当前位置:文档之家› 差示扫描量热法名词解释

差示扫描量热法名词解释

差示扫描量热法名词解释

差示扫描量热法(Differential Scanning Calorimetry,DSC)是一种热分析技术,用于测量材料在加热或冷却过程中的热性质变化。以下是一些与DSC相关的术语解释:

1. 热容量(Heat Capacity):物体吸收或释放热量时,所需要的能量量和温度变化的比例。在DSC实验中,热容量可以通过测量试样温度变化和释放/吸收的热量来计算。

2. 比热容(Specific Heat Capacity):物质单位质量的热容量。与热容量类似,比热容可以用于计算试样在加热/冷却过程中的能量吸收或释放量。

3. 示差扫描量热图(Differential Scanning Calorimetry Curve):DSC实验中所得到的曲线图,与试样温度和释放/吸收的热量关系相关。示差扫描量热图可以用于确定试样的物理性质和热力学参数。

4. 热流计(Heat Flux Calorimetry):用于测量试样释放或吸收的热量的仪器,在DSC实验中经常使用。

5. 熔点(Melting Point):材料从固态转变成液态的温度点。在DSC 实验中,熔点可以通过观察热流图中的峰值来确定。

6. 结晶点(Crystallization Point):材料从液态转变成固态的温度点。

同样可以通过观察热流图来确定。

7. 玻璃化转变(Glass Transition):指材料从固态转变成一种非晶态的过程。处于玻璃态的材料是非晶态和固态的中间阶段,具有类似液态的性质。在DSC实验中,可以通过测量材料热容量的变化来确定玻璃化转变的温度。

8. 库仑效应(Curie effect):某些物质在温度变化时会发生磁性变化的现象。在DSC实验中,可以通过观察热流图来确定库仑效应的温度。

以上是一些常见的DSC术语及其解释,能够帮助我们更好地理解差示扫描量热法及其实验结果。

1_差示扫描量热法的原理

1 差示扫描量热法的原理 DSC(differential scanning calorimetry)差示扫描量热法,是在程序控制温度下,测量输出物质与参比物的功率差与温度关系的一种技术。其主要特点是使用的温度范围比较宽(-175~725°C)、分辨能力高和灵敏度高。差示扫描量热仪得到的曲线以每秒钟的热量变化(热流率dH/dt)为纵坐标, 温度为横坐标, 称为DSC曲线, 与DTA 曲线形状相似,但峰向相反。在具体分析中图谱中峰的方向表示吸热或放热(通常峰表示放热,谷表示吸热);峰的数目表示在测定温度范围内待测药物样品发生变化的次数;峰的位置表示发生转化的温度范围;峰的面积反映热效应数值的大小;峰高峰宽及对称性与测定条件有关外,往往还与样品变化过程的动力学因素有关。根据测量方法的不同,又分为两种类型:功率补偿型DSC 和热流型DSC。 1.1功率补偿型DSC 功率补偿型DSC的主要特点是试样和参比物分别具有独立的加热器和传感器,其结构如图1-1所示。 图1-1 试样与参比物容器下装有两组补偿加热丝,当试样在加热过程中由于热效应与参比物之间出现温差时,通过差热放大电路和差动热量补偿放大器,使流入补偿电热丝的电流发生变化,当试样吸热时,补偿放大器使试样一边的电流立即增大;反之,当试样放热时使参比物一边电流增大,直到两边达到热平衡,温差消失为止。也就是说,试样在热反应中发生热量变化,由于及时输入电功率而得到补偿,所以实际记录的是试样和参比物下面的两只电热补偿的热功率之差随时间的变化关系。如果恒速升温,记录的也就是热功率之差随温度的变化。 1.2 热流型DSC 在热流型DSC中试样和参比物在同一个加热炉内,它们受同一温度-时间程序的监控。热流型DSC的结构如图1-2所示,该仪器的特点是利用鏮铜盘把热量传输到试样和参比物的,并且鏮铜盘还作为测量温度的热电偶结点的一部分。传输到试样和参比物的热流差通过试样和参比物平台下的镍铬板与鏮铜盘的结点所构成的镍铬-鏮铜热电偶进行监控。试样温度由镍铬板下方的镍铬-镍铝热电偶直接监控。试样和参比物的温差DT与两者的热流差成正比。为了获得一条水平的理想基线,在热流型DSC的构造中,结构对称性必须很高,温度滞后应该很小,炉温要均匀且总的传热系数必须很大。

差示扫描量热法名词解释

差示扫描量热法名词解释 差示扫描量热法(Differential Scanning Calorimetry,DSC)是一种热分析技术,用于测量材料在加热或冷却过程中的热性质变化。以下是一些与DSC相关的术语解释: 1. 热容量(Heat Capacity):物体吸收或释放热量时,所需要的能量量和温度变化的比例。在DSC实验中,热容量可以通过测量试样温度变化和释放/吸收的热量来计算。 2. 比热容(Specific Heat Capacity):物质单位质量的热容量。与热容量类似,比热容可以用于计算试样在加热/冷却过程中的能量吸收或释放量。 3. 示差扫描量热图(Differential Scanning Calorimetry Curve):DSC实验中所得到的曲线图,与试样温度和释放/吸收的热量关系相关。示差扫描量热图可以用于确定试样的物理性质和热力学参数。 4. 热流计(Heat Flux Calorimetry):用于测量试样释放或吸收的热量的仪器,在DSC实验中经常使用。 5. 熔点(Melting Point):材料从固态转变成液态的温度点。在DSC 实验中,熔点可以通过观察热流图中的峰值来确定。 6. 结晶点(Crystallization Point):材料从液态转变成固态的温度点。

同样可以通过观察热流图来确定。 7. 玻璃化转变(Glass Transition):指材料从固态转变成一种非晶态的过程。处于玻璃态的材料是非晶态和固态的中间阶段,具有类似液态的性质。在DSC实验中,可以通过测量材料热容量的变化来确定玻璃化转变的温度。 8. 库仑效应(Curie effect):某些物质在温度变化时会发生磁性变化的现象。在DSC实验中,可以通过观察热流图来确定库仑效应的温度。 以上是一些常见的DSC术语及其解释,能够帮助我们更好地理解差示扫描量热法及其实验结果。

示差扫描量热法原理

示差扫描量热法原理 以示差扫描量热法原理为标题,写一篇文章。 示差扫描量热法是一种用于测量物质热性质的方法,它通过测量物质在加热或冷却过程中释放或吸收的热量来研究物质的热力学性质。这种方法可以用于研究固体、液体和气体的热性质,对于了解物质的热力学行为和性质具有重要意义。 示差扫描量热法的原理基于热力学第一定律,即能量守恒原理。根据这个原理,物质在加热或冷却过程中释放或吸收的热量与其内能的变化有关。示差扫描量热法通过在样品和参比物之间施加恒定的热量流,并测量样品和参比物之间的温度差来实现热量的测量。 在示差扫描量热法中,样品和参比物分别放置在两个热电偶的接头上,并通过电子天平实时测量样品和参比物的质量变化。然后,通过控制加热器的功率和扫描速率,使样品和参比物的温度以相同的速率升高或降低。在加热或冷却过程中,样品和参比物之间会产生温度差,这是由于样品吸收或释放热量而引起的。示差扫描量热仪会通过热电偶测量样品和参比物之间的温度差,并将其转换为电信号。 通过对电信号进行放大和处理,可以得到样品和参比物之间的温度差随时间的变化曲线。根据热力学原理,样品和参比物之间的温度差与样品吸收或释放的热量成正比。因此,通过积分计算温度差曲

线下的面积,可以得到样品在加热或冷却过程中吸收或释放的总热量。同时,根据样品和参比物的质量变化,可以计算出单位质量样品吸收或释放的热量。 示差扫描量热法可以用于研究物质的相变、热容量、热稳定性等热性质。例如,通过测量物质在不同温度下的热容量,可以确定物质的热容量随温度变化的规律,从而研究物质的热力学行为。此外,示差扫描量热法还可以用于研究化学反应的热效应,例如测量化学反应的放热或吸热量,从而了解反应的热力学性质。 示差扫描量热法是一种研究物质热性质的重要方法,它通过测量物质在加热或冷却过程中释放或吸收的热量来研究物质的热力学性质。这种方法可以用于研究固体、液体和气体的热性质,对于了解物质的热力学行为和性质具有重要意义。示差扫描量热法的原理基于热力学第一定律,通过测量样品和参比物之间的温度差来实现热量的测量。通过对温度差随时间的变化曲线进行处理,可以得到样品在加热或冷却过程中吸收或释放的总热量,从而研究物质的热性质。

差示扫描量热法 实验报告

差示扫描量热法实验报告 差示扫描量热法实验报告 一、引言 差示扫描量热法(Differential Scanning Calorimetry,DSC)是一种常用的热分 析技术,可以用于研究物质的热性质和热反应。本实验旨在通过差示扫描量热 仪对某种聚合物的热性质进行分析,探究其热分解反应的特征和动力学参数。二、实验原理 DSC实验基于样品与参比物之间的温度差异来测量样品的热量变化。在实验中,样品和参比物同时加热,通过测量两者之间的温度差和热流变化,可以得到样 品的热容变化曲线。当样品发生热反应时,其热容发生变化,从而产生峰状的 热流曲线。通过分析这些峰的形状、面积和位置,可以获得样品的热性质和热 反应特征。 三、实验步骤 1. 将待测样品和参比物分别放置在DSC仪器的样品盒和参比盒中。 2. 设置实验参数,如加热速率、扫描范围和环境气氛。 3. 开始实验,启动DSC仪器,开始加热过程。 4. 记录样品和参比物的温度和热流数据。 5. 分析实验数据,绘制热流曲线和热容变化曲线。 6. 根据峰的形状、面积和位置,分析样品的热性质和热反应特征。 四、实验结果与讨论 通过实验测量和数据分析,我们得到了样品的热流曲线和热容变化曲线。根据 热流曲线,我们可以观察到样品在一定温度范围内的热反应峰。通过分析这些

峰的形状和面积,可以确定样品的热分解温度和热分解反应的性质。同时,热容变化曲线可以反映样品的热容变化规律,进一步了解样品的热性质。 根据实验结果,我们可以得出以下结论: 1. 样品在温度范围X至Y之间发生了热分解反应,热分解峰的最高温度为T。 2. 样品的热分解反应是一个放热反应,释放的热量为Q。 3. 样品的热分解反应速率较快,表明反应动力学较高。 五、结论 本实验通过差示扫描量热法对某种聚合物的热性质进行了分析。通过分析实验数据,我们得到了样品的热流曲线和热容变化曲线,并根据峰的形状、面积和位置,确定了样品的热分解温度和热分解反应的性质。实验结果表明,该聚合物在一定温度范围内发生了放热的热分解反应,并且反应速率较快。这些结果对于进一步研究该聚合物的热性质和应用具有重要意义。 六、实验总结 差示扫描量热法是一种常用的热分析技术,可以用于研究物质的热性质和热反应。通过本实验,我们了解了DSC实验的基本原理和操作步骤,并成功地对某种聚合物的热性质进行了分析。实验结果对于进一步研究该聚合物的热性质和应用具有重要意义。在今后的实验中,我们还可以通过调整实验参数和改变样品类型,进一步探究其他物质的热性质和热反应特征。

聚合物的差示描量热分析

聚合物的差示扫描量热分析 聚合物的差示扫描量热分析 差热分析(Differential Thermal Analysis—DTA)法是一种重要的热分析方法,是指在程序控温下,测量物质和参比物的温度差与温度或者时间的关系的一种测试技术。该法广泛应用于测定物质在热反应时的特征温度及吸收或放出的热量,包括物质相变、分解、化合、凝固、脱水、蒸发等物理或化学反应。广泛应用于无机、有机、特别是高分子聚合物、玻璃钢等领域。差热分析操作简单,但在实际工作中往往发现同一试样在不同仪器上测量,或不同的人在同一仪器上测量,所得到的差热曲线结果有差异。峰的最高温度、形状、面积和峰值大小都会发生一定变化。其主要原因是因为热量与许多因素有关,传热情况比较复杂所造成的。虽然过去许多人在利用DTA进行量热定量研究方面做过许多努力,但均需借助复杂的热传导模型进行繁杂的计算,而且由于引入的假设条件往往与实际存在差别而使得精度不高,差示扫描热法(简称DSC)就是为克服DTA在定量测量方面的不足而发展起来的一种新技术。20世纪60年代,差示扫描量热法(Differential Scanning Calorimetry,DSC)被提出,其特点是使用温度范围比较宽,分辨能力和灵敏度高,根据测量方法的不同,可分为功率补偿型DSC和热流型DSC,主要用于定量测量各种热力学参数和动力学参数。 差示扫描量热法是在程序升温的条件下,测量试样与参比物之间的能量差随温度变化的一种分析方法。差示扫描量热法有补偿式和热流式两种。在差示扫描量热中,为使试样和参比物的温差保持为零在单位时间所必需施加的热量与温度的关系曲线为DSC曲线。曲线的纵轴为单位时间所加热量,横轴为温度或时间。曲线的面积正比于热焓的变化。DSC与DTA原理相同,但性能优于DTA,测定热量比DTA准确,而且分辨率和重现性也比DTA好。由于具有以上优点,DSC在聚合物领域获得了广泛应用,大部分DAT应用领域都可以采用DSC进行测量,灵敏度和精确度更高,试样用量更少。由于其在定量上的方便更适于测量结晶度、结晶动力学以及聚合、固化、交联氧化、分解等反应的反应热及研究其反应动力学。 一、实验目的和要求 1)掌握差示扫描量热法(DSC)的基本原理及仪器使用方法。 2)测量聚乙烯的DSC曲线,并求出其Tm、ΔHm和Xc 。 二、实验内容和原理 DSC简介 DSC是在程序控制温度下测量输入到物质(试样)和参比物的能量差与温度(或时间)关系的一种技术。根据测量的方法又可分为两种基本类型:功率补偿型和热流型,两者分别测量输入试样和参比物的功率差及试样和参比物的温度差。 DSC相对DTA的优势 差热分析(DTA)的缺点 1)精确度不高,只能得到近似值; 2)需要使用较多的试样,在发生热效应时试样温度与程序温度间有明显的偏差;

示差扫描量热法原理

示差扫描量热法原理 示差扫描量热法是一种常用的热分析技术,用于研究物质在加热或冷却过程中的热性质变化。该方法通过测量样品和参比物温度之间的差异来确定样品的热容量和热效应。下面将详细介绍示差扫描量热法的原理及其应用。 一、示差扫描量热法原理 示差扫描量热法基于热平衡原理,通过对比样品和参比物的温度差异来测量样品的热性质变化。该方法主要包括以下几个步骤: 1. 样品和参比物的准备:选择适当的样品和参比物,样品应具有所需研究的热性质变化,参比物应具有稳定的热性质。样品和参比物应具有相似的质量和形状,以保证在相同条件下吸收或释放相同的热量。 2. 样品和参比物的装填:将样品和参比物分别装填到示差扫描量热仪的样品盒和参比盒中。装填时要注意避免气泡的产生,以确保热传导的准确性。 3. 扫描温度:将样品和参比物的温度从初始温度升至最高温度或降至最低温度的过程称为扫描温度。在扫描温度过程中,示差扫描量热仪会记录样品和参比物的温度变化。

4. 温度差分析:示差扫描量热仪将记录的样品和参比物温度差异转换为热性质变化数据。通过计算样品和参比物之间的温度差异,可以确定样品的热容量和热效应。 二、示差扫描量热法的应用 示差扫描量热法广泛应用于材料科学、化学工程、生物医学和环境科学等领域,主要用于以下方面的研究: 1. 热性质分析:示差扫描量热法可以测量材料的热容量、热导率和热膨胀系数等热性质参数,用于分析材料的热稳定性和热行为。 2. 反应动力学研究:通过示差扫描量热法可以研究化学反应或生物反应的热效应和反应动力学参数,如反应速率常数、反应活化能等。 3. 材料相变分析:示差扫描量热法可以用于研究材料的相变行为,如熔化、凝固、晶化和玻璃化等过程,从而揭示材料的结构和性质变化。 4. 生物热学研究:示差扫描量热法可以用于生物体系的热学研究,如生物大分子的热解、蛋白质的折叠和解聚等过程。 5. 药物研究:示差扫描量热法可以用于药物的热稳定性和热效应研究,包括药物的热解、溶解、晶型转变等。 三、总结

DSC和DTA的区别

我认为DSC(差示扫描量热法)比较好,可以测定物质的熔点、比热容、玻璃化转变温度、纯度、结晶度等 差热扫描量热仪——测量的结果是温度差 差示扫描量热仪——测量的结果是热流,定量性较好 差热分析(DTA)是在程序控制温度条件下,测量样品与参比物之间的温度差与温度关系的一种热分析方法。差示扫描量热法(DSC)是在程序控制温度条件下,测量输入给样品与参比物的功率差与温度关系的一种热分析方法。两种方法的物理含义不一样,DTA仅可以测试相变温度等温度特征点,DSC不仅可以测相变温度点,而且可以测相变时的热量变化。DTA曲线上的放热峰和吸热峰无确定物理含义,而DSC曲线上的放热峰和吸热峰分别代表放出热量和吸收热量。 DTA与DSC区别的分析 DTA:差热分析 DSC:差示扫描量热分析。 两者的原理基本相同,都是比较待测物质与参比物质随温度变化导致的热性能的差别,同样的材料可以得到形状基本相同的曲线,反应材料相同的信息,但是实验中两者记录的信息并不一样。 DTA记录的是以相同的速率加热和冷却过程中,待测物质因相变引起的热熔变化导致的与参比物质温度差别的变化。通常得到以温度(时间)为横坐标,温差为纵坐标的曲线。 DSC实验中同样需要参比物质和待测物质以相同的速率进行加热和冷却,但是记录的信息是保持两种样品的温度相同时,两者之间的热量之差。因此得到的曲线是温度(时间)为横坐标,热量差为纵坐标的曲线。比较之下,因为DSC在实验过程中,参比物质和待测物质始终保持温度相等,所以两者之间没有热传递,在定量计算时精度比较高。而DTA只有在使用合适的参比物的情况下,峰面积才可以被转换成热量。 再者,DSC适合低温测量(低于700℃),而DTA适合高温测量(高于700℃). 差热分析法(DTA) DTA的基本原理 差热分析是在程序控制温度下,测量物质与参比物之间的温度差与温度关系的一种技术。差热分析曲线是描述样品与参比物之间的温差(ΔT)随温度或时间的变化关系。在DAT试验中,样品温度的变化是由于相转变或反应的吸热或放热效应引起的。如:相转变,熔化,结晶结构的转变,沸腾,升华,蒸发,脱氢反应,断裂或分解反应,氧化或还原反应,晶格结构的破坏和其它化学反应。一般说来,相转变、脱氢还原和一些分解反应产生吸热效应;而结晶、氧化和一些分解反应产生放热效应。 差热分析的原理。将试样和参比物分别放入坩埚,置于炉中以一定速率进行程序升温,以表示各自的温度,设试样和参比物(包括容器、温差电偶等)的热容量Cs、Cr不随温度而变。在0-a区间,ΔT大体上是一致的,形成DTA曲线的基线。随着温度的增加,试样产生了热效应(例如相转变),则与参比物间的温差变大,在DTA曲线中表现为峰。显然,温差越大,峰也越大,试样发生变化的次数多,峰的数目也多,所以各种吸热和放热峰的个数、形状和位置与相应的温度可用来定性地鉴定所研究的物质,而峰面积与热量的变化有关。

dsc测定结晶度的原理 -回复

dsc测定结晶度的原理-回复 "DSC测定结晶度的原理" DSC(差示扫描量热法)是一种常用的热分析技术,用于研究材料的热性质。DSC可以用来测定材料的结晶度,也被广泛应用于材料科学和工程领域。本文将详细介绍DSC测定结晶度的原理,并分步回答中括号中的问题。 1. DSC测定结晶度的原理 DSC测定结晶度的原理基于材料的热性质变化。当材料经历结晶过程时,其热性质会发生明显的变化,如熔点、热容、热导率等。DSC测量就是通过对样品在不断升温或降温的过程中对其热性质变化进行监测,从而确定其结晶度。 2. DSC测定结晶度的步骤 2.1 样品制备 首先,需要制备符合实验要求的样品。对于有机聚合物或无机晶体材料,常用的制备方法包括溶液蒸发结晶、熔融结晶、溶剂热处理等。样品的形状和大小应符合实验装置要求,以确保准确的测量结果。

2.2 实验装置设置 DSC实验装置由一个样品容器和参比容器组成。样品容器中放置待测样品,参比容器中放置参比物质,如铁或铂等材料。两个容器在同一温度条件下进行测量,以消除温度的影响。 2.3 实验条件设置 在进行DSC测量前,需要设置合适的实验条件,包括升温/降温速率、测量温度范围等。这些设置应根据样品的特性和实验目的来确定。 2.4 DSC测量 在DSC测量过程中,样品容器和参比容器同时升温或降温。当样品发生结晶时,其热性质会发生变化,从而引起样品和参比容器的温差。这个温差被称为峰温差(ΔT),可以被DSC仪器检测到并记录下来。 3. DSC测定结晶度的分析 3.1 峰值分析 DSC仪器会输出一个温度-时间曲线,其中峰温差会以峰值的形式显示出来。首先,需要确定峰温差的位置,并记录其温度(Tm)和峰面积(ΔHm)。峰面积是由样品结晶释放的热量对参比容器释放的热量的积分计算得出的。

差示扫描量热法DSC简介

聚合物的热分析-—————差示扫描量热法(DSC) 差示扫描量热法是在差热分析(DTA)的基础上发展起来的一种热分析技术。它被定义为:在温度程序控制下,测量试量相对于参比物的热流速随温度变化的一种技术。简称DSC(Diffevential Scanning Calovimltry).DSC技术克服了DTA在计算热量变化的困难,为获得热效应的定量数据带来很大方便,同时还兼具DTA的功能。因此,近年来DSC的应用发展很快,尤其在高分子领域内得到了越来越广泛的应用。它常用于测定聚合物的熔融热、结晶度以及等温结晶动力学参数,测定玻璃化转变温度T g;研究聚合、固化、交联、分解等反应;测定其反应温度或反应温区、反应热、反应动力学参数等,业已成为高分子研究方法中不可缺少的重要手段之一. 一、目的和要求 了解差示扫描量热法的基本原理及应用范围,掌握测定聚合物熔点、结晶度、结晶温度及其热效应的方法。 二、实验原理 DSC和DTA的曲线模式基本相似。它们都是以样品在温度变化时产生的热效应为检测基础的,由于一般的DTA方法不能得到能量的定量数据.于是人们不断地改进设计,直到有人设计了两个独立的量热器皿的平衡。从而使测量试样对热能的吸收和放出(以补偿对应的参比基准物的热量来表示)成为可能。这两个量热器皿都置于程序控温的条件下。采取封闭回路的形式,能精确、迅速测定热容和热焓,这种设计就叫做差示扫描量热计。DSC体系可分为两个控制回路。一个是平均温度控制回路,另一个是差示温度控制回路。

在平均温度控制回路中,由程序控温装置中提供一个电信号,并将此信号于试样池和参比池所需温度相比较,与之同时程度控温的电信号也接到记录仪进行记录。现在看一下程序温度与两个测量池温度的比较和控制过程。比较是在平均放大器内进行的,程序信号直接输入平均放大器,而两个测量池的信号分别由固定在各测量池上的铂电阻温度计测出,通过平均温度计算器加以平均后,再输入平均温度放大器.经比较后,如果程序温度比两个测量池的平均温度高,则由放大器分别输入更多的电功率给装在两个测量池上的独立电热器以提高它们的温度。反之,则减少供给的电功率,把它们的温度降到与程序温度相匹配的温度。这就是温度程序控制过程。 DSC 与DTA 所不同的是在测量池底部装有功率补偿器和功率放大器。因此在示差温度回路里,显示出DSC 和D TA 截然不同的特征,两个测量池上的铂电阻温度计除了供给上述的平均温度信号外,还交替地提供试样池和参比池的温度差值△T。输入温度差值放大器。当试样产生放热反应时,试样池的温度高于参比池,产生温差电势,经差热放大器放大后送入功率补偿放大器。 在补偿功率作用下,补偿热量随试样热量变化,即表征试样产生的热效应。因此实验中补偿功率随时间(温度)的变化也就反映了试样放热速度(或吸热速度)随时间(温度)的变化,这就是DSC 曲线。它与DTA 曲线基本相似,但其纵

常用热分析技术:差示扫描量热法、差热分析(DTA)、热重分析(TAG)

常用热分析技术:差示扫描量热法(DSC ).差热分析(DTA ).热重分析(TAG) 物质的物理状态和化学状态发生变化(如升华、氧化、聚合、固化、硫化、脱水、结晶、熔融、晶格改变或发生化学反应)时,往往伴随着热力学性质(如热焙、比热、导热系数等)的变化,故可通过测定其热力学性能的变化,来了解物质物理或化学变化的过程。 主要方法有: •差热分析-DTA; ■差示扫描量热法- DSC; •热重分析-TGAo 一、热重分析(TGA) 1.TG的基本原理

TG:可调速的加热或冷却环境中,以被测物重量作为时间或温度的函数进行记录的方法。 DTG:微商热重曲线,热重曲线对时间或温度的一阶微商的方法获得的曲线。 2.分析方法:升温法和恒温法 升温法:样品在真空或其他任何气体中进行等速加温,样品将温度的升高发生物理变化和化学变化使原样品失重一动态法。 原理:在某特定的温度下,会发生重量的突变,以确定样品的特性。 恒温法:在恒温下,记录样品的重量变化作为时间的函数的方法。 3.影响TGA数据的因素 (1)气体的浮力和对流 浮力的影响:样品周围的气体因温度的升高而膨胀,比重减小,则样品的TGA值增加。 对流的影响:对流的产生使得测量出现起伏。 (2)挥发物的再凝聚 凝聚物的影响:物质分解产生的挥发物质可能凝聚在与称重川L相连而又较冷的部位上,影响失重的测定结果。 (3)样品与称量皿的反应 反应的影响:某些物质在高温下会与称量皿发生化学反应而影响测定结果。 (4)升温速率的影响

升温速率的影响:升温速率太快,TGA曲线会向高温移动;速度太慢,实验效率降低。 (5)样品用量和粒度 用量和粒度影响:样品用量大,挥发物不易逸出,影响曲线比那话的清晰度;样品细,反应会提前影响曲线低温移动。 (6)环境气氛 环境气氛对热失重曲线的影响 4.热重分析的应用 热重分析主要研究在空气或惰性气氛材料的热稳定性、热分解作用和氧化分解等物理化学变化;也广泛用于涉及质量变化的所有物理过程。 根据热失重曲线可获得材料热分解过程的活化能和反应级数: k = dm/dt= A • mn • e~E/RT; In(dm/dt) = InA + nlnm- E/RT; 获得力和厅的方法: a.示差法; b.不同升温速率法; ln(d2Z?/dt) = InA + nlnnr J£/RT;

dsc测试原理

dsc测试原理 热差示扫描量热法(Differential Scanning Calorimetry,DSC)是一种常用于研究材料热性质的测试方法。它通过测量样品与参比样品之间的热响应差异来分析材料的热转变行为,从而获得材料的热性能参数和相变特征。本文将介绍DSC测试原理,包括仪器原理和数据分析原理。 一、仪器原理 DSC仪器主要由样品层、参比层、加热器、温控系统和测温系统等组成。样品层和参比层分别装有待测样品和参比样品,它们经过精确称量后放置在测量室内,并通过加热器进行加热。温控系统则负责控制加热器的温度变化,通常采用恒定升温速率的方式。测温系统则通过热电偶或热电阻等传感器,测量样品与参比的温差。 DSC测试原理基于热力学第一定律,即能量守恒定律。当样品与参比样品发生相变或热转变(如玻璃化、熔化、结晶等)时,将释放或吸收热量,导致样品和参比的温度发生变化。DSC测试就是通过测量样品与参比的温差来记录这种热量的变化。 二、数据分析原理 DSC测试的数据可以通过不同的分析方法得到各种热性能参数和相变特征。 1. 热容曲线分析

热容曲线是DSC测试中最常用的分析方法之一。热容曲线表征了样品在加热或冷却过程中吸热或放热的能力。热容曲线是通过绘制样品与参比的温差随时间的变化得到的,可以得到样品的热容量和热容率等参数。 2. 热分解分析 热分解分析用于研究材料的热分解过程。通过分析样品在加热时释放的热量变化,可以确定材料的分解温度、分解焓以及分解产物的组成等信息。 3. 结晶分析 结晶分析用于研究材料的结晶过程。通过观察样品在加热或冷却时的峰值温度和峰值面积变化,可以得到材料的结晶温度、结晶焓和结晶度等参数。 4. 玻璃化分析 玻璃化分析用于研究材料的玻璃化过程。通过观察样品在加热或冷却时的玻璃化转变点,可以确定材料的玻璃化温度,进而了解材料的玻璃化特性。 5. 其他分析方法 除了上述常用的分析方法外,DSC测试还可以应用于催化剂活性分析、聚合反应动力学研究等领域。 结论

简述差热分析,差示扫描量热分析的基本原理

简述差热分析,差示扫描量热分析的基本原理差热分析和差示扫描量热分析(DSC)是测量材料的物理性质的一种常用技术。它们可以测量和分析材料的热量流失,在加热和冷却过程中材料的温度,以及在这两个过程中发生的化学反应。这些技术也常用于分析材料的物化特性,如熔点,热容量等。 差热分析是一种根据材料在不同温度下的热导率,来测量材料特性的技术。它通过控制一个样品在不同温度,以及使用固定的快速热流,来直接测量材料的热传导性能。它的基本原理是,当样品和热源之间的温度差达到一定的值时,样品会吸收热量,加热;同时,温度差值会随着温度的变化而变化。 差示扫描量热分析(DSC)是一种更加精确的测量技术,它可以测量更小的温度变化,以及更小的热量流失。它将差热分析中的快速热流替换成一致热流,从而得到更精确的测量结果。它的基本原理是,在一个固定的温度量程内(由上下限确定),控制一个样品在升温或降温过程中,样品吸收或放出热量,从而使得温度变化,从而得到热量流失的精确值。 在差热分析和差示扫描量热分析的应用中,需要使用专业的仪器来测量和控制温度。这些仪器可以精确地控制温度,使用户可以在短时间内得到精确的测量结果。 差热分析和差示扫描量热分析是材料特性分析中常用的技术,它们可以测量材料的热量流失,温度变化,以及发生的化学反应。它们通过精确的控制温度,以及使用固定的快速热流或一致热流,来测量

材料的热传导性能,以及材料的物理和化学特性。同时,它们也可以帮助用户轻松地得到精确的测量结果。 总之,差热分析和差示扫描量热分析是研究材料特性常用的技术,它们的基本原理是,在一定温度差达到一定大小时,样品会吸收或放出热量,从而使得温度变化。同时,这些技术也需要使用专业的仪器,来获得精确的测量结果。

分析检测常用方法

差示扫描量热法 - 基本简介 差示扫描量热法(DSC)是在程序控制温度下,测量输给物质和参比物的功率差与温度关系的一种技术。 DSC和DTA仪器装置相似,所不同的是在试样和参比物容器下装有两组补偿加热丝,当试样在加热过程中由于热效应与参比物之间出现温差ΔT时,通过差热放大电路和差动热量补偿放大器,使流入补偿电热丝的电流发生变化,当试样吸热时,补偿放大器使试样一边的电流立即增大;反之,当试样放热时则使参比物一边的电流增大,直到两边热量平衡,温差ΔT 消失为止。换句话说,试样在热反应时发生的热量变化,由于及时输入电功率而得到补偿,所以实际记录的是试样和参比物下面两只电热补偿的热功率之差随时间t的变化关系。如果升温速率恒定,记录的也就是热功率之差随温度T的变化关系 差示扫描量热仪记录到的曲线称DSC曲线,它以样品吸热或放热的速率,即热流率dH/dt(单位毫焦/秒)为纵坐标,以温度T或时间t为横坐标,可以测定多种热力学和动力学参数,例如比热容、反应热、转变热、相图、反应速率、结晶速率、高聚物结晶度、样品纯度等。该法使用温度范围宽(-175~725℃)、分辨率高、试样用量少。适用于无机物、有机化合物及药物分析。 设备图 XRD即X-ray diffraction ,X射线衍射,通过对材料进行X射线衍射,分析其衍射图谱,分析材料的成分等。 XRD - 应用范围 XRD可以做定性,定量分析。即可以分析合金里面的相成分和含量,可以测定晶格参数,可以测定结构方向、含量,可以测定材料的内应力,材料晶体的大小等等。

一般主要是用来分析合金里面的相成分和含量。 XRD - 工作原理 X射线是原子内层电子在高速运动电子的轰击下跃迁而产生的光辐射,主要有连续X射线和特征X射线两种。晶体可被用作X光的光栅,这些很大数目的原子或离子/分子所产生的相干散射将会发生光的干涉作用,从而影响散射的X射线的强度增强或减弱。由于大量原子散射波的叠加,互相干涉而产生最大强度的光束称为X射线的衍射线。 满足衍射条件,可应用布拉格公式:2dsinθ=λ 应用已知波长的X射线来测量θ角,从而计算出晶面间距d,这是用于X射线结构分析;另一个是应用已知d的晶体来测量θ角,从而计算出特征X射线的波长,进而可在已有资料查出试样中所含的元素。 红外光谱- 原理概述 红外光谱图 当一束具有连续波长的红外光通过物质,物质分子中某个基团的振动频率或转动频率和红外光的频率一样时,分子就吸收能量由原来的基态振(转)动能级跃迁到能量较高的振(转)动能级,分子吸收红外辐射后发生振动和转动能级的跃迁,该处波长的光就被物质吸收。所以,红外光谱法实质上是一种根据分子内部原子间的相对振动和分子转动等信息来确定物质分子结构和鉴别化合物的分析方法。将分子吸收红外光的情况用仪器记录下来,就得到红外光谱图。红外光谱图通常用波长(λ)或波数(σ)为横坐标,表示吸收峰的位置,用透光率(T%)或者吸光度(A)为纵坐标,表示吸收强度。

实验6 聚合物的热谱分析-示差扫描量热法(DSC)

实验6 聚合物的热谱分析—示差扫描量热法(DSC) 1. 实验目的 (1)了解示差扫描量热法(DSC)的工作原理及其在聚合物研究中的应用。 (2)初步学会使用DSC仪器测定高聚物的操作技术。 (3)用DSC测定环氧树脂的玻璃化转变温度。 2. 实验原理 示差扫描量热法(DSC,Differential Scanning Calorimentry)是在程序温度控制下,测量试样与参比物之间单位时间内能量差(或功率差)随温度变化的一种技术。它是在差热分析(DTA,Differential Thermal Analysis)的基础上发展而来的一种热分析技术,DSC在定量分析方面比DTA要好,能直接从DSC曲线上峰形面积得到试样的放热量或吸热量。 DSC仪主要有功率补偿型和热流型两种类型。NETZSCH公司生产的系列示差扫描量热仪即为功率补偿型。仪器有两只相对独立的测量池,其加热炉中分别装有测试样品和参比物。这两个加热炉具有相同的热容及导热参数,并按相同的温度程序扫描。参比物在所选定的扫描温度范围内不具有任何热效应。因此,在测试的过程中记录下的热效应就是由样品的变化引起的。当样品发生放热或吸热变化时,系统将自动调整两个加热炉的加热功率,以补偿样品所发生的热量改变,使样品和参比物的温度始终保持相同,使系统始终处于“热零位”状态。这就是功率补偿DSC仪的工作原理,即“热零位平衡”原理。 假设试样放热速率为ΔP(功率),试样底下热电偶的温度将高于参比物底下热电偶的温度,产生温差电势VΔT(图中上负下正的温差电势),经差热放大器放大后送到功率补偿放大器,输出功率ΔP c使试样下的补偿加热丝电流I s减小,参比物下的补偿加热丝电流I r 增大,使参比物热电偶温度高于试样热电偶的温度,产生一个上正下负的温差电势,抵消了因试样放热时产生的VΔT,使VΔT→0,即使试样与参比物之间的温差ΔT→0。功率补偿式DSC的原理图构成反馈电路的框图如图2-37所示。 图2-37 功率补偿型DSC框图 图2-37中,ΔP—试样放热速率(即放热功率)(mW); ΔP c—补偿给试样和参比物热量之差的速度(即补偿功率差)(mW);

差式扫描量热法(DSC)

差式扫描量热法(DSC) 扎卡里·沃拉斯(Zachary Voras) 1.分类 差式扫描量热法(differential scanning calorimetry,DSC)属于破坏式分析技术。 2.说明 DSC与差热分析(differential thermal analysis,DTA)有关,是一种能够识别材料热稳定性差异的定量技术。利用DSC可以分辨一种材料与标准物质在结晶度、玻璃化转变状态或熔点/沸点方面的差异。虽然该技术无法像光谱法或质谱法那样提供阳性定性,但它对热稳定性差异的检测非常灵敏,因此成为有机材料劣化研究的最佳选择。这种技术会在样品加热过程中测量样品所发生物理/化学变化的各 种属性。实验基本设置为,将样品和标准物质分别置入两只样品托盘,放入分析室内统一加热,以便生成热谱图。这种托盘只需毫克级样品就可进行分析。分析室内可有各种氛围条件,如真空或气体吹扫(如氧气、氮气或氩气吹扫)。应根据要检测的物理/化学变化来监控样 品托盘的加热温度和(或)功率。此外,还可使用吹扫气体诱导样品表征(例如用氧气令样品氧化)来调节DSC实验中的观察结果。现代设备可完全自动化运转,也可在一个实验中加热多个样品,因此可获得更高的实验效率。在这些实验中,得到的热谱图可用于观察与样品能量属性相关的所有变化,如结晶、相变、放热/吸热过程和动力学

速率。 DSC有3种常见类型:功率补偿型DSC、热流型DSC和调制型DSC。功率补偿型DSC是用两组独立的加热元件分别加热样品和标准物质,再监测维持恒定温度所用的功率差。图2为功率补偿型DSC实验的一般示意图。热流型DSC实验是以相同速率加热样品和标准物质,再测量热流差异并生成热谱图。调制型DSC的实验设置与热流型DSC相似,不过样品和标准物质是在温度循环(热/冷循环)条件下测量热流并加以比较。图3是热流型DSC或调制型DSC实验的一般示意图。 凭借检测生成的热谱图,分析人员可对各种转变温度进行量化,再将量化结果转化为比热、玻璃化转变温度、结晶温度和动力学速率等物理量。在使用热谱图时,必须先用已知标准进行基线校正和校准,尤其是要考虑吹扫气体的极限压力和气体品种可能对监测的转变温 度造成的影响。DSC通常用于分析转变温度相对较低的有机材料,不过如果有高性能的加热元件和托盘,也可以用DSC仪器分析转变温度较高的对象。

实验2-聚合物的热谱分析——差示扫描量热法(DSC)

实验二聚合物的热谱分析——差示扫描量热法(DSC) 在等速升温(降温)的条件下,测量试样与参比物之间的温度差随温度变化的技术称为差热分析,简称DTA(Differential Thermal Analysis)。试样在升(降)温过程中,发生吸热或放热,在差热曲线上就会出现吸热或放热峰。试样发生力学状态变化时(如玻璃化转变),虽无吸热或放热,但比热有突变,在差热曲线上是基线的突然变动。试样对热敏感的变化能反映在差热曲线上。发生的热效大致可归纳为: (1)发生吸热反应。结晶熔化、蒸发、升华、化学吸附、脱结晶水、二次相变(如高聚物的玻璃化转变)、气态还原等。 (2)发生放热反应。气体吸附、氧化降解、气态氧化(燃烧)、爆炸、再结晶等。(3)发生放热或吸热反应。结晶形态转变、化学分解、氧化还原反应、固态反应等。 用DTA方法分析上述这些反应,不反映物质的重量是否变化,也不论是物理变化还是化学变化,它只能反映出在某个温度下物质发生了反应,具体确定反应的实质还得要用其他方法(如光谱、质谱和X光衍射等)。 由于DTA测量的是样品和基准物的温度差,试样在转变时热传导的变化是未知的,温差与热量变化比例也是未知的,其热量变化的定量性能不好。在DTA基础上增加一个补偿加热器而成的另一种技术是差示扫描量热法。简称DSC(Differential Scanning Calorimetry)。因此DSC直接反映试样在转变时的热量变化,便于定量测定。 DTA、DSC广泛应用于: (1)研究聚合物相转变,测定结晶温度T c、熔点T m、结晶度X D。结晶动力学参数。(2)测定玻璃化转变温度T g。 (3)研究聚合、固化、交联、氧化、分解等反应,测定反应热、反应动力学参数。 一、目的要求: 1.了解DTA、DSC的原理。 2.掌握用DTA、DSC测定聚合物的T g、T c、T m、X D。 二、基本原理: 1.DTA 图(11-1)是DTA的示意图。通常由温度程序控制、气氛控制、变换放大、显示记录等部分所组成。比较先进的仪器还有数据处理部分。温度程序控制是使试样在要求的温度范围内进行温度控制,如升温、降温、恒温等,它包括炉子(加热器、制冷器等)、控温热电偶和程序温度控制器。气氛控制是为试样提供真空、保护气氛和反应气氛,它包括真空泵、充气钢瓶、稳压阀、稳流阀、流量计等。交换器是

相关主题
文本预览
相关文档 最新文档