当前位置:文档之家› 运动控制系统实验指导书分解

运动控制系统实验指导书分解

运动控制系统实验指导书分解
运动控制系统实验指导书分解

运动控制系统

实验指导书

赵黎明、王雁编

广东海洋大学信息学院自动化系

直流调速

实验一不可逆单闭环直流调速系统静特性的研究

一.实验目的

1.研究晶闸管直流电动机调速系统在反馈控制下的工作。

2.研究直流调速系统中速度调节器ASR的工作及其对系统静特性的影响。

3.学习反馈控制系统的调试技术。

二.预习要求

1.了解速度调节器在比例工作与比例—积分工作时的输入—输出特性。

2.弄清不可逆单闭环直流调速系统的工作原理。

三.实验线路及原理

见图6-7。

四.实验设备及仪表

1.MCL系列教学实验台主控制屏。

2.MCL—18组件(适合MCL—Ⅱ)或MCL—31组件(适合MCL—Ⅲ)。

3.MCL—33(A)组件或MCL—53组件。

4.MEL-11挂箱

5.MEL—03三相可调电阻(或自配滑线变阻器)。

6.电机导轨及测速发电机、直流发电机M01(或电机导轨及测功机、MEL—13组件)。

7.直流电动机M03。

8.双踪示波器。

五.注意事项

1.直流电动机工作前,必须先加上直流激磁。

2.接入ASR构成转速负反馈时,为了防止振荡,可预先把ASR的RP3电位器逆时针旋到底,使调节器放大倍数最小,同时,ASR的“5”、“6”端接入可调电容(预置7μF)。

3.测取静特性时,须注意主电路电流不许超过电机的额定值(1A)。

4.三相主电源连线时需注意,不可换错相序。

5.电源开关闭合时,过流保护发光二极管可能会亮,只需按下对应的复位开关SB1

即可正常工作。

6.系统开环连接时,不允许突加给定信号U g起动电机。

7.起动电机时,需把MEL-13的测功机加载旋钮逆时针旋到底,以免带负载起动。

8.改变接线时,必须先按下主控制屏总电源开关的“断开”红色按钮,同时使系统的给定为零。

9.双踪示波器的两个探头地线通过示波器外壳短接,故在使用时,必须使两探头的地线同电位(只用一根地线即可),以免造成短路事故。

六.实验内容

1.移相触发电路的调试(主电路未通电)

(a)用示波器观察MCL—33(或MCL—53,以下同)的双脉冲观察孔,应有双脉冲,且间隔均匀,幅值相同;观察每个晶闸管的控制极、阴极电压波形,应有幅值为1V~2V 的双脉冲。

(b)触发电路输出脉冲应在30°~90°范围内可调。可通过对偏移电压调节单位器及ASR输出电压的调整实现。例如:使ASR输出为0V,调节偏移电压,实现α=90°;再保持偏移电压不变,调节ASR的限幅电位器RP1,使α=30°。

2.求取调速系统在无转速负反馈时的开环工作机械特性。

a.断开ASR的“3”至U ct的连接线,G(给定)直接加至U ct,且Ug调至零,直流电机励磁电源开关闭合。

b.合上主控制屏的绿色按钮开关,调节三相调压器的输出,使U uv、Uvw、Uwu=200V。

注:如您选购的产品为MCL—Ⅲ、Ⅴ,无三相调压器,直接合上主电源。以下均同。

c.调节给定电压U g,使直流电机空载转速n0=1500转/分,调节测功机加载旋钮(或直流发电机负载电阻),在空载至额定负载的范围内测取7~8点,读取整流装置输出电压U d

3.带转速负反馈有静差工作的系统静特性

a.断开G(给定)和U ct的连接线,ASR的输出接至U ct,把ASR的“5”、“6”点短接。

b.合上主控制屏的绿色按钮开关,调节U uv,U vw,U wu为200伏。

c.调节给定电压U g至2V,调整转速变换器RP电位器,使被测电动机空载转速n0=1500转/分,调节ASR的调节电容以及反馈电位器RP3,使电机稳定运行。

调节测功机加载旋钮(或直流发电机负载电阻),在空载至额定负载范围内测取7~8

4.测取调速系统在带转速负反馈时的无静差闭环工作的静特性

a.断开ASR的“5”、“6”短接线,“5”、“6”端接MEL—11电容器,可预置7μF,使ASR成为PI(比例—积分)调节器。

b.调节给定电压U g,使电机空载转速n0=1500转/分。在额定至空载范围内测取7~8

七.实验报告

绘制实验所得静特性,并进行分析、比较。

八.思考题

1.系统在开环、有静差闭环与无静差闭环工作时,速度调节器ASR各工作在什么状态?实验时应如何接线?

2.要得到相同的空载转速n0,亦即要得到整流装置相同的输出电压U,对于有反馈与无反馈调速系统哪个情况下给定电压要大些?为什么?

3.在有转速负反馈的调速系统中,为得到相同的空载转速n0,转速反馈的强度对U g 有什么影响?为什么?

4.如何确定转速反馈的极性与把转速反馈正确地接入系统中?又如何调节转速反馈的强度,在线路中调节什么元件能实现?

运动控制系统综合实验指导书

赵黎明、王雁编

广东海洋大学信息学院自动化系

实验名称双闭环三相异步电动机调压调速系统及串级系统

实验项目性质:综合性实验

所涉及课程:运动控制系统、电力电子、电机学

计划学时:4

实验目的:本综合性实验是将调压调速系统与串级系统的综合调速性能的综合比较。

首先熟悉三相异步电动机调压调速系统的组成及工作原理、调速性能;熟悉相位控制交流调压调速系统的组成与工作;了解并熟悉双闭环三相异步电动机调压调速系统的原理及组成;了解绕线式异步电动机转子串电阻时在调节定子电压调速时的机械特性;通过测定系统的静特性和动态特性进一步理解交流调压系统中电流环和转速环的作用。

然后.熟悉双闭环三相异步电动机串级调速系统的组成及工作原理、调速性能;掌握串级调速系统的调试步骤及方法;了解串级调速系统的静态与动态特性。

最后将两种调速系统的调速原理及调速性能进行比较。

注意事项:每一步实验都必须严格检查接线是否正确。

实验内容:(分三步)

一、双闭环三相异步电动机调压调速系统

(将直流电机作为交流电动机的负载)

(一).系统在无转速负反馈时的开环工作机械特性(接线图见图一所示)首先将MCL-31的低压电源+15V、0V、-15V与MCL-33低压直流输入+15V、0V、-15V 对应连线;然后将MCL-32中的直流电机励磁电源的+、-分别与M03直流机的励磁绕组F1、F2对应相连接。

实验步骤:

a.断开ACR(MCL—31)的“7”至U ct(MCL—33)的连接线,MCL—31的Ug(给定)直接加至U ct,且Ug调至零。直流电机励磁电源开关闭合。电机转子回路接入每相为10 左右的三相电阻(由二极管整流桥电路代替)。

b.合上主控制屏的绿色按钮开关,调节三相调压器的输出,使U uv、Uvw、Uwu=230V。

c .调节给定电压Ug(调节MCL-31的G 给定中的RP1滑动变阻器),使电机空载转速n 0=1300转/分,调节或直流发电机负载电阻,在空载至额定负载的范围内测取4~5点,读M 。

注:若采用直流发电机,转矩可按下式计算

n P R I U I M O S G G G /)(55.92

++=

M ——三相异步电动机电磁转矩;I G ——直流发电机电流;U G ——直流发电机电压; R S ——直流发电机电枢电阻;P 0——机组空载损耗。不同转速下取不同数值:n=1500r/min ,Po=13.5W ;n=1000r/min ,Po=10W ;n=500r/min ,Po=6W 。

(二)、闭环系统调试

(1)调压器输出接三相电阻负载,观察输出电压波形是否正常。

(2)将系统接成双闭环调压调速系统:即将上面实验过程中断开的连线连上(仍按照图一接线)。转子回路仍串每相10Ω左右的电阻(由二极管整流桥电路代替),渐加给定U g 至+5V , 调节FBS 的反馈电位器,使电机空载转速n 0=1300转/分,观察电机运行是否正常。

(3)调节ASR.ACR 的外接电容及放大倍数调节电位器,用慢扫描示波器观察突加给定的动态波形,确定较佳的调节器参数。

(三).系统闭环特性的测定

调节Ug ,使转速至n =1300r/min ,从轻载按一定间隔做到额定负载,测出闭环静特性n =f(M)。

系统动态特性的观察,用慢扫描示波器观察:

(1)突加给定起动电机时转速n ,电机定子电流i 及ASR 输出Ugi 的动态波形。 (2)电机稳定运行,突加,突减负载时的n, Ugi, i 的动态波形。

(四)、实验报告

1.根据实验数据,画出开环时,电机人为机械特性。

2.根据实验数据,画出闭环系统静特性,并与开环特性进行比较。 3.根据记录下的动态波形分析系统的动态过程。

n(r/min) M(N.m)

开环机械特性

n(r/min) M(N.m)

闭环机械特性

MCL-31 MCL-33

图1 三相异步电动机调压调速系统接线图

二、双闭环三相异步电动机串级调速系统

(-).实验内容

1.控制单元及系统调试

2.测定开环串级调速系统的静特性。

3.测定双闭环串级调速系统的静特性。

4.测定双闭环串级调速系统的动态特性。

(二).实验系统组成及工作原理

绕线式异步电动机串级调速,即在转子回路中引入附加电动势进行调速。通常使用的

方法是将转子三相电动势经二极管三相桥式不控整流得到一个直流电压,再由晶闸管有源逆变电路代替电动势,从而方便地实现调速,并将能量回馈至电网,这是一种比较经济的调速方法。

本系统为晶闸管亚同步闭环串级调速系统。控制系统由速度调节器ASR,电流调节器ACR,触发装置GT,脉冲放大器MF,速度变换器FBS,电流变换器FBC等组成,其系统原理图如图7-2所示。

(三).注意事项

1.本实验是利用串调装置直接起动电机,不再另外附加设备,所以在电动机起动时,必须使晶闸管逆变角β处于βmin位置。然后才能加大β角,使逆变器的逆变电压缓慢减少,电机平稳加速。

2.本实验中,α角的移相范围为90°~150°,注意不可使α<90°,否则易造成短路事故。

3.接线时,注意绕线电机的转子有4个引出端,其中1个为公共端,不需接线。

4.接入ASR构成转速负反馈时,为了防止振荡,可预先把ASR的RP3电位器逆时针旋到底,使调节器放大倍数最小,同时,ASR的“5”、“6”端接入可调电容(预置7μF)。

5.测取静特性时,须注意电流不许超过电机的额定值(0.55A)。

6.三相主电源连线时需注意,不可换错相序。逆变变压器采用MEL-03三相芯式变压器的高压绕组和中压绕组,注意不可接错。

7.电源开关闭合时,过流保护、过压保护的发光二极管可能会亮,只需按下对应的复位开关SB1、SB2即可正常工作。

8.系统开环连接时,不允许突加给定信号U g起动电机。

9.起动电机时,需把MEL-13的测功机加载旋钮逆时针旋到底,以免带负载起动。

10.改变接线时,必须先按下主控制屏总电源开关的“断开”红色按钮,同时使系统的给定为零。

11.双踪示波器的两个探头地线通过示波器外壳短接,故在使用时,必须使两探头的地线同电位(只用一根地线即可),以免造成短路事故。

12.绕线式异步电动机:P N=100W,U N=220V,I N=0.55A,n N=1350,M N=0.68,Y接。

(四).实验方法

1.移相触发电路的调试(主电路未通电)

(a)用示波器观察MCL—33(或MCL—53)的双脉冲观察孔,应有间隔均匀,幅值相同的双脉冲;将G输出直接接至U ct,调节Uct,脉冲相位应是可调的。

(b)将面板上的U blf端接地,调节偏移电压U b,使U ct=0时,α接近1500。将正组触

发脉冲的六个键开关“接通”,观察正桥晶闸管的触发脉冲是否正常(应有幅值为1V ~2V 的双脉冲)。

(c )触发电路输出脉冲应在30°≤β≤90°范围内可调。

可通过对偏移电压调节电位器及ASR 输出电压的调整实现。例如:使ASR 输出为0V ,调节偏移电压,实现β=30°;再保持偏移电压不变,调节ASR 的限幅电位器RP1,使β=90°。

2.控制单元调试

按直流调速系统方法调试各单元

3.求取调速系统在无转速负反馈时的开环工作机械特性。

a .断开ASR (MCL —18或MCL —31)的“3”至U ct (MCL —33或MCL —53)的连接线,G (给定)直接加至U ct ,且Ug 调至零。

直流电机励磁电源开关闭合。电机转子回路接入每相为10Ω左右的三相电阻。 b .三相调压器逆时针调到底,合上主控制屏的绿色按钮开关,调节三相调压器的输出,使U uv 、Uvw 、Uwu=230V 。

c .缓慢调节给定电压U g ,使电机空载转速n 0=1300转/分,调节测功机加载旋钮(或直流发电机负载电阻),在空载至额定负载的范围内测取7~8点,读取测功机输出转矩M (或直流发电机输入电压U

d ,输出电流i d )以及被测电动机转速n 。

注:若采用直流发电机,转矩可按下式计算

n P R I U I M O S G G G /)(55.92++=

式中 :

M ——三相异步电动机电磁转矩; I G ——直流发电机电流; U G ——直流发电机电压; R S ——直流发电机电枢电阻;

P 0——机组空载损耗。不同转速下取不同数值:n=1500r/min ,Po=13.5W ;n=1000r/min ,Po=10W ;n=500r/min ,Po=6W 。

3.闭环系统调试

MCL —18(或MCL —31)的G (给定)输出电压U g 接至ASR 的“2”端,ACR 的输出“7”端接至U ct 。

三相调压器逆时针调到底。调节Uct ,使ACR 饱和输出,调节限幅电位器RP1,使β=30O 。

合上主控制屏的绿色按钮开关,调节三相调压器的输出,使U uv、Uvw、Uwu=230V。

调节给定电压U g,使电机空载转速n0=1300转/分,观察电机运行是否正常。调节ASR,ACR的外接电容及放大倍数调节电位器,用慢扫描示波器观察突加给定的动态波形,确定较佳的调节器参数。

4.双闭环串级调速系统静特性的测定

调节给定电压U g,使电机空载转速n0=1300转/分,调节测功机加载旋钮(或直流发电机负载电阻),在空载至额定负载的范围内测取7~8点,读取测功机输出转矩M(或直流

5.系统动态特性的测定

用慢扫描示波器观察并用示波器记录:

(1)突加给定起动电机时的转速n,定子电流i及输出U gi的动态波形。

(2)电机稳定运行时,突加,突减负载时的n, I,U gi的动态波形。

(五).实验报告

1.根据实验数据,画出开环,闭环系统静特性n =f (M),并进行比较。

2.根据动态波形,分析系统的动态过程。

M C L -18(M C L -31)图7-2 双闭环三相异步电动机串级调速系统

控制屏输出

R P 1R P 2

F B S

G

+15V

-15V

12

给定R P 1R P 2S 2

S 1

正给定

负给定

S 1

S 2-

+0V R P 1

封锁

3

R P 4+15V

解除

2A S R

7

1

2

V

U W

L 2

L 1

L 3

6

R P 1R P 256+-+15V

-15V R P 43

R P 3R P 34A C R

12345F B C

T A 1

T A 2

12T A 3

M E L -11A S R

A C R

U c t

L

1U 1

1U 23

封锁

S 3

解除

&

+15V

M E L -02(M C L -35)

1V 11W 1

1V 21W 2

V T 1

2U 12U 291110

R P 3

8-+R P 4R P 1+15V R P 2

-15V 7V

U

W

2V 12W 1

V T 42V 22W 2

C

R

M C L -33(M C L -53)

移相控制电压V T 3A

V T 5

V

V D 6

V D 4V D 2

V T 6V T 2

50m H

V D 3V D 1V D 5

100m H

200m H

700m H

脉冲放大控 制

脉 冲 控 制

U b l r

U b l f

定子T G :测速发电机

T G

M :交流线绕电机。

M

~转子

三、双闭环三相异步电动机调压调速系统与串级调速系统的工作原理及调速性能的比较

比较两种调速系统的工作原理;在调速性能上的区别;实验中所测取的开环及闭环特性的区别。比较出两种调速性能的优劣。

实验仪器设备和材料清单

1.MCL系列教学实验台主控制屏。

2.MCL—18组件(适合MCL—Ⅱ)或MCL—31组件(适合MCL—Ⅲ)。

3.MCL—33组件或MCL—53组件(适合MCL—Ⅱ、Ⅲ、Ⅴ)。

4.电机导轨及测速发电机、直流发电机

5.MEL—03三相可调电阻器(或自配滑线变阻器450 ,1A)

6.绕线式异步电动机

7.MEL—11组件

8.直流电动机M03

9.双踪示波器。.

10.万用表

试验要求

按照实验内容要求将两种系统的实验数据及其特性曲线作出详细分析比较。

实验步骤及结果测试

详见实验内容。

考核形式

以实验报告为主,参考平时实验表现。按照实验报告的内容,实验数据,所得特性曲线,综合实验的分析结论,该综合性实验成绩可分为五等:优、良、中、及格、不及格。

实验报告要求

严格按照我校有关规定格式要求,数据应真实,特性曲线应平滑连续。

思考题

1、三相异步电动机的调压调速系统与串级调速系统在工作原理上有什么

不同?各有什么优缺点?

2、本综合性实验中串级调速系统使用什么环节作为串级的作用?它与串

电阻调速作用是否相同?

实验三矢量控制系统的仿真研究

1.实验目的:了解矢量控制系统的组成;通过矢量控制系统的仿真,观测逆变器输出电压波形以及电机三相电流、转速、转矩波形,加深对矢量控制的理解。

2.实验内容:打开

Matlab6.5/toolbox/powersys/powerdemo/psbacdrive.mdl文件,仿真运行。

①画出Current Regulator以及speed_controller模块内部结构、并标明其参数,说明其功能。

②画出ωref=120rad/s时电机输出转矩及转速波形,概要标出其坐标值;分析逆变器输出线电压UAB以及电机转子三相电流is_abc的波形特点。

③画出ωref为一阶跃输入(初始值为100,t=0.5s后终值为160)时电机输出转矩及转速波形,概要标出其坐标值;分析逆变器输出线电压UAB以及电机转子三相电流is_abc的波形特点。

④当ωref为一阶跃输入时,如果改变初始值,其它不变。观测电机输出转矩及转速波形以及逆变器输出线电压UAB、电机转子三相电流is_abc的波形如何变化。

3.思考题:

⑴描述矢量控制的基本思想?

⑵矢量控制系统中都用到那些坐标变换?

计算机组成原理实验指导书

“计算机组成原理” 实验指导书 伟丰编写 2014年12月

实验一算术逻辑运算实验 一、实验目的 1、掌握简单运算器的组成以及数据传送通路。 2、验证运算功能发生器(74LS181)的组合功能。 二、实验容 运用算术逻辑运算器进行算术运算和逻辑运算。 三、实验仪器 1、ZY15Comp12BB计算机组成原理教学实验箱一台 2、排线若干 四、实验原理 实验中所用的运算器数据通路如图1-1所示。其中运算器由两片74LS181以并/串形式构成8位字长的ALU。运算器的两个数据输入端分别由两个锁存器(74LS273)锁存,锁存器的输入连至数据总线,数据输入开关(INPUT)用来给出参与运算的数据,并经过一三态门(74LS245)和数据总线相连。运算器的输出经过一个三态门(74LS245)和数据总线相连。数据显示灯已和数据总线(“DATA BUS”)相连,用来显示数据总线容。

图1-l 运算器数据通路图 图1-2中已将实验需要连接的控制信号用箭头标明(其他实验相同,不再说明)。其中除T4为脉冲信号,其它均为电平控制信号。实验电路中的控制时序信号均已部连至相应时序信号引出端,进行实验时,还需将S3、S2、S1、S0、Cn、M、LDDR1、LDDR2、ALU_G、SW_G 各电平控制信号与“SWITCH”单元中的二进制数据开关进行跳线连接,其中ALU_G、SW_G 为低电平有效,LDDR1、LDDR2为高电平有效。按动微动开关PULSE,即可获得实验所需的单脉冲。 五、实验步骤 l、按图1-2连接实验线路,仔细检查无误后,接通电源。(图中箭头表示需要接线的地方, 2、用INPUT UNIT的二进制数据开关向寄存器DR1和DR2置数,数据开关的容可以用与开关对应的指示灯来观察,灯亮表示开关量为“1”,灯灭表示开关量为“0”。以向DR1中置入11000001(C1H)和向DR2中置入01000011(43H)为例,具体操作步骤如下:首先使各个控制电平的初始状态为:CLR=1,LDDR1=0,LDDR2=0,ALU_G=1,SW_G=1,S3 S2 S1 S0 M CN=111111,并将CONTROL UNIT的开关SP05打在“NORM”状态,然后按下图所示步骤进行。

运动控制平台—实验指导书

实验1 了解运动控制实验系统 1.1 实验目的 1、了解运动控制系统中的步进电机,伺服电机,变频电机,及其他们的驱动,并掌握步进电机与伺服电机的区别。 2、掌握运动控制系统的基本控制原理,与方框图,知道运动控制卡是运动控制系统的核心。 3、了解电机的面板控制,在有些工业控制过程中,能在程序控制无响应的状态下用面板进行紧急停止运动。 1.2 实验设备 1、运动控制系统实验平台一台。 2、微型计算机一台。 1.3 概述 此多轴运动控制实验平台是基于“PC+运动控制卡”模式的综合性实验平台,对各类控制电机实施单轴和多轴混合运动控制。 该实验平台是学生了解和掌握现代机电控制的基本原理,熟悉现代机电一体化产品控制系统的入门工具。通过该平台的实物教学和实际编程操作,学生可以掌握现代各类控制电机基本控制原理、运动控制的基本概念、运动控制系统的集成方法,从而提高学生综合解决问题的能力。 1.4 运动控制系统组成 PC机(上位机)、运动控制器(下位机)、接口板、24V直流电源、交流伺服电机驱动器、交流伺服电机、步进电机驱动器、步进电机、变频调速电机驱动器、变频调速电机、导线及电缆。 运动控制实验台结构图如下: 图1.1系统硬件方框图

*上图中直流电源为24V,直流稳压电源,为接口卡与步进电机驱动器提供电压。 伺服电机(及其驱动器): 伺服电动机又称执行电动机,在自动控制系统中,用作执行元件,把所收到的电信号转换成电动机轴上的角位移或角速度输出。分为直流和交流伺服电动机两大类,其主要特点是,当信号电压为零时无自转现象,转速随着转矩的增加而匀速下降。 交流伺服电机的工作原理:伺服电机内部的转子是永磁铁,驱动器控制的U/V/W三相电形成电磁场,转子在此磁场的作用下转动,同时电机自带的编码器反馈信号给驱动器,驱动器根据反馈值与目标值进行比较,调整转子转动的角度。伺服电机的精度决定于编码器的精度(线数)。 步进电机(及其驱动器): 步进电机是将电脉冲信号转变为角位移或线位移的开环控制元件。在非超载的情况下,电机的转速、停止的位置只取决于脉冲信号的频率和脉冲数,而不受负载变化的影响,即给电机加一个脉冲信号,电机则转过一个步距角。这一线性关系的存在,加上步进电机只有周期性的误差而无累积误差等特点。使得在速度、位置等控制领域用步进电机来控制变的非常的简单。 变频电机(及其变频器): 变频电机与普通交流电机并无大异。主要靠变频器来调节输入给变频电机交流信号的频率来改变电机转速。如数控机床上的主轴电机。 运动控制器(卡): 运动控制器就是通过读取PC机把编程语言并把他们转化为控制电机的输入信号,以达到用户的控制要求的一个装置。 本系统所用控制器型号:GE-300-SV-PCI-R 1.5 系统接线: 伺服接线:伺服驱动器端L1,L2与220V交流电连接; 伺服电机端电源引线红线连U,蓝色连V,黄色连W,黄绿色连FG; 伺服电机端编码器引线与伺服驱动器端CN3端口相连; 伺服驱动器端CN2端口与运动控制器端子板CN5(CN6)连接起来。 步进接线:步进驱动器端V+/V-与直流24V电源相连; 步进电机与步进驱动器接线参考电机上的接线简图即可顺利完成; 步进驱动器端pu+端口与运动控制器端子板CN7(23口)相连,pu-端口与CN7(11口) 相连、DR+端口与CN7(9口)相连,DR-端口与CN7(22口)相连。 主轴接线:变频器R/L1,S/L2,T/L3任意两个端口与220V交流电电源连接; 交流电机三条引线与变频器U/T1,V/T2,W/T3相连(没有顺序,随意连接);

《控制系统CAD》实验指导书

《控制系统CAD及仿真》实验指导书 自动化学院 自动化系

实验一SIMULINK 基础与应用 一、 实验目的 1、熟悉并掌握Simulink 系统的界面、菜单、工具栏按钮的操作方法; 2、掌握查找Simulink 系统功能模块的分类及其用途,熟悉Simulink 系统功能模块的操作方法; 3、掌握Simulink 常用模块的内部参数设置与修改的操作方法; 4、掌握建立子系统和封装子系统的方法。 二、 实验内容: 1. 单位负反馈系统的开环传递函数为: 1000 ()(0.11)(0.0011) G s s s s = ++ 应用Simulink 仿真系统的阶跃响应曲线。 2.PID 控制器在工程应用中的数学模型为: 1 ()(1)()d p i d T s U s K E s T s T s N =+ + 其中采用了一阶环节来近似纯微分动作,为保证有良好的微分近似效果,一般选10N ≥。试建立PID 控制器的Simulink 模型并建立子系统。 三、 预习要求: 利用所学知识,编写实验程序,并写在预习报告上。

实验二 控制系统分析 一、 实验目的 1、掌握如何使用Matlab 进行系统的时域分析 2、掌握如何使用Matlab 进行系统的频域分析 3、掌握如何使用Matlab 进行系统的根轨迹分析 4、掌握如何使用Matlab 进行系统的稳定性分析 5、掌握如何使用Matlab 进行系统的能观测性、能控性分析 二、 实验内容: 1、时域分析 (1)根据下面传递函数模型:绘制其单位阶跃响应曲线并在图上读标注出峰值,求出系统 的性能指标。 8 106) 65(5)(2 32+++++=s s s s s s G (2)已知两个线性定常连续系统的传递函数分别为1G (s)和2G (s),绘制它们的单位脉冲响 应曲线。 4 5104 2)(2 321+++++=s s s s s s G , 27223)(22+++=s s s s G (3)已知线性定常系统的状态空间模型和初始条件,绘制其零输入响应曲线。 ?? ??????????--=????? ???? ???212107814.07814.05572.0x x x x []?? ????=214493 .69691.1x x y ??? ???=01)0(x 2、频域分析 设线性定常连续系统的传递函数分别为1G (s)、2G (s)和3G (s),将它们的Bode 图绘制在一张图中。 151)(1+= s s G ,4 53.0)(22++=s s s G ,16.0)(3 +=s s G 3、根轨迹分析 根据下面负反馈系统的开环传递函数,绘制系统根轨迹,并分析系统稳定 的K 值范围。 ) 2)(1()()(++= s s s K s H s G

运动控制系统实验指导书(修改

运动控制系统实验指导书 2013年3月

目录 第一部分MCL-11型电机及控制教学实验台介绍 (2) 第二部分实验项目 实验一晶闸管直流调速系统电流-转速调节器调试 (8) 实验二双闭环晶闸管不可逆单闭环直流调速系统测试 (10) 实验三异步电动机的变压变频调速演示实验 (15)

第一部分MCL-11型电机及控制教学实验台介绍 一、实验机组 =1500r/pm。 直流电动机:P N=185w,U N=220V,I N=1.1A,n N 二、实验挂箱 (1)MCL-18挂箱:G(给定),(GT+MF)触发电路及功放,单双脉冲观察,(FBC+FA)电流反馈及过流过压保护,零速封锁器(DZS),速度变换器(FBS),速度调节器(ASR),电流调节器(ACR)。 (2)MCL-33挂箱:脉冲通断控制及显示,一组、二组可控硅,平波电抗器。 (3)MEL-11挂箱:六组可调电容。 三、选配挂箱 (1)MEL-03挂箱:可调电阻器。 (2)电机导轨及测速发电机,直流发电机M01:P N=100W,U N=200V。 (3)电机导轨及测功机、测速发电机,MEL-13组件。 控制系统挂箱介绍和使用说明 (一)、MCL-18挂箱 MCL—18由G(给定),(GT+MF)触发电路及功放,双脉冲观察,(FBC+FA)电流反馈及过流过压保护,零速封锁器(DZS),速度变换器(FBS),速度调节器(ASR),电流调节器(ACR)组成。 1.G(给定) 原理图如图1-1。它的作用是得到下列几个阶跃的给定信号: (1)0V突跳到正电压,正电压突跳到0V; (2)0V突跳到负电压,负电压突跳到OV; (3)正电压突跳到负电压。负电压突跳到正电压。

数控插补多轴运动控制实验指导书(学生)

数控插补多轴运动控制系统解剖实验 实验学时:8 实验类型:独立授课实验 实验要求:必修 一、实验目的 1、通过本实验使学生掌握数控插补多轴控制装置的基本工作原理; 2、根据常用低压电器原理分析各运动控制电气元件的应用原理,分析数控插补运动实现的控制原理; 3、根据机电一体化产品的设计要求和设计流程进行运动控制系统的功能分析、机械结构分析、控制系统分析以及相关传感器选型等方面的设计内容。 本实验以数控插补多轴运动控制系统为具体对象,使学生掌握机电一体化产品设计和开发的技术流程和主要内容,通过运动控制系统的实现过程掌握常用电气元件识别和原理、数控插补原理、位置伺服控制系统等的设计和实现方式。 二、实验内容 1、通过数控插补多轴控制装置及其相关系统的测试和观察,分析数控插补的工作原理; 2、分析系统的功能、机械结构分析、运动关系以及相关传感器等,分析其相关的机械结构、电机及其驱动模块和传感反馈环节等; 3、根据常用低压电器原理,分析系统各运动控制电气元件的应用原理,分析数控插补运动过程实现的控制原理,并绘制相关的控制原理图和系统连接图。 三、实验设备 1、多轴运动控制系统一套(含电控箱) 2、PC机一台 3、GT-400-SG-PCI 卡一块(插在PC机内部)

四、实验原理 该数控插补多轴运动控制系统是依据开放式数控系统原理构建的,其以通用计算机(PC)的硬件和软件为基础,采用模块化、层次化的体系结构,能通过各种形式向外提供统一应用程序接口的系统。开放式数控系统可分为 3类:(1)CNC 在 PC中;(2)PC作为前端,CNC作为后端;(3)单 PC,双 CPU平台。 本实验采用第一类,把顾高公司的 GT-400-SG-PCI 多轴运动控制卡插入PC 机的插槽中,实现电机的运动控制,完成多轴运动控制系统的控制。其优点如下:(1)成本低,采用标准 PC机;(2)开放性好,用户可自定义软件;(3)界面比传统的 CNC 友好。 图1为该系统的硬件构成图,运动平台机械本体采用模块化拼装,主要由普通PC机、电控箱、运动控制卡、伺服(步进)电机及相关软件组成。其主体由两个直线运动单元(GX系列)组成。每个GX系列直线运动单元主要包括:工作台面、滚珠丝杆、导轨、轴承座、基座等部分,其结构见图2。伺服型电控箱内装有交流伺服驱动器,开关电源,断路器,接触器,运动控制器端子板,按钮开关等。步进型电控箱则装有步进电机驱动器,开关电源,运动控制器端子板,船形开关等。 图1 数控插补多轴控制系统硬件构成

PLC控制系统实验指导书(三菱)(精)

电气与可编程控制器实验指导书 实验课是整个教学过程的—个重要环节.实验是培养学生独立工作能力,使用所学理解决实际问题、巩固基本理论并获得实践技能的重要手段。 一 LC控制系统实验的目的和任务实验目的 1.进行实验基本技能的训练。 2.巩固、加深并扩大所学的基本理论知识,培养解决实际问题的能。 3.培养实事求是、严肃认真,细致踏实的科学作风和良好的实验习惯。为将来从事生产和科学实验打下必要的基础。 4.直观察常用电器的结构。了解其规格和用途,学会正确选择电器的方法。 5.掌握继电器、接触器控制线路的基本环节。 6.初步掌握可编程序控制器的使用方法及程序编制与调试方法。 应以严肃认真的精神,实事求是的态度。踏实细致的作风对待实验课,并在实验课中注意培养自己的独立工作能力和创新精神 二实验方法 做一个实验大致可分为三个阶段,即实验前的准备;进行实验;实验后的数据处理、分及写出实验报告。 1.实验前的准备 实验前应认真阅读实验指导书。明确实验目的、要求、内容、步骤,并复习有关理论知识,在实验前要能记住有关线路和实验步骤。 进入实验室后,不要急于联接线路,应先检查实验所用的电器、仪表、设备是否良好,了解各种电器的结构、工作原理、型号规格,熟悉仪器设备的技术性能和使用

方法,并合理选用仪表及其量程。发现实验设备有故障时,应立即请指导教师检查处理,以保证实验顺利进行。 2. 联接实验电路 接线前合理安排电器、仪表的位置,通常以便于操作和观测读数为原则。各电器相互间距离应适当,以联线整齐美观并便于检查为准。主令控制电器应安装在便于操作的位置。联接导线的截面积应按回路电流大小合理选用,其长度要适当。每个联接点联接线不得多余两根。电器接点上垫片为“瓦片式”时,联接导线只需要去掉绝缘层,导体部分直接插入即可,当垫片为圆形时,导体部分需要顺时针方向打圆圈,然后将螺钉拧紧,下允许有松脱或接触不良的情况,以免通电后产生火花或断路现象。联接导线裸露部分不宜过长。以免相邻两相间造成短路,产生不必要的故障。 联接电路完成后,应全面检查,认为无误后,请指导老师检查后,方可通电实验。 在接线中,要掌握一般的控制规律,例如先串联后并联;先主电路后控制电路;先控制接点,后保护接点,最后接控制线圈等。 3.观察与记录 观察实验中各种现象或记录实验数据是整个实验过程中最主要的步骤,必须认真对待。 进行特性实验时,应注意仪表极性及量程。检测数据时,在特性曲线弯曲部分应多选几个点,而在线性部分时则可少取几个点。 进行控制电路实验时。应有目的地操作主令电器,观察电器的动作情况。进一理解电路工作原理。若出现不正常现象时,应立即断开电源,检查分析,排除故障后继续实验。 注意:运用万用表检查线路故障时,一般在断电情况下,采用电阻档检测故障点;在通电情况下,检测故障点时,应用电压档测量(注意电压性质和量程;此外,还要注意

运动控制实验报告分析

运动控制系统实验报 告 姓名刘炜原 学号 201303080414

实验一 晶闸管直流调速系统电流 -转速调节器调试 一. 实验目的 1 ?熟悉直流调速系统主要单元部件的工作原理及调速系统对其提出的要求。 2?掌握直流调速系统主要单元部件的调试步骤和方法。 三. 实验设备及仪器 1?教学实验台主控制屏。 2. ME —11 组件 3. MC —18 组件 4. 双踪示波器 5. 万用表 四. 实验方法 1. 速度调节器(ASR 的调试 按图1-5接线,DZS (零速封锁 器)的扭子 开关扳向“解除”。 (1) 调整输出正、负限幅值 “ 5”、“ 6”端 接可调电容, 使ASR 调节器为PI 调节器,加入 一定的输入电压(由MC —18的给 定提供,以下同),调整正、负限 幅电位器RR 、 RP ,使输出正负值 等于:5V 。 (2) 测定输入输出特性 将反馈网络中的电容短接 (“ 5”、“6 ”端短接),使 ASR 调节器为P 调节器,向调节器输入 端逐渐加入正负电压,测出相应的 输出电压,直至输出限幅值,并画 出曲线。 (3) 观察PI 特性 拆除“ 5”、“6”端短接线,突加 二.实验内容 1?调节器的调试 C B RF 4 2 HP1 RP2 6 4 2 3 1 NMCL-31A 可调电容,位于 NMCL-18的下部 封锁 -S 2 反 号 Q 9 ASR ( ??) DZS (零速封锁 解除 ACR 电就声书器) 11 12 图1-5速度调节器和电流调节器的调试接线图

给定电压(_0.1V),用慢扫描示波器观察输出电压的 变化规律,改变调节器的放大倍数及反馈电容,观察输出电压的变化。反馈电容由外接电容 箱改变数值。 2.电流调节器(ACR的调试 按图1-5接线。 (1)调整输出正,负限幅值 “9”、“10”端接可调电容,使调节器为PI调节器,加入一定的输入电压,调整正,负限幅电位器,使输出正负最大值等于_5V。 (2)测定输入输出特性 将反馈网络中的电容短接(“ 9”、“10”端短接),使调节器为P调节器,向调节器输入端逐渐加入正负电压,测出相应的输出电压,直至输出限幅值,并画出曲线。 (3)观察PI特性 拆除“ 9”、“10”端短接线,突加给定电压,用慢扫描示波器观察输出电压的变化规律,改变调节器的放大倍数及反馈电容,观察输出电压的变化。反馈电容由外接电容箱改变 数值。

计算机组成原理虚拟实验指导书

计算机组成原理实验指导书 (虚拟实验系统)

实验1 1位全加器 ?实验目的 ?掌握全加器的原理及其设计方法。 ?熟悉组成原理虚拟教学平台的使用。 ?实验设备 与非门(3片)、异或门(2片)、开关若干、指示灯若干 ?实验原理 1位二进制加法器单元有三个输入量:两个二进制数Ai,Bi和低位传来的进位信号Ci,两个输出量:本位和输出Si以及向高位的进位输出C(i+1),这种考虑了全部三个输入量的加法单元称为全加器。来实验要求利用基本门搭建一个全加器,并完成全加器真值表。 ?实验步骤 各门电路芯片引脚显示于组件信息栏。 1. 测从组件信息栏中添加所需组件到实验流程面板中,按照图1.1所示搭建实验。 图1.1 组合逻辑电路实验流程图

2. 打开电源开关,按表1设置开关的值,完成表1-1。 表1-1 实验2 算术逻辑运算实验 ?实验目的 ?了解运算器的组成结构 ?掌握运算器的工作原理 ?掌握简单运算器的组成以及数据传送通路 ?验证运算功能发生器(74LS181)的组合功能 ?实验设备 74LS181(2片),74LS273(2片), 74LS245(2片),开关若干,灯泡若干,单脉冲一片 ?实验原理 实验中所用的运算器数据通路图如图2.1所示,实验中的运算器由两片74LS181以并/串形式构成8位字长的ALU。运算器的输出经过一个三态门(74LS245)和数据总线相连,运算器的两个数据输入端分别由两个锁存器(74LS373)锁存,锁存器的输入连至数据总线,数据开关用来给出参与运算的数据(A和B),并经过一个三态门(74LS245)和数据显示灯相连,显示结果。 ?74LS181:完成加法运算 ?74LS273:输入端接数据开关,输出端181。在收到上升沿的时钟信号前181和其 输出数据线之间是隔断的。在收到上升沿信号后,其将输出端的数据将传到181, 同时,作为触发器,其也将输入的数据进行保存。因此,通过增加该芯片,可以通 过顺序输入时钟信号,将不同寄存器中的数据通过同一组输出数据线传输到181 芯片的不同引脚之中 ?74LS245:相当于181的输出和数据显示灯泡组件之间的一个开关,在开始实验后

《电力拖动自动控制系统--运动控制系统》实验指导书(自编)

电力拖动自动控制系统---- 运动控制系统 实验指导书 昆明理工大学信自学院自动化系 2012年9月 目录 实验须知 实验一双闭环不可逆直流调速系统调试 实验二双闭环不可逆直流调速系统的静特性研究 实验三双闭环不可逆直流调速系统的动特性研究 实验四逻辑无环流可逆直流调速系统实验 实验五矢量坐标变换仿真 实验六转差频率控制的交流异步电动机矢量控制系统仿真 实验七无速度传感器的矢量控制系统仿真 附录1双闭环不可逆直流调速系统原理图及所需挂件 附录2逻辑无环流直流可逆调速系统原理图及所需挂件 实验须知 实验课是教学中的重要环节之一,通过实验,是理论联系实际,加深理解和巩固所学的有关理论知识,培养、锻炼和提高对实际系统的调试和分析、解决问题的能力,同时通过实验也培养严谨的科学态度和良好的作风,以达到工程技术人员应有的本领,因此要求每个学生必须认真对待实验课,要求做到:

一、实验前预习,要求: 1、了解所有实验系统的工作原理 2、明确实验目的,各项实验内容、步骤和做法 3、拟定实验操作步骤,画出实验记录表格等。 二、实验中认真、要求: 1、熟知所有设备,认真按实验要求,有步骤地进行各项内容的实验。 2、测试前,必须熟悉仪器、仪表的使用,注意量程。 3、认真记录测试数据和波形。 4、不许带电操作,每次更换线路时,必须断点进行操作,通电前,必 须经指导老师检查,方可合闸。 5、同组同学,必须相互配合,共同完成实验任务。 三、实验后认真写实验报告 1、整理各项实验数据,列成表格,按要求绘制有关曲线,进行分析比 较。 2、记录和分析实验中的各种现象。 四、实验装置 自动控制系统实验全部在DJDK-Ⅱ型装置上进行。详见“DJDK-Ⅱ实验装置简介”。 实验一双闭环不可逆直流调速系统调试 一、实验目的 1、掌握调速系统各单元电路的调整方法,弄清他们的工作原理及其在系统中 的应用。 2、掌握双闭环不可逆直流调速系统的调试方法和步骤。 二、系统组成及所需挂件 详见附录一。 三、实验内容 (一)双闭环调速系统调试原则 ①先单元、后系统,即先将单元的参数调好,然后才能组成系统。

过程控制系统实验指导书解析

过程控制系统实验指导书 王永昌 西安交通大学自动化系 2015.3

实验一先进智能仪表控制实验 一、实验目的 1.学习YS—170、YS—1700等仪表的使用; 2.掌握控制系统中PID参数的整定方法; 3.熟悉Smith补偿算法。 二、实验内容 1.熟悉YS-1700单回路调节器与编程器的操作方法与步骤,用图形编程器编写简单的PID仿真程序; 2.重点进行Smith补偿器法改善大滞后对象的控制仿真实验; 3.设置SV与仿真参数,对PID参数进行整定,观察仿真结果,记录数据。 4.了解单回路控制,串级控制及顺序控制的概念,组成方式。 三、实验原理 1、YS—1700介绍 YS1700 产于日本横河公司,是一款用于过程控制的指示调节器,除了具有YS170一样的功能外,还带有可编程运算功能和2回路控制模式,可用于构建小规模的控制系统。其外形图如下: YS1700 是一款带有模拟和顺序逻辑运算的智能调节器,可以使用简单的语言对过程控制进行编程(当然,也可不使用编程模式)。高清晰的LCD提供了4种模拟类型操作面板和方便的双回路显示,简单地按前面板键就可进行操作。能在一个屏幕上对串级或两个独立的回路进行操作。标准配置I/O状态显示、预置PID控制、趋势、MV后备手动输出等功能,并且可选择是否通信及直接接收热偶、热阻等现场信号。对YS1700编程可直接在PC机上完成。

SLPC内的控制模块有三种功能结构,可用来组成不同类型的控制回路:(1)基本控制模块BSC,内含1个调节单元CNT1,相当于模拟仪表中的l台PID调节器,可用来组成各种单回路调节系统。 (2)串级控制模块CSC,内含2个互相串联的调节单元CNTl、CNT2,可组成串级调节系统。 (3)选择控制模块SSC,内含2个并联的调节单元CNTl、CNT2和1个单刀三掷切换开关CNT3,可组成选择控制系统。 当YS1700处于不同类型的控制模式时,其内部模块连接关系可以表示如下:(1)、单回路控制模式

伺服运动控制---实验2+实验4指导书

实验二 步进电机控制实验 [实验目的] 1.掌握使用步进电机驱动器控制步进电机的系统设计方法; 2.熟悉步进电机驱动器的用法; 3.掌握基于步进驱动器的步进电机单轴控制方法。 [实验设备] 1.计算机; 2.台达EH 系列可编程序控制器; 3.步进电机驱动器WD3-007; 4.三相步进电机VRDM 3910/50 LWA 。 [实验原理及线路] 1.德国百格拉步进电机驱动器WD3—007如图1所示,驱动器面板说明如下: 信号接口:PULSE+ 电机输入控制脉冲信号; DIR+ 电机转动方向控制信号; RESET+ 复位信号,用于封锁输入信号; READY+ 报警信号; PULSE-、DIR-、RESET-和READY-短接公共地; 状态指示:RDY 灯亮表示驱动器正常工作; TEMP 灯亮表示驱动器超温; FLT 灯亮表示驱动器故障; 功能选择:MOT.CURR 设置电机相电流; STEP1、STEP2 设置电机每转的步数; CURR.RED 设定半流功能 PULSE.SYS 可设置成“脉冲和方向”控制方式; 也可以设置成“正转和反转”控制方式; 功率接口:DC+和DC-接制动电容; U 、V 、W 接电机动力线,PE 是地; L 、N 、PE 接驱动器电源,电源电压是220VAC 输入时,最大电流是3A 。电源线横截面≥1.5平方毫米,尽量短。驱动器的L 端和N 端接供电电源,同时要串接一个6.3A 保险丝;PE 为接地。 信号说明: (1)PULSE :脉冲信号输入端,每一个脉冲的上升沿使电机转动一步。 (2)DIR :方向信号输入端,如“DIR ”为低电平,电机按顺时针方向旋转;“DIR ”为高电平电机按逆时针方向旋转。 (3)CW :正转信号,每个脉冲使电机正向转动一步。 (4)CCW :反转信号,每个脉冲使电机反向转动一步。 (5)RESET :复位信号,如复位信号为低电平时,输入脉冲信号起作用,如果复位信号为高电平时就禁止任何有效的脉冲,输入信号无效,电机无保持扭矩。 (6)READY :输入报警信号:READY 是继电器开关,当驱动器正常工作时继电器闭合,当驱动器工作异常时继电器断开。继电器允许最高输入电压和电流是:35VDC ,10mA ≤I ≤200mA ,电阻性负载。如用该继电器,要把他串联到CNC 的某输入端。当驱动器正常工作时继 STEP1ON 1 2 3 4PULES.SYS CURR.RED STEP2 PACER W WD3-007PE N L PE U V DC-DC+READY-READY+ RESET-RESET+ DIR-/CCW-DIR+/CCW+ PULSE-/CW-PULSE+/CW+ MOT.CURR FLT TEMP RDY C 40 F E D 2 138A 9B 7 65 图1 步进电机驱动器

计算机过程控制系统(DCS)课程实验指导书(详)

计算机过程控制系统(DCS)课程实验指导书实验一、单容水箱液位PID整定实验 一、实验目的 1、通过实验熟悉单回路反馈控制系统的组成和工作原理。 2、分析分别用P、PI和PID调节时的过程图形曲线。 3、定性地研究P、PI和PID调节器的参数对系统性能的影响。 二、实验设备 AE2000A型过程控制实验装置、JX-300X DCS控制系统、万用表、上位机软件、计算机、RS232-485转换器1只、串口线1根、网线1根、24芯通讯电缆1根。 三、实验原理 图2-15为单回路水箱液位控制系统 单回路调节系统一般指在一个调节对象上用一个调节器来保持一个参数的恒定,而调节器只接受一个测量信号,其输出也只控制一个执行机构。本系统所要保持的参数是液位的给定高度,即控制的任务是控制水箱液位等于给定值所要求的高度。根据控制框图,这是一个闭环反馈单回路液位控制,采用SUPCON JX-300X DCS控制。当调节方案确定之后,接下来就是整定调节器的参数,一个单回路系统设计安装就绪之后,控制质量的好坏与控制器参数选择有着很大的关系。合适的控制参数,可以带来满意的控制效果。反之,控制器参数选择得不合适,则会使控制质量变坏,达不到预期效果。一个控制系统设计好以后,系统的投运和参数整定是十分重要的工作。 一般言之,用比例(P)调节器的系统是一个有差系统,比例度δ的大小不仅会影响到余差的大小,而且也与系统的动态性能密切相关。比例积分(PI)调节器,由于积分的作用,不仅能实现系统无余差,而且只要参数δ,Ti调节合理,也能使系统具有良好的动态性能。比例积分微分(PID)调节器是在PI调节器的基础上再引入微分D的作用,从而使系统既无余差存在,又能改善系统的动态性能(快速性、稳定性等)。但是,并不是所有单回路控制系统在加入微分作用后都能改善系统品质,对于容量滞后不大,微分作用的效果并不明显,而对噪声敏感的流量系统,加入微分作用后,反而使流量品质变坏。对于我们的实验系统,在单位阶跃作用下,P、PI、PID调节系统的阶跃响应分别如图2-16中的曲线①、②、③所示。 图2-16 P、PI和PID调节的阶跃响应曲线

运动控制系统实验指导书分解

运动控制系统 实验指导书 赵黎明、王雁编 广东海洋大学信息学院自动化系

直流调速 实验一不可逆单闭环直流调速系统静特性的研究 一.实验目的 1.研究晶闸管直流电动机调速系统在反馈控制下的工作。 2.研究直流调速系统中速度调节器ASR的工作及其对系统静特性的影响。 3.学习反馈控制系统的调试技术。 二.预习要求 1.了解速度调节器在比例工作与比例—积分工作时的输入—输出特性。 2.弄清不可逆单闭环直流调速系统的工作原理。 三.实验线路及原理 见图6-7。 四.实验设备及仪表 1.MCL系列教学实验台主控制屏。 2.MCL—18组件(适合MCL—Ⅱ)或MCL—31组件(适合MCL—Ⅲ)。 3.MCL—33(A)组件或MCL—53组件。 4.MEL-11挂箱 5.MEL—03三相可调电阻(或自配滑线变阻器)。 6.电机导轨及测速发电机、直流发电机M01(或电机导轨及测功机、MEL—13组件)。 7.直流电动机M03。 8.双踪示波器。 五.注意事项 1.直流电动机工作前,必须先加上直流激磁。 2.接入ASR构成转速负反馈时,为了防止振荡,可预先把ASR的RP3电位器逆时针旋到底,使调节器放大倍数最小,同时,ASR的“5”、“6”端接入可调电容(预置7μF)。 3.测取静特性时,须注意主电路电流不许超过电机的额定值(1A)。 4.三相主电源连线时需注意,不可换错相序。 5.电源开关闭合时,过流保护发光二极管可能会亮,只需按下对应的复位开关SB1

即可正常工作。 6.系统开环连接时,不允许突加给定信号U g起动电机。 7.起动电机时,需把MEL-13的测功机加载旋钮逆时针旋到底,以免带负载起动。 8.改变接线时,必须先按下主控制屏总电源开关的“断开”红色按钮,同时使系统的给定为零。 9.双踪示波器的两个探头地线通过示波器外壳短接,故在使用时,必须使两探头的地线同电位(只用一根地线即可),以免造成短路事故。 六.实验内容 1.移相触发电路的调试(主电路未通电) (a)用示波器观察MCL—33(或MCL—53,以下同)的双脉冲观察孔,应有双脉冲,且间隔均匀,幅值相同;观察每个晶闸管的控制极、阴极电压波形,应有幅值为1V~2V 的双脉冲。 (b)触发电路输出脉冲应在30°~90°范围内可调。可通过对偏移电压调节单位器及ASR输出电压的调整实现。例如:使ASR输出为0V,调节偏移电压,实现α=90°;再保持偏移电压不变,调节ASR的限幅电位器RP1,使α=30°。 2.求取调速系统在无转速负反馈时的开环工作机械特性。 a.断开ASR的“3”至U ct的连接线,G(给定)直接加至U ct,且Ug调至零,直流电机励磁电源开关闭合。 b.合上主控制屏的绿色按钮开关,调节三相调压器的输出,使U uv、Uvw、Uwu=200V。 注:如您选购的产品为MCL—Ⅲ、Ⅴ,无三相调压器,直接合上主电源。以下均同。 c.调节给定电压U g,使直流电机空载转速n0=1500转/分,调节测功机加载旋钮(或直流发电机负载电阻),在空载至额定负载的范围内测取7~8点,读取整流装置输出电压U d 3.带转速负反馈有静差工作的系统静特性 a.断开G(给定)和U ct的连接线,ASR的输出接至U ct,把ASR的“5”、“6”点短接。 b.合上主控制屏的绿色按钮开关,调节U uv,U vw,U wu为200伏。 c.调节给定电压U g至2V,调整转速变换器RP电位器,使被测电动机空载转速n0=1500转/分,调节ASR的调节电容以及反馈电位器RP3,使电机稳定运行。 调节测功机加载旋钮(或直流发电机负载电阻),在空载至额定负载范围内测取7~8

计算机组成原理实验

计算机组成原理上机实验指导

一、实验准备和实验注意事项 1.本课程实验使用专门的TDN-CM++计算机组成原理教学实验设备,使用前后均应仔细检查主机板,防止导线、元件等物品落入装置内导致线路短路、元件损坏。 2.完成本实验的方法是先找到实验板上相应的丝印字及其对应的引出排针,将排针用电缆线连接起来,连接时要注意电缆线的方向,不能反向连接;如果实验装置中引出排针上已表明两针相连,表明两根引出线内部已经连接起来,此时可以只使用一根线连接。 3.为了弄清计算机各部件的工作原理,前面几个实验的控制信号由开关单元“SWITCH UNIT”模拟输入;只有在模型机实验中才真正由控制器对指令译码产生控制信号。在每个实验开始时需将所有的开关置为初始状态“1”。 4.本实验装置的发光二极管的指示灯亮时表示信号为“0”,灯灭时表示信号为“1”。 5.实验接线图中带有圆圈的连线为实验中要接的线。 6.电源关闭后,不能立即重新开启,关闭与重启之间至少应有30秒间隔。 7.电源线应放置在机内专用线盒中。 8.保证设备的整洁。

二、实验设备的数据通路结构 利用本实验装置构造的模型机的数据通路结构框图如下图。其中各单元内部已经连接好,单元之间可能已经连接好,其它一些单元之间的连线需要根据实验目的用排线连接。 图0-2 模型机数据通路结构框图

实验一运算器实验:算术逻辑运算实验 一.实验目的 1.了解运算器的组成结构; 2.掌握运算器的工作原理; 3.掌握简单运算器的数据传送通路。 4.验证运算功能发生器(74LSl81)的组合功能。 二.实验设备 TDN-CM++计算机组成原理教学实验系统一台,排线若干。 三.实验原理 实验中所用的运算器数据通路如图1-l所示。其中两片74LSl81以串行方式构成8位字长的ALU,ALU的输出经过一个三态门(74LS245)和数据总线相连。三态门由ALU-B控制,控制运算器运算的结果能否送往总线,低电平有效。 为实现双操作数的运算,ALU的两个数据输入端分别由二个锁存器DR1、DR2(由74LS273实现)锁存数据。要将数据总线上的数据锁存到DR1、DR2中,锁存器的控制端LDDR1和LDDR2必须为高电平,同时由T4脉冲到来。 数据开关(“INPUT DEVICE”)用来给出参与运算的数据,经过三态门(74LS245)后送入数据总线,三态门由SW-B控制,低电平有效。数据显示灯(“BUS UNIT”)已和数据总线相连,用来显示数据总线上的内容。 图中已将用户需要连接的控制信号用圆圈标明(其他实验相同,不再说明),其中除T4为脉冲信号外,其它均为电平信号。由于实验电路中的时序信号均已连至“W/R UNIT”的相应时序信号引出端,因此,在进行实验时,只需将“W/R UNIT”的T4接至“STATE UNIT”的微动开关KK2的输出端,按动微动开关,即可获得实验所需的单脉冲。 ALU运算所需的电平控制信号S3、S2、S1、S0、Cn、M、LDDR1、LDDR2、ALU-B、SW-B均由“SWITCH UNIT”中的二进制数据开关来模拟,其中Cn、ALU-B、SW-B为低电平有效,LDDRl、LDDR2为高电平有效。 对单总线数据通路,需要分时共享总线,每一时刻只能由一组数据送往总线。

数控运动控制技术实验 实验指导书

机械工程学科应用型研究生综合实验Ⅱ 实验指导书 (数控运动控制技术分册) 富宏亚主编 机电工程学院 2014年3月

目录 实验一数控系统硬件连接与电机测试实验 (1) 实验1.1 数控系统硬件连接实验 (1) 实验1.2 数控系统电机测试实验 (5) 实验二数控系统控制软件设计实验 (7) 实验2.1 单轴运动控制软件设计实验 (7) 实验2.2 直线插补运动控制软件设计实验 (13)

实验一数控系统硬件连接与电机测试实验 实验1.1 数控系统硬件连接实验 一、实验目的 1、了解数控综合实验台的组成和电路连接。 2、掌握数控系统的构成原理。 二、实验所用单元 计算机、雷泰DMC5480运动控制卡、实验台控制面板、小型3轴立式铣床。 三、实验原理 1、如图1-1所示,数控综合实验台由计算机、雷泰DMC5480运动控制卡、实验台控制面板、小型3轴立式铣床组成。运动控制卡安装在计算机的PCI插槽中;实验台控制面板上安装了电机驱动器、电源、继电器、空气开关、急停和接线板等元器件,小型3轴立铣床包括3个运动轴X、Y、Z和1个主轴。 图1-1硬件系统总体实物图 2、以X轴运动控制电路为例,X轴伺服电机驱动器1与运动控制卡的电路如图1-2所示,各连线引脚定义如表1-1和表1-2所示。Y轴伺服电机驱动器2、Z 轴伺服电机驱动器3与运动控制卡之间的电路可参考X轴运动控制电路进行接线。

图1-2 X轴电机驱动器与运动控制卡连接电路图 3、DMC5480运动控制卡为每个轴配有两个限位信号、1个原点信号。每路信号都加有滤波器可以过滤高频噪声,保证动作可靠。各传感器与运动控制卡接线电路图如图1-3所示: 图1-3 运动控制卡X1引脚与传感器的连接电路图

单回路控制系统实验过程控制实验指导书

单回路控制系统实验 单回路控制系统概述 实验三单容水箱液位定值控制实验 实验四双容水箱液位定值控制实验 实验五锅炉内胆静(动)态水温定值控制实验 实验三 实验项目名称:单容液位定值控制系统 实验项目性质:综合型实验 所属课程名称:过程控制系统 实验计划学时:2学时 一、实验目的 1.了解单容液位定值控制系统的结构与组成。 2.掌握单容液位定值控制系统调节器参数的整定和投运方法。 3.研究调节器相关参数的变化对系统静、动态性能的影响。 4.了解P、PI、PD和PID四种调节器分别对液位控制的作用。 5.掌握同一控制系统采用不同控制方案的实现过程。 二、实验内容和(原理)要求 本实验系统结构图和方框图如图3-4所示。被控量为中水箱(也可采用上水箱或下水箱)的液位高度,实验要求中水箱的液位稳定在给定值。将压力传感器LT2检测到的中水箱液位信号作为反馈信号,在与给定量比较后的差值通过调节器控制电动调节阀的开度,以达到控制中水箱液位的目的。为了实现系统在阶跃

给定和阶跃扰动作用下的无静差控制,系统的调节器应为PI或PID控制。 三、实验主要仪器设备和材料 1.实验对象及控制屏、SA-11挂件一个、计算机一台、万用表一个; 2.SA-12挂件一个、RS485/232转换器一个、通讯线一根; 3.SA-44挂件一个、CP5611专用网卡及网线、PC/PPI通讯电缆一根。 四、实验方法、步骤及结果测试 本实验选择中水箱作为被控对象。实验之前先将储水箱中贮足水量,然后将阀门F1-1、F1-2、F1-7、F1-11全开,将中水箱出水阀门F1-10开至适当开度,其余阀门均关闭。 具体实验内容与步骤按二种方案分别叙述。 (一)、智能仪表控制 1.按照图3-5连接实验系统。将“LT2中水箱液位”钮子开关拨到“ON”的位置。 图3-4 中水箱单容液位定值控制系统

运动控制系统仿真---实验讲义

《运动控制系统仿真》实验讲义 谢仕宏 xiesh@https://www.doczj.com/doc/3c1583193.html,

实验一、闭环控制系统及直流双闭环调速系统仿真 一、实验学时:6学时 二、实验内容: 1. 已知控制系统框图如图所示: 图1-1 单闭环系统框图 图中,被控对象s e s s G 1501 30010 )(-+= ,Gc(s)为PID 控制器,试整定PID 控制器 参数,并建立控制系统Simulink 仿真模型。再对PID 控制子系统进行封装,要求可通过封装后子系统的参数设置页面对Kp 、Ti 、Td 进行设置。 2. 已知直流电机双闭环调速系统框图如图1-2所示。试设计电流调节器ACR 和转速调节器ASR 并进行Simulink 建模仿真。 图1-2 直流双闭环调速系统框图 三、实验过程: 1、建模过程如下: (1)PID 控制器参数整顿 根据PID 参数的工程整定方法(Z-N 法),如下表所示, Kp=τ K T 2.1=0.24,Ti=τ2=300, Td=τ5.0=75。 表1-1 Z-N 法整定PID 参数

(2)simulink仿真模型建立 建立simulink仿真模型如下图1-3所示,并进行参数设置: 图1-3 PID控制系统Simulink仿真模型 图1-3中,step模块“阶跃时间”改为0,Transport Delay模块的“时间延迟”设置为150,仿真时间改为1000s,如下图1-4所示: 图1-3 PID控制参数设置 运行仿真,得如下结果:

图1-5 PID控制运行结果 (3)PID子系统的创建 首先将参数Gain、Gain1、Gain三个模块的参数进行设置,如下图所示: 图1-6 PID参数设置 然后建立PID控制器子系统,如下图1-7所示: 图1-7 PID子系统 再对PID子系统进行封装,选中“Subsystem”后,单击鼠标右键,选择“Mask subsystem”,弹

计算机组成原理实验指导书

计算机组成原理 实验报告 学号: 姓名: 提交日期: 成绩: 计算机组成原理实验报告 Computer Organization Lab Reports ______________________________________________________________________________ 班级: ____ 姓名:____学号:_____ 实验日期:____

一.实验目的 1. 熟悉Dais-CMX16+达爱思教仪的各部分功能和使用方法。 2. 掌握十六位机字与字节运算的数据传输格式,验证运算功能发生器及进位控制的组合功能。了解运算器的工作原理。 3. 完成算术、逻辑、移位运算实验,熟悉ALU运算控制位的运用。 ______________________________________________________________________________二.实验环境 Dais-CMX16+达爱思教仪 ______________________________________________________________________________三.实验原理 实验中所用的运算器数据通路如图1-1所示。ALU运算器由CPLD描述。运算器的输出经过2片74LS245三态门与数据总线相连,2个运算寄存器AX、BX的数据输入端分别由4个74LS574锁存器锁存,锁存器的输入端与数据总线相连,准双向I/O输入输出端口用来给出参与运算的数据,经2片74LS245三态门与数据总线相连。 图1-1 运算器数据通路 图1-1中,AXW、BXW在“搭接态”由实验连接对应的二进制开关控制,“0”有效,通过【单拍】按钮产生的负脉冲把总线上的数据打入,实现AXW、BXW写入操作。 表1-1 ALU运算器编码表 算术运算逻辑运算 M M13 M12 M11 功能M M13 M12 M11 功能 M S2 S1 S0 M S2 S1 S0 0 0 0 0 A+B+C 1 0 0 0 读B 0 0 0 1 A—B —C 1 0 0 1 非A 0 0 1 0 RLC 1 0 1 0 A-1

相关主题
文本预览
相关文档 最新文档