报告

专业:探测制导与控制技术

学号:11151201

姓名:王进

2014 年11月

实验三复杂场景下目标的检测与跟踪

一、实验目的

1. 学习不同目标跟踪算法,对比不同算法对于复杂场景的效果;

2. 学习OpenCV与VS2010的联合编程,提高编程能力。

二、实验要求

1. 要求学生至少使用一种目标跟踪算法对视频中出现的目标进行跟踪;

2. 检验所选算法在复杂场景下的效果;

3. 使用VS2010/2012和OpenCV进行编程;

4. 本实验不要求目标检测,所以目标可以手动标出。

三、实验步骤

1. 想办法找到目标(可手动框出)。

2. 编写目标跟踪函数代码;

四、实验报告

1、CAMSHIFT算法原理

CAMSHIFT算法是利用目标的颜色直方图模型将图像转换为颜色概率分布图,初始化一个搜索窗的大小和位置,并根据上一帧得到的结果自适应调整搜索窗口的位置和大小,从而定位出当前图像中目标的中心位置。

这个算法可以分为三个部分:

1、色彩投影图(反向投影):

(1).RGB颜色空间对光照亮度变化较为敏感,为了减少此变化对跟踪效果的影响,首先将图像从RGB空间转换到HSV空间。(2).然后对其中的H分量作直方图,在直方图中代表了不同H分量值出现的概率或者像素个数,就是说可以查找出H分量大小为h的概率或者像素个数,即得到了颜色概率查找表。(3).将图像中每个像素的值用其颜色出现的概率对替换,就得到了颜色概率分布图。这个过程就叫反向投影,颜色概率分布图是一个灰度图像。

2、MEANSHIFT

MEANSHIFT算法是一种密度函数梯度估计的非参数方法,通过迭代寻优找到概率分布的极值来定位目标。

算法过程为:

(1).在颜色概率分布图中选取搜索窗W

(2).计算零阶距:

计算一阶距:

计算搜索窗的质心:

(3).调整搜索窗大小

宽度为;长度为1.2s;

(4).移动搜索窗的中心到质心,如果移动距离大于预设的固定阈值,则重(2)(3)(4),直到搜索窗的中心与质心间的移动距离小于预设的固定阈值,或者循环运算的次数达到某一最大值,停止计算。关于MEANSHIFT的收敛性证明可以google相关文献。

3、CAMSHIFT

将MEANSHIFT算法扩展到连续图像序列,就是CAMSHIFT算法。它将视频的所有帧做MEANSHIFT运算,并将上一帧的结果,即搜索窗的大小和中心,作为下一帧MEANSHIFT算法搜索窗的初始值。如此迭代下去,就可以实现对目标的跟踪。

算法过程为:

(1).初始化搜索窗

(2).计算搜索窗的颜色概率分布(反向投影)

(3).运行MEANSHIFT算法,获得搜索窗新的大小和位置。

(4).在下一帧视频图像中用(3)中的值重新初始化搜索窗的大小和位置,再跳转到(2)继续进行。

CAMSHIFT算法能有效解决目标变形和遮挡的问题,对系统资源要求不高,时间复杂度低,在简单背景下能够取得良好的跟踪效果。但当背景较为复杂,或者有许多与目标颜色相似像素干扰的情况下,会导致跟踪失败。因为它单纯的考虑颜色直方图,忽略了目标的空间分布特性,所以这种情况下需加入对跟踪目标的预测算法。

2、CAMSHIFT算法实现

在OpenCV库中,CvCamShiftTracker类就是用来实现CAMSHIFT算法的,使得进行二次开发变得很简单。该函数为:

int cvCamShift(const CvArr *prob_image,CvRect window,CvTermCriteria criteria,CvConnectedComp *cornp,CvBox2D *box=NULL);

prob_image:目标直方图的反向投影

window:初始搜索窗口

criteria:确定窗口搜索停止的准则

comp:生成的结构,包含收敛的搜索窗VI坐标(comp→rect字段)与窗口内有像素点的和(comps→area字段)

box:目标的带边界盒子。如果非NULL则包含目标的尺寸和方向。

3、实验流程

4 实验结果与分析

本实验中,用笔记本自带的摄像头来跟踪一运动物体,下图4-图7一系列图像是采用CAMSHIFT算法跟踪运动物体部分图像。

选定目标:

跟踪目标:

由此可见,基于颜色直方图的CAMSHIFT算法可以有效地解决目标变形和旋转问题,而且运算效率很高,可以实时跟踪运动目标

五、思考题

1. 复杂背景下如何使用背景差分法进行跟踪?

将当前帧减去背景帧即可提取出运动目标,当然还存在有其他一些干扰,若噪声或背景物品的移动。然后再对提取出的感兴趣的目标进行检测跟踪。

2. 基于核函数的meanshift算法是什么意思?

meansift算法中对区域内所有点都一样处理没有区别,而实际用于跟踪时,考虑到遮挡物等干扰一般都从边界进入而不会从区域内部突然出现,则可以通过对区域边界范围点进行一定程度的忽略从而达到抵抗遮挡的效果。

而具体实现则是在meanshift算法中通过核函数给各个点加入和位置相关的权。

射极跟随器实验报告

实验二射极跟随器实验报告 姓名:班级:学号: 指导老师:实验日期:实验成绩: 一、实验目的 1、掌握射极跟随器的特性及测试方法 2、进一步学习放大器各项参数测试方法 二、实验原理 射极跟随器的原理图如图5-1所示。它是一个电压串联负反馈放大电路,它具有输入电阻高,输出电阻低,电压放大倍数接近于1,输出电压能够在较大范围内跟随输入电压作线性变化以及输入、输出信号同相等特点。 图5-1 射极跟随器 射极跟随器的输出取自发射极,故称其为射极输出器。 1、输入电阻R i 图5-1电路 R i=r be+(1+β)R E 如考虑偏置电阻R B 和负载R L 的影响,则 R i=R B∥[r be+(1+β)(R E∥R L)] 由上式可知射极跟随器的输入电阻R i比共射极单管放大器的输入电阻R B∥rbe要高得多,但由于偏置电阻RB的分流作用,输入电阻难以进一步提高。 输入电阻的测试方法同单管放大器,实验线路如图5-2所示。Ri= 图5-2 射极跟随器实验电路

即只要测得A 、B 两点的对地电位即可计算出R i 。 2、输出电阻R O 图5-1电路 如考虑信号源内阻R S ,则 由上式可知射极跟随器的输出电阻R 0比共射极单管放大器的输出电阻R O ≈R C 低得多。三极管的β愈高,输出电阻愈小。 输出电阻R O 的测试方法亦同单管放大器,即先测出空载输出电压U O ,再测接入负载R L 后的输出电压U L ,根据 即可求出 R O 3、电压放大倍数 图5-1电路 上式说明射极跟随器的电压放大倍数小于近于1,且为正值。 这是深度电压负反馈的结果。但它的射极电流仍比基流大(1+β)倍, 所以它具有一定的电流和功率放大作用。 4、电压跟随范围 电压跟随范围是指射极跟随器输出电压u O 跟随输入电压u i 作线性变化的区域。当u i 超过一定范围时,u O 便不能跟随u i 作线性变化,即u O 波形产生了失真。为了使输出电压u O 正、负半周对称,并充分利用电压跟随范围,静态工作点应选在交流负载线中点,测量时可直接用示波器读取u O 的峰峰值,即电压跟随范围;或用交流毫伏表读取u O 的有效值,则电压跟随范围 U 0P -P =2 U O 三、实验设备与器件 1、+12V 直流电源 2、函数信号发生器 3、双踪示波器 4、交流毫伏表 5、直流电压表 6、频率计 1 ) //)(1() //)(1(≤+++= L E be L E V R R r R R A β β

多目标跟踪

多目标跟踪的基本理论 所谓多目标跟踪,就是为了维持对多个目标当前状态的估计而对所接收到的量测信息进行处理的过程。 目标模型不确定性 是指目标在未知的时间段内可能作己知的或未知的机动。一般情况下,目标的 非机动方式及目标发生机动时的不同的机动形式都可以通过不同的数学模型来加 以描述。在进行目标跟踪过程中,采用不正确的目标运动模型会导致跟踪系统跟踪 性能的严重下降。因而在目标跟踪过程中,运动模型采用的正确与否对目标的跟踪 性能是至关重要的。 观测不确定性 是指由传感器系统提供的量测数据可能是外部的干扰数据,它有可能是由杂波、虚警和相邻的目标所引起的,也可能是由被跟踪目标的对抗系统所主动发出来的虚假信息。这种不确定性在本质上显然是离散的,给目标跟踪问题提出了极大的挑战,相应地也就产生了数据关联的问题。 数据关联 数据关联的作用主要有:航迹保持、航迹建立和航迹终结。 数据关联算法主要有:“最近邻”方法,“全邻”最优滤波器方法、概率数据关联滤波器方法、多模型方法、相互作用多模型一概率数据关联滤波器方法、联合概率数据关联滤波器方法、多假设方法、航迹分裂方法。 1.“最近邻”方法的思想是:在落入跟踪波门中的所有量测中,离目标跟踪预测位置最近的量测认为是有效量测。“最近邻”方法的好处是算法最简单,但是精度差,抗杂波干扰的能力差。“最近邻”方法因为简单,算法易实现,因此也是目前广泛采用的一种数据关联算法. 2 .“全邻”最优滤波器 Singer,Sea和Housewright发展了一类“全邻”滤波器,这种滤波器不仅考虑了所有候选回波(空间累积信息),而且考虑了跟踪历史,即多扫描相关(时间累积信息)假定多余回波互不相关并且均匀分布于跟踪门内,则任何跟踪门的体积V内多余回波的数目Cx服从均值为βV的泊松分布。假定在K-1时刻,轨迹a′正确的概率为Pa(k-1)。关键问题是计算k时刻轨迹的正确概率Pa(k)。

甘特图实验报告doc

甘特图实验报告 篇一:Project实验报告 Project实验报告 朱曦朦 学号:XX306202412信管1001 实验目的: 通过做出一个标准的实验,了解project的基本运用方法和实验步骤,掌握设定项目的开始日期的基本方法。完成资源的优化配置,实现资源的充分利用。并对工期做一个初步的调整, 提高估计工期的精确度,掌握PERT的方法,实现整个过程(本文来自:https://www.doczj.com/doc/3c4003366.html, 小草范文网:甘特图实验报告)的最优配置。对甘特图,关键路径等基本定义有一个初步的了解,初步学习到PROJECT的基本内容。 一;定义起始时间: 在定义项目中进行时间的确认: 一直保存至第三步,进行初始化的设定。 二复制新产品模板. 三调整资源的最大单位 修改资源“产品工程设计”的最大单位为200%,并增加资源“生产线”(工时资源,100%,用于完成生产任务,原来工程师需要5小时完成的任务,生产线只要1小时就能完

成,但必须同时配1名产品工程设计进行监控)。 通过视图进入资源工作表,将“产品工程设计”的最大单位改为 200% 在甘特图中未找到工程师,所以未对其进行修改。 三.为了提高估计工期的精确度,采用PERT技术规划项目工期(选取2到3个任务进行规划)。 设置PERT权重 设置后观察得到PERT项工作表。 选取2,3个项目后确定乐观工期,预期工期,悲观工期,通过计算PERT得出结论。 四.分析项目工期由哪些任务决定,确定压缩工期的方法。通过格式中的甘特图向导,对关键路径进行确认,从而得到确定项目工期的任务,由红线显示。编号为2,3,5,6,8,9,10, 11 对项目进行优化,可以通过2种路径,一是调整关键路径的工期,将其缩短。二是删除原有的链接关系,将后面的工期开始时间提前,如下图所示。 篇二:MS Project 上机实验报告 MS Project 上机实验报告 一、工程概况

单管共射极放大电路仿真实验报告

单管共射极分压式放大电路仿真实验报告 班级__________姓名___________学号_________ 一、实验目的:1.学会放大器静态工作点的调试方法,分析静态工作点对放大器性能的影响。 2.掌握放大器电压放大倍数、输入电阻、输出电阻及最大不失真输出电压的 测量法。 3.熟悉简单放大电路的计算及电路调试。 4.能够设计较为简单的对温度稳定的具有一定放大倍数的放大电路。 二、实验要求:输入信号Ai=5 mv, 频率f=20KHz, 输出电阻R0=3kΩ, 放大倍数Au=60,直 流电源V cc=6v,负载R L=20 kΩ,Ri≥5k,Ro≤3k,电容C1=C2=C3=10uf。三、实验原理: (一)双极型三极管放大电路的三种基本组态。 1.单管共射极放大电路。 (1)基本电路组成。如下图所示: (2)静态分析。I BQ=(V cc-U BEQ)/R B (V CC为图中RC(1)) I=βI BQ

U CEQ=V CC-I CQ R C (3)动态分析。A U=-β(R C管共集电极放大电路(射极跟随器)。 (1)基本电路组成。如下图所示: (2)静态分析。I BQ=(V cc-U BEQ)/(R b +(1+β)R e)(V CC为图中Q1(C)) I CQ=βI BQ U CEQ=V CC-I EQ R e≈V CC-I CQ R e (3)动态分析。A U=(1+β)(R e管共基极放大电路。 (1)基本电路组成。如下图所示:

(2)静态分析。I EQ=(U BQ-U BEQ)/R e≈I CQ (V CC为图中RB2(2)) I BQ=I EQ/(1+β) U CEQ=V CC-I CQ R C-I EQ R e≈V CC-I QC(R C+R e) (3)动态分析。AU=β(R C极管将输入信号放大。 2.两电阻给三极管基极提供一个不受温度影响的偏置电流。 3.采用单管分压式共射极电流负反馈式工作点稳定电路。 四、实验步骤: 1.选用2N1711型三极管,测出其β值。 (1)接好如图所示测定电路。为使ib达到毫安级,设定滑动变阻器Rv1的最大阻值是 1000kΩ,又R1=3 kΩ。

动态视频目标检测和跟踪技术(入门)

动态视频目标检测和跟踪技术 传统电视监控技术只能达到“千里眼”的作用,把远程的目标图像(原始数据)传送到监控中心,由监控人员根据目视到的视频图像对现场情况做出判断。智能化视频监控的目的是将视频原始数据转化为足够量的可供监控人员决策的“有用信息”,让监控人员及时全面地了解所发生的事件:“什么地方”,“什么时间”,“什么人”,“在做什么”。将“原始数据”转化为“有用信息”的技术中,目标检测与跟踪技术的目的是要解决“什么地方”和“什么时间”的问题。目标识别主要解决“什么人”或“什么东西”的问题。行为模式分析主要解决“在做什么”的问题。动态视频目标检测技术是智能化视频分析的基础。 本文将目前几种常用的动态视频目标检测方法简介如下: 背景减除背景减除(Background Subtraction)方法是目前运动检测中最常用的一种方法,它是利用当前图像与背景图像的差分来检测出运动目标的一种技术。它一般能够提供相对来说比较全面的运动目标的特征数据,但对于动态场景的变化,如光线照射情况和外来无关事件的干扰等也特别敏感。实际上,背景的建模是背景减除方法的技术关键。最简单的背景模型是时间平均图像,即利用同一场景在一个时段的平均图像作为该场景的背景模型。由于该模型是固定的,一旦建立之后,对于该场景图像所发生的任何变化都比较敏感,比如阳光照射方向,影子,树叶随风摇动等。大部分的研究人员目前都致力于开发更加实用的背景模型,以期减少动态场景变化对于运动目标检测效果的影响。 时间差分时间差分(Temporal Difference 又称相邻帧差)方法充分利用了视频图像的特征,从连续得到的视频流中提取所需要的动态目标信息。在一般情况下采集的视频图像,若仔细对比相邻两帧,可以发现其中大部分的背景像素均保持不变。只有在有前景移动目标的部分相邻帧的像素差异比较大。时间差分方法就是利用相邻帧图像的相减来提取出前景移动目标的信息的。让我们来考虑安装固定摄像头所获取的视频。我们介绍利用连续的图像序列中两个或三个相邻帧之间的时间差分,并且用阈值来提取出视频图像中的运动目标的方法。我们采用三帧差分的方法,即当某一个像素在连续三帧视频图像上均有相

微实验报告

本科生实验报告 实验课程微机原理与接口技术 学院名称信息科学与技术学院 专业名称电子信息工程 学生姓名干娜 学生学号201413080229 指导教师李志鹏 实验地点6B610 实验成绩 二〇一六年十月二〇一六年十二月

实验一、动态调试程序DEBUG 一、实验目的 1.动态调试程序DEBUG环境的搭建; 2.掌握各种汇编指令的作用; 3.掌握磁盘文件操作命令的使用; 4.掌握查找、比较、填充和移动内存命令的使用。 二、实验内容 1.搭建汇编调试环境,安装DOS系统; 2.进行DEBUG动态调试程序的启动与退出; 3.进行汇编、执行、跟踪与反汇编命令的编写与运行; 4.进行显示、修改内存和寄存器命令的编写与运行; 5.进行查找、比较、填充和移动内存命令的编写与运行。 三、DEBUG的启动与退出 DEBUG的启动:首先选择一个磁盘,建立一个名为“TEST”的文件,文件名可以任意,然后挂载DOS系统在任意磁盘上,执行代码界面为: 出现“-”表示执行成功,进入DEBUG调试环境,此后可以进行代码的编译与执行。 DEBUG的退出命令:-Q 四、汇编、执行、跟踪与反汇编 1.A命令:逐行汇编命令,主要用于小段程序的汇编和修改目标程序。使用逐行汇编命令的格式为: A[地址] 实验内容:汇编一小段程序,DOS运行界面为:

该段程序完成了对AX,BX,CX,DX寄存器写入规定的数据。 2.G命令:启动运行一个程序或程序的一段,编写格式为: G[=<起始地址>][<断点地址>…] 执行A命令的代码后,运用G命令查看各个寄存器状态: 结果分析:从运行结果可以看出,BX、CX、DX已经写入了输入值,但AX 中的值并不是输入值,可能是AX寄存器的值写入后又被改变。 3.T命令 T命令用来逐条跟踪程序的运行,编写格式如下: T[=<地址>][<跟踪条数>] 每条指令执行后,都要暂停并显示各寄存器的内容,跟踪执行实际上是单步执行,执行结果如下: 从地址100开始,跟踪三条指令,从执行细节可以看出AX、BX、CX、DX都写入了程序给定的值,IP指针的值也是逐条递增。 4.U命令:用来对二进制代码程序进行反汇编,常用于分析和调试目标程序,引用格式如下: U[<地址>]

多摄像头目标检测与跟踪方法研究

华中科技大学 硕士学位论文 多摄像头目标检测与跟踪方法研究 姓名:颜杰 申请学位级别:硕士 专业:通信与信息系统 指导教师:邱锦波 2011-01-18

华中科技大学硕士学位论文 摘要 视频跟踪是计算机视觉领域的一个基础的研究课题,也一个非常具有挑战性的研究方向。在当前的现实生活中,视频跟踪技术已经在各种领域内得到了广泛的应用,其中包括视频监控、军事工程、交通管理、智能机器人和人机交互等,具有很高的学术研究和应用价值。 单摄像头的视频跟踪系统存在很多无法解决的问题,其中包括目标遮挡、摄像头视野有限、不能进行全方位的跟踪等问题,而多摄像头的跟踪系统能够很好的克服这些问题。因此,多摄像头目标检测与跟踪正在成为研究的热点。本文在前人研究的基础上,重点研究了如何提高多摄像头之间目标确认的精度,以及如何在保证对目标准确跟踪的条件下,降低整个系统的数据传输量和计算量。 本文首先分析多摄像头跟踪领域中,摄像头之间目标确认问题,提出了一种在基于平面单应性的确认技术中,引入目标距离特征的新方法。由于目标距离不受平面单应性约束条件的影响,加入目标距离特征能有效的提高摄像头之间目标的确认精度。实验结果表明,在基于平面单应性的确认算法中,增加目标距离特征后,确认精度得到了一定的提高。 为了有效地减少多摄像头跟踪系统的数据传输量和计算量,本文还提出了一种基于最优摄像头选择的跟踪算法,并从理论分析和实验上,对该算法的性能进行了评估。实验结果显示,该算法在不降低对目标跟踪准确度的情况下,有效地降低整个系统的数据传输量和计算量。 关键词:多摄像头,目标检测,目标跟踪,目标确认,最优摄像头选择

射极跟随器实验报告

射极跟随器实验报告 班级: 姓名: 学号: 一、实验目的 (1)掌握射极跟随器的特性及测试方法。 (2)进一步学习放大器各项参数的测试方法。 二、实验原理 射极跟随器的原理图如图(1)所示。它是一个电压串联负反馈放大电路,具有输入电阻高、输出电阻低,电压放大倍数接近于1,输出电压能够在较大范围内跟随输入电压作线性变化以及输入、输出信号同相等特点。 由于射极跟随器的输出取自发射极,故也称其为射极输出器。 1、输入电阻i R 根据图(1)电路所示,有 R r R E be i )1(β++= 如考虑偏置电阻B R 和负载L R 的影响,则 ]//)(1(//[R R r R R L E be B i β++= 图 (1) 射极跟随器 由上式可知,射极跟随器的输入电阻 i R 比共射极单管放大器的输入电阻 be B i r R R //=的阻值要高的多。但由于偏置电阻B R 的分流作用,输入电阻的阻值难以 进一步提高。

输入电阻的测试方法与单管放大器的相同,试验线路如图(2)所示。 R U U U I U R i s i i i i -= = 即只要测得A 、B 两点的对地电位即可计算出i R 。 2、输出电阻O R 根据图(1)电路所示,有 β β r R r R be E be O ≈ = // 如考虑信号源内阻S R ,则 β β ) //(//) //(R R r R R R r R B S be E B S be O +≈ += 由上式可知,射极跟随器的输出电阻O R 比共射极单管放大器的输出电阻C O R R ≈低得多。三极管的β值愈高。

网络互联技术实验报告

网络互联技术实验报告 熟悉常用网络测试指令 班级:B241111 学号:B24111102 姓名:杜悦

一、实验目的 (1)了解系统网络命令及其所代表的含义,以及所能对网络进行的操作。(2)通过网络命令了解网络状态,并利用网络命令对网络进行简单的操作。二、实验设备 自己的笔记本电脑,操作系统是Windows7 三、实验内容和要求 (1)利用ipconfig命令查看本机的网络配置信息 (2)利用ping 命令检测网络连通性 (3)利用arp 命令检验MAC 地址解析 (4)熟练使用netstat、ftp、tracert、pathping、nbtsat、netsh等网络命令 四、背景知识 windows操作系统本身带有多种网络命令,利用这些网络命令可以对网络进行简单的操作。需要注意是这些命令均是在cmd命令行下执行。本次实验学习8个最常用的网络命令。 五、实验准备 1.Ping命令 -t Ping指定的计算机直到中断。 -a 将地址解析为计算机名。 -n count 发送 count 指定的 ECHO 数据包数。默认值为 4 。 -l length 发送包含由 length 指定的数据量的 ECHO 数据包。默认为 32 字节;最大值是 65,527。 -f 在数据包中发送“不要分段”标志。数据包就不会被路由上的网关分段。-i ttl 将“生存时间”字段设置为 ttl 指定的值。

-v tos 将“服务类型”字段设置为 tos 指定的值。 -r count 在“记录路由”字段中记录传出和返回数据包的路由。 count 可以指定最少 1 台,最多 9 台计算机。 -s count 指定 count 指定的跃点数的时间戳。 -j computer-list 利用 computer-list 指定的计算机列表路由数据包。连续计算机可以被中间网关分隔(路由稀疏源) IP 允许的最大数量为 9 。 -k computer-list 利用 computer-list 指定的计算机列表路由数据包。连续计算机不能被中间网关分隔(路由严格源) IP 允许的最大数量为 9 。 -w timeout 指定超时间隔,单位为毫秒。 destination-list 指定要 ping 的远程计算机。 查看ping的相关帮助信息“ping/?” 2.ipconfig命令 ipconfig是WINDOWS操作系统中用于查看主机的IP配置命令,其显示信息中还包括主机网卡的MAC地址信息。该命令还可释放动态获得的IP地址并启动新一次的动态IP分配请求。 ipconfig /all:显示本机TCP/IP配置的详细信息; ipconfig /release:DHCP客户端手工释放IP地址; ipconfig /renew:DHCP客户端手工向服务器刷新请求; ipconfig /flushdns:清除本地DNS缓存内容; ipconfig /displaydns:显示本地DNS内容; ipconfig /registerdns:DNS客户端手工向服务器进行注册; ipconfig /showclassid:显示网络适配器的DHCP类别信息; ipconfig /setclassid:设置网络适配器的DHCP类别。

目标检测与跟踪

第九章图像目标探测与跟踪技术 主讲人:赵丹培 宇航学院图像处理中心 zhaodanpei@https://www.doczj.com/doc/3c4003366.html, 电话:82339972

目录 9.1 概论 9.2 目标检测与跟踪技术的发展现状9.3 目标检测与跟踪技术的典型应用9.4 图像的特征与描述 9.5 目标检测方法的基本概念与原理9.6 目标跟踪方法涉及的基本问题

9.1 概论 1、课程的学习目的 学习和掌握目标探测、跟踪与识别的基本概念和术语,了解一个完整信息处理系统的工作流程,了解目标探测、跟踪与识别在武器系统、航空航天、军事领域的典型应用。了解目标检测、跟踪与识别涉及的关键技术的发展现状,为今后从事相关的研究工作奠定基础。 2、主要参考书: 《目标探测与识别》,周立伟等编著,北京理工大学出版社; 《成像自动目标识别》,张天序著,湖北科学技术出版社; 《动态图像分析》,李智勇沈振康等著,国防工业出版社;

引言:学习目标检测与跟踪技术的意义 ?现代军事理论认为,掌握高科技将成为现代战争取胜的重要因素。以侦察监视技术、通信技术、成像跟踪技术、精确制导技术等为代表的军用高科技技术是夺取胜利的重要武器。 ?成像跟踪技术是为了在战争中更精确、及时地识别敌方目标,有效地跟踪目标,是高科技武器系统中的至关重要的核心技术。 ?例如:一个完整的军事战斗任务大致包括侦察、搜索、监视以及攻击目标和毁伤目标。那么快速的信息获取和处理能力就是战争胜利的关键,因此,目标的实时探测、跟踪与识别也成为必要的前提条件。

?随着现代高新技术的不断发展及其在军事应用领域中的日益推广,传统的作战形态正在发生着深刻的变化。 1973年的第四次中东战争,1982年的英阿马岛之战,1991年的海湾战争及1999年的科索沃战争,伊拉克战争等都说明了这一点。西方各军事强国都在积极探索对抗武器,特别是美国更是投入了巨大的物力、人力和财力积极研制弹道导弹防御系统。而图像检测、跟踪和识别算法作为现代战场信息环境作战成败的关键,具备抗遮挡、抗丢失和抗机动鲁棒性的智能跟踪器,将是现代战场作战必备品,具有广泛的应用前景。

目标检测、跟踪与识别技术与现代战争

目标检测、跟踪与识别技术与现代战争 【摘要】本文讨论目标检测、跟踪与识别技术在现代战争各个领域中的应用,总结目标识别技术的发展方向,提出目标识别技术工程化实现方法,同时本文介绍了国外目标识别的现状及发展趋势,提出了现代战争应采用综合识别系统解决目标识别问题的建议。 关键词目标检测;目标跟踪;目标识别;雷达;人工神经网络;精确制导 1.引言 随着现代科学技术的飞速发展及其在军事领域内日益广泛的应用,传统的作战思想、作战方式已发生根本性的变化。从第一次海湾战争到科索沃战争,特别是刚刚结束的海湾战争,空中精确打击和空地一体化作战已经成为最重要的作战形式。集指挥、控制、通信、计算机、情报、监视侦察于一体的C ISR 已成为取得战场主动权,赢得最后胜利的关键因素。目标识别技术是雷达智能化、信息化的重要技术支撑手段。在现代化战争中,目标识别技术在预警探测、精确制导、战场指挥和侦察、敌我识别等军事领域都有广泛的应用前景,已受到了世界各国的关注。 现代战争中取得战场制信息权的关键之一是目标属性识别。现代战争的作战环境十分复杂,作战双方都在采用相应的伪装、隐蔽、欺骗和干扰等手段和技术,进行识别和反识别斗争。因此仅仅依靠一种或少数几种识别手段很难准确地进行目标识别,必须利用多个和多类传感器所收集到的多种目标属性信息,综合出准确的目标属性,进行目标检测,跟踪后进行识别。 2.目标检测、跟踪与识别技术在现代战争中的应用 2.1 目标检测、跟踪与识别技术在预警探测上的应用 目标检测、跟踪与识别技术对于弹道导弹的预警工作有重要的作用。弹道导弹一般携带多个弹头,其中可能包含核弹头或大规模杀伤的弹头以及常规弹头,预警雷达必须具备对目标进行分类和识别真假弹头的能力,将核弹头或大规模杀伤的弹头分离出来,为弹道导弹防御(BMD)系统进行目标攻击和火力分配提供依据。早期的BMD系统假设只有一个核弹头,多弹头分导技术的出现,使问题转化为雷达的多目标识别问题,加上电子对抗技术的广泛使用,给目标识别技术带来很大困难。另外,预警雷达还要对空中目标或低空目标进行探测,对来袭目标群进行分类识别。利用星载雷达以及远程光学望远镜等观测设备,可以对外空目标进行探测,对外空来袭目标进行分类和识别,达到早期预警的工作。

人机交互实验报告及实验结果

中北大学软件学院 实验报告 专业软件工程 课程名称人机交互 学号 姓名 辅导教师何志英成绩 实验日期2012/3/13实验时间19:00-22:00

1实验名称 试验一:最新人机交互技术 2、实验目的 了解最新人机交互的研究内容 3、实验内容 通过网络查询最新人机交互相关知识。 (1)在百度中找到“最新人机交互视频”的相关网页,查看视频。 (2)什么是Kinect技术。 (3)人机交互技术在各个领域的应用。 4、测试及结果 (1)已在百度中查看“最新人机交互视频”的相关网页。 (2)Kinect是微软在2010年6月14日对XBOX360体感周边外设正式发布的名字。 (3)人机交互技术已成为解决医疗、教育、科研、环保等各类重大社会问题不可或缺的重要工具 5、心得 通过此实验,我了解人机交互技术在社会各个行业的重大作用。辅导教师何志英成绩 实验日期2012/3/13实验时间19:00-22:00 1、实验名称 实验二:立体视觉 2、实验目的 掌握立体视觉的原理

3、实验要求 通过网络查询立体视觉相关知识。 (1)在虚拟环境是如何实现立体视觉? (2)3D和4D电影的工作原理。 4、测试及结果 (1)实物虚化的视觉跟踪技术使用从视频摄像机到x-y平面阵列,周围光或者跟踪光在图像投影平面不同时刻和不同位置上的投影,计算被跟踪对象的位置和方向。 视点感应必须与显示技术相结合,采用多种定位方法(眼罩定位、头盔显示、遥视技术和基于眼肌的感应技术)可确定用户在某一时刻的视线。例如将视点检测和感应技术集成到头盔显示系统中,飞行员仅靠“注视”就可在某些非常时期操纵虚拟开关或进行飞行控制 (2) 4D电影是在3D立体电影的基础上加环境特效模拟仿真而组成的新型影视产品。所谓4D电影,也叫四维电影;即三维的立体电影和周围环境模拟组成四维环境。观众在看立体电影时,顺着影视内容的变化,可实时感受到风暴、雷电、下雨、撞击、喷洒水雾、拍腿等身边所发生与立体影象对应的事件,4D的座椅是具有喷水、喷气、振动、扫腿等功能的,以气动为动力的。环境模拟仿真是指影院内安装有下雪、下雨、闪电、烟雾等特效设备,营造一种与影片内容相一致的环境。 5、心得 通过本次试验,我明白了立体视觉以及3D、4D电影的工作原理。

射极跟随器实验报告

肇庆学院 实验二射极跟随器实验报告 班别:学号:姓名:指导老师: 一、实验目的 1、掌握射极跟随器的特性及测试方法 2、进一步学习放大器各项参数测试方法 二、实验仪器 DZX-1型电子学综合实验装置一个、TDS 1002 示波器一个、数字万用表一个、色环电阻一个、螺丝刀一把、导线若干 三、实验原理 射极跟随器的原理图如图1所示。它是一个电压串联负反馈放大电路,它具有输入电阻高,输出电阻低,电压放大倍数接近于1,输出电压能够在较大范围内跟随输入电压作线性变化以及输入、输出信号同相等特点。 图1 射极跟随器 射极跟随器的输出取自发射极,故称其为射极输出器。 1、输入电阻R i 图1电路 R i=r be+(1+β)R E 如考虑偏置电阻R B和负载R L的影响,则

R i =R B ∥[r be +(1+β)(R E ∥R L )] 由上式可知射极跟随器的输入电阻R i 比共射极单管放大器的输入电阻R i =R B ∥r be 要高得多,但由于偏置电阻R B 的分流作用,输入电阻难以进一步提高。 输入电阻的测试方法同单管放大器,实验线路如图2所示。 图2 射极跟随器实验电路 (其中,R L 的测量值为0.995ΩK ,取1.00ΩK ;R 的测量值为1.98ΩK ) R U U U I U R i s i i i i -== 即只要测得A 、B 两点的对地电位即可计算出R i 。 2、输出电阻R O 图1电路 β r R ∥βr R be E be O ≈= 如考虑信号源内阻R S ,则 β ) R ∥(R r R ∥β)R ∥(R r R B S be E B S be O +≈+= 由上式可知射极跟随器的输出电阻R 0比共射极单管放大器的输出电阻R O ≈R C 低得多。三极管的β愈高,输出电阻愈小。 输出电阻R O 的测试方法亦同单管放大器,即先测出空载输出电压U O ,再测接入负载R L 后的输出电压U L ,根据 O L O L L U R R R U += 即可求出 R O

实验一 熟悉常用的网络命令实验报告

实验一熟悉常用的网络命令 序号:姓名:李哲旭学号:20141120117成绩指导教师: 1.实验目的: 学会使用常用ping ,ipconfig, nslookup, arp ,tracert等常用网络测试命令检测网络连通、了解网络的配置状态,跟踪路由诊断域名系统等相关网络问题。 2实验环境: (1)运行windows 8.1操作系统的PC一台 (2)每台PC机具有一块网卡,通过双绞线与局域网网相连。 (3)局域网能连接Internet 3.实验步骤: 参见实验指导手册内容。 4.实验分析,回答下列问题 (1)查看本机TCP/IP协议配置,看你的计算机是通过自动获取IP还是通过手动方式设置IP地址的?写出你判断的理由。 自动获取IP地址 (2)如果是通过手动方式获取IP地址,可以直接读出IP地址,子网掩码,默认网关,首选DNS服务器地址,备用DNS服务器地址。填写下表。 如果是采用动态获取IP地址,如何获取完整的TCP/IP配置信息,请写出解决步骤。并填写下表。 点击运行,输入cmd,使用ipconfig/all命令 IP地址113.55.91.78

子网络掩码255.255.255.255 默认网关fe80::21e:73ff:fe9a:c820%1450. 0.0.0 首选DNS服务器地址202.203.208.33 备用DNS服务器地址222.203.208.33 (3)显示完整的TCP/IP的配置信息。 (4)在获取本机IP地址之后,在MS-DOS方式下运行下列Ping命令,填写实验运行结果(可附截图)。 (a)ping本机IP地址 (b)ping 本机IP地址–t

人体目标检测与跟踪算法研究

人体目标检测与跟踪算法研究 摘要:近些年以来,基于视频中人体目标的检测与跟踪技术研究越来越被重视。然而,由于受到目标自身特征多样性和目标所处环境的复杂性和不确定性的影响,现存算法的性能受到很大的限制。本文对目前所存在的问题进行了分析,并提出了三帧差分法和改进阈值分割法相结合的运动目标检测算法和多特征融合的改进运动目标跟踪算法。这两种算法不仅可以准确有效的检测出运动目标而且能够满足实时性的要求,有效的解决了因光照变化和目标遮挡等情况造成的运动目标跟踪准确度下降或跟踪目标丢失等问题。 关键词:三帧差分,Camshift,阈值分割 Research Based on Human Target Detectionand Tracking Algorithm Abstract: In recent years, human object detection and tracking become more and more important. However the complexity, uncertainty environment and the target’s own diversity limit the performance of existing algorithms. The main works of this paper is to study and analysis the main algorithm of the human object detection and tracking, and proposes a new moving target detection method based on three-frame difference method and threshold segmentation and improved Camshift tracking algorithm based on multi-feature fusion. These algorithm can satisfy the real-time, while accurately and efficiently detect moving targets, and also effectively solves the problem of tracking object lost or misplaced under illumination change or target occlusion. Keywords: three-frame difference, Camshift, threshold segmentation 一、绪论 (一)选题的背景和意义 人类和动物主要通过眼睛来感受和认知外部世界。人类通过视觉所获取的信息占了60%[1],因此,在开发和完善人工智能的过程中,赋予机器视觉的功能这一操作极不可缺少。完善上述功能需要以许多技术为基础,特别是运动目标的检测与跟踪技术。近些年以来,此技术受到了越来越多的关注[2]。目前,此技术也在各领域得到了充分的应用,涵盖的领域有智能交通、导航、智能视频监控、精确制导、人机交互和多媒体视频编码压缩技术等。

多目标跟踪算法

多目标跟踪算法 先来回顾下卡尔曼滤波器: 假定k k x |表示当前k 时刻目标的状态,k 1k x |+表示下一个时刻目标的状态,k z 则表示k 时刻的实际观测。一般地模型都假定为线性的: 这里的1k x +为k+1时刻目标的状态,k x 为k 时刻的状态,为状态转移矩阵,而是服从均值为0方差为的正态分布,表示由噪声等引起的干扰。卡尔曼滤波采取初步估 计: 这里的估计只是初步的估计,状态估计与实际状态的误差矩阵等于状态1k x +的的方差,即: 更新(修正): 这里已知了实际观察,同样是假定观测与状态的似然关系是线性的,即满足: 服从一个均值为0方差为 的正态分布。 卡尔曼滤波器给出了经过更新后得到的比较合理的k+1时刻的估计为: 相应地得到了更新后方差的估计: 这里: 其实这些都是通过最小二乘法推出来的,即使得误差: 最小,而初步估计也是通过最小二乘法获得,即使得: 最小。有了上述估计方程后,便可以获得一个估计流程:

下面再介绍下贝叶斯公式 先看一个定义 马氏链: 设{} ,,,k j i E =为有限集或可列集,称()0n n X ≥为定义在概率空间()P F,,Ω上,取值于空间E 的马氏链,如果满足下面的马氏性:对一切n 10i i i ,,, 有 [][]1n 1n n n 1n 1n 00n n i X i X P i X i X i X P ----======|,,| 若左边的条件概率有定义,则称[]i X j X P 1n n ==-|为在n-1时刻状态为i,在n 时刻在j 的转移概率函数,若它与n 无关,则记为ij p ,并称为时齐的或齐次的。显然这里的马氏性接近于独立性,在一定程度上可以称为无记忆性或无后效性。 下面我们来推导贝叶斯公式: 容易由条件概率公式定义知 而 ()()()()()()( ) ()() ()( ) ()() ( )() ()()() 1 k 1 k 1k k k 1 k k 1k k k 1k k 1k k k 1k k k k k 1k 1k 1k k k 1k k k k k 1k 1k 1k k k 1k 1k 1k k k 1k 1k 1k 1k 1k z x f dx x f x z f x f x z f z f dx x f x z f x z f z f x f x z f x z f dx z x f x z f z x f x z f x f +++++++++++++++++++++++== ? == ?? ?||||||||||||||||||||||||| 就得到了更新后的公式如下: 这里记 于是就可以得到贝叶斯滤波器跟踪流程如下: 实际上可以证明,卡尔曼滤波器是贝叶斯滤波器的一种特殊形式,由于假定噪声服从正态分布,同样地观测与状态估计的误差也是服从正态分布,那么不难得:

北京航空航天大学目标检测与跟踪实验报告1

《图像探测、跟踪与识别技术》实验报告(一) 专业:探测制导与控制技术 学号: 姓名:

目录 一、实验目的 (3) 二、实验要求 (3) 三、实验步骤 (3) 四、实验结果 (4) 1、使用自适应阈值进行阈值化以及定位跟踪结果 (4) 1.1阈值结果及坐标 (4) 1.2二值化图样及定位、跟踪结果 (4) 2、使用固定阈值进行阈值化以及定位跟踪结果 (5) 2.1.1阈值为150的结果及坐标 (5) 2.1.2二值化图样及定位、跟踪结果 (5) 2.2.1阈值为250的结果及坐标 (6) 2.2.2二值化图样及定位、跟踪结果 (6) 五、实验感想 (7) 附实验程序: (7)

实验一基于形心的目标检测方法 一、实验目的 1. 学习常用的图像阈值分割方法以及不同方法对目标的不同分割效果; 2. 学习如何利用形心方法将目标定位; 3. 了解目标检测方法的本质并为课堂教学提供配套的实践机会。 二、实验要求 要求学生能够根据目标图像特点,自行选择在不同噪声条件下和背景条件下的目标分割算法。完成规定图像的目标检测,并利用检测跟踪窗来表示检测到的目标位置信息。 三、实验步骤 1. 分别利用固定阈值和自适应阈值T,对图像二值化。 2.在VC6.0平台下编写阈值计算函数,形心计算函数; 3. 观察不同阈值方法对目标的分割效果以及对目标的定位准确性; 4. 打印结果并进行讨论。

四、实验结果 1、使用自适应阈值进行阈值化以及定位跟踪结果1.1阈值结果及坐标 1.2二值化图样及定位、跟踪结果

2、使用固定阈值进行阈值化以及定位跟踪结果2.1.1阈值为150的结果及坐标 2.1.2二值化图样及定位、跟踪结果

目标检测与跟踪实验报告3 王进

《图像探测、跟踪与识别技术》 实验报告 专业:探测制导与控制技术 学号:11151201 姓名:王进 2014 年11月

实验三复杂场景下目标的检测与跟踪 一、实验目的 1. 学习不同目标跟踪算法,对比不同算法对于复杂场景的效果; 2. 学习OpenCV与VS2010的联合编程,提高编程能力。 二、实验要求 1. 要求学生至少使用一种目标跟踪算法对视频中出现的目标进行跟踪; 2. 检验所选算法在复杂场景下的效果; 3. 使用VS2010/2012和OpenCV进行编程; 4. 本实验不要求目标检测,所以目标可以手动标出。 三、实验步骤 1. 想办法找到目标(可手动框出)。 2. 编写目标跟踪函数代码; 四、实验报告 1、CAMSHIFT算法原理 CAMSHIFT算法是利用目标的颜色直方图模型将图像转换为颜色概率分布图,初始化一个搜索窗的大小和位置,并根据上一帧得到的结果自适应调整搜索窗口的位置和大小,从而定位出当前图像中目标的中心位置。 这个算法可以分为三个部分: 1、色彩投影图(反向投影): (1).RGB颜色空间对光照亮度变化较为敏感,为了减少此变化对跟踪效果的影响,首先将图像从RGB空间转换到HSV空间。(2).然后对其中的H分量作直方图,在直方图中代表了不同H分量值出现的概率或者像素个数,就是说可以查找出H分量大小为h的概率或者像素个数,即得到了颜色概率查找表。(3).将图像中每个像素的值用其颜色出现的概率对替换,就得到了颜色概率分布图。这个过程就叫反向投影,颜色概率分布图是一个灰度图像。 2、MEANSHIFT MEANSHIFT算法是一种密度函数梯度估计的非参数方法,通过迭代寻优找到概率分布的极值来定位目标。 算法过程为: (1).在颜色概率分布图中选取搜索窗W (2).计算零阶距: 计算一阶距:

目标检测、跟踪与识别技术与现代战争

《图像检测、跟踪与识别技术》论文 论文题目: 图像检测、跟踪与识别技术与现代战争 专业:探测制导与控制技术 学号:35152129 姓名:刘孝孝

目标检测、跟踪与识别技术与现代战争 【摘要】本文讨论目标检测、跟踪与识别技术在现代战争各个领域中的应用,总结目标识别技术的发展方向,提出目标识别技术工程化实现方法,同时本文介绍了国外目标识别的现状及发展趋势,提出了现代战争应采用综合识别系统解决目标识别问题的建议。 关键词目标检测;目标跟踪;目标识别;雷达;人工神经网络;精确制导 1.引言 随着现代科学技术的飞速发展及其在军事领域内日益广泛的应用,传统的作战思想、作战方式已发生根本性的变化。从第一次海湾战争到科索沃战争,特别是刚刚结束的海湾战争,空中精确打击和空地一体化作战已经成为最重要的作战形式。集指挥、控制、通信、计算机、情报、监视侦察于一体的C ISR 已成为取得战场主动权,赢得最后胜利的关键因素。目标识别技术是雷达智能化、信息化的重要技术支撑手段。在现代化战争中,目标识别技术在预警探测、精确制导、战场指挥和侦察、敌我识别等军事领域都有广泛的应用前景,已受到了世界各国的关注。 现代战争中取得战场制信息权的关键之一是目标属性识别。现代战争的作战环境十分复杂,作战双方都在采用相应的伪装、隐蔽、欺骗和干扰等手段和技术,进行识别和反识别斗争。因此仅仅依靠一种或少数几种识别手段很难准确地进行目标识别,必须利用多个和多类传感器所收集到的多种目标属性信息,综合出准确的目标属性,进行目标检测,跟踪后进行识别。 2.目标检测、跟踪与识别技术在现代战争中的应用 2.1 目标检测、跟踪与识别技术在预警探测上的应用 目标检测、跟踪与识别技术对于弹道导弹的预警工作有重要的作用。弹道导弹一般携带多个弹头,其中可能包含核弹头或大规模杀伤的弹头以及常规弹头,预警雷达必须具备对目标进行分类和识别真假弹头的能力,将核弹头或大规模杀伤的弹头分离出来,为弹道导弹防御(BMD)系统进行目标攻击和火力分配提供依据。早期的BMD系统假设只有一个核弹头,多弹头分导技术的出现,使问题转化为雷达的多目标识别问题,加上电子对抗技术的广泛使用,给目标识别技术带来很大困难。另外,预警雷达还要对空中目标或低空目标进行探测,对来袭目标群进行分类识别。利用星载雷达以及远程光学望远镜等观测设备,可以对外空目标进行探测,对外空来袭目标进行分类和识别,达到早期预警的工作。 2.2 目标检测、跟踪与识别技术在精确制导上的应用 精确制导方式很多,包括主动式、半主动式和被动式寻的制导方式,通过设在精确制导武器

人形目标检测与跟踪

——人形目标检测与跟踪

一、 本组研究方案,算法系统框图 二、 检测算法、原理、程序实现方法、调试过程 【视频处理】 老师提供的两端视频两段视频并不能直接用来输入OpenCV 所编程序处理,需要将其转化为无压缩的avi 格式。利用软件WinAVI Video Converter ,转换为ZJMedia uncompressed RGB24格式。 【背景建模】 我们小组利用N 帧图像的平均来求取背景,并实时对背景进行更新。由于考虑到ExhibitionHall.avi 视频中运动物体所占场景比例少,运动轨迹为直线,为了处理的简单,所以在这不刻意区分物体和背景像素点。即(1)(1)()()A A A B k B k I k αα+=-+ ,这里的α 很小(0.003) 。 【前景提取】 灰度图像的处理比彩色图像的处理过程简单。我们小组将读入的彩色图像变成灰度图像,并二值化;同样,背景也进行二值化。两者做差值,得到一些离散的黑白点块。也就

是要识别的目标。但是,这样得到的块是分散开的,程序 并不能完整的把它们识别成一个人形,而是一个本来很完 整的人形被分块识别成多个目标。为此,我们做了一些简 单的后处理。先腐蚀元素,去除不必要的杂点,然后进行 膨胀块处理,自定义块的大小,使其膨胀成能被识别成一 个人形的目标。另外,我们还做个简单的高斯低通滤波, 是得到的结果光滑些。其流程图如右。 【目标检测】 根据前景处理的结果,得到一些连续的块目标。利用帧间差,可以提取出目标的轮廓。根据轮廓的位置分布,计算出检测目标的形心和大小。并予以标记。 【目标跟踪】 根据目标帧间的位移差值,可以计算出运动目标在x ,y 方向上的运动速度。可以利用这个关系判断下一帧目标的位置。设置一个合适的阈值,就可以实现目标的跟踪。在此,我们还引入了重叠判断机制。如果目标重叠,即通过遍历,发现块重叠大于一定阈值后,根据前面得到的位置预测判断当前物块位置;如果不重叠,则遍历这幅图像中的所有物块,寻找临近最优物块,以保持编号连续性。在目标跟踪过程中,还进行了Kalman 滤波,对目标轨迹进行滤波处理。 目标跟踪 …… 目标 (Id,Pos,Size) 目标 (Id,Pos,Size) 目标 1 目标 (Pos,Size) 目标 (Pos,Size) 目标N 目标 (Pos,Size) 目标 (Pos,Size)

相关主题
文本预览
相关文档 最新文档