当前位置:文档之家› 2011年初中数学中考复习专题(5)_代数综合题及答案

2011年初中数学中考复习专题(5)_代数综合题及答案

初三数学第二轮复习专题(5) 代数综合题 一、典型题例:

1、如图,抛物线23y ax bx =+-与x 轴交于A B ,两点,与y 轴交于C 点,且经过点

(23)a -,,对称轴是直线1x =,顶点是M .求抛物线对应的函数表达式;

(1) 经过C,M 两点作直线与x 轴交于点N ,在抛物线上是否存在这样的点P ,使

以点P A

C N ,,,为顶点的四边形为平行四边形?若存在,请求出点P 的坐标;若不存在,请说明理由;

(2) 设直线3y x =-+与y 轴的交点是D ,在线段BD 上任取一点E (不与B D

,重合),经过A

B E ,,三点的圆交直线B

C 于点F ,试判断AEF △的形状,并说明理由;

(3) 当E 是直线3y x =-+上任意一点时,(3)中的结论是否成立?(请直接写

出结论).

2、如图,抛物线经过(40)(10)(02)A B C -,,

,,,三点. (1)求出抛物线的解析式;

(2)P 是抛物线上一动点,过P 作PM x ⊥轴,垂足为M ,是否存在P 点,使得以A ,P ,M 为顶点的三角形与OAC △相似?若存在,请求出符合条件的点P 的坐标;若不存在,请说明理由;

(3)在直线AC 上方的抛物线上有一点D ,使得DCA △的面积最大,求出点D 的坐标.

O x y A B C

4 1 2- O B x y A M C

1 3-

3、如图,二次函数的图象经过点D(0,39

7),且顶点C 的横坐标为4,该图象在x 轴上

截得的线段AB 的长为6.

⑴求二次函数的解析式;

⑵在该抛物线的对称轴上找一点P ,使PA+PD 最小,求出点P 的坐标;

⑶在抛物线上是否存在点Q ,使△QAB 与△ABC 相似?如果存在,求出点Q 的坐标;如果不存在,请说明理由.

4、如图9,已知正比例函数和反比例函数的图象都经过点(33)A ,

. (1)求正比例函数和反比例函数的解析式;

(2)把直线O A 向下平移后与反比例函数的图象交于点(6)B m ,,求m 的值和这个一次函数的解析式;

(3)第(2)问中的一次函数的图象与x 轴、y 轴分别交于C 、D ,求过A 、B 、D 三点的二次函数的解析式;

(4)在第(3)问的条件下,二次函数的图象上是否存在点E ,使四边形O ECD 的面积1

S 与四边形O ABD 的面积S 满足:12

3

S S ?若存在,求点E 的坐标; 若不存在,请说明理由.

y x

O

C D

B

A

3

3

6

二、能力提升:

1、如图,已知抛物线2y x bx c =++经过(10)A ,,(02)B ,,顶点为D . (1)求抛物线的解析式;

(2)将OAB △绕点A 顺时针旋转90°后,点B 落到点C 的位置,将抛物线沿y 轴平移后经过点C ,求平移后所得图象的函数关系式;

(3)设(2)中平移后,所得抛物线与y 轴的交点为1B ,顶点为1D ,若点N 在平移后的抛物线上,且满足1NBB △的面积是1NDD △面积的2倍,求点N 的坐标.

2、如图,抛物线2

4y ax bx a =+-经过(1

0)A -,、(04)C ,两点,与x 轴交于另一点B . (1)求抛物线的解析式;

(2)已知点(1)D m m +,在第一象限的抛物线上,求点D 关于直线BC 对称的点的坐标; (3)在(2)的条件下,连接BD ,点P 为抛物线上一点,且45DBP ∠=°,求点P 的坐标.

y x B A O D

(第26题) y

x

O A B C

3、如图所示,将矩形OABC 沿AE 折叠,使点O 恰好落在BC 上F 处,以CF 为边作正

方形CFGH ,延长BC 至M ,使CM =|CF —EO |,再以CM 、CO 为边作矩形CMNO(1)试比较EO 、EC 的大小,并说明理由 (2)令;

四边形四边形CNMN CFGH

S S m =

,请问m 是否为定值?若是,请求出m 的值;若不是,请说明理由

(3)在(2)的条件下,若CO =1,CE =

31,Q 为AE 上一点且QF =3

2

,抛物线y =mx 2+bx+c 经过C 、Q 两点,请求出此抛物线的解析式.

(4)在(3)的条件下,若抛物线y =mx 2+bx+c 与线段AB 交于点P ,试问在直线BC 上是否

存在点K ,使得以P 、B 、K 为顶点的三角形与△AEF 相似?若存在,请求直线KP 与y 轴的交点T 的坐标?若不存在,请说明理由。

4、如图,点P 是双曲线11(00)k y k x x

=

<<,上一动点,过点P 作x 轴、

y 轴的垂线,分别交x 轴、y 轴于A 、B 两点,交双曲线y =

x

k 2

(0<k 2<|k 1|)于点E 、F . (1)图1中,四边形PEOF 的面积S 1= ▲ (用含k 1、k 2的式子表示);(3分) (2)图2中,设P 点坐标为(-4,3).

①判断EF 与AB 的位置关系,并证明你的结论;(4分)

②记2PEF OEF S S S ??=-,S 2是否有最小值?若有,求出其最小值;若没有,请说明

理由.(5分)

代数综合题答案:1、解:(1)根据题意,得34231.2a a b b a

-=+-??

?-=??,

解得12.a b =??=-?,

∴抛物线对应的函数表达式为223y x x =--.

(2)存在.在2

23y x x =--中,令0x =,得3y =-. 令0y =,得2

230x x --=,1213x x ∴=-=,.

(10)A ∴-,,(30)B ,,(03)C -,.

又2

(1)4y x =--,∴顶点(1

4)M -,.容易求得直线CM 的表达式是3y x =--. 在3y x =--中,令0y =,得3x =-.(30)N ∴-,

,2AN ∴=.在223y x x =--中,令3y =-,得1202x x ==,.2CP AN CP ∴=∴=,

.AN CP ∥,∴四边形ANCP 为平行四边形,此时(23)P -,

. (3)AEF △是等腰直角三角形.理由:在3y x =-+中,令0x =,得3y =,令0y =,

得3x =.∴直线3y x =-+与坐标轴的交点是(03)D ,

,(30)B ,.OD OB ∴=,45OBD ∴∠=°.又 点(03)C -,,OB OC ∴=.45OBC ∴∠=°.由图知45AEF ABF ∠=∠=°,45AFE ABE ∠=∠=°. 90EAF ∴∠=°,且

A E A =

AEF ∴△是等腰直角三角形.(4)当点E 是直线3y x =-+上任意一点时,(3)中的结论成立.

2.解:(1) 该抛物线过点(02)C -,,∴可设该抛物线的解析式为2

2y ax bx =+-.

将(40)A ,,(10)B ,代入,得1642020a b a b .+-=??+-=?,解得12

52a b .?

=-????=??,

∴此抛物线的解析式为215

222

y x x =-+-.

O x

y A B

C

4

1

2-

D P

M E y E

D

N

O

A C M P

N

1

F

(2)存在.如图,设P 点的横坐标为m ,则P 点的纵坐标为215

222

m m -

+-, 当14m <<时,4AM m =-,215

222

PM m m =-

+-. 又90COA PMA ∠=∠= °,∴①当

21

AM AO PM OC ==时,APM ACO △∽△, 即21542222m m m ??

-=-

+- ???

.解得1224m m ==,(舍去),(2

1)P ∴,.②当12A M O C P M O A ==时,APM CAO △∽△,即215

2(4)222

m m m -=-+-.解得14m =,25m =(均不合题意,舍去)

∴当14m <<时,(21)P ,

.类似地可求出当4m >时,(52)P -,.当1m <时,(314)P --,.综上所述,符合条件的点P 为(21),

或(52)-,或(314)--,. (3)如图,设D 点的横坐标为(04)t t <<,则D 点的纵坐标为215

222

t t -

+-. 过D 作y 轴的平行线交AC 于E .由题意可求得直线AC 的解析式为1

22

y x =

-. E ∴点的坐标为122t t ??- ???

,.2

215112222

222DE t t t t t ??

∴=-+

---=-+ ???

22211244(2)422DAC S t t t t t ??

∴=?-+?=-+=--+ ???△.∴当2t =时,DAC △面积最

大.(21)D ∴,

.) 3、⑴设二次函数的解析式为:y=a(x-h)2

+k ∵顶点C 的横坐标为4,且过点(0,39

7)

∴y=a(x-4)2

+k k a +=1639

7①又∵对称轴为直线x=4,图象在x 轴上截得的线段长

为6∴A(1,0),B(7,0)∴0=9a+k ②由①②解得a=9

3,k=3-∴二次函数的解析式为:

y=9

3(x-4)2-3

⑵∵点A 、B 关于直线x=4对称∴PA=PB ∴PA+PD=PB+PD ≥DB

∴当点P 在线段DB 上时PA+PD 取得最小值∴DB 与对称轴的交点即为所求点P 设直线x=4与x 轴交于点M ∵PM ∥OD ,∴∠BPM=∠BDO ,又∠PBM=∠DBO

∴△BPM ∽△BDO ∴BO BM DO PM = ∴3

373

397

=?=PM ∴点P 的坐标为(4,33) ⑶由⑴知点C(4,3-),又∵AM=3,∴在Rt △AMC 中,cot ∠ACM=3

3,∴∠ACM=60o

,∵

AC=BC ,∴∠ACB=120o

①当点Q 在x 轴上方时,过Q 作QN ⊥x 轴于N 如果AB=BQ ,由△ABC ∽△ABQ 有BQ=6,∠ABQ=120o

,则∠QBN=60o

∴QN=33,BN=3,ON=10,此时点Q (10,33),如果AB=AQ ,由对称性知Q(-2,33)

②当点Q 在x 轴下方时,△QAB 就是△ACB ,此时点Q 的坐标是(4,3-), 经检验,点(10,33)与(-2,33)都在抛物线上 综上所述,存在这样的点Q ,使△QAB ∽△ABC 点Q 的 坐标为(10,33)或(-2,33)或(4,3-).

4、解:(1)设正比例函数的解析式为11(0)y k x k =≠,

因为1y k x =的图象过点(33)A ,

,所以133k =,解得11k =. 这个正比例函数的解析式为y x =. 设反比例函数的解析式为2

2(0)k y k x

=

≠.因为2k y x =

的图象过点(33)A ,,所以233k =,解得29k =.这个反比例函数的解析式为9

y x

=.

(2)因为点(6)B m ,在9y x =

的图象上,所以9362m ==,则点362B ??

???

,设一次函数解析式为33(0)y k x b k =+≠.因为3y k x b =+的图象是由y x =平移得到的,所以31k =,

即y x b =+.又因为y x b =+的图象过点362B ?

? ???

,,所以

3

62

b =+,解得92b =-,∴一

次函数的解析式为9

2

y x =-

. (3)因为92y x =-

的图象交y 轴于点D ,所以D 的坐标为902??- ??

?,. 设二次函数的解析式为2

(0)y ax bx c a =++≠.因为过点(3

3)A ,、362B ?

? ???

,、和D 902?

?- ???,,所以933336629.2a b c a b c c ??++=??++=???

=-??,,

解得1249

.2a b c ?=-??=???=-?,,这个二次函数的解析式为219

422

y x x =-+-.

(4)92y x =-

交x 轴于点C ,∴点C 的坐标是902??

???

,, 15113166633322222S =

?-??-??-??99451842=---81

4

=. 假设存在点00()E x y ,,使1281227

3432

S S =

=?=. 四边形CDOE 的顶点E 只能在x 轴上方,∴00y >,

1OCD OCE S S S ∴=+△△ 01991922222y =??+? 081984y =+.081927

842y ∴+=

,032y ∴=

.00()E x y ,在二次函数的图象上,200193

4222

x x ∴-+-=.解得02x =或06x =.当06x =时,点362E ??

???

,与点B 重合,这时CDOE 不是四边形,故06x =舍去,

y

x

O

C D

B A 3

3

6

E

∴点E 的坐标为322??

???

,.

5、解:(1)已知抛物线2y x bx c =++经过(10)(02)A B ,,,,01200b c

c =++?∴?

=++?

解得

3

2

b c =-??

=?∴所求抛物线的解析式为232y x x =-+. (2)(1

0)A ,,(02)B ,,12OA OB ∴==,可得旋转后C 点的坐标为(31),当3x =时,由232y x x =-+得2y =,可知抛物线232y x x =-+过点(32),

∴将原抛物线沿y 轴向下平移1个单位后过点C .

∴平移后的抛物线解析式为:231y x x =-+.

(3) 点N 在231y x x =-+上,可设N 点坐标为2

000(31)x x x -+,

将2

31y x x =-+配方得2

3524y x ?

?=-- ??

?,∴其对称轴为32x =. ································· 6分 ①当03

02

x <<

时,如图①,112NBB NDD S S = △△ 00113121222x x ??

∴??=???- ???01x = 此时2

00311x x -+=-N ∴点的坐标为(1

1)-, ②当032x >

时,如图②同理可得0011312222x x ????=??- ???

03x ∴=此时2

00311x x -+=∴点N 的坐标为(31)

,. 综上,点N 的坐标为(1

1)-,或(31),. 6、解:(1) 抛物线2

4y ax bx a =+-经过(1

0)A -,,(04)C ,两点, 404 4.a b a a --=?∴?-=?,解得13.a b =-??=?

,∴抛物线的解析式为234y x x =-++.

y

x

C B

A O

N D B 1 D 1

图①

y

x

C

B A

O D B 1

D 1 图②

N y

x

O A B

C

D

E

(2) 点(1)D m m +,在抛物线上,2

134m m m ∴+=-++,

即2

230m m --=,1m ∴=-或3m =. 点D 在第一象限,∴点D 的坐标为(34),.

由(1)知45OA OB CBA =∴∠=,

°.设点D 关于直线BC 的对称点为点E . (04)C ,,CD AB ∴∥,且3CD =,

45ECB DCB ∴∠=∠=°,E ∴点在y 轴上,且3CE CD ==.1OE ∴=,(01)E ∴,.

即点D 关于直线BC 对称的点的坐标为(0,1).

(3)方法一:作P F A B ⊥于F ,DE BC ⊥于E .由(1)有:

445OB OC OBC ==∴∠=,°,

45DBP CBD PBA ∠=∴∠=∠ °,.

(04)(34)C D ,,,,CD OB ∴∥且3CD =.

45DCE CBO ∴∠=∠=°,32

2

DE CE ∴==

. 4OB OC == ,42BC ∴=,52

2BE BC CE ∴=-=,

3

tan tan 5

DE PBF CBD BE ∴∠=∠=

=.设3PF t =,则5BF t =,54OF t ∴=-, (543)P t t ∴-+,.P 点在抛物线上,∴23(54)3(54)4t t t =--++-++, 0t ∴=(舍去)或2225t =

,266525P ??

∴- ???

,. 方法二:过点D 作BD 的垂线交直线PB 于点Q ,过点D 作DH x ⊥轴于H .过Q 点作

QG DH ⊥于G .45PBD QD DB ∠=∴= °,.

QDG BDH ∴∠+∠90=°,

又90DQG QDG ∠+∠=°,DQG BDH ∴∠=∠.

QDG DBH ∴△≌△,4QG DH ∴==,1DG BH ==. 由(2)知(34)D ,

,(13)Q ∴-,.(40)B ,, y

O

A

B

C

D

E

P

F y

x

O

A

B

C D

P

Q G

H

∴直线BP 的解析式为312

55

y x =-+.

解方程组23431255y x x y x ?=-++??=-+??,,得1140x y =??

=?,;2225

66.25x y ?

=-????=??

,∴点P 的坐标为266525??- ???,. 7、(1)EO >EC ,理由如下:

由折叠知,EO=EF ,在Rt △EFC 中,EF 为斜边,∴EF >EC , 故EO >EC …2分 (2)m 为定值∵S 四边形CFGH =CF 2=EF 2-EC 2=EO 2-EC 2=(EO+EC)(EO ―EC)=CO ·(EO ―EC) S 四边形CMNO =CM ·CO=|CE ―EO|·CO=(EO ―EC) ·CO ∴1

==

CMNO CFGH

S S m 四边形四边形

(3)∵CO=1,323

1

=

=QF CE , ∴EF=EO=QF ==-32

311∴cos ∠FEC=21

∴∠FEC=60°,∴?=∠∠=?=?

-?=

∠30602

60180EAO OEA FEA , ∴△EFQ 为等边三角形,

32=EQ 作QI ⊥EO 于I ,EI=3121=EQ ,IQ=3

3

23=EQ ∴IO=

313132=- ∴Q 点坐标为)31

,33(

∵抛物线y=mx 2+bx+c 过点C(0,1), Q )31

,33(

,m=1∴可求得3-=b ,c=1∴抛物线解析式为132+-=x x y

(4)由(3),3323=

=

EO AO 当332=x 时,3

1

13323)332(2=

+?-=y <AB ∴P 点坐标为)3

1

,332(

∴BP=32311=-AO

方法1:若△PBK 与△AEF 相似,而△AEF ≌△AEO ,则分情况如下:

①3

3

232

32=BK 时,932=BK ∴K 点坐标为)1,934(

或)1,93

8

(

②32

32

3

32=BK 时,332=

BK ∴K 点坐标为)1,33

4(或)

1,0(

故直线KP 与y 轴交点T 的坐标为)

1,0()3

1,0()3

7,0()3

5

,0(或或或--

方法2:若△BPK 与△AEF 相似,由(3)得:∠BPK=30°或60°,过P 作PR ⊥y 轴于R ,则∠RTP=60°或30°①当∠RTP=30°时,2333

2=?=

RT

②当∠RTP=60°时,32

3332=÷=

RT ∴)1,0()31,0()35,0()37,0(4321T T T T ,,,--

8、解:(1)21k k -; (2)①EF ∥AB .

证明:如图,由题意可得A (–4,0),B (0,3),2(4,)4

k E --

,2(

,3)3

k F .

∴PA =3,PE =2

34

k +

,PB =4,PF =243k +.

∴22

3121234

PA k PE

k =

=

++

22

4121243

PB k PF

k =

=

++

PA PB

PE PF

=

. 又∵∠APB =∠EPF .∴△APB ∽△EPF ,∴∠PAB =∠PEF . ∴EF ∥AB . ②S 2没有最小值,理由如下:

过E 作EM ⊥y 轴于点M ,过F 作FN ⊥x 轴于点N ,两线交于点Q . 由上知M (0,24

k -

),N (

23

k ,0),Q (

23

k ,24

k -

).

而S △EFQ = S △PEF ,∴S 2=S △PEF -S △OEF =S △EFQ -S △OEF =S △EOM +S △FON +S 矩形OMQN

=4321212222k

k k k ?++=222112k k +

=221(6)312

k +-. 当26k >-时,S 2的值随k 2的增大而增大,而0<k 2<12.∴0<S 2<24,s 2没有

最小值.

中考数学复习检测第2部分专题突破专题十解答题突破—代数几何综合题(涉及二次函数)

2019-2020年中考数学复习检测第2部分专题突破专题十解答题突破—代数几何综合题(涉及二次函数) 类型一以几何图形为背景的综合题 【例1】(xx·苏州一模)如图1①,四边形ABCD中,AD∥BC,DC⊥BC,AD =6 cm,DC=8 cm,BC=12 cm.动点M在CB上运动,从C点出发到B点,速度每秒2 cm;动点N在BA上运动,从B点出发到A点,速度每秒1 cm.两个动点同时出发,当其中一个点到达终点时,另一个点也随即停止,设两个点的运动时间为t(秒). (1)求线段AB的长. (2)当t为何值时,MN∥CD? (3)设三角形DMN的面积为S,求S与t之间的函数关系式. (4)如图1②,连接BD,是否存在某一时刻t,使MN与BD互相垂直?若存在,求出这时的t值;若不存在,请说明理由. 图1

【例2】(xx·吉林)如图2,在等腰直角三角形ABC中,∠BAC=90°,AC=8 2 cm,AD⊥BC于点D,点P从点A出发,沿A→C方向以 2 cm/s的速度运动到点C停止,在运动过程中,过点P作PQ∥AB交BC于点Q,以线段PQ为边作等腰直角三角形PQM,且∠PQM=90°(点M,C位于PQ异侧).设点P的运动时间为x(s),△PQM与△ADC重叠部分的面积为y(cm2) 图2 备用图 (1)当点M落在AB上时,x=____________; (2)当点M落在AD上时,x=____________; (3)求y关于x的函数解析式,并写出自变量x的取值范围.

1.(xx·宁夏)如图3,在矩形ABCD中,AB=3,AD=4,动点Q从点A出发,以每秒1个单位的速度,沿AB向点B移动;同时点P从点B出发,仍以每秒1个单位的速度,沿BC 向点C移动,连接QP,QD,PD.若两个点同时运动的时间为x秒 (0<x≤3),解答下列问题: (1)设△QPD的面积为S,用含x的函数关系式表示S;当x为何值时,S有最大值?并求出最小值; 图3 (2)是否存在x的值,使得QP⊥DP?试说明理由. 2.(xx·梅州)如图4,在Rt△ABC中,∠ACB=90°,AC=5 cm,∠BAC=60°,动点M 从点B出发,在BA边上以每秒2 cm的速度向点A匀速运动,同时动点N从点C出发,在CB边上以每秒 3 cm的速度向点B匀速运动,设运动时间为t秒(0≤t≤5),连接MN. 图4 (1)若BM=BN,求t的值; (2)若△MBN与△ABC相似,求t的值; (3)当t为何值时,四边形ACNM的面积最小?并求出最小值.

初中数学经典几何题及答案解析

第 1 页 共 14 页 4e d c 经典难题(一) 1、已知:如图,O 是半圆的圆心,C 、E 是圆上的两点,CD ⊥AB ,EF ⊥AB ,EG ⊥CO . 求证:CD =GF .(初二) 2、已知:如图,P 是正方形ABCD 内点,∠PAD =∠PDA =150. 求证:△PBC 是正三角形.(初二) 3、如图,已知四边形ABCD 、A 1B 1C 1D 1都是正方形,A 2、B 2、C 2、D 2分别是AA 1、BB 1、 CC 1、DD 1的中点. 求证:四边形A 2B 2C 2D 2是正方形.(初二) 4、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、BC 的延长线交MN 于E 、F . 求证:∠DEN =∠F . A P C D B A F G C E B O D D 2 C 2 B 2 A 2 D 1 C 1 B 1 C B D A A 1 A N F E C D M B

第 2 页 共 14 页 P C G F B Q A D E 经典难题(二) 1、已知:△ABC 中,H 为垂心(各边高线的交点),O 为外心,且OM ⊥BC 于M . (1)求证:AH =2OM ; (2)若∠BAC =600,求证:AH =AO .(初二) 2、设MN 是圆O 外一直线,过O 作OA ⊥MN 于A ,自A 引圆的两条直线,交圆于B 、C 及D 、E ,直线EB 及CD 分别交MN 于P 、Q . 求证:AP =AQ .(初二) 3、如果上题把直线MN 由圆外平移至圆内,则由此可得以下命题: 设MN 是圆O 的弦,过MN 的中点A 任作两弦BC 、DE ,设CD 、EB 分别交MN 于P 、Q . 求证:AP =AQ .(初二) 4、如图,分别以△ABC 的AC 和BC 为一边,在△ABC 的外侧作正方形ACDE 和正方形 CBFG ,点P 是EF 的中点. 求证:点P 到边AB 的距离等于AB 的一半.(初二) 经典难题(三) 1、如图,四边形ABCD 为正方形,DE ∥AC ,AE =AC ,AE 与CD 相交于F . 求证:CE =CF .(初二) · A D H E M C B O · G A O D B E C Q P N M · O Q P B D E C N M · A A F D E C B

代数几何综合题含答案

代数几何综合题 代数几何综合题是初中数学中覆盖面最广、综合笥最强的题型,近几年的中考试题很多以代数几何综合题的形式出现,其命题的主要结合点是方程与几何、函数与几何等,解代数几何综合题最常用的数学方法是数形结合,由形导数,以数促形。 例1、如图,已知平面直角坐标系中三点A (2,0),B (0,2),P (x ,0)()x <0,连结BP ,过P 点作P C P B ⊥交过点A 的直线a 于点C (2,y ) (1)求y 与x 之间的函数关系式; (2)当x 取最大整数时,求BC 与PA 的交点Q 的坐标。 解:(1) P C P B B O P O ⊥⊥, ∴∠+∠=?∠+∠ ∴∠=∠C P A O P B P B O O P B C P A P B O 90, A (2,0),C (2,y )在直线a 上 ∴∠=∠=? B O P P A C 90 ∴??B O PP A C ~ ∴ =P O A C B O P A ,∴=+||||||x y x 2 2 , x y x y x <<∴= -002 2,,∴=-+y x x 122 (2) x <0,∴x 的最大整数值为-1 , 当x =-1时,y =- 32,∴=CA 3 2

B O a B O Q C A Q O Q A Q B O C A //~,,∴∴=?? 设Q 点坐标为()m ,0,则A Q m =-2 ∴-=∴=m m m 2232 8 7 , ∴Q 点坐标为()8 7 0, 说明:利用数形结合起来的思想,考查了相似三角形的判定及应用。关键是搞清楚用坐标表示的数与线段的长度的关系。 练习 1.如图,从⊙O 外一点A 作⊙O 的切线AB 、AC ,切点分别为B 、C ,⊙O 的直径BD 为6,连结CD 、AO. (1)求证:CD ∥AO ;(3分) (2)设CD =x ,AO =y ,求y 与x 之间的函数关系式,并写出自变量x 的取值范围;(3分) (3)若AO +CD =11,求AB 的长。(4分) B

最新初中数学数据分析经典测试题附答案

最新初中数学数据分析经典测试题附答案 一、选择题 1.已知一组数据a,b,c的平均数为5,方差为4,那么数据a﹣2,b﹣2,c﹣2的平均数和方差分别是.() A.3,2 B.3,4 C.5,2 D.5,4 【答案】B 【解析】 试题分析:平均数为(a?2 + b?2 + c?2 )=(3×5-6)=3;原来的方差: ;新的方差: ,故选 B. 考点:平均数;方差. 2.已知一组数据a、b、c的平均数为5,方差为4,那么数据a+2、b+2、c+2的平均数和方差分别为() A.7,6 B.7,4 C.5,4 D.以上都不对 【答案】B 【解析】 【分析】 根据数据a,b,c的平均数为5可知a+b+c=5×3,据此可得出1 3 (-2+b-2+c-2)的值;再由 方差为4可得出数据a-2,b-2,c-2的方差. 【详解】 解:∵数据a,b,c的平均数为5,∴a+b+c=5×3=15, ∴1 3 (a-2+b-2+c-2)=3, ∴数据a-2,b-2,c-2的平均数是3;∵数据a,b,c的方差为4, ∴1 3 [(a-5)2+(b-5)2+(c-5)2]=4, ∴a-2,b-2,c-2的方差=1 3 [(a-2-3)2+(b-2-3)2+(c--2-3)2] = 1 3 [(a-5)2+(b-5)2+(c-5)2]=4, 故选B.【点睛】

本题考查了平均数、方差,熟练掌握平均数以及方差的计算公式是解题的关键. 3.对于一组统计数据:1,1,4,1,3,下列说法中错误的是() A.中位数是1 B.众数是1 C.平均数是1.5 D.方差是1.6 【答案】C 【解析】 【分析】 将数据从小到大排列,再根据中位数、众数、平均数及方差的定义依次计算可得答案.【详解】 解:将数据重新排列为:1、1、1、3、4, 则这组数据的中位数1,A选项正确; 众数是1,B选项正确; 平均数为11134 5 ++++ =2,C选项错误; 方差为1 5 ×[(1﹣2)2×3+(3﹣2)2+(4﹣2)2]=1.6,D选项正确; 故选:C. 【点睛】 本题主要考查中位数、众数、平均数及方差,解题的关键是掌握中位数、众数、平均数及方差的定义与计算公式. 4.2022年将在北京﹣﹣张家口举办冬季奥运会,很多学校为此开设了相关的课程,下表记录了某校4名同学短道速滑成绩的平均数x和方差S2,根据表中数据,要选一名成绩好又发挥稳定的运动员参加比赛,应选择() A.队员1 B.队员2 C.队员3 D.队员4 【答案】B 【解析】 【分析】 根据方差的意义先比较出4名同学短道速滑成绩的稳定性,再根据平均数的意义即可求出答案.

一次函数的与几何图形综合的题目(含答案)

一次函数与几何图形综合专题讲座 思想方法小结 : (1)函数方法. 函数方法就是用运动、变化的观点来分析题中的数量关系,抽象、升华为函数的模型,进而解决有关问题的方法.函数的实质是研究两个变量之间的对应关系,灵活运用函数方法可以解决许多数学问题. (2)数形结合法. 数形结合法是指将数与形结合,分析、研究、解决问题的一种思想方法,数形结合法在解决与函数有关的问题时,能起到事半功倍的作用. 知识规律小结 : (1)常数k ,b 对直线y =kx +b (k ≠0)位置的影响. ①当b >0时,直线与y 轴的正半轴相交; 当b =0时,直线经过原点; 当b ﹤0时,直线与y 轴的负半轴相交. ②当k ,b 异号时,即-k b >0时,直线与x 轴正半轴相交; 当b =0时,即- k b =0时,直线经过原点; 当k ,b 同号时,即-k b ﹤0时,直线与x 轴负半轴相交. ③当k >O ,b >O 时,图象经过第一、二、三象限; 当k >0,b =0时,图象经过第一、三象限; 当b >O ,b <O 时,图象经过第一、三、四象限; 当k ﹤O ,b >0时,图象经过第一、二、四象限; 当k ﹤O ,b =0时,图象经过第二、四象限;

当b <O ,b <O 时,图象经过第二、三、四象限. (2)直线y =kx +b (k ≠0)与直线y =kx (k ≠0)的位置关系. 直线y =kx +b (k ≠0)平行于直线y =kx (k ≠0) 当b >0时,把直线y =kx 向上平移b 个单位,可得直线y =kx +b ; 当b ﹤O 时,把直线y =kx 向下平移|b |个单位,可得直线y =kx +b . (3)直线b 1=k 1x +b 1与直线y 2=k 2x +b 2(k 1≠0 ,k 2≠0)的位置关系. ①k 1≠k 2?y 1与y 2相交; ②?? ?=≠2 12 1b b k k ?y 1与y 2相交于y 轴上同一点(0,b 1)或(0,b 2) ; ③???≠=21 21,b b k k ?y 1与y 2平行; ④?? ?==2 121, b b k k ?y 1与y 2重合. 例题精讲: 1、直线y =-2x +2与x 轴、y 轴交于A 、B 两点,C 在y 轴的负半轴上,且OC =OB (1) 求AC (2) 在OA 的延长线上任取一点P ,作PQ ⊥BP ,交直线AC 于Q ,试探究BP 与PQ 的数量关系, 并证明你的结论。 (3) 在(2)的前提下,作PM ⊥AC 于M ,BP 交AC 于N ,下面两个结论:①(MQ +AC )/PM x y

初三数学代数几何综合题

代数几何综合题 【题型特征】代数、几何知识相结合的综合题是以几何知识为主体,以代数知识为工具(背景),来确定图形的形状、位置、大小(坐标)的问题.解答时往往需要从代数几何的结合点或在几何图形中寻找各元素之间的数量关系或在代数条件中探讨各个量的几何模型,进行数与形之间的互相转化,使问题得到解决. 为了讲解方便,我们将代数几何综合题按题目叙述的背景分为:坐标系、函数为背景的代数几何综合题和以几何图形为背景的代数几何综合题. 【解题策略】几何图形为背景的代数几何综合题,建立函数表达式的常见思路是:利用图形的面积公式建立函数表达式;或利用勾股定理或解直角三角形知识建立函数表达式;或利用相似三角形的线段成比例建立函数表达式. 类型一坐标系、函数为背景 典例1(2015·湖南怀化)如图(1),在平面直角坐标系中,AB=OB=8,∠ABO=90°,∠yOC=45°,射线OC以每秒2个单位长度的速度向右平行移动,当射线OC经过点B时停止运动,设平行移动x秒后,射线OC扫过Rt△ABO的面积为y. (1)求y与x之间的函数表达式; (2)当x=3秒时,射线OC平行移动到O'C',与OA相交于点G,如图(2),求经过G,O,B三点的抛物线的表达式; (3)现有一动点P在(2)中的抛物线上,试问点P在运动过程中,是否存在三角形POB的面积S=8的情况?若存在,求出点P的坐标,若不存在,请说明理由. (1)

(2) 【全解】 (1)∵AB=OB,∠ABO=90°, ∴△ABO是等腰直角三角形. ∴∠AOB=45°. ∵∠yOC=45°, ∴∠AOC=(90°-45°)+45°=90°. ∴AO⊥CO. ∵C'O'是CO平移得到, ∴AO⊥C'O'. ∴△OO'G是等腰直角三角形. ∵射线OC的速度是每秒2个单位长度, ∴OO'=2x. ∴其以OO'为底边的高为x. ∴点G的坐标为(3,3). 设抛物线表达式为y=ax2+bx,

初中数学易错题集锦及答案解析

初中数学易错题及答案 (A )2 (B (C )2± (D ) 2,2 的平方根为2.若|x|=x ,则x 一定是( ) A 、正数 B 、非负数 C 、负数 D 、非正数 答案:B (不要漏掉0) 3.当x_________时,|3-x|=x-3。答案:x-3≥0,则x3 4. 2 2___分数(填“是”或“不是”) 答案:2 2是无理数,不是分数。 5.16的算术平方根是______。 答案:16=4,4的算术平方根=2 6.当m=______时,2m -有意义 答案:2 m -≥0,并且2m ≥0,所以m=0 7分式 4 622--+x x x 的值为零,则x=__________。 答案: 226040 x x x ?+-=? ?-≠?? ∴122,32x x x ==-??≠±?∴3x =- 8.关于 x 的一元二次方程2(2)2(1)10k x k x k ---++=总有实数根.则K_______ 答案:[]2 20 2(1)4(2)(1)0 k k k k -≠???----+≥??∴3k ≤且2k ≠ 9.不等式组2, .x x a >-??>? 的解集是x a >,则a 的取值范围是. (A )2a <-,(B )2a =-,(C )2a >-,(D )2a ≥-. 答案:D 10.关于x 的不234 a ≤<等式40x a -≤的正整数解是1和2;则a 的取值范围是_________。 答案:234a ≤< 11.若对于任何实数 x ,分式 2 1 4x x c ++总有意义,则c 的值应满足______. 答案:分式总有意义,即分母不为0,所以分母240x x c ++=无解,∴C 〉4

代数几何综合题(含答案)

代数几何综合题 x<0,连 1、如图,已知平面直角坐标系中三点A(2,0),B(0,2),P(x,0)() ⊥交过点A的直线a于点C(2,y) 结BP,过P点作PC PB (1)求y与x之间的函数关系式; (2)当x取最大整数时,求BC与PA的交点Q的坐标。 2.如图,从⊙O外一点A作⊙O的切线AB、AC,切点分别为B、C,⊙O的直径BD为6,连结CD、AO. (1)求证:CD∥AO; (2)设CD=x,AO=y,求y与x之间的函数关系式,并写出自变量x的取值范围; (3)若AO+CD=11,求AB的长. B

3.如图,A 、B 两点的坐标分别是(x 1,0)、(x 2,O),其中x 1、x 2是关于x 的方程x 2 +2x+m-3=O 的两根,且x 1<0

1、已知抛物线)0(22 >--=m m x x y 与y 轴的交于C 点,C 点关于抛物线对称轴的对称点为C ′。 (1)求抛物线的对称轴及C 、C ′的坐标(可用含m 的代数式表示); (2)如果点Q 在抛物线的对称轴上,点P 在抛物线上,以点C 、C ′、P 、Q 为顶点的四边形是平行四边形,求Q 点和P 的坐标(可用含m 的代数式表示); (3)在(2)的条件下,求出平行四边形的周长。 2、如图,抛物线)0(2≠++=a c bx ax y 与x 轴、y 轴分别相交于 A (-1,0)、 B (3,0)、 C (0,3)三点,其顶点为 D . (1)求:经过A 、B 、C 三点的抛物线的解析式; (2)求四边形ABDC 的面积; (3)试判断△BCD 与△COA 是否相似若相似写出证明过程;若不相似,请说明理由. A B D C o x y

中考数学代数几何综合题2

中考数学代数几何综合题2 Ⅰ、综合问题精讲: 代数几何综合题是初中数学中覆盖面最广、综合性最强的题型,近几年中考试题中的综合题大多以代数几何综合题的形式显现,其解题关键点是借助几何直观解题,运用方程、函数的思想解题,灵活运用数形结合,由形导数,以数促形,综合运用代数和几何知识解题. Ⅱ、典型例题剖析 【例1】(2005,温州,12分)如图,已知四边形ABCD 内接于⊙O,A 是BDC 的中点,AE⊥AC 于A ,与⊙O 及CB 的延长线分别交于点F 、E ,且BF AD =,EM 切⊙O 于M 。 ⑴ △ADC∽△EBA ;⑵ AC2=1 2 BC·CE; ⑶假如AB =2,EM =3,求cot∠CAD 的值。 解:⑴∵四边形ABCD 内接于⊙O,∴∠CDA=∠ABE, ∵BF AD =,∴∠DCA=∠BAE, ∴△CAD∽△AEB ⑵ 过A 作AH⊥BC 于H(如图) ∵A 是BDC 中点,∴HC=HB =1 2 BC , ∵∠CAE=900,∴AC 2 =CH·CE=12 BC·CE ⑶∵A 是BDC 中点,AB =2,∴AC=AB =2, ∵EM 是⊙O 的切线,∴EB·EC=EM 2 ① ∵AC 2 =12 BC·CE,BC·CE=8 ② ①+②得:EC(EB +BC)=17,∴EC 2 =17 ∵EC 2 =AC 2 +AE 2 ,∴AE=17-22=13 ∵△CAD∽△ABE,∴∠CAD=∠AEC, ∴cot∠CAD=cot∠AEC =AE AC =13 2 点拨:此题的关键是树立转化思想,将未知的转化为已知的.此题表现的专门突出.如,将∠CAD 转化为∠AEC 就专门关键. 【例2】(2005,自贡)如图 2-5-2所示,已知直线y=2x+2分 别与x 轴、y 轴交于点A 、B ,以线段AB 为直角边在第一象限内 作等腰直角△ABC ,∠BAC=90○ 。过C 作CD ⊥x 轴,D 为垂足. (1)求点 A 、B 的坐标和AD 的长; (2)求过B 、A 、C 三点的抛物线的解析式。

初中数学最值问题典型例题(含答案分析)

中考数学最值问题总结 考查知识点:1、“两点之间线段最短”,“垂线段最短”,“点关于线对称”,“线段的平移”。 (2、代数计算最值问题3、二次函数中最值问题) 问题原型:饮马问题造桥选址问题(完全平方公式配方求多项式取值二次函数顶点)出题背景变式:角、三角形、菱形、矩形、正方形、梯形、圆、坐标轴、抛物线等。 解题总思路:找点关于线的对称点实现“折”转“直” 几何基本模型: 条件:如下左图,A、B是直线l同旁的两个定点. 问题:在直线l上确定一点P,使PA PB +的值最小. 方法:作点A关于直线l的对称点A',连结A B'交l于 点P,则PA PB A B' +=的值最小 例1、如图,四边形ABCD是正方形,△ABE是等边三 角形,M为对角线BD(不含B点)上任意一点,将BM绕点B逆时针旋转60°得到BN,连接EN、AM、CM. (1)求证:△AMB≌△ENB; (2)①当M点在何处时,AM+CM的值最小; ②当M点在何处时,AM+BM+CM的值最小,并说明理由; (3)当AM+BM+CM的最小值为 时,求正方形的边长。 A B A' ′ P l

例2、如图13,抛物线y=ax2+bx+c(a≠0)的顶点为(1,4),交x轴于A、B,交y轴于D,其中B点的坐标为(3,0) (1)求抛物线的解析式 (2)如图14,过点A的直线与抛物线交于点E,交y轴于点F,其中E点的横坐标为2,若直线PQ为抛物线的对称轴,点G为PQ上一动点,则x轴上是否存在一点H,使D、G、F、H四点围成的四边形周长最小.若存在,求出这个最小值及G、H的坐标;若不存在,请说明理由. (3)如图15,抛物线上是否存在一点T,过点T作x的垂线,垂足为M,过点M作直线M N∥BD,交线段AD于点N,连接MD,使△DNM∽△BMD,若存在,求出点T的坐标;若不存在,说明理由.

代数几何综合题含答案

代数几何综合题 1、如图,已知平面直角坐标系中三点A (2,0),B (0,2),P (x ,0) ()x <0,连结BP ,过P 点作PC PB ⊥交过点A 的直线a 于点C (2,y ) (1)求y 与x 之间的函数关系式; (2)当x 取最大整数时,求BC 与PA 的交点Q 的坐标。 2.如图,从⊙O 外一点A 作⊙O 的切线AB 、AC ,切点分别为B 、C ,⊙O 的直径BD 为6,连结CD 、AO. (1)求证:CD ∥AO ; (2)设CD =x ,AO =y ,求y 与x 之间的函数关系式,并写出自变量x 的取值范围; (3)若AO +CD =11,求AB 的长. 3.如图,A 、B 两点的坐标分别是(x 1,0)、(x 2,O),其中x 1、x 2是关于x 的方程x 2+2x+m -3=O 的两根,且x 1<0--=m m x x y 与y 轴的交于C 点,C 点关于抛物线对称轴的对称点为C ′。 (1)求抛物线的对称轴及C 、C ′的坐标(可用含m 的代数式表示); (2)如果点Q 在抛物线的对称轴上,点P 在抛物线上,以点C 、C ′、P 、Q 为顶点的四边形是平行四边形,求Q 点和P 的坐标(可用含m 的代数式表示); (3)在(2)的条件下,求出平行四边形的周长。 B

初中数学应用题(含答案解析)

武汉中考数学22题专题-二次函数应用 1.(2014?武汉四月调考)某工厂生产一种矩形材料板,其长宽之比为3:2.每张材料板的成本c(单位:元)与它的面积(单位:cm2)成正比例,每张材料板的销售价格y(单位:元)与其宽x之间满足我们学习 过的三种函数(即一次函数、反比例函数和二次函数)关系中的一种.下表记录了该工厂生产、销售该材料 板一些数据. 材料板的宽x(单位:cm )24 30 42 54 成本c(单位:元)96 150 294 486 销售价格y(单位:元)780 900 1140 1380 (1)求一张材料板的销售价格y与其宽x之间的函数关系式,不要求写出自变量的取值范围; (2)若一张材料板的利润w为销售价格y与成本c的差. ①请直接写出一张材料板的利润w与其宽x之间的函数关系,不要求写出自变量的取值范围; ②当材料板的宽为多少时,一张材料板的利润最大?最大利润是多少. 2.(2001?安徽)某工厂生产的A种产品,它的成本是2元,售价是3元,年销量为100万件,为了获得更好的 效益,厂家准备拿出一定的资金做广告;根据统计,每年投入的广告费是x(十万元),产品的年销量将是 原销售量的y倍,且y是x的二次函数,它们的关系如表: x(十万元 )0 1 2 y 1 1.5 1.8 (1)求y与x的函数关系式; (2)如果把利润看成销售总额减去成本费和广告费,试写出年利润S(十万元)与广告费x(十万元的函数 关系式); (3)如果投入的年广告费为10万元~30万元,问广告费在什么范围内,工厂获得的利润最大?最大利润是 多少? 3.(2014?合肥模拟)某工厂共有10台机器,生产一种仪器元件,由于受生产能力和技术水平等因素限制, 会产生一定数量的次品.每台机器产生的次品数p(千件)与每台机器的日产量x(千件)(生产条件要求4≤ x≤12)之间变化关系如表: 日产量x(千件/台)… 5 6 7 8 9 … 次品数p(千件/台)…0.7 0.6 0.7 1 1.5 … 已知每生产1千件合格的元件可以盈利 1.6千元,但没生产1千件次品将亏损0.4千元.(利润=盈利﹣亏损)(1)观察并分析表中p与x之间的对应关系,用所学过的一次函数,反比例函数或二次函数的有关知识求出p (千件)与x(千件)的函数解析式; (2)设该工厂每天生产这种元件所获得的利润为y(千元),试将y表示x的函数;并求当每台机器的日产量 x(千件)为多少时所获得的利润最大,最大利润为多少? 4.(2013?乌鲁木齐)某公司销售一种进价为20元/个的计算机,其销售量y(万个)与销售价格x(元/个) 的变化如下表: 价格x(元/个)…30 40 50 60 … 销售量y(万个)… 5 4 3 2 … 同时,销售过程中的其他开支(不含造价)总计40万元. (1)观察并分析表中的y与x之间的对应关系,用所学过的一次函数,反比例函数或二次函数的有关知识写 出y(万个)与x(元/个)的函数解析式. (2)求出该公司销售这种计算器的净得利润z(万个)与销售价格x(元/个)的函数解析式,销售价格定为 多少元时净得利润最大,最大值是多少? (3)该公司要求净得利润不能低于40万元,请写出销售价格x(元/个)的取值范围,若还需考虑销售量尽 可能大,销售价格应定为多少元? 5.(2013?沙市区三模)某公司准备购进一批产品进行销售,该产品的进货单价为6元/个.根据市场调查,得到了四组关于日销售量y(个)与销售单价x(元/个)的数据,如表x 10 12 14 16 y 300 240 180 120 (1)如果在一次函数、二次函数和反比例函数这三个函数模型中,选择一个来描述日销售量与销售单价之间的关系,你觉得哪个合适?并写出y与x之间的函数关系式(不要求写出自变量的取值范围) (2)按照(1)中的销售规律,请你推断,当销售单价定为17.5元/个时,日销售量为多少?此时,获得日销 售利润是多少? (3)为了防范风险,该公司将日进货成本控制在900元(含900元)以内,按照(1)中的销售规律,要想获得的日销售利润最大,那么销售单价应定为多少?并求出此时的最大利润.

2019届中考数学总复习:代数几何综合问题

2019届中考数学总复习:代数几何综合问题 【中考展望】 代几综合题是初中数学中覆盖面最广、综合性最强的题型.近几年的中考压轴题多以代几综合题的形式出现.解代几综合题一般可分为“认真审题、理解题意;探求解题思路;正确解答”三个步骤,解代几综合题必须要有科学的分析问题的方法.数学思想是解代几综合题的灵魂,要善于挖掘代几综合题中所隐含的重要的转化思想、数形结合思想、分类讨论的思想、方程(不等式)的思想等,把实际问题转化为数学问题,建立数学模型,这是学习解代几综合题的关键. 题型一般分为:(1)方程与几何综合的问题;(2)函数与几何综合的问题;(3)动态几何中的函数问题;(4)直角坐标系中的几何问题;(5)几何图形中的探究、归纳、猜想与证明问题. 题型特点:一是以几何图形为载体,通过线段、角等图形寻找各元素之间的数量关系,建立代数方程或函数模型求解;二是把数量关系与几何图形建立联系,使之直观化、形象化.以形导数,由数思形,从而寻找出解题捷径. 解代几综合题要灵活运用数形结合的思想进行数与形之间的相互转化,关键是要从题目中寻找这两部分知识的结合点,从而发现解题的突破口. 【方法点拨】 方程与几何综合问题是中考试题中常见的中档题,主要以一元二次方程根的判别式、根与系数的关系为背景,结合代数式的恒等变形、解方程(组)、解不等式(组)、函数等知识.其基本形式有:求代数式的值、求参数的值或取值范围、与方程有关的代数式的证明. 函数型综合题主要有:几何与函数结合型、坐标与几何、方程与函数结合型问题,是各地中考试题中的热点题型.主要是以函数为主线,建立函数的图象,结合函数的性质、方程等解题.解题时要注意函数的图象信息与方程的代数信息的相互转化.例如函数图象与x轴交点的横坐标即为相应方程的根;点在函数图象上即点的坐标满足函数的解析式等. 函数是初中数学的重点,也是难点,更是中考命题的主要考查对象,由于这类题型能较好地考查学生的函数思想、数形结合思想、分类讨论思想、转化思想,能较全面地反映学生的综合能力,有较好的区分度,因此是各地中考的热点题型. 几何综合题考查知识点多、条件隐晦,要求学生有较强的理解能力,分析能力,解决问题的能力,对数学知识、数学方法有较强的驾驭能力,并有较强的创新意识与创新能力. 1.几何型综合题,常以相似形与圆的知识为考查重点,并贯穿其他几何、代数、三角等知识,以证明、计算等题型出现. 2.几何计算是以几何推理为基础的几何量的计算,主要有线段和弧长的计算,角的计算,三角函数值的计算,以及各种图形面积的计算等. 3.几何论证题主要考查学生综合应用所学几何知识的能力. 4.解几何综合题应注意以下几点: (1)注意数形结合,多角度、全方位观察图形,挖掘隐含条件,寻找数量关系和相等关系; (2)注意推理和计算相结合,力求解题过程的规范化; (3)注意掌握常规的证题思路,常规的辅助线作法; (4)注意灵活地运用数学的思想和方法. 【典型例题】 类型一、方程与几何综合的问题 1.如图所示,在梯形ABCD中,AD∥BC(BC>AD),∠D=90°,BC=CD=12,∠ABE=45°,若AE =10,则CE的长为_________.

初中中考数学试卷(含答案解析)

初中升学中考数学模拟试卷 一.选择题(共8小题) 1.﹣3的倒数是() A.B. 3 C.﹣3 D.﹣ 2.下面四个几何体中,其左视图为圆的是() A.B.C.D. 3.下面运算正确的是() A. 7a2b﹣5a2b=2 B. x8÷x4=x2C.(a﹣b)2=a2﹣b2D.(2x2)3=8x6 4.宜宾今年5月某天各区县的最高气温如下表: 区县翠屏南溪长宁江安宜宾珙县高县兴文筠连屏山 最高气温 32 32 30 32 30 31 29 33 30 32 (℃) A.32,31.5 B.32,30 C.30,32 D.32,31 5.将代数式x2+6x+2化成(x+p)2+q的形式为() A.(x﹣3)2+11 B.(x+3)2﹣7 C.(x+3)2﹣11 D.(x+2)2+4 6.分式方程的解为() A. 3 B.﹣3 C.无解D. 3或﹣3

7.如图,在四边形ABCD中,DC∥AB,CB⊥AB,AB=AD,CD=AB,点E、F分别为AB.AD的中点,则△AEF与多边形BCDFE的面积之比为() A.B.C.D. 8.给出定义:设一条直线与一条抛物线只有一个公共点,只这条直线与这条抛物线的对称 轴不平行,就称直线与抛物线相切,这条直线是抛物线的切线.有下列命题: ①直线y=0是抛物线y=x2的切线 ②直线x=﹣2与抛物线y=x2相切于点(﹣2,1) ③直线y=x+b与抛物线y=x2相切,则相切于点(2,1) ④若直线y=kx﹣2与抛物线y=x2相切,则实数k= 其中正确命题的是() A.①②④B.①③C.②③D.①③④ 二.填空题(共8小题) 9.分解因式:3m2﹣6mn+3n2= . 10.一元一次不等式组的解是. 11.如图,已知∠1=∠2=∠3=59°,则∠4= . 12.如图,在平面直角坐标系中,将△ABC绕点P旋转180°得到△DEF,则点P的坐标 为.

九年级数学代数几何综合题解析提高班教师版

1 中考第一轮复习 代数与几何综合初步 本讲包括两个方面:数形结合思想、方程函数与几何的综合. 数形结合思想从解题方法上主要分为两类:一是用“形”来解决“数”的问题,体现在数列计算、公式证明等方面;二是用“数”来解决“形”的问题,体现在用方程、函数最值等来解决图形中的计算或最值问题. 方程函数与几何的综合这部分主要侧重在题型上,将代数式、方程、各种函数及各种几何图形综合在一起,不仅将第一轮复习的内容很好的综合,也能锻炼同学们灵活运用各种知识点、方法解决问题的能力. 一、数形结合思想 【例1】 (1)我国著名的数学家华罗庚曾说过:“数形结合百般好,割裂 分家万事非”,如图,在边长为1 的正方形纸板上,依次贴上面积为 2 1 , 41,81 ,…,n 2 1的长方形彩色纸片(n 为大于1的整数),请你用“数 形结合”的思想,依数形变化的规律,计算+++81 4121…+n 2 1=___________. (2)利用图形可以计算正整数的乘法,请根据以下四个算图所示规律在右图中画出232312? 的算图(标出相应的数字和曲线) . (2009海淀初三期中) (3)数形结合思想是中学数学解题中常用的数学思想,利用这种思想,可以将代数 问题转化为几何问题,也可以将几何问题转化为代数问题.通过数形结合将代数与几何完美的结合在一起,可以大大降低解题的难度,提高效率和正确率,甚至还可以达到令人意想不到的效果.教科书中利用几何图形证明乘法公式 () 2 222a b a ab b +=++的做法,就是一个非常典型的例子: 如图,a 、b 分别表示一条线段的长度,则a+b 可以表示两条线段之和,那么()2 a b + 就可以表示正方形的面积.同样, a b b a b

代数几何综合题.doc

代数儿何综合题一、基础题 (大兴,2010期末,18) 18.已知:如图,在山8C中,ZC = 90°,P为43上一点,且 点p不与点刀重合,过点户作PE1AB交刀C边于点点厅不与点。 重合,若力3 = 10,4。= 8,设,户的长为x,四边形PEC3周长为*. (1)求证:/^APE s MCB ; (2)写出y与x的函数关系式,并在直角坐标系中画出图象 (丰台,2010期末,21) 22.(本小题满分6分) 已知:如图,渔船原本应该从A点向正南方向行驶回到港口P,但由于受到海风的影响,渔船向西南方向驶去,行驶了240千米后到达B点,此时发现港口P在渔船的南 偏东60°的方向上,问渔船现在距港口P多远?(结果精确到0.1千米)(参考数据: V2M.41, V3M.73,际"24, ^6^2.45) (丰台,2010期末,25) 25.(本小题满分7分) RtAABC在平面直角坐标系中的初始位置如图1所示,ZC=90°, AB=6, AC=3,点A在x轴上由原点。开始向右滑动,同时点B在y轴上也随之向点O滑动,如图2所示;当点B滑动至与点。重合时,运动结束.在上述运动过程中,OG始终是一个以 AB为直径的圆.

(1)试判断在运动过程中,原点。与OG的位置关系,并说明理由; (2)设点C坐标为(x,y),试求出y与x的关系式,并写出自变量x的取值范围;(3)根据对问题(1)、(2)的探究,请你求出整个过程中点C运动的路径的长.

二、提高题 (吕平,2010期末,25) 25. (7分)已知,抛物线y^ax1轴的两个交点分别 为A(1,0), B(4, 0),与y轴的交点为C. (1)求出抛物线的解析式及点C的坐标; (2)点P是在直线x=4右侧的抛物线上的一动点,过P作PM lx轴,垂足为M,是否存在P点,使得以A, P,M为顶点的三角形与AOCB相似?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由. (朝阳,2010期末,24) 24.(本小题7 分)如图,在z^ABC 中,ZA=90°, AB=8, 过M点作MN〃BC交AC于点N.以MN为 直径作。0,并在。0中作内接矩形AMPN.令 AM=x. (1)用含x的代数式表示AIVINP的面积S; (2)当x为何值时,。。与直线BC相切? (3)在点M的运动过程中,设△MNP与梯形BCNM重合的 面积为V,求y关于x的函数关系式,并求x为何值时,y 的值最大,最大值是多少?/ P \ B ------------------ C (第24题) (朝阳,2010期末,25) 25.(本小题8分) 已知:在/XABC中,ZACB=90°, CD_LAB于点D,点E在AC上,BE交CD于点G, EF1BE交AB于点F.

中考数学试题及答案解析

江苏省淮安市2019年初中毕业暨中等学校招生文化统一考试 数学试题 注意事项: 1.试卷分为第I卷和第II卷两部分,共6页,全卷 150分,考试时间120分钟. 2.第I卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需要改动,先用橡皮擦干净后,再选涂其它答案,答案写在本试卷上无效. 3.答第II卷时,用0.5毫米黑色墨水签字笔,将答案写在答题卡上指定的位置.答案写在试卷上火答题卡上规定的区域以外无效. 4.作图要用2B铅笔,加黑加粗,描写清楚. 5.考试结束,将本试卷和答题卡一并交回. 第I卷(选择题共24分) 一、选择题(本大题共8小题,每小题3分,共24分.在每小题所给出的四个选项中,只有一项是正确的,请把正确选项前的字母代号填涂在答题卡相应位置 .......上) 1.﹣3的相反数是 A.﹣3 B. 1 3 -C. 1 3 D.3 2.地球与太阳的平均距离大约为150 000 000km,将150 000 000用科学记数法表示应为 A.15×107B.1.5×108 C.1.5×109D.0.15×109 3.若一组数据3、4、5、x、6、7的平均数是5,则x的值是 A.4 B.5 C.6 D.7 4.若点A(﹣2,3)在反比例函数 k y x =的图像上,则k的值是 A.﹣6 B.﹣2 C.2 D.6 5.如图,三角板的直角顶点落在矩形纸片的一边上,若∠1=35°,则∠2的度数是 A.35° B.45° C.55° D.65° 6.如图,菱形ABCD的对角线AC、BD的长分别为6和8,则这个菱形的周长是 A.20 B.24 C.40 D.48 7.若关于x的一元二次方程x2﹣2x﹣k+1=0有两个相等的实数根,则k的值是 A.﹣1 B.0 C.1 D.2 8.如图,点A、B、C都在⊙O上,若∠AOC=140°,则∠B的度数是 A.70° B.80° C.110° D.140°

历年初三数学中考代数几何综合题及答案

中考数学代数几何综合题 Ⅰ、综合问题精讲: 代数几何综合题是初中数学中覆盖面最广、综合性最强的题型,近几年中考试题中的综合题大多以代数几何综合题的形式出现,其解题关键点是借助几何直观解题,运用方程、函数的思想解题,灵活运用数形结合,由形导数,以数促形,综合运用代数和几何知识解题. Ⅱ、典型例题剖析 【例1】(2005,温州,12分)如图,已知四边形ABCD 内接于⊙O,A 是?BDC 的中点,AE⊥AC 于A ,与⊙O 及CB 的延长线分别交于点F 、E ,且??BF AD =,EM 切⊙O 于M 。 ⑴ △ADC∽△EBA ;⑵ AC2=12 BC·CE; ⑶如果AB =2,EM =3,求cot∠CAD 的值。 解:⑴∵四边形ABCD 内接于⊙O,∴∠CDA=∠ABE, ∵??BF AD =,∴∠DCA=∠BAE, ∴△CAD∽△AEB ⑵ 过A 作AH⊥BC 于H(如图) ∵A 是?BDC 中点,∴HC=HB =12 BC , ∵∠CA E =900,∴AC 2=CH·CE=12 BC·CE ⑶∵A 是?BDC 中点,AB =2,∴AC=AB =2, ∵EM 是⊙O 的切线,∴EB·EC=EM 2 ① ∵AC 2=12 BC·CE,BC·CE=8 ② ①+②得:EC(EB +BC)=17,∴EC 2=17 ∵EC 2=AC 2+AE 2,∴AE=17-22=13 ∵△CAD∽△ABE,∴∠CAD=∠AEC, ∴cot∠CAD=cot∠A EC =AE AC =132 点拨:此题的关键是树立转化思想,将未知的转化为已知的.此题表现的非常突出.如,将∠CAD 转化为∠AEC 就非常关键. 【例2】(2005,自贡)如图 2-5-2所示,已知直线y=2x+2分 别与x 轴、y 轴交于点A 、B ,以线段AB 为直角边在第一象限内 作等腰直角△ABC ,∠BAC=90○。过C 作CD ⊥x 轴,D 为垂足. (1)求点 A 、B 的坐标和AD 的长; (2)求过B 、A 、C 三点的抛物线的解析式。

初中数学应用题(含答案解析)

武汉中考数学22题专题-二次函数应用 2.(2001?安徽)某工厂生产的A种产品,它的成本是2元,售价是3元,年销量为100万件,为了获得更好的效益,厂家准备拿出一定的资金做广告;根据统计,每年投入的广告费是x(十万元),产品的年销量将是原销售量的y倍,且y是x的二次函数,它们的关系如表: x(十万元 0 1 2 ) y 1 1.5 1.8 (1)求y与x的函数关系式; (2)如果把利润看成销售总额减去成本费和广告费,试写出年利润S(十万元)与广告费x(十万元的函数 关系式); (3)如果投入的年广告费为10万元~30万元,问广告费在什么范围内,工厂获得的利润最大?最大利润是 多少? 3.(2014?合肥模拟)某工厂共有10台机器,生产一种仪器元件,由于受生产能力和技术水平等因素限制,会产生一定数量的次品.每台机器产生的次品数p(千件)与每台机器的日产量x(千件)(生产条件要求4≤ x≤12)之间变化关系如表: 日产量x(千件/台)… 5 6 7 8 9 … 次品数p(千件/台)…0.7 0.6 0.7 1 1.5 … 已知每生产1千件合格的元件可以盈利1.6千元,但没生产1千件次品将亏损0.4千元.(利润=盈利﹣亏损)(1)观察并分析表中p与x之间的对应关系,用所学过的一次函数,反比例函数或二次函数的有关知识求出p (千件)与x(千件)的函数解析式; (2)设该工厂每天生产这种元件所获得的利润为y(千元),试将y表示x的函数;并求当每台机器的日产量x(千件)为多少时所获得的利润最大,最大利润为多少? 4.(2013?乌鲁木齐)某公司销售一种进价为20元/个的计算机,其销售量y(万个)与销售价格x(元/个) 的变化如下表: 价格x(元/个)…30 40 50 60 … 销售量y(万个)… 5 4 3 2 … 同时,销售过程中的其他开支(不含造价)总计40万元. (1)观察并分析表中的y与x之间的对应关系,用所学过的一次函数,反比例函数或二次函数的有关知识写 出y(万个)与x(元/个)的函数解析式. (2)求出该公司销售这种计算器的净得利润z(万个)与销售价格x(元/个)的函数解析式,销售价格定为 多少元时净得利润最大,最大值是多少? (3)该公司要求净得利润不能低于40万元,请写出销售价格x(元/个)的取值范围,若还需考虑销售量尽 可能大,销售价格应定为多少元? 5.(2013?沙市区三模)某公司准备购进一批产品进行销售,该产品的进货单价为6元/个.根据市场调查,得到了四组关于日销售量y(个)与销售单价x(元/个)的数据,如表x 10 12 14 16 y 3 (1)如果在一次函数、二次函数和反比例函数这三个函数模型中,选择一个来描述日销售量与销售单价之间的关系,你觉得哪个合适?并写出y与x之间的函数关系式(不要求写出自变量的取值范围) (2)按照(1)中的销售规律,请你推断,当销售单价定为17.5元/个时,日销售量为多少?此时,获得日销 售利润是多少? (3)为了防范风险,该公司将日进货成本控制在900元(含900元)以内,按照(1)中的销售规律,要想获得的日销售利润最大,那么销售单价应定为多少?并求出此时的最大利润. 6.(2012?新区二模)某企业信息部进行市场调研发现: 信息一:如果单独投资A种产品,所获利润y A(万元)与投资金额x(万元)之间存在某种关系的部分对应 值如下表: x(万元) 1 2 2.5 3 5 y A(万元)0.4 0.8 1 1.2 2 信息二:如果单独投资B种产品,则所获利润y B(万元)与投资金额x(万元)之间存在二次函数关系:y B= ax2+bx,且投资2万元时获利润2.4万元,当投资4万元时,可获利润3.2万元. (1)求出y B与x的函数关系式; (2)从所学过的一次函数、二次函数、反比例函数中确定哪种函数能表示y A与x之间的关系,并求出y A与x 的函数关系式; (3)如果企业同时对A、B两种产品共投资15万元,请设计一个能获得最大利润的投资方案,并求出按此方 案能获得的最大利润是多少?

相关主题
文本预览
相关文档 最新文档