当前位置:文档之家› 汽车噪声的检测

汽车噪声的检测

汽车噪声的检测
汽车噪声的检测

汽车噪声的检测

噪声作为一种严重的公害已日益引起人们的关注,目前世界各国已纷纷制定出控制噪声的标准。噪声的一般定义是:频率和声强杂乱无章的声音组合,造成对人和环境的影响。更人性化的描述是,人们不喜欢的声音就是噪声。

随着汽车向快速和大功率方面的发展,汽车噪声已成为一些大城市的主要噪声源。汽车噪声主要包括:发动机的机械噪声、燃烧噪声、进排气噪声和风扇噪声;底盘的机械噪声、制动噪声和轮胎噪声,车厢振动噪声,货物撞击噪声,喇叭噪声和转向、倒车时的蜂鸣声等噪声。由于车辆噪声具有游走性,影响范围大,干扰时间长,因而危害比较大。

一、噪声的评价指标

1.噪声的声压和声压级

噪声的主要物理参数有声压与声压级、声强与声强级和声功率与声功率级。其中声压与声压级是表示声音强弱的最基本的参数。

声压是指由于声波的存在引起在弹性介质中压力的变化值。声音的强弱取决于声压,声压越大听到的声音越强。人耳可以听到的声压范围是2×10-5(听阈声压)~20Pa(痛阈声压),相差100万倍,因此用声压的绝对值表示声音的强弱会感到很不方便,所以人们常用声压级来表示声音的强弱。

声压级是指某点的声压P与基准声压(听阈声压)P0的比值取常用对数再乘

以20的值,单位为分贝(dB)。可闻声声压级范围为0~120dB。

2.噪声的频谱

人耳对声音的感觉不仅与声压有关,而且还与声音的频率有关。人耳可闻声音的频率范围为20~20000Hz。一般的声源,并不是仅发出单一频率的声音,而是发出具有很多频率成分的复杂声音。声音听起来之所以会有很大的差别,就是因为它们的组成成分不同造成的。因此,为全面了解一个声源的特性,仅知道它在某一频率下的声压级和声功率级是不够的,还必须知道它的各种频率成分和相应的声音强度,这就是频谱分析。

噪声的频谱也是噪声的评价指标之一。以声音频率(Hz)为横坐标、以声音强度(如声压级dB)为纵坐标绘制的噪声测量图形,称为频谱图。

人耳可闻声音的频率有1000多倍的变化范围,在实际频谱分析中不可能逐个频率分析噪声。在声音测量中,让噪声通过滤波器把可闻声音的频率范围分割成若干个小的频段,称为频程或频带。频带的上限频率(或称上截止频率)与下限频率(或称下截止频率)具有的关系,频带的中心频率,当时称为倍频程或倍频带。可闻声音频率范围用10段倍频程表示,如表4-10所示。

表4-10倍频程中心频率及频率范围(Hz)

中心频率31.563125250500频率范围22~4545~9090~180180~355355~710中心频率100020004000800016000

频率范围710~14001400~28002800~56005600~1120011200~22400

如果需要更详细地分析噪声,可采用1/3倍频程,即可以把每个倍频程分成3份(1/3)。

3.噪声级

声压级相同的声音,但由于频率不同,听起来并不一样响,相反,不同频率的声音,虽然声压级也不同,但有时听起来却一样响,因此,用声压级测定的声音强弱与人们的生理感觉往往不一样。因而,对噪声的评价常采用与人耳生理感觉相适应的指标。

为了模拟人耳在不同频率有不同的灵敏性,在声级计内设有一种能够模拟人耳的听觉特性,把电信号修正为与听觉近似值的网络,这种网络称作计权网络。通过计权网络测得的声压级,已不再是客观物理量的声压级,而是经过听感修正的声压级,称作计权声级或噪声级。

国际电工委员会(IEC)对声学仪器规定了A、B、C等几种国际标准频率计权网络,它们是参考国际标准等响曲线而设计的。由于A计权网络的特性曲线接近人耳的听感特性,故目前普遍采用A计权网络对噪声进行测量和评价,记作dB(A)。

二、汽车噪声的标准及检测

(一)汽车噪声检验标准

GB7258-1997《机动车运行安全技术条件》对客车车内噪声级、汽车驾驶员耳旁噪声级和机动车喇叭声级作了规定,GB1495—79《机动车辆允许噪声》和GB1496-79《机动车噪声测量方法》对车外最大噪声级及其测量方法作了规定。

(1)车外最大允许噪声级汽车加速行驶时,车外最大允许噪声级应符合表

4-11的规定。表中所列各类机动车辆的变型车或改装车(消防车除外)的加速行驶车外最大允许噪声级,应符合其基本型车辆的噪声规定。

(2)车内最大允许噪声级客车车内最大允许噪声级不大于82dB。

(3)汽车驾驶员耳旁噪声级耳旁噪声级应不大于90dB。

(4)机动车喇叭声级喇叭声级在距车前2m、离地高1.2m处测量时,其值应为90~115dB。

(二)声级计的结构与工作原理

在汽车噪声的测量方法中,国家标准规定使用的仪器是声级计。

声级计是一种能把噪声以近似于人耳听觉特性测定其噪声级的仪器。可以用来检测机动车的行驶噪声、排气噪声和喇叭声音响度级。

根据测量精度不同声级计可分为精密声级计和普通声级计两类,根据所用电源不同可分为交流式声级计和直流式声级计两类。后者也可以称为便携式声级计,具有体积小、重量轻和现场使用方便等特点。

表4-11车外最大允许噪声级

车辆类型

车外最大允许噪声级[dB(A)]

1985年1月1日以前生

产的汽车

1985年1月1日起生产的

汽车

载货汽车8t≤载质量<15t3.5t≤

载质量<8t载质量

<3.5t

92

90

89

89

86

84轻型越野车8984

公共汽车4t≤载质量<11t载质

量≤4t

89

88

86

83轿车8482

声级计一般由传声器、放大器、衰减器、计权网络、检波器、指示表头和电源等组成。其工作原理是:被测的声波通过传声器被转换为电压信号,根据信号大小选择衰减器或放大,放大后的信号送入计权网络作处理,最后经过检波并在以dB标度的表头上指示出噪声数值。图4-23为我国生产的ND2型精密声级计。

图4-23ND2型精密声级计

(1)传声器传声器是将声波的压力转换成电压信号的装置,也称话筒,是声级计的传感器。常见的传声器有动圈式和电容式等多种形式。

动圈式传声器由振动膜片、可动线圈、永久磁铁和变压器等组成。振动膜片受到声波压力作用产生振动,它带动着和它装在一起的可动线圈在磁场内振动而产生感应电流。该电流根据振动膜片受到声波压力的大小而变化。声压越大,产生的电流就越大。

电容式传声器由金属膜片和金属电极构成平板电容的两个极板,当膜片受到声压作用发生变形,使两个极板之间的距离发生变化,电容量也发生变化,从而实现了将声压转换为电信号的作用。电容式传声器具有动态范围大、频率响应平直、灵敏度高和稳定性好等优点,因而应用广泛。

(2)放大器和衰减器在放大线路中都采用两级放大器,即输入放大器和输出放大器,其作用是将微弱的电信号放大。输入衰减器和输出衰减器是用来改变输

入信号的衰减量和输出信号衰减量的,以便使表头指针指在适当的位置上。衰减器每一档的衰减量为10dB。

(3)计权网络计权网络一般有A、B、C三种。A计权声级模拟人耳对55dB以下低强度噪声的频率特性,B计权声级模拟55~85dB的中等强度噪声的频率特性,C计权声级模拟高强度噪声的频率特性。三者的主要差别是对噪声低频成分的衰减程度不同,A衰减最多,B次之,C衰减量最少。A计权声级由于其特性曲线接近于人耳的听感特性,因此目前应用最广泛,B、C计权声级已逐渐不被采用。

(4)检波器和指示表头为了使经过放大的信号通过表头显示出来,声级计还需要有检波器,以便把迅速变化的电压信号转变成变化较慢的直流电压信号。这个直流电压的大小要正比于输入信号的大小。根据测量的需要,检波器有峰值检波器、平均值检波器和均方根值检波器之分。峰值检波器能给出一定时间间隔中的最大值,平均值检波器能在一定时间间隔中测量其绝对平均值。

多数的噪声测量中均采用均方根值检波器。均方根值检波器能对交流信号进行平方、平均和开方,得出电压的均方根值,最后将均方根电压信号输送到指示表头。指示表头是一只电表,只要对其刻度进行标定,就可从表头上直接读出噪声级的dB值。

声级计表头阻尼一般都有“快”和“慢”两个档。“快”档的平均时间为0.27s,很接近于人耳听觉器官的生理平均时间。“慢”档的平均时间为1.05s。当对稳态噪声进行测量或需要记录声级变化过程时,使用“快”档比较合适;在被测噪声的波动比较大时,使用“慢”档比较合适。

声级计面板上一般还备有一些插孔,这些插孔如果与便携式倍频带滤波器相连,可组成小型现场使用的简易频谱分析系统;如果与录音机组合,则可把现场噪声录制在磁带上储存下来,待以后再进行更详细的研究;如果与示波器组合,则可观察到声压变化的波形,并可存储波形或用照相机把波形摄制下来;还可以把分析仪、记录仪等仪器与声级计组合、配套使用,这要根据测试条件和测试要求而定。

(三)汽车噪声的测量方法

国家标准规定汽车噪声使用的测量仪器有精密声级计或普通声级计和发动机转速表,声级计误差不超过±2dB,并要求在测量前后,按规定进行校准。

1.声级计的检查与校准

(1)在未接通电源时,先检查并调整仪表指针的机械零点。可用零点调整螺钉使指针与零点重合。

(2)检查电池容量。把声级计功能开关对准“电池”,此时电表指针应达到额定红线,否则读数不准,应更换电池。

(3)打开电源开关,预热仪器10min。

(4)校准仪器。每次测量前或使用一段时间后,应对仪器的电路和传声器进行校准。根据声级计上配有的电路校准“参考”位置,校验放大器的工作是否正常。如不正常,应用微调电位计进行调节。电路校准后,再用已知灵敏度的标准传声器对声级计上的传声器进行对比校准。

常用的标准传声器有声级校准器和活塞式发声器,它们的内部都有一个可发出恒定频率、恒定声级的机械装置,因而很容易对比出被检传声器的灵敏度。声级校准器产生的声压级为94dB,频率为1000Hz;活塞式发声器产生的声压级为124dB,频率为250Hz。

(5)将声级计的功能开关对准“线性”、“快”档。由于室内的环境噪声一般为40~60dB,声级计上应有相应的示值。当变换衰减器刻度盘的档位时,表头示值应相应变化10dB左右。

(6)检查计权网络。按上述步骤,将“线性”位置依次转换为“C”、“B”、“A”。由于室内环境噪声多为低频成分,故经三档计权网络后的噪声级示值将低于线性值,而且应依次递减。

(7)检查“快”、“慢”档。将衰减器刻度盘调到高分贝值处(例如90dB),通过操作人员发声,来观察“快”档时的指针能否跟上发音速度,“慢”档时的指针摆动是否明显迟缓。

(8)在投入使用时,若不知道被测噪声级多大,必须把衰减器刻度盘预先放在最大衰减位置(即120dB),然后在实测中再逐步旋至被测声级所需要的衰减档。

2.车外噪声测量方法

(1)测量条件

①测量场地应平坦而空旷,在测试中心以25m为半径的范围内,不应有大的反射物,如建筑物、围墙等。

②测试场地跑道应有20m以上平直、干燥的沥青路面或混凝土路面。路面坡度不超过0.5%。

③本底噪声(包括风噪声)应比所测车辆噪声至少低10dB。并保证测量不被偶然的其他声源所干扰。本底噪声是指测量对象噪声不存在时,周围环境的噪声。

④为避免风噪声干扰,可采用防风罩,但应注意防风罩对声级计灵敏度的影响。

⑤声级计附近除测量者外,不应有其他人员,如不可缺少时,则必须在测量者背后。

⑥被测车辆不载重,测量时发动机应处于正常使用温度,车辆带有其他辅助设备亦是噪声源,测量时是否开动,应按正常使用情况而定。

(2)测量场地及测点位置

如图4-24所示为汽车噪声的测量场地及测量位置,测试传声器位于20m跑道中心点O两侧,各距中线7.5m,距地面高度1.2m,用三角架固定,传声器平行于路面,其轴线垂直于车辆行驶方向。

图4-24车外噪声测量场地及测量位置

(3)加速行驶车外噪声测量方法

①车辆须按规定条件稳定地到达始端线,前进档位为4档以上的车辆用第3档,前进档位为4档或4档以下的用第2档,发动机转速为其标定转速的3/4。如果此时车速超过了50km/h,那么车辆应以50km/h的车速稳定地到达始端线。对于自动变速器的车辆,使用在试验区间加速最快的档位。辅助变速装置不应使用。

在无转速表时,可以控制车速进入测量区,即以所定档位相当于3/4标定转速的车速稳定的到达始端线。

②从车辆前端到达始端线开始,立即将加速踏板踏到底或节气门全开,直线加速行驶,当车辆后端到达终端线时,立即停止加速。车辆后端不包括拖车以及和拖车连接的部分。

本测量要求被测车在后半区域发动机达到标定转速,如果车速达不到这个要求,可延长OC距离为15m,如仍达不到这个要求,车辆使用档位要降低一档。如果车辆在后半区域超过标定转速,可适当降低到达始端线的转速。

③声级计用“A”计权网络、“快”档进行测量,读取车辆驶过时的声级计表头最大读数。

④同样的测量往返进行1次。车辆同侧两次测量结果之差,应不大于2dB,并把测量结果记入规定的表格中。取每侧2次声级平均值中最大值作为检测车的最大噪声级。若只用1只声级计测量,同样的测量应进行4次,即每侧测量2次。

(4)匀速行驶车外噪声测量方法

①车辆用常用档位,加速踏板保持稳定,以50km/h的车速匀速通过测量区域。

②声级计用“A”计权网络、“快”档进行测量,读取车辆驶过时声级计表头的最大读数。

③同样的测量往返进行1次,车辆同侧两次测量结果之差不应大于2dB,并把测量结果记入规定的表格中。若只用1个声级计测量,同样的测量应进行4次,即每侧测量2次。

3.车内噪声测量方法

(1)测量条件。

①测量跑道应有足够试验需要的长度,应是平直、干燥的沥青路面或混凝土路面。

②测量时风速(指相对于地面)应不大于3m/s。

③测量时车辆门窗应关闭。车内带有其他辅助设备是噪声源,测量时是否开动,应按正常使用情况而定。

④车内本底噪声比所测车内噪声至少低l0dB,并保证测量不被偶然的其他声源所干扰。

⑤车内除驾驶员和测量人员外,不应有其他人员。

(2)测点位置

①车内噪声测量通常在人耳附近布置测点,传声器朝车辆前进方向。

②驾驶室内噪声测点的位置如图4-25所示。

图4-25驾驶室内噪声测点的位置

③载客车室内噪声测点可选在车厢中部及最后一排座的中间位置,传声器高度参考图4-25。

(3)测量方法

①车辆以常用档位、50km/h以上的不同车速匀速行驶,分别进行测量。

②用声级计“慢”档测量“A”、“C”计权声级,分别读取表头指针最大读数的平均值,测量结果记入规定的表格中。

③做车内噪声频谱分析时,应包括中心频率为31.5Hz、63Hz、125Hz、250Hz、500Hz、1000Hz、2000Hz、4000Hz、8000Hz的倍频带。

4.驾驶员耳旁噪声的测量方法

(1)车辆应处于静止状态且变速器置于空档,发动机应处于额定转速状态。

(2)测点位置如图4-25所示。

(3)声级计应置于“A”计权、“快”档。

5.汽车喇叭声的测量

汽车喇叭声的测点位置如图4-26所示,测量时应注意不被偶然的其他声源峰值所干扰。测量次数宜在2次以上,并注意监听喇叭声是否悦耳。

图4-26汽车喇叭噪声的测点位置

汽车车内声场分析及降噪方法研究发展

目录 1 引言 (1) 2 汽车噪声种类 (1) 3 车内噪声的主要来源 (2) 3.1 发动机噪声 (2) 3.2 底盘噪声 (2) 3.3 车身噪声和车内附属设备噪声 (2) 4 传统的车内噪声控制技术 (3) 4.1 消除或减弱噪声源的噪声辐射 (3) 4.2 隔绝传播途径 (3) 4.3 用吸声处理降低车室混响声 (3) 5 车内噪声主动控制技术 (4) 5.1 有源噪声控制技术 (4) 5.2 结构声的有源振动控制 (4) 6 车内噪声控制技术研究的发展趋势 (4) 7 结语及展望 (5) 参考文献: (6)

汽车车内声场分析及降噪方法研究发展 1引言 控制车内噪声一直是车辆设计、制造工程师的努力方向。汽车内部噪声不但增加驾驶乘人员的疲劳,而且影响车辆的行驶安全。车内噪声水平的高低在很大程度上反映了车辆制造厂家的设计和工艺水平。近年来,车内噪声已经成为无额定车辆品质的重要因素,车内低噪声设计已经成为产品开发中的重要任务之一。车内噪声级与乘坐室振动级别一样,已经成为判断汽车舒适性的主要指标。车内噪声主要取决于乘坐室的减振隔音性能,重量轻的承载式车身结构和类似的减轻车身重量的措施被认为可能增大车内噪声,尤其是低频噪声。实车测试表明,这种低频噪声主要集中在20~30HZ。车身壁板的振动和噪声有紧密关系,且乘坐室空腔的共振会放大噪声。这个问题的解决方法是在车辆设计阶段,利用现代振动力学与声学分析方法,预测车内噪声特性,实现优化设计;并通过实车测试,改进设计及工艺,最后使得车内噪声处于最优水平,最大极限地改善乘坐的舒适性,减轻人员的疲劳[1]。 2汽车噪声种类 汽车是有多种声源的机器, 运行中会有多种噪声,可分为: 车外噪声和车内噪声。车内噪声是指行驶的汽车乘坐室或驾驶室内存在的噪声, 其主要噪声源有: 发动机噪声、进气噪声、排气噪声、冷却风扇噪声、底盘噪声等。车内噪声按传播途径分为: 空气声和固体声[2][3][4]。 空气声(Air Borne Sound) 是从动力系统表面发出的辐射声, 它在空气中传播并对车身加振而形成。空气声会在传播过程中衰减, 材料对声能的衰减也使其大大衰减。固体声(Solid Borne Sound)是机械振动沿固体构件传播中产生的噪声, 它产生于发动机、变速箱、后桥、轮胎等, 并能通过底盘车架传播。由于固体构件一般由均质、密实的弹性材料组成, 对声波的吸收作用很小, 并能约束声波使它在有限空间内传播; 因此结构声往往可以传播很远距离。固体声通过构件表面的振动也会辐射出“再生”的空气声, 它与原始空气声相比较,结构声形成的再生噪声往往更难解决。空气声和结构声是可以相互转化的。空气声的振动能够迫使构件产生振动成为结构声; 结构声辐射出声音时, 也就成为空气声。减少空气声的传播, 要从减少或阻止空气的振动入手, 可以采取吸声或隔音措施; 减少结构声的传递,则须采取隔振或阻尼措施。

汽车发动机振动噪声测试实用标准系统

附件1 汽车发动机振动噪声测试系统 1用途及基本要求: 该设备主要用于教学和科研中的振动和噪声测量,要求能够测量试验对象的振动噪声特性(频率、阶次、声强等),能对试验数据进行综合分析。该产品的生产厂应具有多年振动噪声行业从业经验,有较高的知名度和影响力。系统软件和硬件应该为成熟的模块化设计,同时具有很强的扩展能力,能保证将来软件和硬件同时升级。 2设备技术要求及参数 2.1设备系统配置 2.1.1数据采集系统一套; 2.1.2数据测试分析软件一套; 2.1.3传声器 2个; 2.1.4加速度计 2个; 2.1.5声强探头 1套; 2.1.6声级校准器 1个; 2.1.7笔记本电脑一台 2.2数据采集、控制系统技术要求 2.2.1主机箱一个;供电采用9~36V直流和 200~240V交流; 2.2.2便携式采集前端,适用于实验室及现场环境; 2.2.3整机消耗功率<150W; 2.2.4工作环境温度:-10?C ~50?C; 2.2.5中文或英文WindowsXP下运行,操作主机采用笔记本电脑; 2.2.6输入通道数:4个以上,其中2个200V极化电压输入通道、不少一个转速输入通道; 2.2.7输入通道拥有Dyn-X技术,动态围160dB; 2.2.8每通道最高采样频率:≥65.5kHz,最大分析带宽:≥25.6kHz; 2.2.9系统留有扩充板插槽,根据需要可以进一步扩充;数据采集前端可同时连接多种形式传感器,包括加速度计、转速探头、传声器、声强探头等; 2.2.10系统具有堆叠和分拆能力,多个小系统可组成多通道大系统进行测量。大系统可分拆成多个小系统独立运行; 2.2.11采集前端的数据传输具备二种方式之一:①通过10/100M自适应以太网传输至PC; ②通过无线通讯以太网技术传输至PC,通信距离在100米以上。使测量过程更为灵活方便,方便硬件通道和计算机系统扩展升级;

车内噪音的来源及解决方法

在汽车音响改装行业浸淫多年,改装过不少车型,因为音响改装涉及到车辆吸音降噪的处理,对此也有些心得,现在整理一下,和大家分享。 首先我们来分析一下车内的噪音的来源,车内噪音主要有下面几种: 1.发动机噪音 发动机噪音包括发动机缸体发出的机械声,还包括进气系统噪音,即高速气体经空气滤清器、进气管、气门进入气缸,在流动过程中,会产生一种很强的气动噪音。由于汽车公司在车辆设计时由于成本的问题,部分零件不会采用最好的材料,如该车引擎盖没有使用吸音材料,防火墙没有贴隔音材料造成了发动机的声音通过仪表台下方、底盘传入到车内。 2.轮胎噪音 一般的胎噪主要由三部分组成:一是轮胎花纹间隙的空气流动和轮胎四周空气扰动构成的空气噪音;二是胎体和花纹部分震动引起的轮胎震动噪音;三是路面不平造成的路面噪音。胎噪是不可避免的,即使是换用所谓的低胎噪轮胎也没有什么效果,关键还是看车辆本身的吸音隔音效果,现在市售30万以下的新车防火墙基本是不做吸音隔音的,造成了发动机声音和轮胎噪音通过仪表台下方、底盘叶子板处传入到车内。 3.空气噪音 一是风噪,就是由车身周围气流分离导致压力变化而产生的噪音;二是风漏,或叫吸出音,是由驾驶室及车身缝隙吸气而与车身周围气流相互作用而产生的噪音;三是其他噪音,包括空腔共鸣等,例如很多车尾箱内的备胎空腔,很容易与排气系统形成共鸣,而汽车的四个门是离车内最近的结构,如果密封做的不好,风噪和凤漏就会很明显。 4.车身结构噪音 主要是受两个方面因素影响,一是车身结构的震动传递方式,二是车身上的金属构件由于在里外作用下产生震动而产生噪音。例如车门和尾箱两侧的钢板,很容易因为车辆震动而产生噪音,车门噪音传导及车身密封性不足,车门是由钣金件和门饰板组成。市场上售价在30万以下的新车,大部分车门部分都没有做隔音处理,因此在关门的时候可以感觉到明显的金属声音,车辆高速行驶时金属声会更明显。下面,我们将以马自达5为例,讲解一下如何进行静音降噪的处理。 刚提回来还没上牌的新车,车主说低速行驶时没多大问题,当时速达到80-100km后整车车身振动大、低频共鸣噪音大,要求处理高速行驶时产生的各种噪声。噪音描述符合绝大部分中小型车的噪音特性。在弄清楚噪音产生的原因后跟车主详细解释各部位振动所产生噪音的原理和解决方法,车主明白认可后开始动工做降噪工程。详细了解该车的各种噪音情况,分析噪音产生的原因,向车主解释该车噪音产生的部位、原理和处理方法以及施工后能达到的效果,让顾客明白放心消费。

ANSYS经典案例在Workbench中实现汽车刹车盘制动噪音分析

文章来源:安世亚太官方订阅号(搜索:peraglobal) 熟悉ANSYS Mechanical的朋友知道,早年ANSYS经典界面风行一时,后来随着2000年后ANSYS Workbench平台的推出,经过十多年的发展完善,其易用性、功能性进入了一个非常强健稳定的状态,现在用Workbench平台进行分析的工程师越来越多,毋容置疑的是其易用性远超ANSYS经典界面,在功能角度也实现了相当的水平。早年学习ANSYS的朋友会使用一些经典的练习案例进行学习,熟悉软件的操作及基本特性,那这些经典案例是非常有学习意义的,不过这些官方的经典案例并没有Workbench的版本,所以我们集中资源对一些经典的ANSYS学习算例进行了梳理,在workbench中进行了一些复现的尝试,并将以连载的方式与爱好者们分享,希望能对大家的学习工作有所帮助。之前,我们分享了结构中的密封圈仿真分析,本期为大家分享汽车刹车盘制动噪音分析。 图1 刹车系统几何模型 工程背景

在汽车制动时,刹车盘和刹车片之间的摩擦会引起刹车盘剧烈而持续的振动,从而导致噪音。所以,消除汽车刹车盘制动噪音是汽车行业一个重要课题。目前,主要有两种理论来解释这种现象: 静动摩擦理论:该理论认为当静摩擦系数大于滑动摩擦系数时,会导致刹车系统的自激振动。正是由于这种阶跃的摩擦力,导致了系统中的一部分能量无法耗散,从而产生噪音。 模态耦合理论:当两种具有相似特征的模态互相耦合时,会导致刹车系统变得极不稳定。这种不稳定性主要是由于结构几何特征的不合理性导致的。 总而言之,根据上述两种理论,制动噪音是由刹车盘片间变化的摩擦力导致的。 此外,制动噪音大致可以分为以下三类: 1 低频噪音:出现频率往往在100~1000Hz之间,声音较为低沉; 2 低频尖响:转动盘的面外模态和刹车片的弯曲模态耦合而产生的刺耳噪音; 3 高频尖响:转动盘的面内模态之间互相耦合而产生的刺耳噪音。

汽车空调系统噪声与车内噪声研究与解决

汽车空调系统拍频现象 引起的车内噪声研究与解决 朱卫兵(1),李宏庚(2) 上汽通用五菱汽车股份有限公司 【摘要】 汽车室内噪声是汽车NVH的主要内容。引起车内噪声的因素很多,主要有发动机噪声、进排气噪声、传动系噪声以及高速行驶时的风噪声等等;汽车空调系统在工作时也会产生非常明显的车内噪 声,而且其产生的噪声相对容易被乘员辨识。空调系统压缩机、蒸发器、鼓风机及管路系统有轻微噪声是 正常的,但是如果噪声过大或存在异响,就说明空调系统有故障,需要及时处理。本文针对国内某款微型 面包车在开发过程中出现空调系统拍频异响问题,采用分别运转法、频谱分析法等将存在的异响问题解决,从而降低汽车车内噪声,同时也为汽车工程技术人员NVH开发提供借鉴。 【关键词】:汽车NVH,速比,压缩机,发电机,拍频 The Analysis and Solution on the Automobile Interior Noise Caused by Air Conditioning Beat-frequency ZHU Weibing(1),LI Honggeng(2) SAIC-GM-Wuling Automobile Co,.Ltd Abstract: The interior noise is one of key performances of vehicle NVH. There are many factors for vehicle interior noise, include engine noise, intake noise, exhaust noise, transmission noise and wind noise on high speed. The vehicle air condition will bring visible interior noise while it working. And it’s easy to distinguish it on relatively. In air condition system, it’s normal for a little noise in compressor, evaporator, fan and pipeline. But if it exist too big noise, there may be exist some problems in air condition system. This passage explains how to resolve the problem according to the air condition noise with the method of separate working and frequency analysis. At the same time it’s a reference to the carmaker’s vehicle NVH develop. Key words:Vehicle NVH, Speed ratio, Compressor, Dynamotor, Beat-frequency 1 前言 汽车空调系统在工作时也会产生非常明显的车内噪声,而且其产生的噪声相对容易被乘员辨识。空调系统压缩机、蒸发器、鼓风机及管路系统有轻微噪声是正常的,但是如果噪声过大或存在异响,就说明空调系统有故障,需要及时治理。 本文针对国内某款微车在开发过程中,由于空调系统拍频现象导致的车内噪声过大问题,采用分别运转法、频谱分析法等方法来确定汽车产生拍频现象的源头,并运用适当的方法来解决此问题,同时也为汽车工程技术人员NVH开发提供借鉴。 2空调系统噪声分析

汽车噪声检测实验

汽车噪声检测实验 一、实验内容 测量实验车加速、匀速时的车内噪声值;测量实验车喇叭声级值;测量实验车的固定声源,如怠速噪声、排气噪声等。 二、实验目的 1、熟悉声级计的工作原理、结构及其特点。 2、掌握汽车噪声的测试方法,熟悉国家有关标准。 三、实验仪器设备 1、实验车1辆。 2、声级计1个 3、发动机转速表1套。 四、实验准备工作 1、检查声级计电池电量。 2、将校准并按测试要求安装于相应位置。 3、将实验车辆预热至正常工作温度。 4、选择好测量场地并布好测点位置。 五、实验步骤 1、车外噪声的测量 1)测量本底噪声:选用“A”计权网络,选择适当量程,记录指示值。 2)根据实验车类型,预置声级dB量程。 3)驾驶人员按加速及匀速行驶操作要求,分别往返行驶,各进行

1-2次,测量记录最大指示值。 2、车内噪声的测量 1)停车、熄火、关闭门窗,测量本底噪声,记录指示值。 2)实验车用常用档位,以60km/h以上不同车速匀速成行驶,测量记录最大指示值。 3、喇叭噪声的测量 1)停车于水平地面上,驻车制动。 2)布置声级计,传声器距车前2m,离地面高1.2m处。 3)选取声级计量程。按汽车喇叭3秒,测量记录最大指示值。4、排气噪声的测量 1)发动机运转至正常热状态后熄火,测量本底噪声,记录指示值。 2)按规定位置布置测点。 3)起动发动机,加速至2/3额定转速,测量记录最大指示值。 六、注意事项 1、装入电池时,应注意极性,切勿接反。 2、学生不得随意进入实验车内,严禁学生发动或驾驶实验车。测量车外噪声时,要注意现场的师生及过往行人、车辆的安全,防止发生事故。 七、结果整理与分析 1、将实验数据记入实验报告(请自行设计记录表格)。 2、试分析车、内外噪声过高及汽车喇叭声级不合格的主要原因。

汽车车内噪声控制方法研究

汽车维修工高级技师论文 汽车车内噪声控制方法研究 姓名:付建伟 日期:2011年8月19日

论文题目:汽车车内噪声控制方法研究 摘要:汽车车内噪声指行驶汽车车厢内存在的各种噪声。车内噪声极易使乘车人员感到疲劳,对汽车的舒适性有着重要影响。本文从系统的观点出发,在分析了国内外汽车 产品的噪声控制技术水平现状以及噪声研究和控制技术方法的基础上,开展了比较 系统的车内噪声控制研究,识别了主要的噪声源和噪声辐射部位,同时,通过本项 目的研究,摸索出了一些行之有效的汽车噪声研究和控制的方法和措施。 关键词:汽车,车内噪声,声源识别,噪声控制,试验研究。 论文内容: 交通噪声是目前城市环境中最主要的噪声源,汽车噪声约占整个交通噪声的75%,是影响其性能和质量的重要指标之一,根据汽车对环境的影响,汽车噪声一般分为车外噪声和车内噪声。车外噪声在很大程度上对外部环境产生生态影响,而车内噪声对乘客舒适性产生影响。 一、国内外汽车噪声状况及控制技术 国外一般对车外噪声有严格的限制标准,至于对车内噪声尚没有严格的标准。在欧洲、美国、日本一些发达国家,汽车加速行驶时主噪声源并不是来自发动机,而是来自胎噪。发达国家对汽车发动机、消声器、变速箱、冷却系等主要噪声源已有深入研究,并且有成熟的理论计算和产品开发设计程序。目前,国外汽车噪声研究和控制的重点已经转向结构振动噪声、轮胎噪声及发动机隔声罩的研究方面,控制技术已普遍达到实用阶段。 国内对车外加速噪声的限制标准制定相对缓慢,自1979年制定了GB1495-79《机动车辆允许噪声》以来一直未做修订,直到2002年才颁布新标准GB1495-2002《汽车加速行驶车外噪声限值及测量方法》,国内对车内噪声没有严格的限制,只对某些星级汽车设置了噪声限值,在国内,发动机噪声仍占汽车噪声的三分之一以上,发动机的减振、降噪成为汽车噪声控制的关键。 对于汽车噪声的控制,不同阶段针对不同噪声源采取的控制措施是不同的。国内汽车的噪声控制技术每个时期都有其侧重点(见表1) 表1不同阶段重点集中发展的控制技术

【汽车试验技术】第十二章 汽车噪声试验系统

1 第十二章 汽车噪声试验系统 噪声对人体的危害早在公元前7世纪已被人们所认识。当然,当今人们对噪声危害的认识更加深入。1979年世界环境保护会议上将噪声列为当代人类最不可容忍的灾难之一。汽车是当今社会主要的噪声源之一,欲减小汽车噪声对人体健康的影响,首先应对噪声进行准确的度量和分析。 第一节 噪声谱分析系统 噪声的频谱分析与第五章中介绍的汽车行驶平顺性分析方法完全相同,所用数学工具均是FFT 。由于噪声的频率范围较宽(可闻声波的频率范围是20Hz ~20000Hz ),所以噪声频谱分析的分频方法常采用倍频程。当然,为了不同的目的,有时也采用与平顺性分析相同的分频方法(1/3倍频程)。表12-1是可闻声波按倍频程分频得到的各频带上、下限频率的结果,若测得声压的时间历程为()p t ,按下式可计算出各频带上声压的均方根值(频谱值)。 ?= u l f f pi df f p T 2 )(1σ (12-1) 式中:pi σ——中心频率为i f 所对应频带上的声压均方根值; l f 、u f ——分别为各频带上的下限频率和上限频率; )(f p ——中心频率为i f 所对应频带上声压时间历程的富氏变换。 倍频程各频带的上、下限频率和中心频率 表 12-1

中心频率 i f (Hz)下限频率 l f (Hz) 上限频率 u f (Hz) 中心频率 i f (Hz) 下限频率 l f (Hz) 上限频率 u f (Hz) 31.5 22.5 45 1000 700 140 63 45 90 2000 1400 2800 125 90 180 **** **** 5600 250 180 355 8000 5600 11200 500 355 710 16000 11200 22400 解噪声在各频带上的分布,以便采取相应的措施减小噪声对人体的危害。 为了使对客观物理量的测试结果能反应人耳的固有特性,需要引入响度、响度级及计权网络等重要概念。人耳对声音的听觉反应是“响”或“不响”,因此用响度对其度量。由于人耳对不同频率声音的反应不同,所以不同频率的声音,尽管其声压级相同,但人耳所感觉到的响度却不一样。为了获得响度与声压级间的关系,美国的弗莱切(Fletcher)和芒森(Munson)及英国的鲁宾逊(Robinson)和达逊(Dason)对许多人群进行了各种频率的听觉试验,他们将不同频率、响度相同的点连成一条曲线,便得到了等响曲线。再将各个频率的听域声压级点和痛域声压级点分别相连,便得到了听域线和痛域线。在两线之间,按响度的不同,将其分为若干个级,即响度级。在国际标准中,将其分为13级,其单位为仿(Phon)。每一级都有一条对应的等响曲线,如图12-1所示。其中:零响度线即听域线,120仿的响度线即痛域线。 响度的单位是宋(Sone),1宋的响度相当于1000Hz的纯音、声压级为40dB(响度 2

汽车车内声场分析及降噪方法研究现状

汽车车内声场分析及降噪方法研究现状 摘要:本文首先对车内噪声的来源进行分析,然后建立了车室空腔声场的声学有限元模型,利用结构及声场动态分析技术,对车身结构的动态特性、车室空腔声场的声学特征进行了研究。在此基础上,分析了声固耦合系统在外界激励下的声学响应。阐述了车内被动噪声控制在低频噪声上的原理与应用。及决定主动噪声控制效果的决定因素及在车内噪声控制中应用的发展过程, 并指出当前研究中需解决的问题和今后的研究方向。 关键词:车内噪声;控制;车室空腔;主动降噪 Abstract:This article first interior noise sources were analyzed, and then the establishment of a finite element model of the vehicle compartment acoustic sound field in the cavity, the use of the structure and dynamic sound field analysis of the dynamic characteristics of the body structure, the acoustic characteristics of the vehicle compartment cavities were sound field the study. On this basis, the analysis of the acoustic excitation solid coupling system in the outside world under the acoustic response. It describes the principle and application of passive noise control car on the low-frequency noise. And determine the effect of active noise control determinants and development process in the car noise control applications, and pointed out that current research problems to be resolved and future research directions. Keywords: interior noise; control; the passenger compartment of the cavity; Active Noise Reduction 0 引言 汽车车内噪声不但增加驾驶员和乘客 的疲劳,而且影响汽车的行驶安全。因此,车内噪声特性已成为汽车乘坐舒适性的评价 指标之一,日益受到人们的重视。车内噪声 主要由发动机、传动系、轮胎、液压系统及结构振动引起。而这些噪声有直接或间接地传到车身结构,在车室内形成声场。车内的噪声水平是体现其舒适性的一项重要指标。为了提高车辆的舒适性, 世界各大汽车公 司都对车内噪声水平制定了严格的控制标准, 将车内噪声的控制作为重要的研究方向。特别是轿车, 车内噪声状况更是衡量轿车档次的标准之一。如何改善车辆内部乘员室声学环境, 降低车内噪声水平,提高车辆 乘坐舒适性已成为研究的热点。 1 车内噪声来源 一切向周围辐射噪声的振动物体都被 称为噪声源。噪声源的类型较多, 有固体的, 即机械性噪声;还有流体的, 即空气、水、 油的动力性噪声; 行驶汽车的噪声包括发 动机、汽车动力总成所产生的噪声, 车身因发动机、道路和空气流的作用而振动所产生的噪声以及附件噪声等。车内噪声产生机理如图1所示[1]。从声源来看,车内噪声的来源主要有: 发动机噪声、进排气噪声、冷却风扇噪声等。车外噪声向车内传播的具体途径主要有两个: 一是通过车身壁板及门窗上所有的孔、缝直接传入车内;二是车外噪声声波作用于车身壁板,激发壁板振动,并向车内辐射噪声。从振动源来看,主要有两个方面: 发动机、底盘工作时产生的振动和路面激励产生的振动。后者频率较低,对激发噪声影响较小。车身壁板主要由金属板和玻璃构成,这些材料都具有很强的声反射性能。在车室门窗均关闭的条件下,上述传入车内的空气声和壁板振动辐射的固体声,都会在密闭空间内多次反射,相互叠加成为车内噪声。 图1 车内噪声产生机理

(new)(英文)Santa Catarina大学通过麦克风阵列测试汽车pass-by噪声

UFSC Uses LabVIEW and NI CompactDAQ for Acoustic Beamforming in Vehicle Pass-By Noise Acoustic Image Identifying Tire and Exhaust Noise at 50 KPH at 1,904.3 Hz Author(s): Samir N.. Gerges - Federal University of Santa Catarina (UFSC) The Laboratory of Noise and Vibration at the Federal University of Santa Catarina (UFSC) in Brazil is involved in various projects including R&D assistance to the automobile industry to adapt its products to noise and vibration standards. In addition to helping local industries, this supports academic developments in teaching and research for undergraduate and postgraduate students. Pass-by noise tests are standardized to quantify the maximum sideline noise level during vehicle operation. The test is regulated in most countries with specific sound limits defined by relevant government agencies, typically ISO 362 – measurement of noise emitted by accelerating road vehicles. The specifications are intended to reproduce the level of noise generated by the principal noise sources during normal driving in urban traffic, typically on roads with speed limits of 50 km/h and 70 km/h. The vehicle pass-by noise test certifies that a car complies with the standard so its contribution to traffic noise is not above the permitted limit. Many elements contribute to the total noise of a vehicle, such as the motor, exhaust, transmission, and tires. Because standard pass-by noise tests do not have the capacity to identify the sources emitting noise that leads to test failure, we needed technique a to visualize the acoustic field to identify these sources. By applying beamforming in this test, we can see which of these sources significantly contributes to the overall noise emission and has an impact on the vehicle’s pass-by noise.

汽车空调噪音的处理方法

汽车空调噪音的处理方法 当前,汽车行业蓬勃发展,汽车市场蒸蒸日上,尤其是轿车也进入了寻常百姓家。因此,人们对汽车的动力性、舒适性等要求越来越高。其中,车内噪声高低是人们选车的一个重要评价点,若车内的噪声高则容易引起驾驶者和乘员的不适,因此,如何控制车内噪声是设计者需解决的重要问题。在汽车噪声源中,汽车空调压缩机是容易引起噪声的部件之一,这样,解决压缩机引起的车内噪声问题是非常必要的,这也是提升整车品质的重要一环。 2压缩机噪声产生的原因分析 压缩机噪声直接来源于吸、排气阀的机械撞击和气流脉动。在压缩机起动的瞬间,假如发动机、空调系统和防火墙消音垫等设计、安装不合理,就会把噪声传递到乘员舱内,从而使驾驶者和乘员感到噪声明显,引起不舒适的感觉。目前,汽车空调压缩机引起车内噪声的有以下几种原因。 1)发动机支撑或悬置设计不合理。在汽车设计中,发动机的支撑或悬置点设计不合理,当发动机运转后,由于压缩机是固定在发动机上,压缩机起动时,发动机的震动会导致压缩机产生共振,从而使压缩机噪声增大,人们明显就感到有噪声。 2)空调系统没有减震降噪措施。在汽车空调系统内,压缩机、冷凝器和蒸发器等是通过空调管路连接起来。假如空调系统没有减震降噪措施,那么,当压缩机起动后,压缩机的震动引起的噪声就会通

过空调管路传递到蒸发器,从而使车内的驾驶者和乘员就感到噪声加强,有不舒适的感觉。 3)防火墙的消音垫设计或安装不合理。汽车的发动机舱是产生汽车噪声的主要地方,其中防火墙的消音垫就是起到阻断或消减发动机舱内噪声的作用。如果防火墙的消音垫设计不合理或安装不到位,同样也会使发动机舱的噪声,例如压缩机的震动声音传递到乘员舱内。 以上是压缩机引起车内噪声的几种情况分析,不管是何种情况,压缩机噪声引起的不适问题必须解决。 3降低或消除压缩机噪声的措施及测试 通过以上三种压缩机引起车内噪声的原因分析,认为通常情况下,发动机、防火墙消音垫设计和安装一般都合理,传递压缩机噪声的可能性较低,因此,本文针对第二种原因,即空调系统减震降噪设计不合理来提出改进措施,并进行相关的测试,以验证措施的有效性。 一般情况下,压缩机起动后,由于压缩机工作,压缩机的转速比发动机的转速高,故一般要产生一定的震动,假如各方面设计及安装合理,则驾驶者和乘客所感受的压缩机噪声不应该明显,不会产生不适的感觉,因此认为,压缩机开启前后的噪声差值在3分贝左右是合理的。如果噪声差值超过这一数值,则会造成驾驶者和乘员的不适。 根据3分贝的噪声差值,对空调管路进行了下面的改进措施和测试。 3.1蒸发器或空调单元接口贴泡绵

汽车噪声噪声检测标准是什么

汽车噪声噪声检测标准是什么 题要 任何东西都有可能发生噪声污染,现如今,随着汽车保有量的增加,汽车噪声污染问题越来越受到社会和公众的重视。为此国家也出台了汽车噪声噪声检测标准,目的就是要求汽车企业在生产汽车时,要确保汽车达标。这也是社会发展的要求,保障人民群众健康,具体的标准可以到本文了解。 任何东西都有可能发生噪声污染,现如今,随着汽车保有量的增加,汽车噪声污染问题越来越受到社会和公众的重视。为此国家也出台了汽车噪声噪声检测标准,目的就是要求汽车企业在生产汽车时,要确保汽车达标。这也是社会发展的要求,保障人民群众健康,具体的标准可以到本文了解。 ▲一、汽车噪声噪声检测标准是什么 根据《机动车运行安全技术条件》和《机动车噪声测量方法》,汽车规定最大的噪声级别如下: 车辆类型车外最大允许噪声级[dB(A)] 载货汽车 92 90 89 轻型越野车 89 公共汽车 89 88 轿车 84 客运车辆内部的最大噪音不能大于82dB,汽车驾驶员的

耳旁噪音级不得大于90dB,喇叭的声级在离车2m、离高1.2m 的时候对应的值为90~115dB。 ▲二、汽车噪声测量工具 1、测量工具:使用的国家规定的标准测试噪音的仪器,主要检测的项目有机动车的行驶噪声、排气噪声和喇叭声音响度级。在市场上一般分为精密声级计和普通声级计,根据使用的电源不同还被分为交流式声级计和直流式声级计。还可以便捷式,适合出现于任何一个场所。 主要组成部件有传声器、放大器、衰减器、计权网络、检波器、指示表头和电源等。主要是将传输的声波转化成电压信号,体现的形式有动圈式和电容式等更多形式,还使用了放大器和衰减器。 2、测量方法:主要通过声级计的检查与校准、车外噪声测量、加速行驶车外噪声测量、匀速行驶车外噪声测量这几个方面使用专业的测噪音仪器对其其噪音的比较和综合 数据。 ▲三、噪声检测物理标准 1、声压和声压级:通过物理性质我们可以了解到,噪音有声压与声压级、声强与声强级和声功率与声功率级。声压和声压级主要表示的是噪音的强弱参数,当声压越大听到的声音就越强,然而人可以听到的范围是2×10-5(听阈声压)~20Pa(痛阈声压)。

汽车车内噪声分析及控制技术的发展

第20卷增刊重庆交通学院学报2001年11月VOI.20Sup.JOURNAL OF CHONGOING JIAOTONG UNIVERSITY NOv., ! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 2001文章编号:1001-716 (2001)S0-0091-04 汽车车内噪声分析及控制技术的发展" 邵毅明,王文兴 (重庆交通学院交通及汽车工程系,重庆400074) 摘要:分析了当今汽车乘坐室内部噪声的主动控制及被动控制技术,对汽车车内噪声分析计算方法的发展及现状进行了综述. 关键词:汽车;乘坐室;噪声;控制;分析 中图分类号:U491.9+1文献标识码:B 近些年来,随着人们对汽车乘坐舒适性要求的提高和人们环保意识的加强,各国对汽车噪声的要求也越来越严格.改善车辆内部声学环境,降低车内噪声水平,是各国政府和车辆生产厂家共同关注的问题,汽车车内噪声的研究已受到普遍重视.到目前为止,对于控制内腔噪声的方法,人们作了许多研究.综合起来可大致分为被动控制、主动控制和基于声固耦合振动分析的声场优化. 1车内噪声的控制 1.1车内噪声的被动控制[2][8][3][5] 噪声的被动控制又叫做被动降噪,无源降噪.它主要用来降低车内中、高频噪声.早期的车辆内部噪声控制主要采用被动降噪.被动降噪主要针对噪声的传播途径采取以下措施:①改善车身结构的密封性能,防止外部噪声经由孔隙传播形成空气传播声;②采用多层隔声结构对发动机等外部噪声辐射源进行隔离;③在车身与底盘各联接处、发动机支承处采用隔振、减振措施降低振动向车身传递; ④在车身内表面采用阻尼减振材料,改善壁面振动特性;⑤车身内表面进行吸声处理,降低车内混响声. 这些措施对车辆内部噪声的降低确实起到了一定作用,但由于理论分析方法和试验手段的不足,控制方法运用中带有较多的经验因素.另一方面,由于这些方法简单易行,成本较低,便于实施和应用,易于取得明显的降噪效果,故这些方法是汽车生产厂家主要采用的降噪措施. 被动降噪经过长期的实践已十分成熟,其发展方向大致如下:①采用CAD进行优化设计,可以做到针对性强、多方案比较,以最简单的结构和最少的费用,达到比较满意的效果.例如消声器的设计采用CAD,其结构形式更加简化,消声效果得到提高;②低频吸声、隔声、消声等难题有所突破;③新型吸声、隔声、阻尼材料与结构的开发与利用;④发动机、传动系、车身的减振、隔振技术. 1.2车内噪声的主动控制(有源噪声控制)[1][7][4][9] 有源噪声控制方法(Active NOise COntrOI,简称ANC)又叫有源消声,是近20年发展起来的一种全新的噪声控制方法. 与传统的降噪措施相比,它突出的优势在于低频噪声控制效果好,此外还具有对原系统的附加质量小和占用空间小等优点.1933年,德国物理学家Lueg在其提出的名为“PrOcess Of SiIencing sOund OsciIIatiOn”的专利申请中最早提出了有源消声这一概念和实现思路,由于当时电子技术水平的限制,Lueg的这一创造性设想并未变成现实.直到1956年美国通用电气公司(GE)的COnver开始尝试将有源消声技术应用于大型变压器线谱噪声控制,才使有源消声技术在实际噪声控制场合中得到应用. 60年代末期到80年代初,由于电子技术和信号处 "收稿日期:2001-02-28 作者简介:邵毅明(1955-),男,四川资阳县人,教授,汽车节能与污染研究.

汽车噪声的检测实验指导书

汽车噪声的检测实验指导书 一、实验目的和实验任务 各种道路机动车辆、各种内河航运船舶、铁路机车以及飞机等发出的噪声,属于交通运输噪声,已成为现代城市环境最大的噪声污染源。噪声对人类在生理、心理和社会各方面都有影响。长期在高噪声环境下工作和生活会危害人体的健康。 声响评价指标:声压、声功率、声强、声压级。 学会声级计的使用方法;学会汽车噪声的测量方法。 二、实验仪器设备 声级计一台;实验车辆一辆;卷尺;粉笔。 三、实验内容 (一)、了解噪声试验概念、明确实验目的。 (二)、讲解实验操作方法。 (三)、对汽车车外、车内、驾驶员耳旁、喇叭 的噪声进行测量。 四、仪器部件简介 声级计是一种能够把工业噪声、生活噪声和车 辆噪声等,按人耳听觉特性近似地测定其噪声级的 仪器。噪声级是指用声级计测得的并经过听感修正 的声压级(dB)或响度级(方)。 声级计一般由传声器、前置放大器、衰减器、 放大器、计权网络、检波器、指示表头和电源等组 成。

1-传声器,2-前置放大器,3-输入衰减器,4-输入放大器,5-计权网络 6-输出衰减器,7-输出放大器,8-检波器 9-表头 五、测量条件: (一)、车外噪声测量条件 1、测量场地应平坦而空旷,在测试中心以25m为半径的范围内,不应有大的反射物,如建筑物、围墙等。 2、测试场地跑道应有2Om以上的平直、干燥的沥青路面或混凝土路面,路面坡度不超过0.5%。 3、本底噪声(包括风噪声)应比所测车辆噪声至少低10dB,并保证测量不被偶然的其他声源所干扰。本底噪声是指测量对象噪声不存在时,周围环境的噪声。 4、为避免风噪声干扰,可采用防风罩,但应注意防风罩对声级计灵敏度的影响。 5、声级计附近除测量者外,不应有其他人员,如不可缺少时,则必须在测量者背后。测量人员的身体离声级计也应尽量远些,以免影响测量的准确性。 6、被测车辆不载重。测量时发动机应处于正常使用温度。车辆带有其他辅助设备亦是噪声源,测量时是否开动,应按正常使用情况而定。 (二)、车内噪声测量条件: 1、测量跑道应有足够试验需要的长度,应是平直、干燥的沥青路面或混凝土路面。 2、测量时风速(指相对于地面)应不大于3m/s。 3、测量时车辆门窗应关闭。车内带有其他辅助设备是噪声源,测量时是否开动,应按

汽车试验技术--第十二章 汽车噪声试验系统

第十二章 汽车噪声试验系统 噪声对人体的危害早在公元前7世纪已被人们所认识。当然,当今人们对噪声危害的认识更加深入。1979年世界环境保护会议上将噪声列为当代人类最不可容忍的灾难之一。汽车是当今社会主要的噪声源之一,欲减小汽车噪声对人体健康的影响,首先应对噪声进行准确的度量和分析。 第一节 噪声谱分析系统 噪声的频谱分析与第五章中介绍的汽车行驶平顺性分析方法完全相同,所用数学工具均是FFT 。由于噪声的频率范围较宽(可闻声波的频率范围是20Hz ~20000Hz ),所以噪声频谱分析的分频方法常采用倍频程。当然,为了不同的目的,有时也采用与平顺性分析相同的分频方法(1/3倍频程)。表12-1是可闻声波按倍频程分频得到的各频带上、下限频率的结果,若测得声压的时间历程为()p t ,按下式可计算出各频带上声压的均方根值(频谱值)。 ? =u l f f pi df f p T 2 )(1 σ (12-1) 式中:pi σ——中心频率为i f 所对应频带上的声压均方根值; l f 、u f ——分别为各频带上的下限频率和上限频率; )(f p ——中心频率为i f 所对应频带上声压时间历程的富氏变换。 倍频程各频带的上、下限频率和中心频率 表12-1 中心频率i f (Hz ) 下限频率l f (Hz ) 上限频率u f (Hz ) 中心频率i f (Hz ) 下限频率l f (Hz ) 上限频率u f (Hz ) 31.5 22.5 45 1000 700 140 63 45 90 2000 1400 2800

125 90 180 **** **** 5600 250 180 355 8000 5600 11200 500 355 710 16000 11200 22400 解噪声在各频带上的分布,以便采取相应的措施减小噪声对人体的危害。 为了使对客观物理量的测试结果能反应人耳的固有特性,需要引入响度、响度级及计权网络等重要概念。人耳对声音的听觉反应是“响”或“不响”,因此用响度对其度量。由于人耳对不同频率声音的反应不同,所以不同频率的声音,尽管其声压级相同,但人耳所感觉到的响度却不一样。为了获得响度与声压级间的关系,美国的弗莱切(Fletcher )和芒森(Munson )及英国的鲁宾逊(Robinson )和达逊(Dason )对许多人群进行了各种频率的听觉试验,他们将不同频率、响度相同的点连成一条曲线,便得到了等响曲线。再将各个频率的听域声压级点和痛域声压级点分别相连,便得到了听域线和痛域线。在两线之间,按响度的不同,将其分为若干个级,即响度级。在国际标准中,将其分为13级,其单位为仿(Phon )。每一级都有一条对应的等响曲线,如图12-1所示。其中:零响度线即听域线,120仿的响度线即痛域线。 响度的单位是宋(Sone),1宋的响度相当于1000Hz 的纯音、声压级为40dB (响度级为40仿)的听觉反应。50仿为2宋,60仿为3宋。实验证明,响度级每增加10仿,响度增加一倍。若用N L 代表响度级,N 表示响度,二者的关系是: 10 40 2 -=N L N (12-2)

汽车噪声控制系统的设计

汽车噪声是指汽车驶过的噪声,即在汽车驶过时在其旁边测得的噪声,这个噪声是汽车制造鉴定中一个重要的指标,它是交通噪声中最主要的一部分,对其影响非常大。现代汽车的噪声特性是衡量汽车质量的重要标志之一。汽车噪声不仅造成周围环境的污染,影响人们的生活和工作,而且车内的噪声与振动、温度、湿度等环境因素相比是降低车辆舒适性的主要因素之一。为了提高车辆的舒适性,世界各大汽车公司都对车内噪声的控制作为重要的研究方向。特别是轿车,车内噪声状况更是衡量轿车档次的标准之一。 噪声控制为实时控制,需要较大的计算量,普通的单片机难以实现。20世纪80年代,数字信号处理(DSP)芯片的问世为信号的实时控制开辟了广阔的发展空间。随着芯片技术的不断成熟和发展,DSP已成为现代智能控制器的核心部件。本文采用DSP芯片TMS320F2812设计了既可以脱机独立自主运行又可以通过USB接口在线仿真的智能控制器,并以该控制器为核心设计了汽车内部噪声主动智能控制系统。 关键词:汽车噪声、智能控制系统、电路设计

Abstract Automobile means a motor vehicle passing noise is noise, that is, in the car when passing through in his next to the measured noise, the noise identification of vehicle manufacturers are an important indicator, it is the traffic noise in the main part of its impact on very large . Hyundai Motor to measure the noise characteristics are an important indicator of quality automotive one. Car noise is not only the surrounding environment caused by pollution, the impact of people's life and work, and vehicle noise and vibration, temperature, humidity and other environmental factors are lower compared to vehicle comfort one of the main factors. Vehicles in order to improve comfort, the world's major car companies are on the vehicle noise control as an important research direction. In particular, cars, vehicle noise is a measure of the situation of more cars, one of the grade standards. Noise control for real-time control, required the calculation of a larger volume, single-chip general difficult to achieve. 20th century 80's, digital signal processing (DSP) chip for the signal the advent of real-time control has opened up a broad space for development. As chip technology continues to mature and develop, DSP has become the core of the modern intelligent controller components. In this paper, TMS320F2812 designed DSP chip can run offline independence can be online through the USB interface simulation intelligent controller and the controller as the core design of the interior of the motor vehicle Intelligent active noise control system. Keywords: car noise、intelligent control systems、circuit design

相关主题
文本预览
相关文档 最新文档