当前位置:文档之家› 超高分子量聚乙烯生产工艺的评述

超高分子量聚乙烯生产工艺的评述

超高分子量聚乙烯生产工艺的评述
超高分子量聚乙烯生产工艺的评述

学号:

广东石油化工学院

课程论文

超高分子量聚乙烯生产工艺的评述

学院:化工与环境工程专业:高分子材料与工程班级:高分子10-2 学生:教师:

完成时间:2013 年 6 月16 日

超高分子量聚乙烯生产工艺的评述

高分子10-2 杜龙飞学号:10014010216

摘要:超高分子量聚乙烯(UHMW-PE)是一种线型结构的具有优异综合性能的热塑性工程塑料。它的平均分子量约35万~800万,因分子量高而具有其它塑料无可比拟的优异的耐冲击、耐磨损、自

润滑性、耐化学腐蚀等性能,卫生安全、抗冲击性能在所有塑料中为最高值,并可长期在-169至+80℃

条件下工作,被称为"令人惊异"的工程塑料,而且,超高分子量聚乙烯(UHMW-PE)耐低温性能优异,

在-40℃时仍具有较高的冲击强度,甚至可在-269℃下使用。

关键词:超高分子量聚乙烯性能结构用途反应机理

1 引言

超高分子量聚乙烯是一种性能优良的工程塑料, 广泛应用于化学工业、食品和饮料加工机械、铸件、木材加工工业、散装材料处理、医疗上的人工移植器官、采矿加工机械、纺织机械及交通运输车辆、体育娱乐设备等领域。它的分子结构与普通聚乙烯的基本相同, 但分子量却高达100万以上, 因而具有不同于普通聚乙烯的一些特殊性能, 其中最显著的应用特性就是能代替钢材, 用来制作管材、化工阀门、泵和密封填料、纺织机械的齿轮和皮结、输送机的蜗轮杆、轴承、轴瓦、煤块滑道、各种料斗和筒仓的衬里材料以及食品加工机械的料斗和辊筒、体育用品和溜冰场等, 超高分子量聚乙烯的耐磨性比钢材好, 价格却比钢材低川, 因而受到人们的关注和欢迎。

超高分子量聚乙烯是乙烯等烯烃单体通过淤浆聚合工艺而成,其粘均分子量大于120万,产品外观为白色粉末。

2 超高分子量聚乙烯的生产方法和工艺

目前世界各公司均在采用的低压聚合工艺,超高分子量聚乙烯是由乙烯聚合而成, 其合成反应式如下:

超高分子量聚乙烯的生产过程与普通高密度聚乙烯的生产过程相类似, 都是采用齐格勒催化剂在一定条件下使乙烯聚合的。也就是说, 只要采用齐格勒催化剂并在适当的工艺条件下即可制得超高分子量聚乙烯。

现在,世界上生产超高分子量聚乙烯的各公司均采用齐格勒系催化剂的低压聚合工艺生产超高分子量聚乙烯。该工艺与高密度聚乙烯的低压淤浆法工艺十分相近, 负载型齐格勒系高效催化剂也比过去更能使催化效率大为提高, 并使聚合工艺得以简化, 从

而使装置投资和生产操作费用大幅度降低, 使超高分子量聚乙烯的价格成为热塑性工程塑料中最低廉的一种。超高分子量聚乙烯的生产工艺与低压淤浆法高密度聚乙烯的生产工艺不同之处仅仅在后阶段工艺上超高分子量聚乙烯生产工艺没有造粒工序, 产品呈粉末状。关于超高分子量聚乙烯生产工艺流程, 在国外杂志上尚未见发表过川。根据国内超高分子量聚乙烯生产工艺并结合国外低压浆法高密度聚乙烯生产工艺, 推测出国外超高分子量聚乙烯专门生产装置的生产工艺流程可能(如图1所示.)

2.2 催化剂的制备

将负载型齐格勒催化剂( 如氯化镁或乙氧基镁上载有TiCl4催化剂) 烷铝 如三乙基铝 己烷溶剂配至一定浓度后用泵打人聚合釜。

2.3 聚合

将高纯度乙烯、氢气、催化剂连续不断地加人聚合反应器中, 在80 ℃及0.98MPa 条件下进行淤浆聚合(时间4h), 聚合热采用聚合釜夹套冷却及气体外循环方式除去。聚合物的分子量通过高速工业气相色谱仪对聚合釜中气相乙烯和氢的成分进行自动测定来控制,然后用微型电子计算机进行氢 烯比值的计算, 并将计算结果作为进聚合釜氢流量调节的给定值, 从而实现工业色谱的闭环控制。通过调节聚合釜的各条件(或通过特种催化剂)来控制聚合物的分子量分布。得到的聚合物浆液靠本身的压力压到闪蒸釜中, 将溶解于溶剂中的少量未反应的乙烯在闪蒸釜中分离出来, 由压缩机升压后返回聚合釜。

2.4 分离及干燥

聚合工段送来的淤浆由离心机分离成滤饼和母液, 滤饼经汽提后在蒸汽转筒干燥器 闪蒸干燥器、沸腾床干燥器 干燥成粉末, 干燥后的粉末状聚合物用氮气输送到粉末料斗中。离心机分离出来的母液一部分循环至聚合釜, 余下的经汽提后送至溶剂回收工段。从干燥器出来的气体进人洗涤塔用己烷洗涤, 经冷却器冷却, 回收气体中的少量己烷后循环使用。

2.5 分筛、掺混和包装

超高分子量聚乙烯粉末进人分筛机, 按粒径尺寸分成几种不同的规格, 不同粒径规格的超高分子量聚乙烯粉末用氮气输送到各自的粉末料仓。超高分子量聚乙烯粉末从料仓经计量器计量后进人掺混机, 与进人掺混机的各种添加剂相混合。掺混后的超高分子量聚乙烯(或未经掺混的超高分子量聚乙烯)粉末经风送到包装料斗, 再经包装机包装作为成品出厂。

2.6 溶剂回收

从分离干燥工段来的溶剂己烷, 加入少量碱液中和并用水洗去除杂质, 再通过己烷汽提塔分离成低分子量聚合物(低聚物)和己烷, 低聚物在熔融状态下, 从塔底排出。从塔顶出来的己烷在己烷脱水塔中除去水分, 再经分子筛、己烷干燥器进一步脱除微量水分后, 供催化剂和聚合工段使用。

2.6 低聚物处理

低聚物贮槽中熔融状低聚物经切片机切成片状后送至界区外, 另行处理和使用。

2.7 性能

虽然超高分子量聚乙烯在结构上与均普通聚乙烯相同,但由于超高分子量聚乙烯的相对分子质量比一般聚乙烯要高得多(普通聚乙烯相对分子质量一般为2万一30万,而超高分子量聚乙烯—般为200万以上),因此便赋与它许多普通聚乙烯所没有的优良性能,下面逐一介绍:

2.7.1 优良性能

(1)耐磨损性能超高分子量聚乙烯的耐磨损性能居塑料之首,比碳钢、黄铜还耐磨数倍。图2—l表示在沙浆磨损法测试下,超高分子量聚乙烯的磨损性能与其他材料的磨损性能比较结果。试验条件为:沙浆由2份水、3份沙组成;试件的转速900r/min;运转时间7h。

(2)冲击性能超高分子量聚乙烯的冲击强度是现有塑料中的最高值,即使在—70摄氏度时仍有相当高的冲击强度。图2—2为超高分子量聚乙烯的冲击强度与其他几种常见工程塑料的冲击强度比较。

(3)自润滑超高分子量聚乙烯具有很好的自润滑件能,摩擦系数小,它的摩擦系数可以和聚四氟乙烯(PTF相媲美,如表2—1所示:与钢、铜配对使用时不易产生粘着磨损,并且对配偶件磨损小:

(4)吸水性超高分子量聚乙烯的吸水量在工程塑料中是最小的,如表2—2所水。这是出于超高分子量聚乙烯的分子链仅由碳氢元素组成,分子中无极性基团所以吸水度极低。出此制品即使足够潮湿的环境个也不会因吸水而使尺寸发生变化,同时也不会影响制品的精度和耐磨性等机械性能,并且在成型加工前原料也不需要干燥处理。

2.7.2 超高分子量聚乙烯常用性能指标

表2-3是超高分子量聚乙烯常见物理、机械性能、热性能以及电性能等指标。

(1)耐化学药品性能超高分子量聚乙烯具有优良的耐化学药品性能,在一定温度、浓度范围内许多腐蚀性介质(酸、碱、盐)及有机溶剂也对它也无可奈何。这是由于超高

分子量聚乙烯在分子结构上没有官能团,而且几乎没有支链和双键以及结晶度高等因素的缘故。但它在浓硫酸、浓盐酸、浓硝酸、卤化烃以及芳香焊等溶剂中不稳定.并且随着温度方向氧化速度加快。

(2)卫生无毒超高分子量聚乙烯卫生无毒,符合日本协会标准,并得到美国食品及药物行政管理局和美国农业部的认证,能够直接接触食品和药品。

(3)不粘附件超高分子量聚乙烯表面吸附力很小,其抗粘附能力仅次于塑料中不粘性最好的聚四氟乙烯,制品表面不易帖附异物。

(4)耐低温性超高分子量聚乙烯具有非常优良的低温性能,在所有材料中是最佳的,即使在液态氯温度(—269℃)下仍有一定冲击强度和耐磨性。所以用于低温部件、管道以及核工业等极低温情况。超高分子量聚乙烯还具有优良的电绝缘性能、减振吸收冲击能大、应力集中小等优点。超高分子量聚乙烯的耐候性也很优良,励候性主要是耐紫外线照射能力。影响超高分子量聚乙烯耐候件的主要因素是分子链中不饱和基团的种类、数量和相对分子质量等。相对分子质量中的不饱和基团(特别是反式次亚乙烯基和亚乙烯基等)越少、相对分子质量越大,则耐候性越好。

3 影响因素

测试制品的相对分子质量可以反映超高分子量聚乙烯成型加工工艺上的各个参数选择是否合理,主要验证的工艺参数有:抗氧剂种类选择的合理性、烧结温度的高低、烧结时间的长短、压力的大小以及冷却速率等等。抗氧剂有利于防止超高分子量聚乙烯氧化降解;烧结温度高烧结速率快,节省加热时间,但温度不能过高,若温度过高则将出现明显降解,降低超南分子量聚乙烯的性能;同样,烧结时间短会出现制品中间存有生料,但若烧结时间过长也会使超高分子量聚乙烯降解;制品的冷却速度虽然不会使超向分子量聚乙烯降解,但是若冷却速率过快会降低制品的结品度,影响其机械性能和耐磨性等。

4 结语

近年来, 随着超高分子量聚乙烯在开发应用方面的研究进展, 超高分子量聚乙烯的优异特性已逐渐被人们所认识, 它的应用范围也越来越广泛了。2003年普通高密度聚乙烯的价格在6 00 一7 0 0元八之间, 而超高分子量聚乙烯的价格在10 00 元/t 左右, 两者成本相当, 销售价格却不同, 可见生产超高分子量聚乙烯的经济效益比生产普通高密度聚乙烯要好。可以预计, 随着加工技术的发展和应用领域的不断开发, 超高分子量聚乙烯的消费量将不断增加, 发展将十分迅速, 因此, 超高分子量聚乙烯的生产制备和应用也必将成为人们关注的重点。

参考文献

许长青主编.合成树脂及塑料手册.北京:化学工艺出版社1995. 6

刘广剑 .超高分子量的改性·模压成型工艺及其承载能力的研究.

刘广剑. 改性超高分子量聚乙烯的性能及应用 .煤矿机械 1997 .7

李志良等 .超高分子量聚乙烯的性能、加工及应用 . 现在化工与应用 . 1986.5;1~10 石安福等. 超高分子量聚乙烯的性能、成型加工及应用塑料科技1987 . 1;12~19

超高分子量聚乙烯(UHMWPE)-化学化工论坛

超高分子量聚乙烯(UHMWPE)是一种综合性能优异的新型热塑性工程塑料,它的分子结构与普通聚乙烯(PE)完全相同,但相对分子质量可达(1-4)×106。随着相对分子质量的大幅度升高,UHMWPE表现出普通PE所不具备的优异性能,如耐磨性、耐冲击性、低摩擦系数、耐化学性和消音性等。 由于UHMWPE分子链很长,易发生链缠结,熔融时熔体黏度高达108Pa?s,熔体流动性差且临界剪切速率很低,因此容易导致熔体破裂,使其成型加工困难。为改善UHMWPE 的加工成型性能,需要对其流动性进行改性,而物理改性是主要的手段。 1UHMWPE的物理改性 物理改性不改变分子构型,但可以赋予材料新的性能。目前常用的物理改性方法主要有1)将UHMWPE与低熔点、低黏度的树脂共混改性;(2)加入流动改性剂,以降低UHMWPE 的熔体黏度,改善其加工性能,使之能在普通挤出机和注射机上加工;(3)液晶高分子原位复合材料改性等。 1.1共混改性 共混改性是改善UHMWPE熔体流动性最有效、简便的途径。共混时所用的第二组分主要是指低熔点、低黏度的树脂,如低密度聚乙烯(LDPE)、高密度聚乙烯(HDPE)、聚丙烯(PP)、聚酰胺(PA)、聚酯等。目前使用较多的是HDPE和LDPE。当共混体系被加热到熔点以上时,UHMWPE就会悬浮在第二组分的液相中,形成可挤出、可注射的悬浮体物料。 将UHMWPE与LDPE(或HDPE)共混可使其成型加工性能获得显著改善。但共混体系在冷却过程中会形成较大的球晶,球晶之间有明显的界面。在这些界面上存在着由分子链排布不同引起的内应力,由此会导致产生裂纹,所以与基体聚合物相比,共混物的拉伸强度有所下降。当受外力冲击时,裂纹会很快沿球晶界面发展而断裂,引起冲击强度降低。为保持共混体系的力学性能,可以采用加入适量成核剂,如硅灰石、苯甲酸、苯甲酸盐、硬脂酸盐、己二酸盐的方法阻止其力学性能下降。 Dumoulin等对UHMWPE与中相对分子质量聚乙烯(MMWPE)的共混物进行了研究。在双辊混炼温度175℃,混炼时间10min;密炼温度185-200℃,密炼时间10min的条件下,制备了UHMWPE含量小于或等于6%(质量分数,以下同)的共混物。在上述条件下制备的共混物的流变性能得到极大改善。 Veda等对UHMWPE与MMWPE的共混物进行了研究。结果表明,UHMWPE与MMWPE 在给定条件下能共结晶。但加入MMWPE后,共混物的冲击性能、耐磨性能有所下降。为保持力学性能,在共混体系中加入成核剂。 专利介绍了一种UHMWPE共混改性方法。将70%的UHMWPE与30%的PE共混,用共混物挤出的制品拉伸强度为390MPa,断裂伸长率为290%,用带缺口试样进行Izod冲击试验时,试样不断裂。 专利报道,将79.18%的UHMWPE(相对分子质量3.5×106),19.19%的普通PE(相对分子质量6.0×105),0.13%的成核剂(热解硅石,粒径5-50μm,表面积100-400m2/g)熔融混合,所得共混物可在普通注射机上成型,产品的抗冲击性、耐磨性等物理机械性能优于不加成核剂的共混物。 Vadhar等对UHMWPE与线型低密度聚乙烯(LLDPE)共混物进行了研究。采用同步和顺序投料方式,在密炼机、混料机中制备UHMWPE与LLDPE共混物。同步投料即在密炼温度180℃时,将两种组分同时加入密炼机内混炼;顺序投料即在250℃时先将UHMWPE树脂加入混料机中混炼,然后将其冷却到180℃,再加入LLDPE继续混炼。 实验结果表明,投料方式对共混物的流变性能和力学性能影响极大。差示扫描量热及小角激光散射图像分析仪分析表明,顺序投料方式制备的共混物中,UHMWPE和LLDPE组分之间发生共结晶现象而且两种组分的混合均匀程度优于同步投料方式制备的共混物。由于

生产工艺流程图及说明

(1)电解 本项目电解铝生产采用熔盐电解法:其主要生产设备为预焙阳极电解槽,项目设计采用大面六点进电SY350型预焙阳极电解槽。铝电解生产所需的主要原材料为氧化铝、氟化铝和冰晶石,原料按工艺配料比例加入350KA 预焙阳极电解槽中,通入强大的直流电,在945-955℃温度下,将一定量砂状氧化铝及吸附了电解烟气中氟化物的载氟氧化铝原料溶解于电解质中,通过炭素材料电极导入直流电,使熔融状态的电解质中呈离子状态的冰晶石和氧化铝在两极上发生电化学反应,氧化铝不断分解还原出金属铝——在阴极(电解槽的底部)析出液态的金属铝。 电解槽中发生的电化学反应式如下: 2323497094032CO Al C O Al +?-+℃ ℃直流电 在阴极(电解槽的底部)析出液态的金属铝定期用真空抬包抽出送往铸造车间经混合炉除渣后由铸造机浇铸成铝锭。电解过程中析出的O 2同阳极炭素发生反应生成以CO 2为主的阳极气体,这些阳极气体与氟化盐水解产生的含氟废气、粉尘等含氟烟气经电解槽顶部的密闭集气罩收集后送到以Al 2O 3为吸附剂的干法净化系统处理,净化后烟气排入大气。被消耗的阳极定期进行更换,并将残极运回生产厂家进行回收处置。吸附了含氟气体的截氟氧化铝返回电解槽进行电解。 电解槽是在高温、强磁场条件下连续生产作业,项目设计采用大面六点进电SY350型预焙阳极电解槽,是目前我国较先进的生产设备。电解槽为6点下料,交叉工作,整个工艺过程均自动控制。电解槽阳极作业均由电解多功能机组完成。多功能机组的主要功能为更换阳极、吊运出铝抬包出铝、定期提升阳极母线、打壳加覆盖料等其它作业。 (2)氧化铝及氟化盐贮运供料系统 氧化铝及氟化盐贮运系统的主要任务是贮存由外购到厂的氧化铝和氟化盐 ,并按需要及时将其送到电解车间的电解槽上料箱内。

超高分子量聚乙烯的特性

超高分子量聚乙烯的特性 1、极高的耐磨特性超高管的分子量高达200万以上,磨耗指数最小, 使它具有极高的抗滑动摩擦能力。耐磨性高于一般的合金钢6.6倍,不锈钢的27.3倍。是酚醛树脂的17.9倍,尼龙六的6倍,聚乙烯的4倍,大幅度提高了管道的使用寿命。 2、极高的耐冲击性在现有的工程塑料中超高分子量管道的冲击韧性 值最高,许多材料在严重或反复爆炸的冲击中会裂纹、破损、破碎或表面应力疲劳。本产品按GB1843标准,进行悬臂梁冲击实验达到无破损,可承受外力强冲击、内部超载、压力波动。 3、耐腐蚀性UHMW-PE是一种饱和分子团结构,故其化学稳定性极高,本 产品可以耐烈性化学物质的侵蚀,除对某些强酸在高温下有轻微腐蚀外,在其它的碱液、酸液中不受腐蚀。可以在浓度小于80%的浓盐酸中应用,在浓度小于75%的硫酸、浓度小于20%的硝酸中性能相当稳定。 4、良好的自润滑性由于超高分子量聚乙烯管内含蜡状物质,且自身 润滑很好。摩擦系数(196N,2小时)仅为0.219MN/m(GB3960)。自身滑动性能优于用油润滑的钢或黄铜。特别是在环境恶劣、粉尘、泥沙多的地方,本品的自身干润滑性能更充分的显示出来。不但能运动自如,且保护相关工件不磨损或拉伤。 5、独特的耐低温性超高分子量聚乙烯管道耐低温性能优异,其耐冲 击性、耐磨性在零下269摄氏度时基本不变。是目前唯一可在接近绝对零度的温度下工作的一种工程塑料。同时,超高分子量聚乙烯管道的适温性宽,可长期在-269℃到80℃的温度下工作。 6、不易结垢性超高分子量聚乙烯管由于摩擦系数小和无极性,因此具 有很好的表面非附着性,管道光洁度高。现有的材料一般在PH值为9以上的介质中均结垢,超高分子量聚乙烯管则不结垢,这一特性对火电站用于排粉煤灰系统有重大意义。在原油、泥浆等输送管道方面也非常适用。 7、寿命长超高分子量聚乙烯分子链中不饱和基因少,抗疲劳强度大于50 万次,耐环境应力开裂性最优,抗环境应力开裂>4000h ,是PE100的2倍以上 ,埋地使用50年左右,仍可保持70%以上的机械性能。 8、安装简便超高分子量聚乙烯(UHMW----PE)管道单位管长比重仅为 钢管重量的八分之一,使装卸、运输、安装更为方便,且能减轻工人的劳动强度,UHMW-PE管道抗老化性极强,50年不易老化。不论地上架设,还是地下埋设均可。安装时无论是焊接或者是法兰连接均可,安全可靠、快捷方便、无需防腐、省工省力,充分体现出使用超高分子量聚乙烯管道“节能、环保、经济、高效”的优越性。

超高分子量聚乙烯纤维的发展

超高分子量聚乙烯纤维的发展 在总结阐述超高分子量聚乙烯纤维概念、用途的基础上,分析其在国内外不同国家的发展与应用现状,并重点阐释其在我国的产生、发展历程及取得的巨大成果;对世人了解我国超高分子量聚乙烯纤维发展状况,具有重要的释疑意义。 1超高分子量聚乙烯纤维概述 超高分子量聚乙烯纤维是继碳纤维和芳纶纤维之后的世界第三代高强、高模、高科技的特种纤维。超高分子量聚乙烯纤维在水中的自由断裂长度可以延伸至无限长,而在相同粗细的情况下,超高分子量聚乙烯纤维能承受8倍于钢丝绳的最大质量,在军事、工业、航空、航天等领域均有重要应用。超高分子量聚乙烯纤维最重要的功能就是能够起到防弹、防刺的作用,用其制作的防弹衣质量、强度与传统的防弹衣相比都要轻得多,强度也高很多。超高分子量聚乙烯纤维若按质量计算其强度,要比芳纶高出40%,可以称之为当今世界上强度最高的聚乙烯纤维。在世界三大特种纤维中,超高分子量聚乙烯纤维质量最轻,化学稳定性也最好,而且具有耐磨、耐弯曲性能、张力疲劳性能以及抗切割性能。但超高分子量聚乙烯纤维在世界上也属于稀缺物资,其生产技术难度是很大的,目前,在国际上只有美国、荷兰、日本的三家化工公司能够进行工业化生产,而国内年产量则较少,多存在装置规模小等问题。据预测,在未来10年,世界对超高分子量聚乙烯纤维的年需求量将达到20万吨以上,市场发展潜力巨大。在我国,其已被列为国家"十一五"期间重点研发产品。 2国外超高分子量聚乙烯纤维生产与发展现状 1)超高分子量聚乙烯纤维在荷兰的发展 荷兰帝斯曼公司是世界上生产迪尼玛品牌高性能聚乙烯纤维的最大厂商。该公司于2006年在美国北卡罗来纳州建成并投产了高强聚乙烯纤维迪尼玛的生产线,这是该公司的第三次扩产扩能,这就使该公司生产超高分子量聚乙烯纤维的生产线数量达到了9条。自此,其在全球的迪尼玛纤维生产能力提高了约18%,达到了4700吨/年。而主要应用于单向防弹板制作的此类纤维生产能力则提高25%,达到了2500吨/年。目前,北卡罗来纳州的格里维尔装置可以向全球用户生产供应这种纤维,但必须首先满足美国军事工业的需要。世界对该种纤维的需求正在快速的增长。 2)超高分子量聚乙烯纤维在美国、日本等国家的发展

超高分子量聚乙烯特性

超高分子量聚乙烯英文名ultra-high molecular weight polyethylene(简称UHMWPE),是分子量100万 以上的聚乙烯。 分子式:—(—CH2-CH2—)—n—,密度:0.936~0.964g/cm3。热变形温度 (0.46MPa)85℃,熔点130~136℃。 UHMWPE性质特点为:极好的耐磨性,良好的耐低温冲击性、自润滑性、无毒、耐水、耐化学药品性,耐热性优于一般PE,缺点是耐热性(热变形温度)低、加工成型性差,外表面硬度,刚性,耐蠕变性不如一般工程塑料,膨胀系数偏大。UHMWPE流动性差,熔融状态下粘度极高,是呈橡胶状的高粘弹性体,早期仅能用压制和烧结方法成型,目前也可用挤出、注塑和吹塑方法加工。 特殊功能 机械性能高于一般的高密度聚乙烯。具有突出的抗冲击性、耐应力开裂性、耐高温蠕变性、低摩擦系数、自润滑性,卓越的耐化学腐蚀性、抗疲劳性、噪音阻尼性、耐核辐射性等。 使用温度100~110℃。耐寒性好,可在-269℃下使用。密度0.985g/cm3,分子量200万的产品,其断裂拉伸强度40MPa,断裂伸长率350%,弯曲弹性模量600MPa,悬臂梁缺口冲击冲不断。磨耗量(MPC法)20mm。 应用领域 UHMWPE可以代替碳钢、不锈钢、青铜等材料用于纺织、造纸、食品机械、运输、医疗、煤矿、化工等部门。如纺织工业上技梭器、打梭棒、齿轮、联结、扫花杆、缓冲块、偏心块、杆轴套、摆动后果等耐冲击磨损零件。造纸工业上做箱盖板、刮水板、压密部件、接头、传动机械的密封轴杆、偏导轮、刮刀、过滤器等;运输工业上做粉状材料的料斗、料仓、滑槽的衬里。

生产工艺流程图和工艺描述

生产工艺流程图和工艺描述 香肠工艺流程图 辅料验收原料肉验收 原料暂存肥膘解冻 精肉解冻水切丁辅料暂存分割热水漂洗1 漂洗2 加水绞肉 肠衣验收、暂存(处理)灌装、结扎 (包括猪原肠衣和蛋白肠衣) 咸水草、麻绳验收、暂存浸泡漂洗3 冷却 内包装 装箱、入库 出货

香肠加工工艺说明 加工步骤使用设备操作区域加工工艺的描述与说明 原料肉验收、暂存化验室、仓库 按照原料肉验收程序进行,并要求供应商 提供兽药残留达标保证函及兽医检疫检 验证明 辅料验收、暂 存 化验室、仓库按验收规程进行验收肥膘验收、暂 存 化验室、仓库按验收规程进行验收肠衣验收化验室按验收规程进行验收 肠衣处理腊味加工间天然猪肠衣加工前需用洁净加工用水冲洗,人造肠衣灌装前需用洁净加工用水润湿 咸水草、麻绳 验收 化验室按验收规程进行验收暂存仓库 浸泡腊味加工间咸水草、麻绳加工前需用洁净加工用水浸泡使之变软 解冻解冻间肉类解冻分 割间 ≤18℃、18~20h恒温解冻间空气解冻 分割分割台、刀具肉类解冻分 割间 将原料肉筋键、淋巴、脂肪剔除、并分割 成约3cm小肉块 加工步骤使用设备操作区域加工工艺的描述与说明 漂洗2 水池肉类解冻分 割间 加工用水漂洗,将肉的污血冲洗干净 绞肉绞肉机肉类解冻分 割间 12℃以下,采用Φ5mm孔板 肥膘切丁切丁机肉类解冻分 割间 切成0.5cm长的立方

漂洗1 水池肉类解冻分 割间 水温45-60℃,洗去表面游离油脂、碎肉 粒 灌装、结扎灌肠机香肠加工间按产品的不同规格调节肠体长度,处理量800~1200kg/h ,温度≦12℃ 漂洗3 水池香肠加工间水温45~60℃,清洗肠体表面油脂、肉碎 冷却挂肠杆预冷车间12℃下冷却0.5~1小时,中心温度≦25℃ 内包装真空机、电子 秤、热封口机 内包装间 将待包装腊肠去绳后按不同规格称重,装 塑料袋、真空包装封口 装箱、入库扣扎机、电子 秤 外包装间、成 品仓库 将真空包装的产品装彩袋封口,按不同规 格装箱、核重、扣扎放入成品库并挂牌标 识。

超高分子量聚乙烯耐磨材料的综述报告

超高分子量聚乙烯(UHMWPE)耐磨材料的综述报告 超高分子量聚乙烯,英文名称Ultra-High Molecular Weight Polyethylene (简称UHMWPE ),是一种线型结构的具有优异综合性能的热塑性工程塑料,它的分子结构和普通聚乙烯完全相同,在分子主链上带有(-CH 2-CH 2-)的链节,并具有106以上极大的分子量。因其相对于其它工程材料而言,具有优异的耐磨性、自润滑性和耐冲击性等独特性能而广泛应用于通用机械、农业机械、纺织机械、汽车、采矿、造纸、化工、食品工业等作不粘、耐磨、低噪音和自润滑部件等领域。此外还可用作特种薄膜、大型容器、大型异形管材和板材等,用于货物装卸溜槽、漏斗、货仓的衬里。1.UHMWPE 的基本性能 超高分子量聚乙烯一般是指相对分子质量在 100万以上的聚乙烯,德国生 产的超高分子量聚乙烯相对分子质量早已高达1000万以上。它具有以下优点:(1)耐磨损非常卓越,砂浆磨损试验表明,比一般碳钢和铜等金属要耐磨数倍、 比尼龙耐磨 4倍;(2)冲击强度极高,比 PA6和 PP 大 10倍;(3)能吸收震动冲击和防噪声;(4)摩擦系数很低,远较尼龙及其他塑料为小,能润滑;(5)不易粘附异物,滑动时有极优良的抗粘着特性;(6)耐化学腐蚀,病可屏蔽原子辐射;(7)工作温度范围可自 - 265℃到 +100℃,低温到 - 195℃时,仍能保持很好的韧性和强度,不致脆裂;(8)无毒性、无污染、可再循环回收利用,和其他塑料相比有良好的热稳定性和不吸水性,能保持尺寸精度不变形;(9)成本低廉。因此在工程塑料中超高分子量聚乙烯是综合性能最佳的工程塑料,它几乎集中了各种塑料的优点。事实上,目前还没有一种单纯的高分子材料兼有如此众多的优异性能。但它也有不足之处,主要在于耐温性能差、硬度低、拉伸强度低以及阻燃性能差等。2.UHMWPE 历史发展概况及现状评述 上世纪30年代最早有人提出关于超高分子量聚乙烯纤维的基础理论,随后凝胶纺丝法和增塑纺丝法的出现使超高分子量聚乙烯在技术上取得重大突破,、管路敷设技术通过管线敷设技术不仅可以解决吊顶层配置不规范高中资料试卷问题,而且可保障各类管路习题到位。在管路敷设过程中,要加强看护关于管路高中资料试卷连接管口处理高中资料试卷弯扁度固定盒位置保护层防腐跨接地线弯曲半径标高等,要求技术交底。管线敷设技术中包含线槽、管架等多项方式,为解决高中语文电气课件中管壁薄、接口不严等问题,合理利用管线敷设技术。线缆敷设原则:在分线盒处,当不同电压回路交叉时,应采用金属隔板进行隔开处理;同一线槽内,强电回路须同时切断习题电源,线缆敷设完毕,要进行检查和检测处理。、电气课件中调试对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料试卷相互作用与相互关系,根据生产工艺高中资料试卷要求,对电气设备进行空载与带负荷下高中资料试卷调控试验;对设备进行调整使其在正常工况下与过度工作下都可以正常工作;对于继电保护进行整核对定值,审核与校对图纸,编写复杂设备与装置高中资料试卷调试方案,编写重要设备高中资料试卷试验方案以及系统启动方案;对整套启动过程中高中资料试卷电气设备进行调试工作并且进行过关运行高中资料试卷技术指导。对于调试过程中高中资料试卷技术问题,作为调试人员,需要在事前掌握图纸资料、设备制造厂家出具高中资料试卷试验报告与相关技术资料,并且了解现场设备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。、电气设备调试高中资料试卷技术电力保护装置调试技术,电力保护高中资料试卷配置技术是指机组在进行继电保护高中资料试卷总体配置时,需要在最大限度内来确保机组高中资料试卷安全,并且尽可能地缩小故障高中资料试卷破坏范围,或者对某些异常高中资料试卷工况进行自动处理,尤其要避免错误高中资料试卷保护装置动作,并且拒绝动作,来避免不必要高中资料试卷突然停机。因此,电力高中资料试卷保护装置调试技术,要求电力保护装置做到准确灵活。对于差动保护装置高中资料试卷调试技术是指发电机一变压器组在发生内部故障时,需要进行外部电源高中资料试卷切除从而采用高中资料试卷主要保护装置。

产品生产工艺说明

单体支柱及铰接顶梁产品说明 1、单体支柱加工工艺: 我们公司生产的单体液压支柱加工系统主要为: A: 热处理采用中频炉调质。优点是通过这种加工工艺能够保证整个油缸、活柱、柱头硬度均匀,保持每个点都在图纸要求之内。B: 油缸内孔和活柱的外表面均采用滚挤压。这种加工工艺能够保证加工表面的加工精度,致密性更强,有利于增强电镀的附着力。80%的工艺采用数控车床加工来保证精度和同轴度。 C:焊接:我们油缸体的焊接采用摩擦焊,优点是要比普通焊接强度焊接工艺高2倍以上。 D:电镀:电镀工艺采用的是美国化学沉积技术,该技术防腐能力是其它电镀工艺的3倍以上。 E、密封件采用具有专利技术的高分子密封件。 F: 表面的防腐处理是喷塑,表面美观且是永久性防腐处理。 执行标准:MT112.1-2006 型号额定工 作阻力 KN 额定工 作压力 MPa 初撑力 KN 泵站压 力MPa 最大高 度mm 最小高 度mm 行 程 mm 无液 重量 kg DW28 250 31.8 118-158 15-20 2800 2000 800 73.5 2、三用阀 三用阀是外注式单体支柱的心脏,支柱靠它的单向阀完成升柱和初撑,靠卸载阀完成支柱的回收,安全阀实现恒定不变的工作阻力并在支柱过载时保护支柱不致损坏。

执行标准:MT112-1993 序号项目单位达到指标备注 1 额定工作压力MPa 25-50 对高支柱,额定工作液压还可调低。 2 安全阀允许最大流 量 L/min 3 ZF00型最大流量 为16L/min 3 使用工作液体含M10、1%-2%的乳化液 4 卸载力矩N.m ≤100 5 卸载方式手动近距离或远距离卸载 ①、三用阀:是我们公司自己生产的,左右阀筒、阀体、阀套都经过严格的热处理。只有在我们的监管之下生产出来的产品才能有质量保证,而其它的厂家三用阀都是采购的,对质量保证无法控制。 3、产品材质: 我们公司生产的单体液压支柱采用的材质是严格按照煤炭部(MT112.1-2006)标准27SiMn管材。主要采购厂家为:一、上海宝钢;二、西宁特钢。 4、铰接顶梁的工艺改造 ⑴、在使用时多多少少有接头与梁体开焊问题,左右耳板开焊问题。 ⑵、改进后的工艺: 加大梁体与耳板、接头的接触面积。增大了强度。正常的破坏试验改进前是60吨,改进后75吨。梁体采用高频淬火处理工艺,处理均匀,减少弯曲。

超高分子量聚乙烯生产工艺的评述

学号: 广东石油化工学院 课程论文 超高分子量聚乙烯生产工艺的评述 学院:化工与环境工程专业:高分子材料与工程班级:高分子10-2 学生:教师: 完成时间:2013 年 6 月16 日

超高分子量聚乙烯生产工艺的评述 高分子10-2 杜龙飞学号:10014010216 摘要:超高分子量聚乙烯(UHMW-PE)是一种线型结构的具有优异综合性能的热塑性工程塑料。它的平均分子量约35万~800万,因分子量高而具有其它塑料无可比拟的优异的耐冲击、耐磨损、自 润滑性、耐化学腐蚀等性能,卫生安全、抗冲击性能在所有塑料中为最高值,并可长期在-169至+80℃ 条件下工作,被称为"令人惊异"的工程塑料,而且,超高分子量聚乙烯(UHMW-PE)耐低温性能优异, 在-40℃时仍具有较高的冲击强度,甚至可在-269℃下使用。 关键词:超高分子量聚乙烯性能结构用途反应机理 1 引言 超高分子量聚乙烯是一种性能优良的工程塑料, 广泛应用于化学工业、食品和饮料加工机械、铸件、木材加工工业、散装材料处理、医疗上的人工移植器官、采矿加工机械、纺织机械及交通运输车辆、体育娱乐设备等领域。它的分子结构与普通聚乙烯的基本相同, 但分子量却高达100万以上, 因而具有不同于普通聚乙烯的一些特殊性能, 其中最显著的应用特性就是能代替钢材, 用来制作管材、化工阀门、泵和密封填料、纺织机械的齿轮和皮结、输送机的蜗轮杆、轴承、轴瓦、煤块滑道、各种料斗和筒仓的衬里材料以及食品加工机械的料斗和辊筒、体育用品和溜冰场等, 超高分子量聚乙烯的耐磨性比钢材好, 价格却比钢材低川, 因而受到人们的关注和欢迎。 超高分子量聚乙烯是乙烯等烯烃单体通过淤浆聚合工艺而成,其粘均分子量大于120万,产品外观为白色粉末。 2 超高分子量聚乙烯的生产方法和工艺 目前世界各公司均在采用的低压聚合工艺,超高分子量聚乙烯是由乙烯聚合而成, 其合成反应式如下: 超高分子量聚乙烯的生产过程与普通高密度聚乙烯的生产过程相类似, 都是采用齐格勒催化剂在一定条件下使乙烯聚合的。也就是说, 只要采用齐格勒催化剂并在适当的工艺条件下即可制得超高分子量聚乙烯。 现在,世界上生产超高分子量聚乙烯的各公司均采用齐格勒系催化剂的低压聚合工艺生产超高分子量聚乙烯。该工艺与高密度聚乙烯的低压淤浆法工艺十分相近, 负载型齐格勒系高效催化剂也比过去更能使催化效率大为提高, 并使聚合工艺得以简化, 从

酥性饼干生产工艺设计

小麦多肽酥性饼干生产工艺 一、 原料 酥性饼干以小麦粉、糖、油脂为主要原料,加入疏松剂和其他辅料,经冷粉工艺调粉、辊压、辊印或者冲、烘烤制成的造型多为凸花的,断面结构呈现多孔状组织,口感疏松的烘焙食品。所用的原料中,油脂和砂糖的用量较多,在调制面团时,砂糖和油脂用量较多,而加水量较少。在调制面团操作时搅拌时间较短,尽量不使面筋过多地形成,产用凸花无针孔印模成型。成品酥松,一般感觉较厚重,常见的品种有甜饼干、挤花饼干、小甜饼、酥饼/奶油饼干、葱香饼干、芝麻饼干、蛋酥饼等。 二、 工艺流程

三、操作要点 1、酥性饼干的基本配方 酥性饼干配方(单位:g) 酥性饼干专用粉100淀粉糖浆6食盐 白砂糖粉30酥性饼干疏松剂香料适量 淀粉4全脂奶粉4抗氧剂适量 油脂28鸡蛋2 2、面团调制 酥性或甜酥性面团俗称冷粉。要求具有较大程度的可塑性和有限的粘弹性。酥性饼干的原辅料主要为小麦粉、砂糖、起酥油、食盐、碳酸氢钠、碳酸铵、酒石酸、酵母粉、可可粉、转化糖、酸性磷酸钙、色素和香料等。调制酥性面团,在调粉操作前要将面粉以外的原辅材料混合成浆状的混合物(辅料预处理),再与面粉和水混合成面团。对于乳粉、面粉等易结块的原料要预先过筛。在辅料预混时应注意:当脂肪、乳制品较多时应适当添加单甘油磷酸或卵磷脂。 由于面筋的形成是水化作用的结果,所以控制加水量也是控制面筋形成的重要措施之一。加水多的面团容易使面筋形成,为了阻止面筋形成必须缩短调粉时间。软硬的面团,也就是水分少的面团调粉时间可以长一些,面筋既不能形成过度又不能形成不足。在水分又少的情况下,如果调粉时间太短,面团将是松散的团絮状。在糖、油等辅料较少的面团调制时,应减少水的量以抑制面筋的形成,这样的到的面团稍硬一些。在糖、油较多的面团调制时,

球团生产工艺介绍

球团生产工艺介绍 球团生产工艺是一种提炼球团矿的生产工艺,球团与烧结是钢铁冶炼行业中作为提炼铁矿石的两种常用工艺。球团矿就是把细磨铁精矿粉或其他含铁粉料添加少量添加剂混合后,在加水润湿的条件下,通过造球机滚动成球,再经过干燥焙烧,固结成为具有一定强度和冶金性能的球型含铁原料。 一、球团生产工艺的发展 由于天然富矿日趋减少,大量贫矿被采用;而铁矿石经细磨、选矿后的精矿粉,品位易于提高;过细精矿粉用于烧结生产会影响透气性,降低产量和质量;细磨精矿粉易于造球,粒度越细,成球率越高,球团矿强度也越高。综上所述原因,球团生产工艺在进入21世纪后得到全面发展与推广。 如今球团工艺的发展从单一处理铁精矿粉扩展到多种含铁原料,生产规模和操作也向大型化、机械化、自动化方向发展,技术经济指标显著提高。球团产品也已用于炼钢和直接还原炼铁等。球团矿具有良好的冶金性能:粒度均匀、微气孔多、还原性好、强度高,有利于强化高炉冶炼。 二、球团法分类 1、高温固结: (1)氧化焙烧:竖炉、带式机、链篦机-回转窑、环式焙烧机。 (2)还原焙烧:回转窑法、竖炉连续装料法、竖炉间歇装料法、竖罐法、带式机法。(3)磁化焙烧:竖炉法 (4)氧化-钠化焙烧:竖炉法、链篦机-回转窑。 (5)氯化焙烧:竖炉法、回转窑法。 2、低温固结: (1)水泥冷粘结法 (2)热液法 (3)碳酸化法 (4)锈化固结法 (5)焦化固结法 (6)其他方法 三、球团原理 球团生产一般流程:原料准备→配料→混匀(干燥)→造球→布料→焙烧→冷却→成品输出

球团焙烧过程:干燥→预热→焙烧→均热→冷却 四、球团工艺流程图 球团车间平面分布图 新配料料场新配-1 新配-2 新配-3 新配-4 新配-5 老配-2 老配-1 老配料仓 老配-3老配-4 烘干出料 润磨出料 润磨 室 1#烘干室 1#水泵 房办公室休息室 球-4 球-1 造球室 成-1 1#落地仓 1#链板 1#环冷机 1#回转窑 1#链篦机 1#布料 球-3 球-2 返-3 返-2 返-6 返-5 返-4 球-6 2# 布料 2#链篦机2#回转窑 2#环冷机 2# 链板 成-3成-4 2#落地仓 维修区域 维修值班室 球-5 球 -5 转 运站老配料料场 2#水泵房 喷煤系统2# 烘干室 主控楼 北

超高分子量聚乙烯市场分析报告

超高分子量聚乙烯(UHMWPE)市场分析报告 1 国外生产状况 国际市场上,超高分子量聚乙烯(UHMWPE)生产企业主要有德国的Ticona公司、巴西的Polialden公司、荷兰的DSM公司和日本三井化学公司等。其中,Ticona 公司生产能力为11万吨/年(含在中国独资企业产能),Polialden为4.5万吨/年,DSM为1万吨/年,全球总生产能力超过20万吨/年。Ticona公司是全球最大的UHMWPE生产厂,约占全球50%市场份额,可以生产适用于板材、异型材、蓄电池隔板、纤维、过滤器材等各种规格、牌号的产品,种类齐全,并覆盖全球市场。DSM公司的特长是能生产特殊牌号的UHMWPE树脂,如:超细料及纤维料等,并且以自用为主,产品基本不外销。巴西Polialden公司主要是接管了原美国MONTELL的经营业务,发展速度很快,能为用户稳定提供分子量在300万—600万的原料,主要用于生产板材和异型材,占据北美市场。 国外超高分子量聚乙烯的主要生产商见表1。 表1 国外超高分子量聚乙烯的主要生产商及产品牌号 生产厂商(国家树脂牌号(商标 Hostalen GUR Ticon(德国 UTEC)Polialden 巴Stamylan UHDS(荷兰 HI-ZEX MILLION三井化学公司(日本SUNFINE_U旭化成工业公司(日本)SHOREKSPA-5SSIH 昭和油化(日本)

Novatec 三菱工程塑料公司(日本)A-C1200-1232 Allied(美国) LS501 Usi(美国) Marlex 6002 5003 (美国)Phillips公司Ticona德国1.1 Ticona公司是德国化学品集团塞拉尼斯(CELANESE)的工程聚合物业务子公司,生产能力为11万吨/年,可以生产适用于板材、异型材、蓄电池隔板、纤维、过滤器材等各种规格、牌号的产品,注册商标为Hostalen。其主要产品牌号见表2。表2 Ticona公司主要产品牌号 Polialden公司是巴西Braskem公司的下属子公司,于2002年购买了Basell公司的UHMWPE技术,在切换式HDPE装置上生产这种聚合物。2004年,巴西Braskem 公司扩大位于巴西Bahia州Camacari的UHMWPE装置能力,产能从3万吨/年扩增至4.5万吨/年,新增产能于2005年初投用。Braskem公司的主要产品牌号见表3。 表3 Braskem公司的主要产品牌号

超高分子量聚乙烯的性能

超高分子量聚乙烯(UHMWPE)综合了所有塑料的优越性能,其耐冲击、耐磨损、耐化学腐蚀、自身润滑、吸收冲击能这五个特性是目前即存塑料中所具有的最高数值,这种新型塑料制品的杰出性能在欧美各国受到普遍重视。超高分子量聚乙烯树脂是由乙烯、丁二烯单体在催化剂的作用下聚合而成的粘均分子量大于150万~700万的热塑性工程塑料,被称为"神奇的塑料" 。 产品性能 1、机械性能 指标名称单位测试方法指标 密度g/cm3 ASTM1505 0.94 断裂强度MPa D638 42 断裂伸长率% D638 350 简支梁缺口冲击 Kj/m2 D256 ≥100强度 2.热性能: 指标名称单位测度方法指标 融点℃ASTMD2117 136 维卡软化点℃ASTMD1512 134 热膨帐系数10-4/℃ASTMD648 1.5 热变形温度 ℃ASTMD648 90 (4.6kg/cm2) 3.电性能: 指标名称单位测试方法指标 体积电阻系数欧姆.厘米ASTMD257 1017 表面电阻系数欧姆ASTMD257 1013 电介质强度千伏/毫米ASTMD149 900 介电系数106赫芝ASTMD150 2.3 4.耐寒性 高密度聚乙烯分子量超过50万时,脆化温度降至-140℃。超高分子量聚乙烯甚至可以在液氮或液氦下作用,其使用温度可达-269以下℃,仍有一定机械强度。 5. 耐磨性 超高分子量聚乙烯具有极佳的耐磨性,分子量越高,材料的耐磨性越好。 超高与其他材料磨耗对比参数 材料UHME-PE PTFE PA66 聚甲醛45#碳 不锈钢黄钢 钢 0.74 2.31 1.51 3.1 4.02 4.05 16.74 磨损率平 均值 注:耐磨耗性能试验条件: 沙/水=3/2(重要比) 选用16目~24目/时之间建筑用沙,试片转速800转/分,试片尽寸60mm×40mm×3mm,每个试片均磨7小时。 6.超高分子量聚乙稀磨损率比较

超高分子量聚乙烯

超高分子量聚乙烯(UHMW-PE) 超高分子量聚乙烯(UHMW-PE)是一种新型的工程塑料,它几乎集中了各种塑料的优点:耐磨、耐冲击、不易粘附、自润滑、耐腐蚀,吸收冲击能、耐低温、卫生无毒、不易吸水等综合性能,事实上目前还没有一种单纯的高分子材料兼有如此众多的优异性能。 耐磨性:超高分子量聚乙烯的耐磨性在所有的塑料中首屈一指,磨损率比以耐磨著称的聚四氟乙烯还要小。下图是超高分子量聚乙烯与其它材料耐磨性比较,如此高的耐磨性以至于难以用一般的塑料磨耗实验法测试其耐磨程度,因而采用砂浆磨耗测试装置。 砂浆磨耗测试表 抗冲击性:超高分子量聚乙烯的抗冲击强度特别好,韧性高,在所有的塑料中名列前茅。无论是外力强冲击,还是内部压力波动,都难以使其开裂。 自润滑性:超高分子量聚乙烯的摩擦系数小(0.05-0.11),不易与其它物质亲和。有很高的自润滑性和不粘性,仅次于自润滑最好的聚四氟乙烯,因此在磨擦学领域被誉为成本性能非常理想的磨擦材料。

耐化学药品性:超高板材能耐各种酸,碱,盐及有机介质,在80℃的浓盐酸、75%的浓硫酸、20%的硝酸中性能稳定。在其它20℃和80℃的80种有机溶剂中浸渍30天,外表无任何反常现象,其它物理性能也几乎没有变化。 冲击能吸收性:超高分子量聚乙烯的冲击能吸收值在所有的塑料中最高,因而噪声阻尼性很好,具有优良的消音效果。 抗老化性:超高分子量聚乙烯的韧性大,它的耐低温性能非常优异,在-269℃低温下,仍具有一定的延展性,不会脆裂。热变形温度为85℃,使用温度可达90℃。性能稳定,抗老化性好,地面、地下埋没均可,50年不老化。 电性能:体积电阻大,达1017-18SL-CM,击穿电压达50KV/MM,介电常数为2.3。在较宽的温度及频率范围内,适宜用作电气工程的结构材料。 耐低温:超高分子量聚乙烯具有优异的耐低温性能,在液氦温度(-269℃)下仍具有延展性,在液氮中(-196℃)也能保持优异的冲击强度,不脆裂。在所有的塑料中超高分子量聚乙烯的耐低温性能是最优异的。 卫生无毒性:UHMW-PE卫生无毒。在食品加工工业,UHMW的自润滑性、易净化、低气味、味道传递性和耐沸水性得到利用。可用于接触食品和药物,可替代昂贵的不锈钢材料。

超高分子量聚乙烯的合成及应用成型研究

超高分子量聚乙烯的合成及应用成型研究 超高分子量聚乙烯(UHMWPE),是乙烯的线性均聚物,与高密度聚乙烯(HDPE)的结构类似,但平均链长为标准等级HDPE的10~100倍,其分子量一般都在300万以上。它最早由Karl Ziegler合成,具有优良的抗张强度、耐冲击、耐滑移、耐磨、耐化学腐蚀以及自润滑等性能,通过了美国FDA和USDA的认证,广泛应用于化工、机械、食品、医疗、军工、纺织、采矿等行业。 1 聚合工艺 乙烯的聚合主要受聚合温度、压力、催化剂组成及用量、外给电子体和氢气的影响,有高压聚合、气相聚合、淤浆聚合与溶液聚合这几种工艺,然而能用于UHMWPE聚合的却只有淤浆聚合与气相聚合。 1.1 淤浆工艺 淤浆工艺主要包括搅拌釜工艺与环管工艺。搅拌釜工艺包括Hostalen工艺和CX工艺,目前大约2/3的UHMWPE聚合采用Hostalen的连续搅拌釜工艺。此工艺最早是由德国Hoechst公司(现Basell公司)为高密度聚乙烯(HDPE)所开发,典型的工艺流程见图1,它使用双釜反应器,可通过串联或并联生产出单峰或者双峰的HDPE产品。而UHMWPE和HDPE淤浆工艺最主要的差别还是在工艺条件的优化、助催化剂/三价钛的配比上。此外,由于UHMWPE产物为粉末状,UHMWPE不需要造粒工序。Sudhakar P通过优化工艺条件而用传统Ziegler-Natta合成了分子量在400万~600万之间的UHMWPE。 上海化工研究院在1996年开发出以氯化镁、四氯化钛、钛酸酯类或苯甲酸酯为催化体系的单釜聚合工艺,经聚合、过滤、汽提、干燥后分子量达500万,产品性能与Hostalen工艺产品相似,填补了国内空白。 1.一号反应器; 2.二号反应器; 3.后反应器; 4.离心分离器; 5.流化床干燥器; 6.粉末处理器; 7.膜回收系统; 8.溶剂精制与单体回收系统; 9.挤压造粒 图1 典型Hostalen工艺流程 环管工艺主要有Phillips公司的Phillips单环管工艺和Ineos公司的InnoveneS双环管工艺。Phililips公司利用改性后的二氧化硅或氧化铝固定的Ti、Zr、Hf来生产UHMWPE,聚合中不需加入氢气,投资少,但对催化剂的要求较高。 在UHMWPE淤浆聚合过程中,控制反应热是聚合成败的关键。通过调节乙烯在溶剂中的浓度和催化剂的加入量可以达到控制反应热的效果,如果反应中的热量不能及时移出,将会造成催化剂失活。另外,控制反应器中铝的加入量,对增加分子量也具有显著的效果。 1.2 气相工艺

饼干的生产工艺

第一节名称与分类 一名称 饼干这一名词来源于法国,称为Biscuit,其意是再次烘烤的面包,它属于非主食,是一种比较方便、大众化的食品。 二分类 饼干的花色品种很多,要将饼干严格分类并非易事,按工艺特点可将饼干分成四大类。 1 一般饼干 按制造原理分类 韧性饼干、酥性饼干 按照成型方法分类 印硬饼干、冲印软性饼干、挤出成型饼干(线切饼干、挤条饼干)、挤浆成型饼干、辊印饼干。 2 发酵饼干 苏打饼干 粗饼干 椒盐卷饼 3 派类 4 深加工花样饼干 生产工艺流程 一酥性饼干生产工艺流程 物料1,2,3 予混头子和生坯次品 ↓↓↑ 面粉→过筛→调粉→小轧车→成型→拾头子→烘烤→冷却→拣次品→成品 其中: 物料1 砂糖、糖浆、水组成的糖水 物料2 油脂、抗氧化剂组成的混合物 物料3 蛋、奶粉、磷脂、色素、小苏打、阿莫尼 二韧性饼干生产工艺流程 物料1,2,3、4 ↓ 面粉和淀粉→过筛→调粉→静置→辊压→冲压成型→烘烤→冷却→整理→成品 其中:

物料1 砂糖、糖浆、水组成的糖水 物料2 油脂、磷脂、组成的混合物 物料3 奶粉过筛 物料4 碳酸氢钠、碳酸氢氨、食盐经过溶化过滤后溶液 第三节面团的调制 面团的调制是饼干生产中首道工序,也是最关键的一道工序。它是将各种原辅材料按照配方要求配合好,再根据工艺特点按一定次序把料进行调制。 一面团调制的基本过程 面团的形成过程是逐步由自由水转变为水化水的水化过程,它分为三个阶段。 1 面团拌和阶段:物料呈分散的非均态混合态。 2 面团形成阶段:整个面团外观上呈现软硬不一的状态。 3 面团成熟阶段 二酥性面团的调制 酥性面团调制面团温度为20-26oC,故俗称冷粉。 为达到酥性面团调粉要求,需适当控制面筋的吸水率,故调粉过程中控制好几方面的因素。 1 配料次序 油、糖、水等辅料先搅拌混合,再与面粉、奶粉等原料混合。目的限制面筋性蛋白质水化作用,控制面筋形成的程度。 2 糖、油用量 糖、油都具有反水化作用,能把已吸收的水排挤出来,使面团变软。 用糖量影响面粉的吸水率,也能改变面筋的性能。 油脂量关系到面筋的生成量。 酥性面团在调制过程中必须注意“起筋”问题。 3 加水量 加水量的多少与湿面筋的形成密切相关,调粉中不可随意加水,否则容易起筋。 4 淀粉与头子量 对面筋量过高的面粉可掺入适量的淀粉,以冲淡面筋浓度。 头子也称面头,用量应当适当控制,它能弥补面筋结合力不足的现象。 5 面团的温度 油脂含量较少的面团应掌握面团温度在30oC以下。 油脂含量较高的面团,其面团温度一般控制在20-26oC。 6 调粉时间和静置时间 面团调制时间是控制面筋形成程度和限制面团弹性的最直接因素。 静置只适合调粉不足的面团。

机械加工工艺标准流程过程描述

机械加工工艺流程详解 1.机械加工工艺流程 机械加工工艺规程是规定零件机械加工工艺过程和操作方法等的工艺文件之一,它是在具体的生产条件下,把较为合理的工艺过程和操作方法,按照规定的形式书写成工艺文件,经审批后用来指导生产。机械加工工艺规程一般包括以下内容:工件加工的工艺路线、各工序的具体内容及所用的设备和工艺装备、工件的检验项目及检验方法、切削用量、时间定额等。 1.1 机械加工艺规程的作用 (1)是指导生产的重要技术文件 工艺规程是依据工艺学原理和工艺试验,经过生产验证而确定的,是科学技术和生产经验的结晶。所以,它是获得合格产品的技术保证,是指导企业生产活动的重要文件。正因为这样,在生产中必须遵守工艺规程,否则常常会引起产品质量的严重下降,生产率显著降低,甚至造成废品。但是,工艺规程也不是固定不变的,工艺人员应总结工人的革新创造,可以根据生产实际情况,及时地汲取国内外的先进工艺技术,对现行工艺不断地进行改进和完善,但必须要有严格的审批手续。 (2)是生产组织和生产准备工作的依据 生产计划的制订,产品投产前原材料和毛坯的供应、工艺装备的设计、制造与采购、机床负荷的调整、作业计划的编排、劳动力的组织、工时定额的制订以及成本的核算等,都是以工艺规程作为基本依据的。 (3)是新建和扩建工厂(车间)的技术依据 在新建和扩建工厂(车间)时,生产所需要的机床和其它设备的种类、数量和规格,车间的面积、机床的布置、生产工人的工种、技术等级及数量、辅助部门的安排等都是以工艺规程为基础,根据生产类型来确定。除此以外,先进的工艺规程也起着推广和交流先进经验的作用,典型工艺规程可指导同类产品的生产。 1.2 机械加工工艺规程制订的原则 工艺规程制订的原则是优质、高产和低成本,即在保证产品质量的前提下,争取最好的经济效益。在具体制定时,还应注意下列问题: 1)技术上的先进性在制订工艺规程时,要了解国内外本行业工艺技术的发展,通过必要的工艺试验,尽可能采用先进适用的工艺和工艺装备。 2)经济上的合理性在一定的生产条件下,可能会出现几种能够保证零件技术要求的工艺方案。此时应通过成本核算或相互对比,选择经济上最合理的方案,使产品生产成本最低。

国内外超高分子量聚乙烯发展现状

国内外超高分子量聚乙烯 发展现状 超高分子量聚乙烯(也称高强高模聚乙烯,缩写为UHMW-PE)是新型热塑性工程塑料,分子结构和普通聚乙烯相同,黏均分子量达150万~1000万(普通聚乙烯的黏均分子量在4万~12万)。U H M W-P E纤维是目前世界上比强度和比模量最高的纤维,是继碳纤维、芳纶纤维之后出现的第3代高性能纤维。日本和美国U H M W-P E产品的黏均分子量超过600万以上,德国U H M W-P E产品的黏均分子量超过1000万[1],我国UHMW-PE产品的黏均分子量也可以达到600万以上。我国生产的部分 ■ 文/余黎明 张东明 石油和化学工业规划院 UHMW-PE纤维出口欧美和亚洲等 国家及地区,但所需要的高端产品则 依赖进口。目前,我国UHMW-PE纤 维价格约25万~28万元/t,整体产业 处于高利润期,资本逐利性必然导致 更多企业进入这一领域。 U H M W-P E分子链很长,沿同 一方向排列,相互缠绕,通过强化分 子之间的相互作用,较长的分子链 能够更有效地将载荷传递给主链, 所以,UHMW-PE具有很高的比模 量和比强度。UHMW-PE具有极佳 的抗冲击性、耐磨损性、耐化学腐蚀 性、耐低温性、耐候性、耐应力开裂 性、抗粘附、自身润滑性等,广泛应 用于化工、纺织、医学、建筑、冶金、 矿业、水利、煤炭、电力等领域,其制 品性能和其他工程塑料的对比分析 如表1所示。 一、国内外UHMW-PE市场环 境分析 1.国内外市场供需分析 2010年国外U H M W-P E产能 约14.09万t,主要生产企业如表2 所示。2010年国外U H M W-P E表 观消费量约12.0万t,主要用于生产 防弹衣和武器装备等军工产品,如

相关主题
文本预览
相关文档 最新文档